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1 Introduction

The operator known as the topological charge density χ (cf. eq. (2.1)) plays a remarkable
role in non-Abelian quantum field theory. For the weak gauge group, it is sensitive to
processes responsible for anomalous baryon plus lepton number violation [1]. The violation
rate is believed to be fast at high temperatures and therefore important for baryogenesis [2],
a fact that has led to its detailed numerical determination [3]. On the semiclassical level,
the gauge field configurations mediating baryon plus lepton number violation in the Higgs
phase are known as sphalerons [4]. Consequently the thermal rate is generically referred to
as the sphaleron rate, or the Chern-Simons diffusion rate.

An analogue of the sphaleron rate originating from the strong gauge group may be
of interest as well. It affects the evolution of QCD axions [5], among the most studied
dark matter candidates. It leads to a fast violation of chirality, which has motivated
investigations in the context of heavy ion collision experiments (cf., e.g., ref. [6] for recent
work and references). Finally, the topological charge density plays an essential role in
models of natural inflation [7–9]. Indeed numerical results for the strong sphaleron rate [10]
have found use in that context [11–17], and may induce an efficient reheating mechanism
as well [18].

On the technical level, thermal rates are often referred to as transport coefficients.
Through so-called Kubo relations, they can be extracted from equilibrium 2-point corre-
lation functions. Specifically, if CS(ω) denotes a Fourier transform of a 2-point correlator
CS(t) with a specific time ordering (cf. eq. (2.3)), then the sphaleron rate is given by
Γsph = limω→0CS(ω) (for a discussion that does not rely on perturbative arguments or
physical intuition, see ref. [19]).

The focus of the current investigation is the shape of CS(ω), which contains additional
information. The shape is relevant, for example, in theories in which a scalar field ϕ, notably
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an inflaton as mentioned above, couples to a plasma through the operator L ⊃ −ϕχ/fa.
Then it is the ω-dependence that determines the efficiency of the friction that the plasma
exerts on ϕ in different temperature domains [14]. Another example is that estimating the
rate of anomalous chirality violation in QCD requires imaginary-time lattice simulations [6],
and then it would be important to have an ansatz for the ω-dependence. Even though the
QCD coupling is so large that our methods are not reliable on a quantitative level, it is
believed that large couplings smoothen spectral functions rather than insert sharp features
in them, whereby our results could still be helpful on the qualitative level.

The plan of this paper is the following. After formulating the technical problem
(section 2), we review the framework of thermally averaged classical simulations that we use
for addressing it (section 3), and describe practical details of the numerical effort (section 4).
Subsequently we discuss our slightly unexpected results for the sphaleron rate (section 5).
The main part is the analysis of the shape of the spectral function (section 6), after which
conclusions and an outlook can be offered (section 7). Details of a perturbative computation
are deferred to appendix A.

2 Formulation of the problem

In pure SU(Nc) Yang-Mills theory, the topological charge density is defined as

χ ≡ cχ εµνρσg2F aµνF
a
ρσ , a ∈ {1, . . . , N2

c − 1} , cχ ≡
1

64π2 , (2.1)

where T aF aµν = [Dµ, Dν ]/(ig) is the Yang-Mills field strength; Dµ ≡ ∂µ + igT aAaµ is a
covariant derivative; g2 ≡ 4πα is the Yang-Mills coupling; and T a are Hermitean generators
of SU(Nc), normalized as Tr [T aT b] = δab/2. The topological charge density is a peculiar
quantity, in that for smooth gauge configurations it is a total derivative, evaluating to
an integer after integration over spacetime. In quantum field theory, it is simply a local
pseudoscalar operator, which displays non-trivial correlation functions at all time and
distance scales.

In this study we are interested in real-time correlation functions of the spatial average
of χ, in thermal equilibrium at a temperature T . Different time orderings yield different
real-time correlation functions. Theoretical discussions (and also the title of this paper)
often refer to a spectral function, which is defined as

ρ(ω) ≡
∫ ∞
−∞

dt eiωt
∫

x

〈1
2
[
χ(t,x) , χ(0,y)

]〉
. (2.2)

The spectral function can alternatively be viewed as the imaginary part of a retarded
correlator, ρ(ω) = ImCR(ω + i0+). However, as discussed in section 1, physical observables
are more directly related to a “statistical”, or time-symmetric 2-point correlator of χ,

CS(t) ≡
∫

x

〈1
2
{
χ(t,x) , χ(0,y)

