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Abstract

We show that as a result of the axial anomaly, massless fermions at zero temperature define a relativistic 
quantum superfluid. The anomaly pole implies the existence of a gapless Chiral Density Wave (CDW), 
i.e. an axion-like acoustic mode of an irrotational and dissipationless Hamiltonian perfect fluid, that is a 
correlated fermion/anti-fermion pair excitation of the Fermi-Dirac sea. In D=2 dimensions the chiral su-
perfluid effective action coincides with that of the Schwinger model as e → 0, and the CDW acoustic mode 
is precisely the Schwinger boson. Since this identity holds also at zero chiral chemical potential, the Dirac 
vacuum itself may be viewed as a quantum superfluid state. The CDW collective boson is a U(1) chiral 
phase field, which is gapless as a result of a novel, non-linear realization of Goldstone’s theorem, extended 
to this case of symmetry breaking by an anomaly. A new local form of the axial anomaly bosonic effec-
tive action in any D even spacetime is given, consistent with superfluidity, and its quantization is shown to 
be required by the anomalous Schwinger terms in fermion current commutators. In QED4 this collective 
Goldstone mode appears as a massless pole in the axial anomaly triangle diagram, and is responsible for the 
macroscopic non-dissipative currents of the Chiral Magnetic and Chiral Separation Effects, as well as the 
Anomalous Hall Effect. In a constant uniform magnetic field an exact dimensional reduction from D=4 to 
D=2 occurs and the collective e+e− CDW chiral pair excitation propagating along the magnetic field direc-
tion is a Chiral Magnetic Wave, which acquires a mass gap M2=e3B/2π2. Possible realizations and tests of 
the theory of collective bosonic excitations due to the anomaly in Dirac/Weyl materials are briefly discussed.
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1. Introduction

The derivation of macroscopic fluid hydrodynamics from microscopic quantum field theory 
is of fundamental importance, underlying many branches of physics. This is a formidable prob-
lem in general, spanning a very large range of scales. The relationship between the macroscopic 
and microscopic realms becomes more immediate at very low temperatures, approaching abso-
lute zero, where quantum behavior dominates, and can be responsible for long range collective 
phenomena.

An example of this closer connection at low temperatures and finite densities is provided 
by macroscopic superfluid behavior, characterized experimentally by persistent, non-dissipative 
currents and gapless sound modes [1]. Theoretically these striking features are consequences 
of the spontaneous breaking of the continuous global U(1) phase symmetry associated with 
the conservation of particle number, and the formation of a macroscopic coherent condensate 
exhibiting off-diagonal long range order [2–5]. The U(1) phase is a field describing an acoustic 
density wave excitation that is identified as a gapless Nambu-Goldstone boson [6–8]. Although 
condensation to a superfluid state is a property of systems obeying Bose statistics, fermions 
such as 3He can form Cooper pairs that act as effective bosons which condense and also form 
superfluids [9].
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Our first purpose in this paper is to show that the macroscopic properties of a relativistic super-
fluid are satisfied in fundamental theories such as quantum electrodynamics (QED), with weakly 
interacting massless fermions that possess an anomaly in their axial currents J̃ λ = ψ̄γ λγ

D+1ψ , 
when coupled to an external gauge potential Aλ. Here γ

D+1 is the Dirac chirality matrix equal to 
γ5 in D=4 dimensions, defined in general even D by eq. (A.1), and the chiral current J̃ λ is the 
Noether current corresponding to the global Uch(1) chiral rotation ψ → e

iαγ
D+1 ψ of the Dirac 

fermion field, which rotates left and right handed fermions by an opposite phase.
In D=2 spacetime (d=1 space) dimensions we prove that the relationship between quantum 

superfluidity and massless fermion QED2 is an identity. In fact, the effective action of the super-
fluid description coincides with that of the bosonized Schwinger model of massless QED2 [10]
in the limit of vanishingly small electric charge coupling e→0. In other words, in this case at 
least, macroscopic fluid behavior is directly derivable from the microscopic theory, and the axial 
anomaly is the bridge spanning scales that makes this connection possible. At non-zero chiral 
density ñ, and chemical potential μ̃, the axial anomaly necessarily leads to a propagating Chi-
ral Density Wave (CDW), which is a bosonic collective mode comprised of fermion/hole pair 
excitation of the Fermi sea.

The fact that D = 2 fermions form a (Luttinger) liquid with a bosonized CDW has been 
anticipated [11]. However, the relation to the Schwinger model, the essential role of its axial 
anomaly and precise identification with the anomalous chiral superfluid effective action has not 
been demonstrated previously. More remarkable still, since the superfluid acoustic mode depends 
only upon the ratio μ̃/ñ = π , which is a fixed constant for free fermions in D=2, the superfluid 
description extends also to limiting case of μ̃ = πñ → 0, in which case the CDW becomes a 
fermion/anti-fermion pair excitation of the Dirac sea, implying that the Dirac vacuum itself may 
also be regarded as a kind of superfluid state. This is demonstrated in Secs. 2-3. To our knowl-
edge this is the first instance in which a connection between macroscopic superfluid behavior 
and the microscopic quantum fermion vacuum has been rigorously established.

The existence of a gapless collective boson CDW arising from the axial anomaly immediately 
raises a second fundamental question, namely the applicability of Goldstone’s theorem. In the 
more familiar case of Spontaneous Symmetry Breaking (SSB), the vacuum or low temperature 
ground state of the system is described by a scalar order parameter, namely the expectation 
value 〈�〉 which is non-invariant under a U(1) global symmetry at the minimum of an effective 
potential [12], but the Ward Identities are exactly preserved. A massless Goldstone boson then 
follows in dimensions D>2 [5]. This is in contrast to symmetry breaking by the fermionic axial 
anomaly – Anomalous Symmetry Breaking (ASB) – where the naive chiral Ward Identities are 
explicitly violated [13–15], and there is no readily apparent effective potential to be minimized 
for a scalar order parameter. The standard form of Goldstone’s theorem does not obviously apply 
to this case, and the origin of the gapless bosonic excitation in fermionic ASB therefore is more 
subtle.

That a gapless boson is implied by the anomaly was first recognized in the anomalous tri-
angle diagram of massless QED in D=4 by a dispersive approach, as an infrared singularity, 
independent of any ultraviolet (UV) regularization [16]. General arguments of analyticity and 
unitarity lead to the same conclusion [17,18], linking short distance to long distance behavior by 
the ‘t Hooft consistency condition [19], and the Adler-Bardeen theorem [20]. In Refs. [21] and 
[22] it was demonstrated that the massless boson pole of the axial anomaly in both D=2 and 
D=4 dimensions arises from correlated pairs of massless fermions and anti-fermions (particle-
hole pairs in the condensed matter context) traveling together co-linearly at the speed of light. 
In other words, the axial anomaly itself implies fermion pairing and the existence of a propa-
3
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gating gapless effective boson excitation, analogous to Cooper pairing, even in the limit of very 
weak (or in the limiting case of absence of) fermion self-interactions. This gapless excitation is 
made explicit in D=2 by the techniques of bosonization [23]. In D=4 a bosonic form of the 
effective action of the axial anomaly was given in [21]. It has become recognized only relatively 
recently that the appearance of a collective massless boson mode, not apparent in the classical 
Lagrangian, is a general feature of both axial and conformal anomalies, whose effects can ex-
tend to long distance or macroscopic scales [24–26]. Since the distinguishing feature of SSB, a 
gapless excitation, is present in massless fermion theories with an axial anomaly, it suggests that 
Goldstone’s theorem can be generalized and extended to anomalous fermion theories, despite 
there being no effective potential or scalar order parameter immediately apparent at the outset.

Demonstrating that Goldstone’s theorem can indeed be generalized to ASB is our second 
main purpose in this paper. The novel extension of Goldstone’s theorem in the case of ASB 
differs from SSB in that it rests upon the anomalous current commutators, or Schwinger terms, 
in the underlying fermion theory, which remain non-vanishing even in the weak coupling limit 
e→0 and vanishing background gauge field, where the divergence ∂λJ̃

λ = ψ̄γ λγ
D+1ψ → 0. 

In this limit there is a propagating (pseudo-)scalar CDW, and this bosonic collective mode is 
associated with fermion condensation and 〈ψ̄ψ〉 �= 0. This extension of Goldstone’s Theorem to 
ASB is proven in Sec. 4.

The weak coupling limit e→0 is subtle, particularly in D=2 dimensions, where the Mermin-
Wagner-Coleman (MWC) theorem [27,28] tells us that there can be no true long-range order and 
no true Goldstone bosons. The D=2 case therefore merits special attention. Since the would-be 
Goldstone mode is just the boson of the Schwinger model in D=2, it becomes massive or gapped 
with M2 = e2/π , so that for any finite e, however small, the Goldstone mode becomes ‘Higgsed,’ 
there is no long range order and no gapless mode at distances greater than 1/M , consistent with 
the MWC theorem. Nevertheless as e→0 but L → ∞ with eL � 1 fixed, the CDW approximates 
a Goldstone mode over a larger and larger range of distance scales with only algebraic power law 
decay of the correlator. This is the behavior known as ‘quasi-long-range order’ [29].

The third major goal of this paper is to extend the derivation of macroscopic behavior from 
quantum field theory to higher (even) dimensions larger than two, again relying upon the axial 
anomaly and the anomaly pole. We show in Sec. 5 that bosonization and macroscopic super-
fluidity effects persist in higher dimensions as well, as a direct result of the axial anomaly, at 
least at T =0 for massless fermions, in a subsector of the theory at weak enough coupling that 
self-interactions can be neglected. This relies upon a new form of the effective bosonic action of 
the axial anomaly in any D= 2n even dimensions in the longitudinal sector of the axial current, 
where the massless boson anomaly pole of the triangle 〈J̃ λJ αJ β〉 diagram resides. This collec-
tive boson in D=4, again composed of massless fermion pairs, is entirely responsible for the 
non-dissipative, macroscopic Chiral Magnetic and Chiral Separation currents of QED4 [30,31]. 
That the same D=4 effective action and massless pole of the triangle anomaly of QED4 is also 
responsible for the Anomalous Hall Effect in quantum materials such as Weyl semi-metals [32]
is shown in Sec. 5.4, in another example of a macroscopic quantum effect in D > 2 directly 
traceable to the microscopic anomaly.

In the case of a constant and uniform magnetic field B background with a parallel E field 
independent of the transverse coordinates, the D=4 triangle anomaly reduces to the D=2 case. 
The CDW along the common E ‖ B direction is a Chiral Magnetic Wave (CMW), coinciding 
with the Schwinger boson collective excitation in D=2; or in other words this is an example of 
dimensional reduction, where macroscopically observable quantum coherence effects resulting 
from the microscopic QFT anomaly in D > 2 dimensions can be rigorously related back to the 
4



E. Mottola and A.V. Sadofyev Nuclear Physics B 966 (2021) 115385
D=2 case. The role of the dimensionful D=2 coupling of the Schwinger model is taken by 
2αeB . This is also a new result, rigorously proven for the first time to our knowledge in Sec. 6.

As a final example of macroscopic effects in D = 4, we consider in Sec. 7 free massless 
fermions at finite chiral density in QED4, where the collective boson predicted by the Goldstone 
theorem extended to ASB of Sec. 4 is a gapless acoustic mode propagating at the sound speed 
v2
s = dp

dε
= 1

3 , sourced by and coupled to E ·B . Possible realizations of the CDW as an axion-like 
mode in Weyl materials are briefly discussed in Sec. 8, in the Summary and Outlook.

There are three Appendices containing some additional technical details, included for com-
pleteness and supplementing the main text. Appendix A clarifies the relationship between the 
superfluid energy-momentum tensor and Hamiltonian. Appendix B collects a number of useful 
formulae for free fermions in two dimensions and their bosonization for reference. Appendix C
examines the delicate limit of e → 0 in a finite volume system in D=2, the θ -vacuum periodicity 
arising from topologically non-trivial gauge transformations, and fate of the Nambu-Goldstone 
mode in the Schwinger model in the infinite spatial volume limit.

Note on organization of the paper:
In the interest of making the paper as self-contained and accessible to as wide a cross-

disciplinary audience as possible, review of some topics, such as the Schwinger model and 
triangle anomaly seemed necessary, particularly since they may not be familiar to readers with 
different backgrounds. For the most part this supplementary review material is relegated to the 
Appendices. A Table of Contents and brief account of the main new results and their importance 
are provided both in this Introduction, and summarized again in Sec. 8, with references to the 
specific numbered relations establishing these results in the text, for the convenience of readers 
who may wish to skip directly to those sections containing the results in which they are most 
interested.

2. Ideal hydrodynamics of an anomalous chiral fluid

2.1. Euler-Lagrange action principle

We begin by giving the action principle that provides a consistent framework for relativistic 
ideal chiral fluids incorporating the axial anomaly. This is a new gauge invariant formulation 
which unlike some earlier treatments, e.g. [33], conserves electric charge. It extends and gen-
eralizes earlier discussions of relativistic but non-anomalous or non-chiral fluids [34,35]. Those 
were based on generalizing to Lorentz invariant systems the Euler-Lagrange action principle for 
non-relativistic fluids [36]. The key ingredient of these variational principles is the introduction 
of a ‘dynamic velocity’ vector field ξ that can be expressed in terms of scalar (Clebsch) poten-
tials [37]. In its relativistic generalization the dynamic velocity ξλ is a covariant D-vector in D
spacetime dimensions that couples to the conserved current whose hydrodynamic flow is under 
study. In this paper the fermionic axial current J̃ λ = ψ̄γ λγ

D+1ψ is our primary focus.
In general several Clebsch potentials, denoted by η, α, β, . . . are necessary to describe ar-

bitrary rotational motions of a fluid and entropy flow at finite temperatures, in terms of which 
the dynamic velocity can be expressed as ξλ = −∂λη + α ∂λβ + . . . [34]. However the essential 
feature of a superfluid is that it should be dissipationless. This implies that the α, β, . . . terms 
describing entropy or rotational currents are negligible, and should vanish entirely at zero tem-
perature. In that case the dynamic velocity field can be expressed as a pure gradient of a single 
scalar potential to be denoted here by η, so that we may take ξλ = −∂λη. Then the minimal action 
for ideal hydrodynamics of a chiral superfluid in D = d + 1 (even) spacetime dimensions is
5
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Sχfl =
∫

dDxLχfl =
∫

dDx
{(

∂λη + Ãλ

)
J̃ λ + ηAD−ε(ñ)

}
(2.1)

where the tildes denote chiral quantities, ñ is the chiral number density and ε(ñ) is the equilib-
rium energy density of the fluid in its rest frame. An external axial potential Ãλ is introduced so 
that

δSχsf

δÃλ

= J̃ λ = ñ uλ (2.2)

is defined, with uλ the relativistic kinetic velocity of the fluid. Since the relativistic velocity is 
normalized by uλuλ = uλgλνu

ν = −1 in units in which the speed of light c = 1, with gλν the 
spacetime metric, the chiral number density can be expressed in the relativistically invariant form

ñ ≡
(
−J̃ λJ̃λ

) 1
2

(2.3)

in terms of the axial current. The AD term takes account of the axial current anomaly in (2.4)
below. For some related discussions of effective actions for anomalous fluids, see [33,38–40].