}〉
, CS(ω) ≡

∫ ∞
−∞

dt eiωtCS(t) . (2.3)

Given that CS(−t) = CS(t), the Fourier transform can equivalently be expressed as

CS(ω) = 2
∫ ∞

0
dt cos(ωt)CS(t) . (2.4)
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A text-book proof, obtained by inserting complete sets of energy eigenstates in the thermal
expectation values, shows that the spectral and statistical correlators are related by

CS(ω) =
[
1 + 2nB(ω)

]
ρ(ω) , (2.5)

where nB(ω) ≡ 1/(eβω − 1) is the Bose distribution, with β ≡ 1/T . In the domain that we
are interested in, viz. ω � T , the spectral function can thus be obtained from the statistical
correlator as

ρ(ω) |ω|�T= ω CS(ω)
2T . (2.6)

Now, the appearance of an anticommutator in eq. (2.3) guarantees that CS(ω) has
formally a classical limit,

C
(cl)
S (ω) ≡ lim

~→0
CS(ω) . (2.7)

It turns out that in an interacting theory, the classical limit is singular [20], as classical
field theory is plagued by Rayleigh-Jeans type of ultraviolet (UV) divergences. However,
if we keep the UV cutoff finite, by introducing a spatial lattice discretization, then the
classical limit exists. It is believed that studies with such a framework can reveal the
magnitude of the transport coefficient limω→0CS(ω) at weak coupling, αNc � 1 [21–23].
The premise of the present investigation is that it should also be possible to use classical
lattice gauge theory to estimate the shape of CS(ω), as long as we are in the Bose-enhanced
domain |ω| � T .

The UV divergences mentioned above distort physics at the frequency scale of the cutoff,
ω ∼ 1/a. In order to alleviate this, we compute C(cl)

S (ω) in leading-order perturbation theory
for ω ∼ 1/a, where a is the lattice spacing. In this UV regime, classical lattice gauge theory
is weakly coupled. The perturbative result can be subtracted from the lattice measurement,1

whose goal is to estimate C(cl)
S (ω) non-perturbatively at ω ∼ {α2N2

c T
2a, αNcT}. The first

scale replaces the physical infrared (IR) scale ∼ α2N2
c T in classical lattice gauge theory [24].

The second scale represents the colour-magnetic screening scale, but it can also affect
real-time phenomena, given that space-like separated real-time fluctuations can to a good
approximation be treated as equal-time ones. With a suitable re-interpretation of these IR
frequency scales, the results then arguably apply, on a qualitative level, to the continuum
problem as well [24, 25] (cf. sections 6 and 7).2

3 Definition of classical lattice gauge theory

We consider a theory discretized in spatial directions and with a continuous time coordi-
nate [31, 32]. Quantizing this theory in the gauge Aa0 = 0 and then taking the classical

1The perturbative expression vanishes as ω → 0 and therefore plays no role in the estimation of the
transport coefficient limω→0 CS(ω).

2In recent numerical determinations of the sphaleron rate, a different logic is followed (cf., e.g., refs. [3, 10]
and references therein). By integrating out the scale ∼ gT , it is possible to derive a simplified Langevin
description for the IR dynamics [26, 27]. A great advantage of this setup is that it is UV-finite [28, 29].
However, there are drawbacks, namely that the simplest form of the theory, used for numerical simulations [3,
10], applies only to the smallest frequencies, whereas we would like to resolve the shape up to somewhat
larger frequencies; and that it involves an expansion not only in g, but also in 1/ ln(1/g) [30].
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limit, yields the partition function (cf., e.g., ref. [25] and references therein)

Z(cl) =
∫
DUiDEi δ(G) exp

{
− 1
g2Ta

∑
x

[∑
i,j

Tr
(
1− Pij

)
+
∑
i

Tr
(
E2
i

)]}
, (3.1)

where Ui are link matrices; Ei the corresponding canonical momenta;
Pij(x) = Ui(x)Uj(x + ai)U †i (x + aj)U †j (x) is a plaquette;

G(x) ≡
∑
i

[
Ei(x)− U †i (x− ai)Ei(x− ai)Ui(x− ai)

]
(3.2)

are Gauss law operators, set to zero at every location x by the constraints in eq. (3.1); and
i is a unit vector in the i-direction. The equations of motion read

a ∂tUi(x) = iEi(x)Ui(x) , (3.3)

a ∂tEbi (x) = 2
∑
j 6=i

ImTr
{
T b
[
Pji(x) + P−ji(x)