The variational principle for the fluid action (2.1) requires that the pseudoscalar Clebsch po-
tential η and the axial current J̃ λ be varied independently, in addition to the variation (2.2). 
Variation of (2.1) with respect to η gives

∂λJ̃
λ = AD

D=2n= 2

(4π)n n! εμ1ν1...μnνnFμ1ν1 ...Fμnνn (2.4)

where AD is the axial anomaly for massless Dirac fermions, Fμν = ∂μAν − ∂νAμ is the electro-
magnetic field strength, and εμ1ν1...μnνn is the totally anti-symmetric Levi-Civita tensor in D=2n

even dimensions [41]. We focus on the D = 2, 4 cases explicitly in this paper, providing a basis 
for the superfluid action (2.1) from QFT first principles, by which η will be identified with the 
dynamical phase field of chiral symmetry breaking.

Variation of (2.1) with respect to the axial current J̃ λ gives

δ

δJ̃ λ
Sχfl = ∂λη + Ãλ −

(
dε

dñ

)(
dñ

dJ̃ λ

)
= ∂λη + Ãλ + μ̃

ñ
J̃λ = 0 (2.5)

in view of (2.3), where

μ̃ ≡ dε

dñ
(2.6)

is the equilibrium chiral chemical potential. Thus using (2.2), the dynamic velocity field is

ξλ = −∂λη = μ̃ uλ (2.7)

where we now set the external axial potential Ãλ = 0 here and in the following. We also have

μ̃ = (− ξλξ
λ
) 1

2 = (−∂λη ∂λη
) 1

2 (2.8)

so that the chiral chemical potential is also a relativistic invariant, analogous to (2.3).
If (2.1) is evaluated at the extremum (2.5), denoted by an overline

Sχfl

∣∣∣
AD=0

=
∫

p dDx =
∫

dt

∫
p ddx = −

∫
dt � (2.9)

where
6
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p(μ̃) = μ̃ ñ − ε = ñ2 d

dñ

( ε

ñ

)
satisfying

dp

dμ̃
= ñ (2.10)

is the pressure of the fluid when the external field anomaly term AD is set to zero, and � is its 
Grand Potential. In equilibrium at finite temperature 

∫
dt is replaced by β = h̄/kBT by continu-

ation to imaginary time. However, in this paper we work in real time and at zero temperature.

2.2. Canonical Hamiltonian

The dissipationless nature of the perfect chiral fluid described by (2.1) is made explicit by its 
Hamiltonian form [33,35,42]. Defining the momentum conjugate to η

�η ≡ δ

δη̇
Sχfl = J̃ 0 (2.11)

we find the Hamiltonian density

Hχfl = �η η̇ −Lχfl = − J̃ i ∇iη − ηAD + ε (2.12)

at Ãλ = 0. To express this in terms of the canonical pair (η, �η) we first solve (2.5) for

J̃ i = − ñ

μ̃
∇ iη (2.13)

again at Ãλ = 0, so that from (2.3) and (2.11) we have

�2
η = ñ2 + J̃i J̃

i = ñ2 + ñ2

μ̃2 (∇η)2 =
(

ñ

μ̃

)2 [
μ̃2 + (∇η)2] (2.14)

from which

ñ

μ̃
= 1

μ̃

dp

dμ̃
= |�η|√

μ̃2 + (∇η)2
≥ 0 (2.15)

where the positive square root is always taken. Thus from (2.10) we obtain

ε − J̃ i ∇iη = μ̃ ñ − p + ñ

μ̃
(∇ iη) (∇iη) = ñ

μ̃

[
μ̃2 + (∇η)2]− p (2.16)

and making use of this and (2.15), (2.12) becomes

Hχfl[η,�η] = |�η|
√

μ̃2 + (∇η)2 − p(μ̃) − ηAD (2.17)

where μ̃[∇η, �η] and p(μ̃) are to be regarded here as implicit functions of �η and the spatial 
gradient ∇η through (2.15), once the equilibrium functional form of p = p(μ̃) is specified.

The fluid Hamiltonian is Hχfl=∫
ddxHχfl from which Hamilton’s equations follow, namely

η̇ = δ

δ�η

Hχfl = μ̃

ñ
�η = sgn(�η)

√
μ̃2 + (∇η)2 (2.18a)

�̇η = − δ

δη
Hχfl = ∇ ·

(
ñ

μ̃
∇η

)
+ AD (2.18b)

for the canonical pair (η, �η), where we have used the fact that the variation of the μ̃ dependence 
drops out upon using (2.15). Eq. (2.18a) recovers the time component of (2.5), so that (2.18b) is
7
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∂

∂t

(
ñ

μ̃

∂η

∂t

)
− ∇ ·

(
ñ

μ̃
∇η

)
= ∂λJ̃

λ = AD (2.19)

which recovers the axial current anomaly (2.4), upon making use of (2.11) and (2.13).
When applied to long wavelength small perturbations δη away from equilibrium – the limit 

in which the fluid description should be valid – (2.19) describes a gapless CDW acoustical mode 
with AD as its source. Thus the perfect chiral fluid hydrodynamics determined by (2.1) is both 
irrotational and dissipationless, with a time reversible Hamiltonian dynamics (2.18) and a gapless 
excitation. These are necessary features of a relativistic chiral superfluid [12,43]. In Sec. 4 we 
show that η is a phase field associated with spontaneous breaking of Uch(1) symmetry, giving 
rise to a Nambu-Goldstone mode, also as expected for superfluidity.

The Hamiltonian fluid acoustic mode is quantized by replacing the Poisson bracket of the 
canonical pair {η, �η} by their equal time commutator[

η(t,x),�η(t,x
′)
] = [

η(t,x), J̃ 0(t,x′)
] = i δd(x − x′) (2.20)

(in units where h̄ = 1). We show in Secs. 3.1 and 5 that this canonical commutator of the bosonic 
hydrodynamic description is in fact required by the anomalous current commutators of the un-
derlying fermionic description of a relativistic quantum anomalous chiral superfluid.

2.3. Chiral superfluid energy-momentum tensor

The energy-momentum tensor for the chiral fluid may be found by generalizing the effective 
hydrodynamic action (2.1) to curved spacetime by the Equivalence Principle, given by [33–35]

Sχsf =
∫

dDx
√−g

{
J̃ λ ∂λη − ε(ñ)

}
+

∫
dDx ηAD (2.21)

where we have set Ãλ = 0, and used the fact that the axial anomaly term AD in (2.4) is directly 
a tensor density and thus does not acquire a 

√−g ≡ √−det (gλν) metric factor. It follows that

T λν = 2√−g

δSχsf

δgλν

= p gλν + (p + ε)uλuν = p gλν + ñ

μ̃
∂λη ∂νη (2.22)

where in performing the metric variation in (2.22) ∂λη and J̃ λ are taken to be metric independent, 
while J̃λ = gλνJ̃

ν . The anomaly term AD , lacking a 
√−g factor, does not contribute to T λν in 

the variation (2.22), but does give rise to the electromagnetic current

J ν = δSχsf

δAν

= δ

δAν

∫
dDx ηAD (2.23)

dependent upon η. The energy-momentum tensor (2.22) is that of a perfect chiral fluid.
The divergence of (2.22) evaluated in flat spacetime is

∂νT
λν = ∂λp + ∂ν

(
ñ

μ̃
∂νη

)
∂λη + ñ

μ̃
(∂νη)(∂λ∂νη) . (2.24)

Using (2.8) and (2.10), the pressure gradient in this expression is

∂λp = dp

dμ̃
∂λμ̃ = − ñ

μ̃

(
∂νη

)(
∂λ∂νη

)
(2.25)

which cancels the last term in (2.24), resulting in
8
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∂νT
λν = ∂ν

(
ñ

μ̃
∂νη

)
∂λη = −(

∂νJ̃
ν
)(

∂λη
) = −AD ∂λη (2.26)

where the relation (2.5) between J̃ ν and ∂νη and the anomalous divergence (2.4) have been used. 
Eq. (2.26) together with the anomaly eq. (2.4) show that if AD vanishes, so that J̃ ν is conserved, 
then the energy-momentum tensor T λν is conserved as well. In the presence of an external, i.e.
non-dynamical, electromagnetic field the energy-momentum tensor (2.26) should satisfy

∂νT
λν = FλνJν (2.27)

where Jν is the electromagnetic current (2.23) induced by the anomaly. Proof of the equality of 
(2.26) and (2.27), as well as the reason for the difference between the Hamiltonian (2.17) and T 00

are given in Appendix A, as both depend upon the special properties of the axial anomaly AD .

3. Quantum anomalous chiral superfluid in two dimensions

In this section we show that the bosonized form of massless free fermions in D=2 in fact 
coincides with the effective chiral fluid description of the previous section, thus deriving it com-
pletely from first principles of microscopic fermion QFT in the D=2 case.

3.1. The Schwinger model and its axial anomaly

Electrodynamics in 1 + 1 dimensions, QED2, is defined by the classical action

Scl =
∫

d2x ψ
{
iγ a

(↔
∂a−iAa

)− m
}
ψ − 1

4e2

∫
d2x FabF

ab (3.1)

and is exactly soluble for vanishing fermion mass m = 0 [10]. The solution relies upon the special 
property of the Dirac matrices γ aγ

D+1 = −εabγb where γ
D+1 = γ 0γ 1 in D=2 dimensions.1 This 

property has the consequence that the chiral current

j̃ a ≡ ψγ aγ
D+1ψ = −εabψγbψ = −εabjb (3.2)

is dual to the charge current ja ≡ ψγ aψ . Both currents ja, j̃ a would appear to be conserved 
Noether currents, corresponding to the classical U(1) ⊗ Uch(1) symmetry of the Dirac La-
grangian in (3.1) when m = 0. However, both U(1) symmetries cannot be maintained at the 
quantum level, and at least one of these symmetries is broken by an anomaly [44].

The addition of the FabF
ab term in (3.1) and consistency of Maxwell’s eqs. ∂aF

ba = e2jb

requires ∂aj
a = 0, and the breaking of the Uch(1) chiral symmetry. Explicitly, if conservation 

of ja is enforced, then (3.2) and the one-loop vacuum polarization ‘diangle’ diagram of Fig. 1
implies

j̃ a(x)

∣∣∣
m=0

= −iεa
b

∫
d2y 〈T ∗jb(x)jc(y)〉0 Ac(y)

= −εa
b

∫
d2y

∫
d2k

(2π)2 �bc
2 (k) eik·(x−y)Ac(y) (3.3)

1 Notation: Indices a, b = 0, 1; Metric gab = diag(−1, 1) = gab; εab = −εab; ε01 = +1 =−ε01; Fab ≡ ∂aAb −
∂bAa; ↔∂a≡ 1

2

(→
∂a − 

←
∂a

)
; 2 × 2 Dirac matrices γ 0 =σ1 =(γ 0)†, γ 1 = − iσ2, γ

D+1 =γ 0γ 1 =σ3; with σi , i = 1, 2, 3 the 
usual Pauli matrices, ψ ≡ ψ†γ 0, and anti-symmetrization over ψ, ψ is understood. We use lower case ja, j̃ b for currents 
and a, b for Latin indices in D = 2 to distinguish them from D ≥ 4 currents J ν, J̃ λ with Greek indices ν, λ, etc.
9
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Fig. 1. One-loop fermion polarization diagram (a) and equivalent pseudoscalar tree diagram (b).

where T ∗ denotes covariant time ordering, and

�bc
2 (k) = 1

πk2

(
kbkc − gbck2

)
(3.4)

is the polarization tensor for massless fermions in D=2. Thus

j̃ a(x)

∣∣∣
m=0

= 1

π
εab

∫
d2y�−1

xy ∂cF
c
b(y) = 1

π
∂a
x

∫
d2y�−1

xy
∗F(y) (3.5)

where ∗F ≡ 1
2εabFab is the pseudoscalar dual to Fab, and � −1

xy = − 1
4π

ln(x − y)2 + const . is 
the massless scalar propagator in D=2. Thus if the background electric gauge field Fab �= 0, the 
chiral current (3.5) acquires the finite anomalous divergence

∂aj̃
a = 1

2π
εabFab =

∗F
π

= A2 (3.6)

at the one-loop level. This turns out to be an exact result in massless QED2, because a further 
special property of massless QED2 is that the current induced by a background gauge potential 
is strictly linear in Aa for arbitrary Aa . Note also that ∗F = F10 = E is just the electric field in 
d=1 spatial dimension.

The chiral anomaly (3.6) corresponds to the exact non-local 1PI effective action

SNL[A] = − 1

2π

∫
d2x

∫
d2y ∗F(x)�−1

xy
∗F(y) (3.7)

obtained by integrating out the massless fermions in the functional integral for (3.1). The appear-
ance of the 1/k2 massless pole in (3.5) corresponding to the massless scalar propagator (� −1)xy

in the 1PI non-local effective action (3.7) signals that an effective scalar boson degree of free-
dom is associated with the anomaly. Indeed a (pseudo-) scalar boson field χ may be introduced 
to rewrite the non-local action (3.7) in the local form [22]

Seff[χ;A] =
∫

d2x
{
−π

2

(
∂aχ

)(
∂aχ

)− ∗F χ
}

(3.8)

whose variation with respect to χ gives

�χ = 1

π

∗F . (3.9)

Solving this eq. for χ by inverting � , and substituting the result back into (3.8) returns (3.7). The 
fermion loop of the original theory (3.1) is thus completely equivalent to the χ boson propagator 
of the effective action (3.8). This equivalence is illustrated in Fig. 1.

The axial and vector currents may be expressed in terms of the effective boson χ field via

j̃ a = ∂aχ , ja = δ
Seff = −εab∂bχ (3.10)
δAa

10
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so that the conservation of ja becomes a topological identity and the chiral anomaly (3.6) follows 
from the eq. of motion for χ (3.9). This is the chiral bosonization of fermion currents in 1 + 1
dimensions [23,45]. The chiral boson χ obeys a massless wave eq. (3.9) with A2 as its source. It 
acquires a mass M = e/ 

√
π only if the coupling e �= 0 in the full Schwinger model of (3.1).