]}
, (3.4)

where U−j(x) ≡ U †j (x − aj), and x ≡ (t,x). The Gauss law at each position x, and the
Hamiltonian, are constants of motion. For later reference we also note that Ei is related to
a continuum electric field Ei as Ei = a2gEi, implying that the Hamiltonian (appearing as
e−H/T ) contains

H ⊃ 1
g2a

∑
x

∑
i

Tr
(
E2
i

)
=
∑

x
a3∑

i

Tr
(
E2
i

)
. (3.5)

Now, the continuum operator from eq. (2.1) can be written as

χ = 4cχ εijk g2F b0iF
b
jk = 4cχ εijk g2EbiF

b
jk = −8icχ εijk Tr

(
gEi igFjk

)
. (3.6)

The electric part could be expressed in terms of Ei, but for practical measurements it turns
out to be important to symmetrize the discretization (cf., e.g., ref. [33]). According to
eq. (3.3), the electric fields Ei(x) affect the evolution of the links placed between x and
x + ai. We can thus imagine that electric fields “live” at x + ai

2 . For the position x it is
best to associate an electric field covariantly averaged from x+ ai

2 and x− ai
2 ,

E i(x) ≡ 1
2
[
Ei(x) + U †i (x− ai)Ei(x− ai)Ui(x− ai)

]
. (3.7)

The parts appearing here are the same as needed in the Gauss law, cf. eq. (3.2), now just
averaged over, rather than subtracted from each other.

As far as the magnetic field goes, it is discretized by making use of a “clover”,

igFjk(x) ≡
Qjk(x)−Qkj(x)

8a2 , (3.8)

Qjk(x) ≡ Pjk(x) + Pk−j(x) + P−j−k(x) + P−kj(x) . (3.9)
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Making use of translational invariance, the measurement of eq. (2.3) therefore originates from

a5C
(cl)
S (t) ≡ 1

N3
s

∑
x,y

〈
a4χ(cl)(t,x) a4χ(cl)(0,y)

〉
, (3.10)

a4χ(cl) ≡ −2icχ εijk Tr
(
E iQjk

)
. (3.11)

On the right-hand side of eq. (3.10), factors of a from the inverse volume and two summation
measures have been combined as a−3(a3)2a5 = (a4)2; Ns is the number of lattice points in
spatial directions; the time dependence is obtained by solving the equations of motion in
eqs. (3.3) and (3.4); and initial conditions are generated according to the weight in eq. (3.1).

We note that, unlike in continuum, eq. (3.11) is not “topological”, i.e. a total derivative
(or a difference). Much has been said about this in the literature, but we are not worried,
as the operator still has the correct IR properties at small energies and momenta, and
computable UV properties at energy scales ∼ 1/a. More comments on this are offered
in section 5.

Once we have measured C(cl)
S (t) from eq. (3.10) and taken a Fourier transform according

to eq. (2.4), the results are conveniently normalized as [10, 25]

C
(cl)
S (ω)

(αT )4 = a4C
(cl)
S (ω)

16 c2
χ (ag2T )4 . (3.12)

4 Simulations and measurements

For practical measurements, the setup outlined above needs to be made concrete through
a number of further ingredients: the time evolution needs to be discretized, a correctly
thermalized ensemble of initial configurations needs to be generated, observables need be
averaged as much as possible to reduce noise, the spatial volume needs to be made large
enough so that it has no practical effect, and the equations of motion need to be solved for
a long enough time that small frequencies can be addressed (including ω → 0 as needed for
Γsph, cf. eq. (5.1)). In this section we describe how these challenges can be overcome.

Time discretization. For representing the time evolution in eqs. (3.3) and (3.4), we
choose a temporal lattice spacing at � a. In practice, after tests, we settled on at = 0.02a,
which turns out to yield sufficient accuracy at a manageable cost.