The explicit Fock space operator representation of the chiral boson in terms of fermion bilin-
ears is given in Appendix B. These lead to the equal time commutator

[
χ(t, x), χ̇(t, x′)

] = i

π
δ(x − x′) (3.11)

which is exactly the canonical commutation relation obtained directly from the effective action 
(3.8). From (B.6)-(B.11) the fermion current densities in the Fock space representation are

j0 = ∂xχ = j̃1 (3.12a)

j1 =−∂tχ = j̃0 (3.12b)

reproducing the bosonization relations (3.10) obtained in the effective action representation. 
These relations and the commutator (3.11) imply

[
j0(t, x), j1(t, x′)

] = − i

π
∂x δ(x − x′) (3.13)

which is the Schwinger term in the equal time commutator of the current components [46,47]. 
The normal ordering prescription on the currents and precise definition of the fermion vacuum is 
essential to derive these commutation relations in the fermion representation.

Since the anomalous Schwinger current commutator in QED2 is equivalent to the canonical
commutator of the chiral boson χ , it must be treated as a genuinely propagating collective degree 
of freedom, not apparent in the original fermionic action (3.1). Composed of fermion bilinears, 
analogous to Cooper pairs in condensed matter systems, χ has the massless propagator (3.5)
which is associated with the axial anomaly [22]. The fermion bilinears are correlated/entangled 
fermion pairs in the two-fermion intermediate states of the polarization diagram Fig. 1, moving 
co-linearly at the speed c = 1, and equivalent to a massless boson according to (B.6)-(B.10). 
Because of (3.10) the propagating wave solutions of (3.9) are jointly Chiral Density Waves and 
Charge Density Waves, arising from massless particle-hole excitations of the Dirac sea. As we 
shall now show, these same CDWs may also be regarded as acoustic modes in the superfluid 
hydrodynamic description at T = 0, and thus the superfluid hydrodynamic description of Sec. 2
applies both to the filled Fermi-Dirac sea at non-zero chiral density, and the Dirac fermion vac-
uum itself.

3.2. Equivalence to chiral superfluid hydrodynamics in D = 2

At finite chiral chemical potential μ̃, but T =0, massless fermions in D=2 have the energy 
density and pressure (cf. Appendix B)

ε = π

2
ñ2 = p = 1

2π
μ̃2 where μ̃ = π ñ , (3.14)

so that (2.5) gives at Ãλ = 0

∂aη = − μ̃

ñ
j̃a = −π j̃a = −π ∂aχ (3.15)

since j̃ a = ∂αχ by the bosonization formulae (3.10).
11
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The simple proportionality in (3.15) between the gradient of the η potential and that of the a 
priori independent chiral boson field χ is what makes possible the identification of the Schwinger 
model with the chiral superfluid of Sec. 2. Recalling (2.3) with (3.15) we now obtain

(∂aη) j̃ a − ε(ñ) = −π (∂aχ)(∂aχ) + π

2
j̃ a j̃a = −π

2

(
∂aχ

)(
∂aχ

)
(3.16)

for two of the terms in (2.1). Then integrating the relation (3.15), so that

η = −πχ + θ

2
(3.17)

where θ is a spacetime constant, and using (3.6) for the chiral anomaly A2 in D=2, we have

Sχsf

∣∣∣
D=2, Ãa=0

=
∫

d2x

{
−π

2

(
∂aχ

)(
∂aχ

)− χ ∗F + θ

2π

∗F
}

= Seff[χ;A] + θ

2π

∫
d2x ∗F

(3.18)

Thus the hydrodynamic superfluid action (2.1), postulated on the basis only of macroscopic
conservation laws for an irrotational and isentropic fluid with the axial anomaly is the micro-
scopic QFT effective action of the zero temperature Schwinger model (3.8) up to a surface term, 
at zero coupling e=0. Note that the equivalence of the QFT to the chiral superfluid requires the 
addition of the (non-anomalous) −ε(ñ) energy density term in (3.16) to the effective action of 
the anomaly alone, for which the η variation of the first two terms of (2.1) is sufficient to yield 
(2.4).

Since ∗F is a total divergence, addition of the constant θ term does not affect the local dy-
namics. Instead this term is related to the topology of the gauge field configuration space. This 
topology, periodicity in θ and hence η or χ are made clear by careful treatment of the zero 
modes of the system in a finite linear spatial volume L in the real time Hamiltonian formulation 
of Appendix C.

Since

[η(t, x),�η(t, x
′)] = π [χ(t, x), χ̇(t, x′)] = i δ(x − x′) (3.19)

the canonical commutation relation (2.20) of the superfluid hydrodynamic description coincides 
with the commutator (3.11) for the chiral boson of QED2, which then implies the Schwinger term 
(3.13) in the current commutators. Since from (3.14) μ̃/ñ = π is a constant in D=2, the wave 
eq. of the hydrodynamic description (2.19) also coincides with that of the propagating chiral 
boson of e = 0 electrodynamics (3.9) in two dimensions. Because of the simple relation (3.15), 
the CDW solutions for χ are also waves of the Clebsch potential η, which are the sound waves 
of the fluid. At finite equilibrium chiral density ñ �= 0, these are CDW excitations of the Fermi 
surface at Fermi energy μ̃. The vacuum limit μ̃ → 0, ñ → 0, with μ̃/ñ = π fixed shows that 
this description holds when the Fermi surface of filled positive energy single fermion states goes 
over to the Dirac fermion Fock vacuum where only the negative energy states of the Dirac sea 
are filled. In that limit the CDWs of the χ field become chiral waves on the Dirac vacuum sea 
itself.

4. Goldstone theorem for anomalous symmetry breaking

Since the axial anomaly with AD �= 0 breaks chiral symmetry explicitly rather than sponta-
neously, it may seem at first sight that Goldstone’s theorem should not apply to ASB. However 
12
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in the non-anomalous terms of the effective action (2.1) and Hamiltonian (2.17) the velocity po-
tential η appears only under derivatives, which therefore are left invariant by the constant shift 
symmetry η → η + η0. Moreover in the anomaly term η multiplies AD = ∂λK

λ, a total deriva-
tive, with Kλ the Chern-Simons current. Hence the total action (2.1) is also invariant under the 
constant phase shift transformation, up a topological term that does not affect the local dynamics. 
Thus we should expect a variant of Goldstone theorem in QFT to guarantee this gapless mode 
of the chiral superfluid described by (2.1) in a non-dynamical Aλ gauge field background. In 
this section we show how Goldstone’s theorem can be extended to the new case of symmetry 
breaking by the axial anomaly (ASB), by use of the canonical commutator (2.20) of the super-
fluid Hamiltonian, which is equivalent to the Schwinger terms in the anomalous commutator of 
currents.

The main element needed for a proof of Goldstone’s theorem in the familiar case of SSB is the 
minimization of an effective potential at which some scalar order parameter assumes a non-zero 
expectation value 〈�〉 �= 0 that is not invariant under the symmetry. In ASB, without assuming 
any effective potential to be minimized, the η phase field does act as the natural order parameter 
of chiral symmetry breaking for the fermion theory. We shall now show that provided〈

e2iη
〉 = e2iη0 ≡ z0 �= 0 (4.1)

is both well-defined and non-vanishing in the ground state of the system, the necessary and 
sufficient condition for the existence of a massless Nambu-Goldstone boson [6,8,48] is satisfied.

That 〈e2iη〉 plays the role of a complex phase order parameter characterizing chiral symmetry 
breaking is made clear by integrating (2.20) over the spatial volume. This gives

[
Q̃(t), η(t,x)

] =
∫

ddx′ [J̃ 0(t,x′), η(t,x)
]

= −i (4.2)

which is a c-number, whose further commutators with Q̃ vanish. Hence

eiαQ̃(t)η(t,x)e−iαQ̃(t) = η(t,x) + iα
[
Q̃(t), η(t,x)

]
+ (iα)2

2

[
Q̃(t),

[
Q̃(t), η(t,x)

]]
+ . . .

= η(t,x) + α (4.3)

shifts η(t, x) by a constant α under a global chiral rotation of magnitude α. Therefore

eiαQ̃(t)e2iη(t,x)e−iαQ̃(t) =
∞∑

n=0

in

n!
(
2η(t,x) + 2α

)n = e2iα e2iη(t,x) (4.4)

as expected for a 2π -periodic phase field associated with the breaking of global chiral symmetry.

4.1. Lorentz invariant case

If in addition to (4.1) the vacuum is both Lorentz and translationally invariant, it follows that∫
dDx eik·(x−y)

〈
T ∗J̃ λ(x) e2iη(y)

〉 = ikλF (k2) (4.5)

for some Lorentz invariant function F(k2). Then we have

∂ 〈T ∗J̃ λ(x) e2iη(y)〉 = δ(x0 − y0)
〈[

J̃ 0(x), e2iη(y)
]〉 = 2 δD(x − y) z0 (4.6)
∂xλ

13
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from the commutation relation (2.20), in the absence of gauge fields or limit of very weak cou-
pling e→ 0 where the anomaly AD = 0. Multiplying (4.5) by −ikλ → −∂/∂xλ, integrating by 
parts and making use of (4.6) yields then

2z0 = k2F(k2) =⇒ F(k2) = 2z0

k2 (4.7)

and therefore∫
dDy eik·(x−y)

〈
T ∗J̃ λ(x) e2iη(y)

〉 = 2i
kλ

k2 〈e2iη〉 (4.8)

demonstrating the existence of the massless Nambu-Goldstone pole at k2 = 0 in any D =2n

even dimension where (2.20) holds due to the axial anomaly Ward Identity, provided z0 �= 0 in a 
Lorentz and translationally invariant state.

Thus the gapless acoustic mode of (2.19), derived from the Hamiltonian and commutation 
relations of the canonical pair {η, �η}, is indeed a consequence of Goldstone’s theorem, ex-
tended to this new case of ASB, symmetry breaking through the axial anomaly and anomalous 
Schwinger commutators. This establishes a microscopic QFT basis for superfluidity and a col-
lective Goldstone sound mode in anomalous fermion systems.

We note that assuming the η phase has a well-defined expectation value in (4.1) is a statement 
about long-range order in the ground state of the system, where η is a composite or collective 
boson degree of freedom composed of fermion/anti-fermion pairs, as can be made explicit in 
D=2 by (3.17) and the fermion bosonization relations reviewed in Appendix B. Rather than the 
unmodified (non-anomalous) symmetry generators of SSB, we have employed the anomalous
commutators required by the axial anomaly itself. The fact that (4.1) holds only approximately 
for a range of distance scales in D=2 where quasi-long-range order holds in the limit e→0
but volume L →∞ is discussed in detail in Appendix C, where the relation to the fermion 
condensate and quasi-long-range-order is further explored. A gapless Goldstone mode related 
to the axial anomaly was discussed, in the context of universality of transport properties in chiral 
media in [49].2

4.2. Goldstone sound mode in general case of anomalous superfluid hydrodynamics

The Goldstone mode propagates at the speed of light c=1 if and only if the ground state 
is Lorentz invariant as assumed in (4.1)-(4.6). This need not be the case. Indeed if the wave 
eq. (2.19) for the phase field η in the superfluid description is linearized around its equilibrium 
solution

η = μ̃ t + δη (4.9a)

δ

(
ñ

μ̃

)
= d

dμ̃

(
ñ

μ̃

)
δμ̃ = d

dμ̃

(
ñ

μ̃

)
δη̇ (4.9b)

where δμ̃ = δη̇ follows from variation of (2.8) and use of (4.9a) in the fluid rest frame. Then 
from the variation of (2.5) with A5λ = 0 we obtain

2 After this paper had been submitted for publication, we became aware of somewhat different considerations of Gold-
stone bosons in anomalous theories [50].
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δJ̃ 0 = μ̃ δ

(
ñ

μ̃

)
+ ñ

μ̃
δη̇ =

[
μ̃

d

dμ̃

(
ñ

μ̃

)
+ ñ

μ̃

]
δη̇ = dñ

dμ̃
δη̇ (4.10a)

δJ̃ i = − ñ

μ̃
∂i(δη) (4.10b)

where the equilibrium (spacetime independent) values for ñ, μ̃ and their derivatives are to be 
used. Eqs. (4.10) can be combined and written in the covariant form

δJ̃ λ = dñ

dμ̃

[
uλuν

(
1 − v2

s

)− v2
s gλν

]
∂ν(δη) (4.11)

by use of the kinetic velocity uλ which is δλ
0 in the fluid rest frame, and

v2
s ≡ ñ

μ̃

dμ̃

dñ
= dp

dε
(4.12)

by (2.6) and (2.10). Thus the wave eq. (2.19) linearized about equilibrium is

∂λ

(
δJ̃ λ

) = dñ

dμ̃

(
∂2

∂t2 − v2
s ∇2

)
δη = 0 (4.13)

in the absence of the anomaly source, and the gapless Nambu-Goldstone mode propagates at 
speed vs ≤ 1, becoming the speed of light if and only if μ̃ and ñ are linearly related, and p = ε.

Upon quantization the relations (4.2)-(4.4) continue to hold for the variations δJ λ and δη. 
Thus (4.5) may be reconsidered for the linearized variations away from the ground state of the 
general non-vanishing μ̃, ñ, and∫

dte−iω(t−t ′)
∫

ddx eik·(x−x′) 〈T ∗δJ̃ λ(t,x) e2iδη(t ′x′)〉
= −i

[
uλuν

(
1 − v2

s

)− v2
s gλν

]
kνF (ω, |k|) (4.14)

in terms of a scalar function F(ω, |k|), which follows from (4.11) and the fact that the variation 
of the velocity potential δη and μ̃, ñ are spacetime (pseudo)scalars. Repeating the steps leading 
to (4.7) leads then to[

−(k · u)2(1 − v2
s

)+ v2
s k2

]
F(ω, |k|) = (− ω2 + v2

s k2)F (
ω, |k|) = 2z0 (4.15)

which implies

F
(
ω, |k|) = 2z0

−ω2 + v2
s k2 (4.16)

instead, showing the gapless acoustic propagator pole in superfluid hydrodynamics for gen-
eral vs .

An important point to notice about this derivation is that Lorentz invariance is spontaneously 
broken in general by a background μ̃, and this is reflected in both the time dependence of (4.9a)
and the necessity of taking the variation of the magnitude ñ/μ̃ of the chiral current into account 
in (4.10a), this variation being responsible for the sound speed vs differing in general from the 
speed of light, although the acoustic CDW Goldstone mode remains gapless. It is also instructive 
to consider the variation of the energy-momentum tensor (2.22) linearized around a constant 
background n5,
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MλνδJ5,ν ≡
{[

gλν + uλuν
(

1 − v2
s

)]
(u · ∂) + uλ∂ν − v2

s uν∂λ

}
δJ5,ν = 0 (4.17)

which possesses non-trivial solutions in general D=d + 1 dimensions only if the Fourier com-
ponents of δJ5,α satisfy the relation

detM = (−iω)d−1
[
ω2 − v2

s |k|2
]

= 0 . (4.18)

This is the same gapless condition as (4.16) for the Goldstone pole, showing that the only prop-
agating mode in the non-dissipative anomalous superfluid is the gapless (first) sound mode.

5. The axial anomaly and effective action in four dimensions

5.1. The massless pole in four dimensions

In D=4 dimensions the axial current J̃ λ = Jλ
5 = ψ̄γ λγ5ψ has the anomalous divergence3

∂λJ
λ
5 = e2A4 = α

2π
Fλν ∗Fλν = 2α

π
E ·B (5.1)

for massless fermions, where ∗Fλν ≡ 1
2ελνρσ Fρσ is the dual of the field strength tensor Fλν and 

α = e2/4π [13,14,20,51]. The axial anomaly (5.1) in D=4 results from the one-loop triangle 
diagram of Fig. 2. In momentum space labeling k = p + q the ingoing momentum at the axial 
vertex, and p and q the outgoing momenta on the photon legs, the triangle diagram may be 
evaluated explicitly

�λαβ(p, q) =
6∑

i=1

fi(k
2;p2, q2) τ

λαβ
i (p, q) (5.2)

and expressed as a sum over six basis tensors τλαβ
i (p, q) multiplied by scalar form factor func-

tions fi of the three Lorentz invariants k2, p2, q2. The coefficient functions fi are given e.g. in 
Refs. [21,52] and for zero fermion mass are

f1(k
2;p2, q2) = f4(k

2;q2,p2) = 4α

π

1∫
0

dx

1−x∫
0

dy
xy

D (5.3a)

f2(k
2;p2, q2) = f5(k

2;q2,p2) = 4α

π

1∫
0

dx

1−x∫
0

dy
x(1 − x)

D (5.3b)

f3(k
2;p2, q2) = f6(k

2;q2,p2) = 0 (5.3c)

where the denominator D = (p2x + q2y)(1 − x − y) + xyk2, in the basis where

τ
λαβ
1 (p, q) = τ

λβα
4 (q,p) = −p · q ελαβγ pγ − pβ υλα(p, q) (5.4a)

τ
λαβ
2 (p, q) = τ

λβα

5 (q,p) = p2 ελαβγ qγ + pα υλβ(p, q) (5.4b)

3 In D=4 we adhere to the more standard convention of multiplying the gauge potential Aλ by the coupling e, hence 
the anomaly A4 in (2.4) by e2, and relabel γ = γ5, J̃ λ = Jλ, μ̃ = μ5, ̃n = n5 etc.
D+1 5
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Fig. 2. The axial anomaly triangle diagram amplitude �λαβ(p,q).

and

υαβ(p, q) ≡ εαβρσ pρqσ . (5.5)

The two tensors τ3, τ6 are linearly dependent on the other four and redundant, and in any case 
unnecessary because of (5.3c). The Feynman parameter integrals for fi in (5.3) can be evaluated 
in terms of digamma functions [53], but these explicit expressions will not be needed in the 
following.

If the current Jλ
5 is decomposed into its longitudinal and transverse components

Jλ
5 = Jλ

5‖ + Jλ
5⊥ , ∂λJ

λ
5⊥ = 0 (5.6)

it is clear that only the longitudinal component Jλ
5‖ contributes to the anomalous divergence (5.1). 

Similarly the triangle amplitude (5.2) may be decomposed into its longitudinal and transverse 
parts

�λαβ(p, q) = �
λαβ
‖ (p, q) + �

λαβ
⊥ (p, q) , kλ �

λαβ
⊥ (p, q) = 0 (5.7)

so that the transverse part does not contribute to the anomaly. The longitudinal part explicitly 
exhibits a 1/k2 pole, and gives the total anomaly

�
λαβ
‖ (p, q) = 2α

π

kλ

k2 υαβ(p, q) , kλ�
λαβ(p, q) = kλ�

λαβ
‖ (p, q) = 2α

π
υαβ(p, q)

(5.8)

which is (5.1) in momentum space. As in D=2 the appearance of the 1/k2 pole in (5.7) signals 
that the anomaly is associated with a massless pseudoscalar collective excitation, here and in 
higher dimensions residing in the longitudinal subsector of the full theory. Whereas the form of 
the axial anomaly and hence the longitudinal sector of the axial current with its 1/k2 pole is 
protected at higher loop orders by the Adler-Bardeen theorem [20], the transverse sector is not 
so protected.

Since the longitudinal projection of Jλ
5 is

Jλ
5‖ = ∂λ

(
�−1∂νJ

ν
5

)
(5.9)

the axial anomaly (5.1) corresponds to the non-local one-loop 1PI quantum effective action [21,
22]

SNL
anom[A,A5]= α

∫
d4x

∫
d4y [A5

μ ∂μ]x�−1
xy [Fλν ∗Fλν]y (5.10)
2π
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where � −1
xy = 1

4π2 (x − y)−2 denotes the massless scalar propagator in D=4. The appearance of 
the massless 1/k2 pole (5.7) and massless scalar propagator � −1

xy in (5.10), in the longitudinal 
sector of the D=4 axial anomaly is thus a simple kinematic consequence of the anomalous Ward 
Identity for the axial current. As in D=2 it leads to the expectation that it is related to anomalous 
chiral symmetry breaking and Goldstone’s theorem of Sec. 4, although the η phase field has not 
yet been identified, and will appear only in the local form of anomaly effective action of (5.11)
below.

5.2. Local effective action and anomalous current commutators in D=4

As in the D=2 case, the massless boson degree of freedom represented by the 1/k2 pole in 
(5.7) or � −1

xy in (5.10) is a collective mode of a fermion pair intermediate state in the anomaly 
amplitude [21]. That it is also a CDW may be made explicit by expressing the non-local action 
(5.10) in a local bosonic form. Since the non-local action (5.10) involves the axial potential 
A5

λ and [F ∗F ] asymmetrically, expressing this action in a local form apparently requires the 
introduction of two pseudoscalar fields (η, χ ), as suggested in [21]. Unlike in D=2, (5.11) is only 
part of the 1PI effective action of QED4, with the dependence upon the transverse component 
Jλ

5⊥ not fixed by the anomaly. If two fields (η, χ ) are varied independently, a second massless 
wave eq. would result, apparently implying the existence of two independent gapless modes. 
However this is not warranted by the triangle amplitude (5.2) itself where only a single 1/k2

pole appears.
The previous D=2 example and chiral fluid action provides the way around this problem. 

Thus rather than introducing two scalar fields, consider instead the local anomaly action

Sanom[η;A,A5] =
∫

d4x
{(

∂λη + A5
λ

)
Jλ

5 + ηA4

}
(5.11)

together with the variational principle that this effective action should be stationary against varia-
tions of the axial current Jλ

5 . Then Jλ
5 acts as a Lagrange multiplier field enforcing the constraint, 

∂λη + A5
λ = 0, in the absence of any ε term added to (5.11). Solving this constraint for η

η = −�−1∂λA5
λ = −�−1∂λA5

λ‖ (5.12)

and substituting this back into (5.11) reproduces exactly the required non-local action (5.10)
with its massless pole. Variation of Sanom with respect to η also reproduces the axial anomaly 
(5.1). The local action (5.11) does not require the introduction of a second scalar field, and this 
variational principle of δSanom/δJ λ

5 = 0 does not lead to a second independent massless mode, 
but (5.11) together with the variational principle for the axial current is completely equivalent to 
the effective action (5.10) derived directly from the fermionic QFT axial anomaly.

That a single bosonic degree of freedom is described by (5.11) is made clear by defining the 
momentum canonically conjugate to η

�η = δ

δη̇
Sanom = J 0

5 (5.13)

as in (2.11), which then implies the equal time commutator[
η(t,x),�η(t,x

′)
] = [

η(t,x), J 0
5 (t,x′)

] = i δ3(x − x′) (5.14)

upon quantization. Thus η and J 0
5 form a single canonical pair, and hence describe just a single 

gapless bosonic degree of freedom associated with the Uch(1) chiral anomaly in D=4, as in 
D=2.
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Furthermore the electromagnetic current due to the axial anomaly may be found from

Jλ = δSanom

δAλ

= α

2π

δ

δAλ

∫
d4x ηFμν ∗Fμν = 2α

π

∗Fλν ∂νη (5.15)

in terms of η, which has the components

J 0 = −2α

π
B · ∇η (5.16a)

J = 2α

π

(
B η̇ − E × ∇η

)
. (5.16b)

Then making use of (5.14), we have

[
J 0(t,x), J 0

5 (t,x ′)
] = −2iα

π
B · ∇x δ3(x − x′) (5.17a)

[
J (t,x), J 0

5 (t,x ′)
] = −2iα

π
E × ∇x δ3(x − x′) (5.17b)

in a background electric or magnetic field [14,54,55]. Like the axial anomaly (5.1) itself, 
these current commutator Schwinger terms are anomalous, in the sense that they are appar-
ently zero if the unregularized Dirac fermion anti-commutation relations are used. As in D= 2
these Schwinger commutator terms in fermionic currents are in fact a consequence of the axial 
anomaly, and follow necessarily from the canonical commutator (2.20) of the bosonic effec-
tive action of the axial anomaly (5.11), which therefore passes an important consistency check, 
showing that there is a single bona fide pseudoscalar collective degree of freedom which is not 
apparent at the classical level or the free Dirac theory, that is necessarily associated with the 
Uch(1) chiral anomaly also in D=4.

Let us emphasize that the Schwinger terms (5.17) in the current commutators depend only 
upon the longitudinal anomalous part of the triangle diagram, represented by (5.11). Other com-
mutators and in particular 

[
J 0(t, x), J 5(t, x′)

]
which depend upon the transverse part of the 

amplitude �λαβ
⊥ (p, q) are not determined by Sanom, not protected by the Adler-Bardeen theorem 

[20], and can be canceled by regularization scheme dependent ‘seagull’ terms, hence removed 
entirely [14,54]. The essential and unavoidable anomalous current commutators are (5.17), and 
these are entirely accounted for the local anomalous effective action (5.11), together with the 
canonical commutation relation (5.14) it implies for a single bona fide bosonic degree of free-
dom.

5.3. Chiral magnetic and separation effects from the anomaly effective action

The axial anomaly effective action (5.11) succinctly incorporates several macroscopic chiral 
effects. Making use of (5.16b) in the case of a constant uniform B field, we find

J = 2α

π
μ5 B (5.18)

in the Lorentz frame where ∇η = 0, and η̇ = μ5 (changing notation μ̃ = μ5 in D=4). This is 
the Chiral Magnetic Effect (CME), which has been discussed in the literature in various contexts 
[56–73].

Since the longitudinal projection of the chiral current can be expressed as the pure gradient 
(5.9), one can define χ ≡ � −1∂νJ

ν , and express the axial anomaly in the form
5
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∂λJ
λ
5 = ∂λJ

λ
5‖ = �χ = A4 = 2α

π
E · B (5.19)

of a massless wave eq. for the local χ field describing the gapless bosonic mode, with the chiral 
anomaly as its source, just as in the D=2 case (3.9). Analogously to D=2 this gapless mode 
is a collective mode of the two-fermion intermediate state in the anomaly amplitude, if fermion 
masses and interactions can be neglected, and is a CDW in Jλ

5 . The components of the axial 
current expressed in terms of χ are

J 0
5 = J 0

5‖ = −χ̇ (5.20a)

J 5 = J 5‖ = ∇χ . (5.20b)

In a static, constant B = Bx̂ field and parallel static electric field E = −∇� = −x̂ d�
dx

in the 
same direction, (5.19) becomes

d

dx

(
dχ

dx

)
= −2α

π

d�

dx
B (5.21)

assuming also χ = χ(x). Integrating this once and substituting into (5.20b) gives

J 5 = ∇χ = 2α

π
μB (5.22)

upon taking � = −μ for the charge chemical potential. In this way the Chiral Separation Effect 
(CSE) is also implied by and follows simply and directly from the axial anomaly.4

5.4. Anomalous Hall Effect

Yet another macroscopic effect which is succinctly captured by the anomalous effective action 
(5.11) is the Anomalous Hall Effect (AHE) in a Weyl semi-metal. A good model for a Weyl 
semi-metal is given by the Dirac theory with an external constant axial field A5 = �k, with only 
spatial components corresponding to a shift �k between the Weyl nodes in momentum space 
[74–76]. In other words the fermionic spectrum is linear in momentum but the energies of right-
and left-handed fermions reach zero at different points separated by A5. In the presence of a 
constant A5 and a background electric field the current (5.16b) obtained by varying the anomaly 
effective action is

J = −2α

π
E × ∇η = −2α

π
A5 × E (5.23)

where we use that ∇η = −A5 corresponds to a constant axial field (5.11). This implies a linear 
phase shift in the chiral field η = −�k ·x in the effective action responsible for the AHE [74–77].

Thus the macroscopic CME, CSE, and AHE are all consequences of the same effective action 
(5.11), which is derived directly from and equivalent to the bosonic form of the microscopic 
fermion QFT of the axial triangle anomaly (5.10) with its massless pole, on the one hand, and 
identical to the corresponding terms in the general chiral superfluid effective action (2.1) on the 
other.

4 Another example of the effect of anomalies is the Chiral Vortical Effect, see e.g. [61,64], which is present in a rotating 
system of massless fermions even in the limit of zero charge when the anomalous divergence is zero.
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6. Dimensional reduction and chiral magnetic waves

Unlike the case in D=2, the vacuum triangle amplitude (5.2) in massless QED4 has both 
longitudinal and transverse parts. Since the anomaly action (5.11) takes account only of the 
longitudinal projection of the anomalous triangle diagram of massless fermions in QED4, and 
provides no information about the transverse part of the chiral current, it is clearly incomplete. 
The action (5.11) is also incomplete in that it contains no Jλ

5 dependence other than the minimal 
linear (∂λη + A5

λ) J
λ
5 term, which results in the simple constraint ∂λη = −A5

λ, and hence no 
relation between the η potential and the chiral current, analogous to (3.15) in D=2. It is that 
relation that enabled us to identify the propagating massless chiral boson χ of the bosonized 
Schwinger model, satisfying (3.9) with the Goldstone boson of the chiral superfluid description 
in (2.19). This relation and the identity of the fluid action with that of the Schwinger model 
resulted from adding the non-anomalous energy density −ε(ñ) of (3.14) to the effective action 
of the anomaly.

In this section, we show that in the special case of a constant, uniform magnetic field back-
ground the transverse part of the anomaly amplitude (5.2) vanishes, and the four dimensional 
axial anomaly reverts to the D=2 case, and moreover with a simple completion of −ε(ñ), the 
CDW of dimensional reduction coincides with a Chiral Magnetic Wave (CMW) along the mag-
netic field direction.