Even if the links and electric fields are placed at the same time in the operator χ(cl) in
eq. (3.11), for a numerical evaluation it is helpful to first evolve the links by at/2 in the
time direction. Subsequently, we leap-frog the evolutions of the links and the electric fields,

Ui

(
x+ at0

2

)
≡ exp

[
i
at
a
E i(x)

]
Ui

(
x− at0

2

)
, (4.1)

Ebi
(
x+ at0

)
= Ebi

(
x
)

+ 2at
a

∑
j 6=i

ImTr
{
T b
[
Pji

(
x+ at0

2

)
+ P−ji

(
x+ at0

2

)]}
, (4.2)

where 0 is a unit vector in the time direction. For measuring χ(cl), the Hamiltonian, or
for checking the conservation of the Gauss law constraints, the links and electric fields are
brought back to the same time, by performing an additional half-step update of Ui.
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It is important to stress that the Hamiltonian and the Gauss law constraints are con-
served for at � a and in practice stay unchanged within our numerical resolution. Therefore,
any configuration obtained after real-time evolution is an equally valid representative of the
thermal ensemble. In other words, the system is time-translation invariant.

Thermalization. The generation of a thermal ensemble representing eq. (3.1) differs
from a standard lattice simulation by the need to satisfy the Gauss constraint at each
position. To implement this, we have followed the procedure described in ref. [34], which is
summarized here. One full thermalization “sweep” (over the spatial lattice) consists of the
following steps:

(i) We first pull {Ei(x)} from a Gaussian distribution according to the last term in
eq. (3.1), leaving the links {Ui(x)} untouched.

(ii) The Gauss law constraints G(x) = 0 are subsequently enforced by repeatedly modifying

Ei(x)→ Ei(x)− γ
[
G(x)− Ui(x)G(x + ai)U †i (x)

]
, γ > 0 , (4.3)

with the G(x) recalculated at each step. This corresponds to a gradient flow mini-
mization of an auxiliary Hamiltonian

∑
xG

a(x)Ga(x) [22]. Following ref. [34], the
update size γ is alternated between 5/48 and 5/24, and the process is repeated until
the average per site violation

∑
xG

a(x)Ga(x)/N3
s is smaller than 10−12.

(iii) Steps (i) and (ii) give a duly thermalized configuration {Ei(x)} for fixed {Ui(x)}. In
order to generate new links, we allow energy to redistribute between the {Ei(x)}
and {Ui(x)}, by evolving the system with eqs. (4.1) and (4.2), until time t = a. As
mentioned above, the Gauss law constraints remain satisfied in this evolution.

Our simulations are initiated by performing 500 such thermalization sweeps on a cold
configuration. In the physical measurement runs, called time trajectories, the time evolution
according to eqs. (4.1) and (4.2) is continued for a longer time than in a sweep, typically
tmax = (10 − 100)a. The separate time trajectories, of which there are ∼ 104 − 105 (cf.
tables 1 and 2), are separated by 20 additional sweeps, in order to reduce autocorrelations.

Averaging and error analysis. The time coordinate t appearing in the measurement
of eq. (3.10) is really a time difference. Given the time-translation invariance of our system,
this implies that a single trajectory permits for many measurements, by considering all time
pairings. If the mth trajectory is sampled at times tn = nat, with n = 0, . . . , N − 1, where
(N−1)at = tmax sets the maximal time, and the average topological charge density is denoted
by χ̄(m)

n ≡ 1
N3
s

∑
x χ

(cl)(tn,x), then the measurement of eq. (3.10) can be implemented as

a5C
(cl)
S (tj) = lim

M→∞

N3
s

M

M∑
m=1

1
N − j

N−j−1∑
n=0

(
a4χ̄(m)

n + j

) (
a4χ̄(m)

n

)
, (4.4)

where M is the number of trajectories. The normalization by 1/(N − j) accounts for the
fact that a single trajectory gives multiple measurements.
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Figure 1. Demonstration of the dependence of Γsph from eq. (5.1) on the spatial extent L = aNs of
the box. As expected theoretically [36], the volume dependence is exponentially small when L is
large compared with the colour-magnetic screening scale ∼ 1/(g2T ). For SU(3), smaller volumes
suffice in these units, as thermal glueball masses increase in proportion to Nc.

In practice, the number of trajectories is finite, and then the limit in eq. (4.4) cannot
be taken. This implies that the measurement has statistical errors. We estimate them with
the jackknife method, by dividing the total ensemble of trajectories into ten separate blocks,
and applying the jackknife procedure to the blocked measurements.

Given a5C
(cl)
S (tj) from eq. (4.4), the Fourier transform from eq. (2.4) is taken with

Simpson’s rule. The trapezoidal approximation would yield

a4C
(cl)
S (ω) ' 2

∞∑
j=0

at
a

cos(ωtj) a5C
(cl)
S (tj)

(
1−

δj,0
2

)
, (4.5)

however given the large amount of data, we have taken measurements only at every 5th time
step, and therefore employ a higher-order scheme. Specifically, given that the equal-time
value tj = 0 plays an important role in the Fourier transform, we have implemented a
custom routine for the first time step, using the knowledge that C(cl)

S (t) is a symmetric
function of t. The subsequent intervals have been treated with quadratic discretization.