Let B=F23(0) ̂x have only a zero momentum component in the x̂ direction with Aβ=2,3(q)

the corresponding gauge potential in the transverse ŷ, ẑ directions as q → 0. Computing 
�λαβ(p, q)Aβ(q) in this limit, only the tensors τ1 and τ2 in (5.2) which are linear in q contribute 
(as they are necessary to form a gauge invariant magnetic field source), but we can neglect q
and q2 otherwise, setting k = p + q → p and k2 = p2 in the denominator D of (5.3). Thus 
D = k2x(1 − x) in this limit, and the Feynman parameter integrals (5.3) are trivially evaluated to 
give

f2 = 2f1 = 2α

πk2 for q2 = 0 . (6.1)

Then taking k⊥=p⊥=0 in the transverse ŷ, ẑ directions and noting that kνF
νλ(q) = 0, we find

lim
q→0

�λαβ(k − q, q)Aβ(q)

∣∣∣
k⊥=0

= 2iα

πk2

(
k2δα

ν − kαkν

)
F̃ λν

=
{

2iαB �ac
2 (k)ε b

c if α = a, λ = b

0 otherwise
(6.2)

where α = a , λ = b range only over the 0, 1 subspace of the D=4 spacetime and �ab
2 (k) is the 

D=2 vacuum polarization of (3.4). Thus, the full triangle diagram contracted with a constant 
uniform magnetic field reduces to the 2D anomalous self-energy polarization of Fig. 1, and the 
1/k2 pole in the 4D triangle anomaly becomes at k⊥ = 0 precisely the 1/k2 propagator pole of 
the effective boson χ in the 2D two-point polarization tensor 〈jajc

5 〉 of (3.3).
As a consistency check we may calculate the longitudinal part of the triangle amplitude (5.8)

directly. Contracting �λαβ
‖ (p, q) with Aβ(q) and taking the same kinematic limit as in (6.2) we 

find

lim
q→0

�
λαβ
‖ (k − q, q)Aβ(q)

∣∣∣
k⊥=p⊥=0

= lim
q→0

2α

π

kλ

k2 vαβ(p, q)Aβ(q) = −2i
α

π

kλ

k2 F̃ αρkρ

(6.3)
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where the only surviving indices are two-dimensional ranging over t, x. Then F̃ ab = εabB for 
the 2D subspace of 4D spacetime and the Schouten relation for εab (cf. Appendix A) results in

lim
q→0

�
caβ
‖ (p, q)Aβ(q)

∣∣∣
k⊥=p⊥=0

= 2iαB

πk2

(
k2δa

b − kakb

)
εcb (6.4)

which coincides with (6.2). This proves that the transverse part of the anomalous triangle diagram 
does not contribute in the dimensional reduction limit of a constant, uniform magnetic field, 
which is accounted for completely by its longitudinal part and 1/k2 pole, which in this limit of 
k⊥ = 0 becomes precisely the 1/k2 pole of the D=2 Schwinger model of Sec. 3.1.

A third, and independent non-perturbative check of dimensional reduction is to make use of 
the polarization operator of fermions in a constant, uniform magnetic field in the Lowest Landau 
Level (LLL) approximation〈

T ∗J a(t, x,y)J b
5 (t, x′,y′)

〉
LLL

= 2αB

∫
dω

2π

∫
dk

2π

∫
d2k⊥
(2π)2 eik(x−x′)+ik⊥·(y−y′) exp

(
− k2⊥

2eB

)
�ac

2 (ω, k)ε b
c (6.5)

given in terms of the D=2 polarization (3.4) with a, b = t, x [78–83]. The exponential depen-
dence of this expression upon 1/eB is obtained by treating the magnetic field background exactly, 
rather than in first order perturbation theory of (5.2). Nevertheless, when we integrate (6.5) over 
the transverse y, thereby setting k⊥=0, and evaluate the current commutator expectation〈[

J 0(t, x,y), J 0
5 (t, x′,y′)

]〉
LLL

=
∫

dω

2π

∫
dk

2π

∫
d2k⊥
(2π)2 eik(x−x′)+ik⊥·(y−y′){2 Im�01

2 (ω + iε, k)
}

(6.6)

from the imaginary part of (6.5), we find∫
d2y

〈[
J 0(t, x,y), J 0

5 (t, x′,y′)
]〉

LLL

= 2αB

∫
dω

2π

∫
dk

2π
eik(x−x′)

{
2 Im�01

2 (ω + iε, k)
}

= 2αB
〈[

j0(t, x), j1(t, x′)
]〉 = −2iαB

π

∂

∂x
δ(x − x′) (6.7)

consistent with the anomalous commutators (5.17a) derived from the D=4 triangle amplitude, 
simply proportional to the D=2 current commutator (3.13).

The fact that the LLL approximation saturates the anomalous commutator is consistent with 
the fact that only the LLL in a constant magnetic field has gapless excitations, so that if an 
external electric field is turned on adiabatically only fermions in the LLL can be excited, and the 
D= 4 axial anomaly factorizes into its D=2 counterpart with a transverse density proportional 
to the magnetic field strength B [84,85].

Lastly, it is clear that in a constant uniform magnetic field with E(t, x) along the B direction, 
the four dimensional axial anomaly (5.1) becomes a simple factor 2αB times the two dimen-
sional axial anomaly (3.6). In this case the four dimensional R4 base manifold factorizes into 
R2⊗R2, and the topology of the gauge field mapping the periodic x domain to the gauge field 
configuration space S1 → S1 applies just as in Appendix C, as does the Atiyah-Singer index 
theorem in D=2 [86]. Thus we should expect all aspects of the previous D=2 analysis of super-
fluid CDW and Schwinger boson to carry over directly to D=4 in a constant uniform magnetic 
field background with simple replacement of the D=2 dimensional coupling e2 by 2αB in D=4
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That this CDW Schwinger boson following directly from the anomaly effective action (5.11) is 
in fact the Chiral Magnetic Wave (CMW) discussed in the literature by several authors [87] may 
be seen as follows.

If in addition to the constant uniform magnetic field B the massless fermions in the LLL are 
placed in a state of small but non-zero chiral chemical potential μ2

5 � eB , the relation between 
n5 and μ5 is linear, cf. e.g. [58]

n5 = eB

2π2 μ5 ,
n5

μ5
= eB

2π2 (6.8)

corresponding to an energy density and pressure

ε(n5) =
∫

μ5 dn5 = π2

eB
n2

5 (6.9a)

p(μ5) = μ5n5 − ε = eB

4π2 μ2
5 = ε (6.9b)

respectively, This is in agreement with the form of the D=4 polarization operator in the LLL 
projection (6.5), which indicates that the system response to perturbations of gauge or axial fields 
is effectively two-dimensional if the fields are independent of the transverse spatial directions y. 
Notice that the proportionality coefficient 2αB in (6.8) relative to the corresponding D= 2 re-
lation (3.14) is exactly the same as that appearing in the relative axial anomaly coefficients or 
anomalous current commutators (6.7) between two and four dimensions. Thus if the energy den-
sity term (6.9a) is appended to the anomaly effective action (5.11) to form the chiral superfluid 
effective action (2.1) in the same manner as in Sec. 3.2, we obtain

Jλ
5 + eB

2π2 ∂λη = 0 (6.10)

by variation with respect to Jλ
5 . Hence restricting to spatiotemporal variations in the t, x com-

ponents only, the CDW propagating along the magnetic field direction described by η, generates 
not only a wave of electric density due to (5.16b) but also a wave of the axial density due to 
(6.10) and just coincides with the CMW of Refs. [87,88] found by other means.

This CDW/CMW also induces a small oscillating longitudinal electric field parallel to B by 
(5.16a) and the Gauss law

∇ · E = −2α

π
B · ∇η =⇒ E = −2α

π
∇
(

1

∇2

)
B · ∇η = −2α

π
ηB (6.11)

for slowly varying η(t, x), and assuming no transverse electromagnetic radiation. Thus the axial 
anomaly eq. of motion for η (2.19) with (6.8) becomes

∂λJ
λ
5 = eB

2π2

(
∂2
t − ∂2

x

)
η = 2α

π
E ·B = −

(
2α

π

)2

B2 η (6.12)

and we find that just as in D=2 for the Schwinger boson, while the CDWs are massless in the 
absence of interactions with the electromagnetic field, they acquire a mass term M2 = 2αeB/π =
e3B/2π2 and satisfy the massive wave eq.(

∂2
t − ∂2

x + 2α

π
eB

)
η = 0 (6.13)

when these interactions are taken into account, in agreement with the literature [87,88]. The 
speed of propagation of the CDW/CMW is also vs = 1 from (6.9b). Thus the macroscopic CMW 
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is here recognized to be a direct consequence of the axial anomaly and its anomalous massless 
pole, the Goldstone CDW sound mode of anomalous chiral symmetry breaking, and a collective 
excitation of fermion/anti-fermion Cooper-like pairs, described by the effective action (5.11), 
becoming massive by its electromagnetic interactions, exactly as in the D=2 Schwinger model.

Since the role of the mass of the D=2 theory is taken by the substitution e2 → 2α eB , the 
full analysis of Appendix C applies, 2η has 2π -periodicity, z0 and the fermion chiral condensate 
are non-zero according to (C.30) and (C.27) in the limit M → 0, L → ∞, and the relativistic 
Goldstone Theorem of Sec. 4 applies with vs = 1 in that limit. Since and n5/μ5 is again a 
constant in this case of constant, uniform B field, we may again consider the limit n5, μ5 → 0
with constant ratio. In that limit the CMWs are chiral waves on the Fermi-Dirac sea of the LLL 
ground state.

7. Chiral superfluid hydrodynamics in four dimensions

Since the anomaly action requires completion by some effective energy density ε, we may 
also consider the case of pure chiral density and no background magnetic field. For free fermions

n5 = 2
∫

|p|≤μ5

d3p

(2π)3 = μ3
5

3π2 = (−Jλ
5 J5λ

)1
2 (7.1a)

ε(n5) = 2
∫

|p|≤μ5

d3p

(2π)3 |p| = μ4
5

4π2 = 3

4
(3π2)

1
3 n

4
3
5 = 3

4
(3π2)

1
3
(−Jλ

5 J5λ

)2
3 (7.1b)

p(μ5) = μ5n5 − ε = μ4
5

12π2 = ε

3
(7.1c)

in D=4 spacetime dimensions. Adding this −ε(ñ) term,

Seff = Sanom[η;A,A5] −
∫

d4x ε(n5) =
∫

d4x
{(

∂λη + A5
λ

)
Jλ

5 + ηA4 − ε(n5)
}

(7.2)

is the minimal effective action for the massless fermion system at finite n5. We recognize that 
the effective action (7.2) is exactly the chiral fluid action (2.1) with μ̃ = μ5, ñ = n5 in D=4, 
with the same consequences. In particular, the variation with respect to Jλ

5 is now non-trivial and 
leads to

∂λη + A5
λ −

(
dε

dn5

)(
dn5

dJ λ
5

)
= 0 =⇒ Jλ

5 = − n5

μ5
∂λη = − μ2

5

3π2 ∂λη = 0 (7.3)

at A5
λ = 0, with

μ2
5 = −∂λη ∂λη . (7.4)

In effect, adding the −ε(ñ) in (7.2) which depends on the total n5, amounts to supplying a certain 
completion of the anomaly action (5.11) in its transverse sector, which is justified when μ5 �= 0, 
and μ5 is larger than any other dimensionful mass or energy scales in the system.

The equation of motion (2.19) for η resulting from Seff is

∂λJ
λ
5 = 1

2

[
∂

(
μ2

5
∂η

)
− ∇ ·

(
μ2

5 ∇η
)]

= α
Fλν ∗Fλν (7.5)
3π ∂t ∂t 2π
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so that the boson field η which was introduced in [21] in order to express the non-local anomaly 
effective action (5.10) in local form, is identified here as the Clebsch potential of a dissipation-
less, irrotational chiral fluid in D=4 as well, when μ5 �= 0. Consistent with the condition that μ5
be larger than any other scales, and the hydrodynamic approximation long wavelength dynam-
ics near equilibrium generally, the solutions of (7.6) are strictly valid only for small amplitude 
perturbations |∂λ(δη)| � μ5 of the equilibrium Fermi surface, i.e. as shallow chiral waves on the 
Fermi sea. Thus the analysis of (4.9)-(4.13) of Sec. 4.2 applies and (7.5) becomes

∂λ(δJ
λ
5 ) = μ2

5

π2

(
∂2

∂t2 − v2
s ∇2

)
δη = e2A4 = α

2π
Fλν ∗Fλν (7.6)

restricted to its proper range of validity |∇η|, |η̇| � μ5, and where

v2
s = dp

dε
= 1

3
(7.7)

is the sound speed of the acoustic CDW in D=4.
The sound speed vs < 1 reflects the fact that n5/μ5 is not constant in D=4, as it is in D=2, 

and must be varied in (7.3). This leads to a certain (non-anomalous) transverse contribution to 
the axial current perturbations, and the breaking of Lorentz invariance, as in (4.11), while never-
theless preserving a gapless CDW solution, as (7.6) shows. It is not possible to extrapolate (7.6)
directly to the vacuum state where μ5, n5 → 0 without departing from the region of validity of 
linearized perturbations from the finite density background. For that reason the chiral superfluid 
description of massless fermions cannot be immediately extended to the Dirac vacuum in D=4, 
as is possible in the Schwinger model, where the constancy of ñ/μ̃ in that D=2 case leads to 
the wave eq. (2.19), equivalent to (3.9), which is already linear. Whether a different completion 
of the effective action extending the bosonic description of fermionic pair excitations to μ5 = 0
exists, describing CDWs on the Dirac sea in D=4 as well is an interesting open question.

Since the CDW acoustic mode has the axial anomaly as its source in (7.6), that implies

δη = e2

2μ2
5

(
1

∂2
t − v2

s ∇2

)
E · B (7.8)

with the corresponding local variations

δJ 0
5 = e2

2π2

(
1

∂2
t − v2

s ∇2

)
∂

∂t
(E · B) (7.9a)

δJ 5 = − e2

2π2

(
v2
s

∂2
t − v2

s ∇2

)
∇ (E · B) (7.9b)

of the axial charge density and current respectively. If these axial charge and current perturba-
tions are substituted back into the action (2.1) or (7.2), expanded to second order around the 
background

S
(2)
eff = 1

π2

∫
d4x

{
μ2

5

[
δη̇2 − v2

s (∇δη)2]+ e2δηE · B
}

(7.10)

is the low energy gapless CDW effective action. The first two terms can be seen as the second 
order correction to the pressure p. This action can also be expressed in a non-local form

S
(2)
eff = 4α2

μ2

∫
d4x

∫
d4y (E · B)x

(
1

∂2 − v2 ∇2

)
(E · B)y (7.11)
5 t s xy
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coupling the anomaly source at two different spacetime points by the retarded interaction with the 
acoustic CDW propagator. This interaction may have interesting consequences in chiral media.

The pseudoscalar collective mode satisfying (7.6) shows that bosonization of the Fermi sur-
face extends to higher spacetime dimensions, as has been suggested earlier in the condensed 
matter literature [89–91], although collective boson dynamics of the Fermi surface or Luttinger 
liquid behavior in spatial dimensions d > 1 has not been related to the axial anomaly of massless 
fermions to our knowledge. The restriction to small amplitude, long wavelength perturbations, 
consistent with the hydrodynamic limit, is what permits treating the background Fermi surface as 
effectively flat, as it is in a single d=1 space dimension. In this limit superfluid behavior is again 
recovered. This may allow some interesting applications to low temperature condensed matter 
systems with gapless fermions.

8. Summary

Since this paper has covered aspects of several different sub-fields relating the microscopic 
QFT axial anomaly to macroscopic effects and superfluidity, it is worthwhile here for the conve-
nience of the reader to gather and summarize the main results, with pointers to the Section and 
specific relations where those results are established:

(1) The action principle and Hamiltonian for an irrotational and dissipationless anomalous 
quantum chiral superfluid at zero temperature are given by (2.1) and (2.17);

(2) In D=2 spacetime dimensions this action and Hamiltonian is completely equivalent to the 
fermionic Schwinger model of QED2 in the limit of vanishing electric charge e→0, cf.
(3.18);

(3) The gapless sound mode of superfluid hydrodynamics is both a Charge and Chiral Density 
Wave (CDW), a fermion/anti-fermion (or particle/hole) pair excitation of the Fermi surface 
at zero temperature and finite fermion density, which coincides with the Schwinger boson;

(4) In D =2 the superfluid description can be extended to zero fermion density, so that the 
acoustic CDW becomes a chiral wave on the Dirac sea and the Dirac vacuum itself may be 
viewed as a kind of superfluid medium;

(5) Goldstone’s theorem can be extended in a novel way to chiral symmetry breaking through 
the axial anomaly, Anomalous Symmetry Breaking (ASB), (4.8) or (4.16), by making use 
of the anomalous Schwinger commutator of the chiral phase η, with its canonical momen-
tum (5.14);

(6) A new local bosonic form of the effective action of the fermionic triangle anomaly in D=4
is given by (5.11), together with a variational principle consistent with the hydrodynamic 
(superfluid) effective action (2.1);

(7) Macroscopic quantum effects such as the CME, CSE and AHE all follow directly from this 
anomalous effective action (5.11);

(8) In a constant uniform B field with parallel E field independent of transverse directions, 
the axial anomaly factorizes and the massless boson CDW reduces to that of the D=2
Schwinger boson, with the CDW along the B field direction a Chiral Magnetic Wave 
(CMW) [87,88], which is therefore a direct consequence of the massless anomaly pole 
(5.7), in an explicit realization of dimensional reduction;

(9) In D=4 with non-zero chiral density n5, δη satisfies a gapless wave equation (7.6) of a long 
wavelength CDW excitation of the Fermi sea, with a sound velocity (7.7) vs < c, realizing 
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previous conjectures of bosonization of the Fermi surface in d > 1 spatial dimensions [89–
91];

(10) The prediction of a gapless boson collective excitation being generated by the axial 
anomaly itself may be testable in weakly self-interacting Dirac and Weyl semi-metals.

We have given a detailed account of the consistency of the superfluid description and 
Schwinger model in the special case of d = 1 spatial dimension in Sec. 3.1 and Appendices B
and C, where quasi-long-range order applies. The Goldstone theorem of Sec. 4 remains valid for 
an arbitrarily large range of distances and times |x − x′| � 1/e (C.31) in the limit e→0, L → ∞
with eL > 1 fixed, whereas long range order and the fermion condensate vanishes, in the L →∞
limit with any finite e �= 0 fixed, consistent with the Mermin-Wagner-Coleman theorem.

Since ñ/μ̃ is not a constant in D > 2 dimensions, and there is a transverse component in the 
chiral current which is not fixed by the axial anomaly, the chiral superfluid description of mass-
less fermions applies only to a subsector of the theory, and is clearly incomplete. Nevertheless 
in this sector the axial anomaly pole (5.7) exists, and expanding around non-zero chiral density 
and chemical potential δη still satisfies a gapless wave equation (7.6) of long wavelength CDW 
excitation of the Fermi sea.

The fact that the CDW shape fluctuations predicted by the axial anomaly and the effective 
action (7.2) are gapless raises several other interesting questions about the breaking of chiral 
symmetry in massless QED4 in relation to the Goldstone theorem. The infrared divergences 
encountered in perturbation theory of massless QED4 [92–95], suggest that massless QED4 does 
break chiral symmetry, exhibit fermion confinement and develop a non-zero fermion condensate, 
whose phase would then be related to η. The considerations of the present work suggest that 
the axial anomaly and ASB rather than SSB may be the mechanism by which this occurs. It 
would be instructive to carry out the calculation of the anomalous triangle diagram of Fig. 2 in 
massless QED4 at finite chiral chemical potential and chiral density n5 to check explicitly the 
appearance of the gapless mode and CDW propagator appearing in (7.9), and thus derive (7.6)
and the effective action (7.2) at finite μ5 from first principles.

Finally we remark that the theoretical considerations of this work may find concrete real-
ization in recent discoveries of condensed matter systems with gapless fermion spectra, such 
as Dirac and Weyl semi-metals [75,96,97]. The chiral anomaly and the effective action (5.11)
is critical to the Anomalous Hall Conductivity and response of these systems to external fields 
[74–77]. It has also been suggested that Weyl semi-metals can support dynamic axionic ex-
citations [98–100], which for weak fermion-fermion self coupling may be identified with the 
Nambu-Goldstone mode of chiral symmetry breaking due to the axial anomaly discussed in 
this paper. The mechanism of massless fermion pairing due to the anomaly and the correspond-
ing anomalous pole provides a possible microscopic description of these emergent phenomena. 
This will require extension of the theory to include finite temperature corrections and additional 
fermion-fermion self-interaction terms. The important features of the superfluid state described 
in this paper could be probed by interactions with photons which should indicate the presence of 
a gapless pseudoscalar mode with axionic coupling, manifested also by the effective non-local 
vertex of the light-by-light scattering in the material [101].
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Appendix A. Energy-momentum tensor conservation and comparison of H and T 00

We note first that the Hermitian Dirac chiral matrix γ
D+1 is defined in D dimensions by

γ
D+1 = i

D
2 −1

D! εα1...αD
γ α1 . . . γ αD

D=2n= in−1

(2n)! εμ1ν1...μnνn γ μ1 . . . γ νn (A.1)

where the totally anti-symmetric Levi-Civita tensor εμ1ν1...μnνn satisfies the Schouten identity

gλβεμ1ν1...μnνn + gλμ1εν1μ2...νnβ + · · · + gλνnεβμ1...νn−1μn = 0 (A.2)

in which the sum is over all 2n + 1 cyclic permutations of the indices (β, μ1, ν1 . . . , μn, νn). 
Since the tensor on the left side of (A.2) is totally anti-symmetric in all D + 1 indices, but no 
such tensor exists in D=2n dimensions, it must vanish identically.

To demonstrate the equivalence of (2.26) and (2.27), as expected in a background electro-
magnetic field, we make use of general form of the axial anomaly (2.4) in D (even) dimensions. 
Multiplying (A.2) by cnFμ1ν1 . . . Fμnνn where cn = 2/(4π)nn! is the coefficient in (2.4) gives

gλβAD + cn D gλμ1εν1μ2...νnβFμ1ν1 . . . Fμnνn = 0 (A.3)

since the latter D terms are all the same after relabeling indices. Contracting with ∂βη then yields

−AD ∂λη = cn D gλμ1εν1μ2...νnβFμ1ν1 . . . Fμnνn∂βη

= cn D εμ1ν1...μnνnF λ
μ1

. . . Fμnνn(∂ν1η) (A.4)

after another relabeling of indices. On the other hand from (2.23),

Jμ1 = cn D εμ1ν1...μnνn ∂ν1

(
ηFμ2ν2 . . . Fμnνn

)
= cn D εμ1ν1...μnνn Fμ2ν2 . . . Fμnνn (∂ν1η) (A.5)

by the Bianchi identity for the electromagnetic field strength, and therefore

FλμJμ = Fλ
μ1

Jμ1 = cn D εμ1ν1...μnνn F λ
μ1

Fμ2ν2 . . . Fμnνn (∂ν1η) (A.6)

which coincides with (A.4). Thus the equivalence of (2.26) and (2.27) is demonstrated.
The fact that the simple perfect fluid form of the Energy Momentum Tensor (2.22) satisfies 

the partial conservation law (2.27) shows that it already contains the J νAν interaction term of 
the underlying fermionic theory. However, comparing its T 00 component with the canonical 
Hamiltonian H of (2.17), one finds that they differ by the anomaly term ηAD. The reason for 
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this difference is again the special form of the axial anomaly (3.6) being linear in the Fi0 electric 
component of the field strength tensor in any dimension (all of the other indices of Fij being 
necessarily spatial by anti-symmetry of the ε symbol).

The difference between T 00 and H is best illustrated by a simple model with one degree of 
freedom defined by the Lagrangian

Ltot [χ,A] = m1

2
χ̇2 + χȦ + m2

2
Ȧ2 ≡ Lχ + LA (A.7)

where Lχ comprises the first two χ dependent terms, including the χȦ interaction linear in the 
velocity of A. This gives rise to a ‘current’ J = δStot /δA = −χ̇ . If A(t), modeling the external 
gauge potential, is taken to be an arbitrary non-dynamical external field, its Lagrangian LA and 
eq. of motion can be neglected, and we may compute the Hamiltonian for the χ field only, 
obtaining

Hχ = χ̇
∂

∂χ̇
Lχ − Lχ = m1

2
χ̇2 − χȦ = 1

2m1
p2

χ − χȦ (A.8)

which contains the time dependent interaction, and yields the correct χ eq. of motion m1χ̈ = Ȧ, 
analogous to the axial anomaly eq. (3.9) or (5.19) in the arbitrary potential A(t).

On the other hand, being linear in the velocity Ȧ, the interaction term will not appear in the 
covariant definition of the energy since the action 

∫
dt χȦ is invariant under arbitrary reparame-

terizations of time. If one further calculates the total Hamiltonian corresponding to (A.7)

Htot = χ̇
∂

∂χ̇
Ltot + Ȧ

∂

∂Ȧ
Ltot − Ltot = Hχ + χȦ + m2

2
Ȧ2

= m1

2
χ̇2 + m2

2
Ȧ2 (A.9)

the interaction term apparently cancels entirely, when Htot is expressed in terms of the coordinate 
velocities, although of course the conjugate momentum pA = m2Ȧ+χ = const ., and the eqs. of 
motion consisting of

m1χ̈ = Ȧ , and m2Ä = −χ̇ (A.10)

still reflect the presence of the interaction. Since

d

dt

(
m1

2
χ̇2

)
= Ȧχ̇ = − d

dt

(
m2

2
Ȧ2

)
(A.11)

the total Hamiltonian is conserved Ḣtot = 0 upon using both eqs. of motion. The Ȧχ̇ = EJ

partial conservation of the m1χ̇
2/2 apparently ‘free’ kinetic term of χ is analogous to the FλνJν

term in the partial conservation (2.27) of the covariant T λν , for the apparently ‘free’ matter, 
which is canceled only if the Maxwell Eqs. of the full interacting theory are considered. Thus 
m1χ̇

2/2, corresponding to 
∫

ddx T 00 of the covariant tensor (2.22), contains the full interaction 
energy, without the χȦ term, whereas the partial canonical Hamiltonian (A.8), corresponding to ∫

ddxH of (2.17) which differs from it and does contain the χȦ term is not the true energy of 
even the χ subsystem, although it does give the correct equation of motion (A.10) in an external 
potential A(t).

This curious situation is clearly tied to the special nature of the interaction linear in velocity Ȧ
which models the anomaly term AD in the fluid effective action (2.1). If one takes m1 = μ̃/ñ = π

and m2 = 1/e2 corresponding to the D=2 Schwinger model, constrained to its spatially indepen-
dent mode, one obtains from (A.10) oscillatory solutions at the frequency e/

√
π , corresponding 
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to the mass of the Schwinger model boson, with the pA constant of motion proportional to the 
integration constant E0 corresponding to constant background electric field in E = e2χ + E0, 
corresponding in turn to the θ parameter θ = 2πE0/e

2 of the model.

Appendix B. Massless fermions in D=2, bosonization and chiral charge density states

We collect in this Appendix for completeness and the benefit of the reader some facts about 
massless fermions at zero temperature in D=2, and their bosonization which are used in the text.

The two-component Dirac field ψ for 1 + 1 dimensional massless fermions can be written

ψ =
(

ψ+
ψ−

)
(B.1)

in terms of its chirality ± right or left moving components which can be treated separately in the 
absence of fermion mass. These components can be expanded in a Fourier series

ψ±(x, t) = 1√
L

∑
q∈Z+ 1

2

c(±)
q eikq (x∓t) (B.2)

obeying anti-periodic boundary conditions on the spatial interval x ∈ [0, L] with

kq = 2πq

L
, q = ±1

2
,±3

2
, . . . (B.3)

q taking on all (positive or negative) half-integer values, and the coefficients obeying the anti-
commutation relations{

c
(±)†
q ′ , c(±)

q

}
= δqq ′ (B.4)

with all other anti-commutators vanishing. We employ a condensed notation (slightly dif-
ferent from that of Ref. [22]), which is related to the more common notation by c

(+)
q =

b
(+)
q , c(−)†

q = d
(−)
q denoting annihilation operators for positive energy modes if q > 0, and 

c
(+)
q = d

(+)†
−q , c(−)†

q = b
(−)†
−q denoting creation operators for positive energy modes if q < 0. Thus 

the free fermion Dirac vacuum is defined by

c(+)
q

∣∣0〉 = c(−)†
q

∣∣0〉 = 0 , q = +1

2
,+3

2
, . . . (B.5a)

c(+)†
q

∣∣0〉 = c(−)
q

∣∣0〉 = 0 , q = −1

2
,−3

2
, . . . (B.5b)

Fermion chiral densities can be expressed in the form

:ψ†
±ψ±: = 1

L

∑
n∈Z

ρ(±)
n e−iknt e±iknx , kn = 2πn

L
, ρ

(±)
−n = ρ(±)†

n (B.6)

where the colons denote normal ordering with respect to the Dirac vacuum. Paying due attention 
to the distinction between creation and annihilation operators as in (B.5), we have

ρ(±)
n ≡

∑
q∈Z+ 1

2

:c(±)†
q c

(±)
q±n:=

{∑
q>0 c

(+)†
q c

(+)
q+n −∑

q<0 c
(+)
q+nc

(+)†
q for ρ

(+)
n∑

q<0 c
(−)†
q c

(−)
q−n −∑

q>0 c
(−)
q−nc

(−)†
q for ρ

(−)
n

(B.7)

with n taking on integer values. Defining the normalized fermion bilinears
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a(±)
n ≡ i√|n| ρ(±)

n , n �= 0 (B.8)

a short calculation then shows that these obey bosonic canonical commutation relations[
a(±)
n , a

(±)†
n′

] = δn,n′ (B.9)

with the other commutators vanishing. As a result local bosonic field operators may be defined 
by

φ±(t, x) ≡ 1

2π

∞∑
n=1

1√
n

(
a(±)
n e−ikn(t∓x) + a(±)†

n eikn(t∓x)
)

+ φ0±(t, x) ≡ φ̄± + φ0±(t, x)

(B.10)

where φ0± is the contribution of the n = 0 modes. These are linear in t and x, and given by

φ0± = 1

2π
R± + 1

L
(t ∓ x)Q± , Q± ≡

L∫
0

dx :ψ†
±ψ±:= ρ

(±)
0 (B.11)

with their coefficients also operators obeying the commutation relation

[R±,Q±] = i (B.12)

while the remaining commutators [R±, Q∓] = 0. The chiral boson fields (χ, η) of the text are

χ = −(
φ+ − φ−

)
, η = −π χ = π

(
φ+ − φ−

)
(B.13)

in terms of the bosonic operators (B.10)-(B.11), explicitly expressing the bosonization in D=2. 
The total electric and chiral charge operators defined by the Dirac vacuum normal ordering (B.6)
are

Q ≡
L∫

0

dx j0 =
L∫

0

dx
∂χ

∂x
= (

φ0− − φ0+
)∣∣∣x=L

x=0
= Q+ + Q− (B.14a)

Q̃ ≡
L∫

0

dx j0
5 = −

L∫
0

dx
∂χ

∂t
=

L∫
0

dx
(
φ̇0+ − φ̇0−

) = Q+ − Q− (B.14b)

respectively, where (3.10), (B.10) and (B.13) have been used.
At zero temperature the lowest energy fermion state with finite chiral charge density is attained 

by filling single particle positive chirality states and single anti-particle negative chirality states 
up to the Fermi momentum k ≤ kF = μ̃. Thus we define the filled Fermi level states

∣∣N 〉 ≡
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∏
1/2≤q≤q

N

cq
(+)† cq

(−)
∣∣0〉 for N = 1,2, . . .

|0〉 for N = 0∏
q
N+1 ≤q≤−1/2

cq
(+) cq

(−)†
∣∣0〉 for N = −1,−2, . . .

q
N

≡ N − 1

2
≤ μ̃L

2π
< q

N+1

(B.15)
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for every integer N ∈ Z. For any real μ̃, N is the largest integer not greater than μ̃L/2π + 1/2. 
The |N〉 states are eigenstates of both electric and chiral charge:

Q±
∣∣N 〉 = ±N

∣∣N 〉
, Q

∣∣N 〉 = 0 , Q̃
∣∣N 〉 = 2N

∣∣N 〉
(B.16)

since there are equal integer numbers of occupied single particle and anti-particle states in |N〉, 
and particles and anti-particles carry opposite electric charges.

Relations (B.11)-(B.12) also allow us to identify the n =0 mode operator of the η field

η̂0 ≡ 1

2

(
R+ − R−

)
, [η̂0, Q̃] = i (B.17)

whose conjugate momentum is the net chiral charge Q̃. Thus if η̂0 is sharply defined, Q̃ is 
maximally uncertain, and conversely, η̂0 is completely uncertain in the eigenstates (B.16) of fixed 
chiral charge. Since from (B.16) the spectrum of Q̃/2 is isomorphic to the angular momentum 
operator Lz on a circle, its conjugate 2η̂0 is an angular phase variable with period 2π on S1. 
Then defining

U0 ≡ e2iη̂0 = exp
{
i
(
R+ − R−

)}
(B.18)

we observe that this unitary operator satisfies[
Q̃,U0

] = i
[
Q̃,

(
R+ − R−

)]
U0 = 2U0 ,

[
Q,U0

] = 0 (B.19)

so that U0 raises the chiral charge Q̃ by 2 units, and its phase can be chosen so that

U0|N〉 = |N + 1〉 (B.20)

without changing the value of Q =0 in the vanishing electric charge sector. In the angular coor-
dinate representation where η̂0|η0〉 = η0|η0〉, the eigenstates (B.16) are represented

〈η0|N〉 = 1√
π

e2iNη0 , |η0〉 = 1√
π

∑
N∈Z

e−2iNη0 |N〉 , U0|η0〉 = e2iη0 |η0〉 (B.21)

and Q̃ is represented as −i ∂/∂η0. The normalization of the states is fixed by 
∫ π

0 dη0 |〈η0|N〉|2 =
1.

Mixed fermion bilinears are expressed in terms of the boson field η of (B.13)-(B.17) and U0
by

ψ†±ψ∓ = 1

L
:e±2iη̄ : e±2iη̂0 = 1

L
:e±2iπ(φ̄+−φ̄−) : U±1

0 (B.22)

where the colons now denote normal ordering with respect to the zero mass bosons of φ̄± in 
(B.10) [23,102–104]. From (B.20) and (B.22) it follows that the only non-zero matrix elements 
〈N ′|ψ̄ψ |N〉 are those with values of N ′ = N ± 1, and in particular

〈
N + 1

∣∣ψ†+ψ−
∣∣N 〉 = 1

L
exp

{
2πi

(
2N + 1

) t

L

}
(B.23)

which is independent of x.
From the definition of qN in (B.15) we have

μ̃L + 1 = N + fr

{
μ̃L + 1

}
(B.24)
2π 2 2π 2
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where fr{...} ∈ [0, 1) denotes the fractional part of the quantity within the brackets. Dividing Q̃
in (B.16) by the linear volume L and passing to the infinite L limit

ñ = lim
L→∞

1

L

〈
N
∣∣Q̃∣∣N 〉 = lim

L→∞
2

L

(
μ̃L

2π
+ 1

2
− fr

{
μ̃L

2π
+ 1

2

})
= μ̃

π
(B.25)

is the chiral charge density in the continuum limit, since the fractional part drops out in this limit.
At exactly zero electric coupling e = 0, Q̃ is conserved and any of its eigenstates |N〉 are also 

eigenstates of the free Dirac fermion Hamiltonian,

Hf =
L∫

0

dx :ψ†
(
−iσ3

∂

∂x

)
ψ :

with Hf

∣∣N 〉 = (
2

q
N∑

q= 1
2

kq

)∣∣N 〉 = 2π

L
N2

∣∣N 〉 = π

2L
Q̃2

∣∣N 〉
(B.26)

so that the energy density of this state in the infinite volume limit is

ε = lim
L→∞

2

L

q
N∑

q= 1
2

kq = 2

μ̃∫
0

dk

2π
k = μ̃2

2π
= π

2
ñ2 . (B.27)

For comparison the fermion energy-momentum-stress tensor is defined by

Tλν = − i

4

[
ψ̄ , γ(λ

↔
∂ν) ψ

]
(B.28)

where the commutator anti-symmetrizes the fermion operators. Taking the expectation value of 
Ttt gives ε in (B.27). while for Txx we obtain

p = 2
∫

dk

2π
k = μ̃2

2π
= ε (B.29)

as required by the tracelessness of the stress tensor −Ttt +Txx = 0 for a massless fermion. From 
(B.25)-(B.29) we verify that the average Grand Potential density for the massless fermion fluid 
D=2 is

lim
L→∞

〈�f 〉
L

= lim
L→∞

〈Hf − μ̃Q̃〉
L

= ε − μ̃ñ = −p (B.30)

which is the Gibbs relation. Finally since the time-space component of the tensor (B.28) gener-
ates Lorentz boosts, we may compute

L∫
0

dx :T tx: ∣∣θ; μ̃〉 = 0 (B.31)

in the finite μ̃ state of (C.33), thus proving that despite its time dependence the state |θ; μ̃〉 is 
Lorentz invariant, and the gapless Goldstone mode propagates at the speed of ‘light’ vs = c=1
for all μ̃ in D=2 dimensions, consistent with the discussion in Sec. 4.1, for zero fermion mass.
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Appendix C. Vacuum periodicity and fate of the Goldstone mode in D=2

This appendix reviews some features of the Schwinger model, which are collected here for 
completeness, particularly as they relate to the superfluid description of Secs. 2, 3, and the 
proof of the Goldstone theorem for ASB of Sec. 4. The extension to finite chiral density in 
eqs. (C.33)-(C.35) has not to our knowledge appeared previously. The fully solvable D=2 case 
is also quite illuminating in showing that ASB can share features with, but is nevertheless differ-
ent from SSB.

In Sec. 3 we have shown that the superfluid effective action (2.1) coincides with that of the 
Schwinger model, QED in D=2 dimensions, in the limit of vanishing electric coupling e→0. 
In that limit the Schwinger boson has zero mass and is a gapless CDW and Goldstone boson of 
the superfluid description. On the other hand, it is known that Goldstone’s theorem fails in D=2
[27,28], at least in the limit L →∞ of infinite spatial volume. In this section we also examine and 
resolve this apparent conflict by reconsidering the Hamiltonian form of the Schwinger model for 
finite L, with finite electric coupling e, then carefully taking the limits e→0, L →∞.

The necessary preliminaries of quantization of free massless Dirac fermions in D =2 are 
reviewed in Appendix B. At exactly e≡0 and any finite L one can construct states labeled by 
|N〉 in (B.15) which are filled up to the chiral Fermi level and are eigenstates of chiral charge 
Q̃ = 2N with zero electric charge. Since their energy (B.26) is proportional to Q̃2, hence N2, the 
ground state of the free fermion system is the N =0 state with Q̃=0. Exact chiral symmetry is 
preserved. Then it follows from the fact that Q̃ and the phase operator η̂0 are conjugate variables, 
cf. (B.17), that the phase is completely uncertain in the eigenstates |N〉 of chiral charge. Hence 
the condition z0 �= 0 for the Goldstone theorem in Sec. 4 does not apply in this case, since 
z0 = 〈e2iη̂0〉 ∼ ∫ π

0 dη0 e2iη0 = 0.
As soon as the fermions are coupled to the gauge field, the bare fermion eigenstates of Q̃

states are no longer acceptable, because they are not invariant under topologically non-trivial 
large gauge transformations defined by �(L) − �(0) = 2πn, n �= 0. As a consequence they 
also violate the cluster decomposition property, which signals the appearance of off-diagonal 
long range order and chiral symmetry breaking [105,106]. This is another consequence of the 
anomaly.

The analysis of the limit e → 0 is delicate, and is most conveniently carried out in the 
Hamiltonian Schrödinger picture in a finite spatial interval x ∈ [0, L] [104,107,108]. The spa-
tial component of the gauge potential Ax can be decomposed into a longitudinal piece, ∂x� and 
a ‘transverse’ piece, denoted simply by A. In one spatial dimension, ‘transverse’ means ∂xA = 0
so that A = A(t) is independent of x and a single quantum mechanical variable. Defining a field 
�(t, x) ≡ �̇ − At with the temporal component At , the general gauge potential can then be 
written

Ax = A + ∂x� (C.1a)

At = −� + �̇ (C.1b)

so that under the U(1) gauge transformation

Aa → Aa + ∂aλ =⇒ � → � + λ (C.2)

and � parameterizes the gauge orbit. The remaining field � and single degree of freedom A
are gauge invariant, as is the electric field E = F 01 = −Ȧ − ∂x�. Since the physical states 
must be fully gauge invariant, including under topologically non-trivial gauge transformations, 
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� = 2πxn/L, n ∈ Z, under which A →A + 2πn/L, it is clear that there is a periodic vacuum 
structure in which states with the Chern-Simons number

N
CS

≡ 1

2π

L∫
0

dx A = AL

2π
(C.3)

differing by an integer should be identified as gauge copies of each other.
If the θ term of (3.18) is added to the Lagrangian of (3.1) the momentum conjugate to A is

PA ≡ δScl

δȦ
= ȦL

e2 − θL

2π
(C.4)

while P� = 0, so that � is non-dynamical and satisfies the Gauss Law constraint

∂xEx = −∂2
x� = e2j0 = e2 ψ†ψ = e2 ∂xχ (C.5)

where the last relation follows from (3.12a). This leads to the Coulomb interaction term

Hc = 1

2

L∫
0

dx �j0 = e2

2

L∫
0

dx

L∫
0

dx′ j0(x)DL(x, x′) j0(x′) (C.6)

in the Hamiltonian, with DL the Green’s function

DL(x, x′) = 1

L

∑
n∈Z, n�=0

1

k2
n

exp
{
ikn(x − x′)

}

= L

12
− |x − x′|

2
+ (x − x′)2

2L
, x, x′ ∈ [0,L] (C.7)

of the d=1 spatial Laplacian −∂2
x defined on the periodic interval x, x′ ∈ [0, L], satisfying

−∂2
x DL(x, x′) = 1

L

∑
n∈Z, n�=0

exp
{
ikn(x − x′)

} = δL(x − x′) − 1

L
(C.8)

with kn = 2πn/L. Integrating (C.5) over the spatial interval [0, L] implies that the total electric 
charge must vanish on the physical state space with periodic boundary conditions. This insures 
that the n =0 constant term omitted from the sums in (C.7) and (C.8) does not contribute to Hc.

The total Hamiltonian for the Schwinger model with general e �=0 may then be written

H = e2

2L

(
PA + θL

2π

)2
+ Hf (A) + Hc (C.9)

where PA = −id/dA in the Schrödinger representation and

Hf (A) = −
L∫

0

dx ψ†(x)σ3
(
i∂x + A

)
ψ(x) (C.10)

is the Dirac fermion kinetic Hamiltonian depending on A. Substituting (B.2) into (C.10) gives

Hf (A) =
∑

q∈Z+ 1

{(
kq − A

)
c(+)†
q c(+)

q − (
kq − A

)
c(−)†
q c(−)

q

}
(C.11)
2
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for the unregularized Dirac Hamiltonian. Regularization of Hf (A) may be performed in a num-
ber of different ways, for example with the normal ordering prescription for the shifted Dirac 
vacuum

c(+)
q

∣∣0〉 = c(−)†
q

∣∣0〉 = 0 , kq − A ≥ 0 (C.12a)

c(−)
q

∣∣0〉 = c(+)†
q

∣∣0〉 = 0 , kq − A < 0 (C.12b)

re-ordering and discarding the contribution to the energy of the Fermi-Dirac sea. This gives

:Hf (A): = 2π

L

⎧⎨
⎩

∑
q≥N

CS

(
q − N

CS

)
c(+)†
q c(+)

q +
∑

q<N
CS

(
N

CS
− q

)
c(+)
q c(+)†

q

+
∑

q≤N
CS

(
N

CS
− q

)
c(−)†
q c(−)

q +
∑

q>N
CS

(
q − N

CS

)
c(−)
q c(−)†

q

⎫⎬
⎭ (C.13)

where the colons denote that normal ordering subtraction has been performed.
According to the definition of the fermion Fock vacuum state (C.12), we generalize the def-

inition of the Q = 0 state with unequal chiral Fermi surfaces of (B.15) to arbitrary finite A by 
[107]

∣∣N;A〉 ≡
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏
N

CS
−1/2<q≤q

N

cq
(+)† cq

(−)
∣∣0〉 for N = ⌊

N
CS

+ 1/2
⌋+ 1,

⌊
N

CS
+ 1/2

⌋+ 2, . . .

|0〉 for N = ⌊
N

CS
+ 1/2

⌋
∏

q
N+1 ≤q<N

CS
+1/2

cq
(−)† cq

(+)
∣∣0〉 for N = ⌊

N
CS

+ 1/2
⌋− 1,

⌊
N

CS
+ 1/2

⌋− 2, . . .

(C.14)

with q
N

is in (B.15), and �x� ∈Z denotes the largest integer not greater than x (�x� ≤ x is called 
the ‘floor’ of x). For A = 0, N

CS
= 0, this reduces to the free fermion case of (B.15).

Since the energies of the single particle occupied states are shifted: kq → kq − A, the normal 
ordering also shifts the Q± operators so that only those single particle states with positive energy

kq − A > 0 =⇒ q ≥ 1

2
+ N

CS
(C.15)

should be counted in the sums for the renormalized charge operators Q± after the shift. Since

q
N∑

q≥ 1
2 +N

CS

1 =
⎛
⎝ N∑

n=1

−
N

CS∑
n=1

⎞
⎠1 = N − N

CS
(C.16)

the eigenvalues of Q± in the state defined by (B.15) but with energy levels shifted by A according 
to (C.15) are given by

Q±
∣∣N;A〉 = q

N∑
q≥ 1

2 +N
CS

∣∣N;A〉 = ±(
N − N

CS

)∣∣N;A〉
(C.17a)

Q̃
∣∣N;A〉 = (Q+ − Q−)

∣∣N;A〉 = 2
(
N − N

)∣∣N;A〉
(C.17b)
CS
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which shows that the chiral charge Q̃ receives a contribution from the gauge field A relative 
to (B.16) Likewise the state 

∣∣N; A〉
is also an eigenstate of the Dirac kinetic Hamiltonian with 

eigenvalue

EN;A = 2

q
N∑

q≥ 1
2 +N

CS

(
kq − A

) = 4π

L

⎛
⎝ N∑

n=1

−
N

CS∑
n=1

⎞
⎠(

n − 1

2
− N

CS

)

= 2π

L

(
N(N + 1) − N

CS
(N

CS
+ 1) − (2N

CS
+ 1) (N − N

CS
)
)

= 2π

L

(
N − N

CS

)2 (C.18)

so that

:Hf (A): ∣∣N;A〉 = EN;A
∣∣N;A〉 = π

2L
Q̃2

∣∣N;A〉
(C.19)

and therefore (C.3) and (C.17b) imply

dQ̃

dt
= −2

dN
CS

dt
= − Ȧ

π
L =

L∫
0

dx A2 (C.20)

as required by the axial anomaly (3.6).
Now the full Hamiltonian (C.9) can be decomposed into its spatially constant zero mode part 

H0, and its non-zero mode part which is composed of the bosonized field operators φ̄+ − φ̄−
of (B.8)-(B.10), normal ordered in a†

n, an, equivalent to the ∗F independent part of the bosonic 
χ field effective action of (3.18). This bosonized effective action describes fermion/anti-fermion 
pair excitations of the |N; A〉 base states with higher energy, but which are otherwise independent 
of A. The bosonized Hamiltonian together with the Coulomb interaction (C.6) can be diagonal-
ized by a unitary canonical transformation e−iS whose net effect is to endow the boson field with 
a mass M = e/

√
π , and normal order its Hamiltonian with respect to this mass [104,108–110]. 

This entire n �= 0 bosonic part of H commutes with the zero mode part H0.
Thus to find the ground state of the full Hamiltonian, one can focus only upon the zero mode 

subspace with no bosonic excitations, or Coulomb term, spanned by the |N; A〉 states, con-
structed in (C.14). The Hamiltonian in this spatially constant zero mode sector is

H0(η0;A) = e2

2L

(
PA + θL

2π

)2
+ π

2L

(
Pη0 − AL

π

)2

= e2

2L

(
−i

∂

∂A
+ θL

2π

)2
+ π

2L
Q̃2

= −M2L

8π

(
∂

∂NCS

+ i θ

)2

+ 2π

L

(
− i

2

∂

∂η0
− N

CS

)2

(C.21)

from (B.21) and (C.17b)-(C.19). This Hamiltonian of two coupled degrees of freedom, η0 from 
the fermion sector and A (equivalently N

CS
) from the gauge boson sector, may also be obtained 

directly from the effective Lagrangian of (3.18) by substituting χ = −η/π from (B.13), integrat-
ing the interaction term 

∫
dt η ∗F = − 

∫
dt ηȦ → ∫

dt η̇A by parts, and then following standard 
methods.

The Hamiltonian (C.21) is left invariant under the topologically non-trivial large gauge trans-
formation of shifting N

CS
by one unit, while at the same time shifting the phase of the fermion 

wave function in (B.21) by e2iη0 , and this is explicit in the |N; A〉 basis, whose energy EN;A
(C.18) is invariant under the simultaneous shift of N and N

CS
by one unit. However, because of 

the kinetic term in PA, these fixed |N; A〉 states do not diagonalize the full zero mode Hamilto-
nian H0 for any e �=0. Diagonalizing H0 requires instead a superposition of these states. Since 
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in each sector labeled by Pη0 = 2N , H0 in (C.21) is the Hamiltonian of a simple harmonic oscil-
lator in the remaining N

CS
variable, the ground state wave functional is the Gaussian weighted 

sum [104,108]

∣∣θ 〉 = ( 4

π2ML

)1
4

∞∑
N=−∞

exp
{
− 2π

ML

(
N − N

CS

)2 + iθ
(
N − N

CS

)}
e−iS

∣∣N;A〉
(C.22)

where the operator e−iS needed to diagonalize the Coulomb interaction term Hc is given explic-
itly in Refs. [108–110]. The wave function of (C.22) is

〈
η0,A

∣∣θ 〉 = ( 4

π2ML

)1
4

∞∑
N=−∞

exp
{
− 2π

ML

(
N − N

CS

)2 + 2iη0N + iθ
(
N − N

CS

)}
(C.23)

in the (η0, NCS
) coordinate basis, and |θ〉 is an eigenstate of H0, (C.21) with eigenvalue M/2.

The phase of |θ〉 is chosen so that the exponent in (C.22) depends only upon the difference 
N−N

CS
, insuring that a shift of N in the fermion sector is linked to the shift of N

CS
in the gauge 

sector. Recalling (B.18)-(B.20), the |θ〉 state is also an eigenstate of the unitary operator

U ≡ U0 exp
(
−2πi

L
PA

)
= exp

(
2iη̂0 − d

dNCS

)
and U

∣∣θ 〉 = ∣∣θ 〉 (C.24)

with unit eigenvalue. This follows from the fact that the U0 part of U raises N → N + 1 on the 
η0 dependence of (C.23), while the d/dN

CS
part of U lowers N

CS
→N

CS
−1, then relabeling

the summation index in (C.23) N →N −1. Since U generates topologically non-trivial gauge 
transformations, this proves that the |θ〉 state is fully gauge invariant, as it should be – without 
any phase factor which appears in some earlier treatments [104].

The necessity of introducing the superposition (C.22) when the coupling to the gauge field is 
considered, no matter how small, makes the e→0 limit subtle, and is responsible for breaking 
the chiral symmetry. Indeed the action of a chiral rotation is

exp
(
iαQ̃

)∣∣θ 〉 = ∣∣θ + 2α
〉

(C.25)

so θ is a chiral phase and chiral symmetry is broken for any definite θ . Because the operation of U
on |θ〉 generates a shift in N and N

CS
which is a gauge copy of the same state, the normalization 

of the wave function is determined with respect to the integration measure 
∫ 1

0 dN
CS

∫ π

0 dη0, N
CS

being integrated over only a single unit fundamental interval, i.e.

〈
θ
∣∣θ 〉 =

1∫
0

dN
CS

π∫
0

dη0

∣∣∣〈η0;A
∣∣θ 〉∣∣∣2 =

( 4

ML

)1
2

1∫
0

dN
CS

∞∑
N=−∞

exp
{
− 4π

ML

(
N − N

CS

)2
}

= 2 (ML)−
1
2

∞∫
−∞

dN
CS

exp
(
− 4π

ML
N2

CS

)
= 1 (C.26)

so that after a change of variables within each term of the N sum in (C.26), the sum over N can 
be traded for a single term, with the integration over the full real line of N

CS
in the last step of 

(C.26).
Since the fermion bilinears (B.22) raise or lower the |N〉 state by one unit, (B.23) their matrix 

elements in the |θ〉 state acquire a phase e±iθ , and in particular
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〈
θ
∣∣ψ†+ψ−

∣∣θ 〉 = e−iθ B(M,L) exp
(
− π

ML

)
(C.27)

where B(M, L) results from the normal ordering transformation e−iS from zero to finite boson 
mass M . This function is given by [104,108–110]

B(M,L) = M

4π
exp

⎧⎨
⎩γ

E
+ π

ML
+ 2

∞∫
0

dx
(

1 − eML coshx
)−1

⎫⎬
⎭ (C.28)

where γ
E

= 0.5772 . . . is the Euler-Mascheroni constant, and it has the limiting values

B(M,L) →
{ 1

L
, ML → 0

M
4π

exp(γ
E
) , ML → ∞ (C.29)

It is now evident that the dependence of the Gaussian width in (C.22) upon the product ML

means that the limits e → 0 and L → ∞ do not commute. In the first limit ML → 0, the Gaussian 
becomes infinitely sharply peaked around Q̃ = 0 and an eigenstate of chiral charge. Hence the 
chiral symmetry is restored, all θ dependence drops out, and both

z0 = 〈
θ
∣∣e2iη̂0

∣∣θ 〉 = exp
(
− π

ML

)
(C.30)

and the chiral symmetry breaking condensate (C.27) vanish exponentially as ML → 0. The 
Goldstone pole decouples completely, as in the strictly free fermion theory with e≡0 exactly 
as before.

On the other hand if we take L →∞ with e fixed, the anomaly source term in (3.6) cannot be 
neglected, as was assumed in (4.6). The would-be Nambu-Goldstone excitation χ = −η/π com-
bines with the electric field through the Gauss Law constraint (C.5), solved by Ex = e2χ + E0
(where E0 is an integration constant, a spacetime constant background electric field), and χ be-
comes massive with M2 = e2/π . In other words, the classically constrained gauge field is ‘eaten’ 
by the propagating would-be Goldstone boson, just as in spontaneous symmetry breaking by the 
Stueckelberg-Higgs mechanism. Nevertheless it should be emphasized that the chiral symmetry 
and chiral Ward Identities are actually broken explicitly by the anomaly, unlike the more famil-
iar case of spontaneous symmetry breaking by a scalar field expectation value, where the Ward 
identities of the symmetry are non-anomalous and preserved.

The interesting intermediate case is the limit e → 0, L → ∞ with eL fixed. All the N in (C.22)
still contribute, and the condensates (C.27) and (C.30) remain non-vanishing. Chiral symmetry 
remains broken and z0 �= 0 even for infinitesimally small e. In this limit the conditions for the 
proof of Goldstone’s theorem of Sec. 4 are satisfied, and the massless Goldstone pole exists over 
the range of distance or momentum scales

|x| � e−1 � L or k � e � 1

L
(C.31)

which becomes arbitrarily large as e → 0 and L → ∞ together. This is the case of spontaneous 
symmetry breaking, with the Goldstone mode appearing through an arbitrarily weak attractive 
interaction between the fermion/anti-fermion pairs, similar to that in formation of Cooper pairs 
in condensed matter systems. Further verification of this result is obtained by computing the 
condensate correlation function [104,110]

〈
θ
∣∣ψ†+ψ−(x) ψ†+ψ−(0)

∣∣θ 〉 = [
B(M,L)

]2 exp

⎧⎨
⎩

∞∑ eiknx[
n2 + (ML/2π)2

] 1
2

⎫⎬
⎭ (C.32)
n�=0
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→ [
B(M,L)

]2 exp

⎧⎨
⎩
∑
n�=0

e2πinx/L

|n|

⎫⎬
⎭

→
(

M

4π
eγ

E

)2

exp
{
−2 ln

(2π |x|
L

)}
=

(
M

4π
eγ

E

)2(
L

2πx

)2

in the limit |x| � e−1 ∼ L, since n ∼ L/|x| � ML dominate the sum. The argument of the 
exponential in (C.32) is the commutator function of the massless η field in (B.13)-(B.10), i.e.
the superfluid Nambu-Goldstone mode. There is ‘quasi-long range order’ for this range of |x|, 
which decreases as a power due to the logarithmic massless boson propagator in D=2 [111].

The |θ〉 state is easily generalized to a state with finite chiral density at zero temperature. The 
Grand Potential � = H0 − μ̃Q̃ in the zero mode sector suggests shifting N−N

CS
→ N−N

CS
−

μ̃L/2π in the Gaussian (C.23). However shifting the centroid of a Gaussian away from Q̃=0
yields a time dependent state. The time dependent Gaussian wave function

�θ;μ̃(η0,A; t) = 〈
η0,A

∣∣e−iH0t
∣∣θ; μ̃〉

=
( 4

π2ML

)1
4

∞∑
N=−∞

exp

{
− 2π

ML

(
N − N

CS
+ N

CS
(t)

)2

+ 2iη0N + iθ
(
N − N

CS

)− 2πi

M2L
ṄCS(t)

(
2N − 2N

CS
+ N

CS
(t)

)
− iMt

2

}
(C.33)

satisfies the time dependent Schrödinger eq. i∂t� = H0�, provided N
CS

(t) satisfies [112](
d2

dt2
+ M2

)
NCS = 0 , N

CS
(t) = − μ̃L

2π
cos (Mt) (C.34)

i.e. N
CS

(t) is the particular solution of the classical oscillator eqs. of motion following from H0

satisfying the initial conditions N
CS

(0) = −μ̃L/2π and ṄCS(0) = 0.
The chiral symmetry is broken and the conditions for the Goldstone theorem are again satisfied 

in the same sense as before for the coordinate or momentum ranges (C.31). The expectation value 
of the chiral symmetry breaking condensate operator ψ†+ψ− is

〈
θ; μ̃∣∣eiH0t ψ†+ψ− e−iH0t

∣∣θ; μ̃〉 = exp
{2iμ̃

M
sin(Mt)

}
e−iθ e−π/MLB(M,L) (C.35)

in place of (C.27), in the time dependent state of non-zero chemical potential μ̃. Recalling (C.25), 
and with sin(Mt) ≈ Mt for Mt � 1, (C.35) shows that the chiral phase angle rotates with con-
stant positive speed for times t � M−1, as expected for the phase of a condensate with η̇ = μ̃ and 
Q̃ = 2. The time range t � M−1 becomes infinitely long as M→0, consistent with the spatial 
range of (C.31) where the Goldstone theorem of Sec. 4 applies.
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