Finite spatial volume. Any simulation takes place in a finite periodic box, V = L3, L ≡
aNs. Given that non-Abelian thermal field theory has a mass gap, with the corresponding
confinement scale given by ∼ g2T [35], finite-volume effects are exponentially small if
Lg2T � 1 [36]. However, we need to carry out practical tests to see the numerical
coefficient on the right-hand side of this inequality, so that finite-volume effects are indeed
smaller than statistical errors.

In figure 1, values of Γsph obtained from eq. (5.1) are shown for a number of box sizes,
both for Nc = 2 and Nc = 3. For small box sizes, the sphaleron rate is reduced (even if with
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Figure 2. Demonstration of the dependence of Γsph from eq. (5.1) on the time extent tmax. Similarly
to the volume dependence in figure 1, the dependence on tmax gets stabilized when tmax is large
compared with the colour-magnetic scale ∼ 1/(g2T ), apart from fast oscillations that average to zero.

our local definition it does not go to zero). As the volume is increased, the rate saturates.
For SU(2) this happens when Lg2T ≥ 8.0, for SU(3) when Lg2T ≥ 5.0. The box sizes for
our production runs, listed in tables 1 and 2, have been chosen so that these inequalities
are comfortably satisfied.

Finite time extent. Another important extent is that of the real-time interval, which
we denote by tmax. There is less theoretical intuition about tmax than L, but practical tests
are easier to carry out, as tmax can be varied within a single simulation.

Examples of sphaleron rates with varying tmax are shown in figure 2. Remarkably,
we observe a partly similar behaviour as for finite-volume effects in figure 1, namely a
saturation as a certain value of tmax g

2T is exceeded, which is however now overlayed with
rapid oscillations.

Considering first the saturation point, it decreases slightly with decreasing ag2T . If
we associate the inverse of the saturation point with a frequency scale, we can then say
that there is a frequency scale which increases with decreasing ag2T . Frequency scales
could be interpreted as threshold energies needed to excite a number of glueballs.3 The
odd discrete quantum numbers of χ suggest that the glueball ensemble should be odd
under the same inversions, and that it therefore corresponds to a non-perturbative Debye
mass [37]. A constituent Debye mass indeed diverges in classical lattice gauge theory, cf.
eq. (6.8). A divergence also appears in the height of a plateau in C(cl)

S (ω), cf. figure 5. These
observations may provide a rough explanation for the movement of the saturation point as
seen in figure 2.

Turning to the oscillations, we note that they could be interpreted as a mild “sign
problem”, i.e. cancellation between positive and negative values when integrating over
C

(cl)
S (t) in order to determine limω→0C

(cl)
S (ω), cf. eq. (4.5). In order to deal with this, we

have adopted a recipe whereby our measurement of Γsph does not originate from a single
fixed tmax, but rather measurements in the range tmax g

2T ∈ (θ̄ ±∆θ). Within the width
∆θ = 1.0 (0.5) for Nc = 2 (3), measurements have been combined as statistical scatter,4

3In this language, spectral weight at very small ω does not correspond to exciting a number of glueballs,
but rather to scattering off them.

4This is supported by the observation that if the noise were uncorrelated and the same number of
measurements were carried out at each tmax, the overall noise magnitude in figure 2 should scale as ∼

√
tmax.

At moderate times, a gradual increase can indeed be discerned.
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Nc = 2

βL abare g
2T Ns Lg2T tmax g

2T # traj. Γsph/(αT )4 Γcooled
sph[25]/(αT )4

4.63... 0.863 10 8.63 ≤ 9.49 50000 0.885(0.010)syst(0.008)stat 3.82(0.14)
6.60... 0.606 16 9.70 ≤ 9.09 100000 1.061(0.008)syst(0.011)stat 2.69(0.08)
8.64... 0.463 20 9.26 ≤ 9.26 57205 1.129(0.010)syst(0.013)stat 2.28(0.04)
12.7... 0.314 32 10.0 ≤ 12.6 50000 1.128(0.025)syst(0.011)stat 1.64(0.04)
13.5... 0.295 — — — — — 1.53(0.04)
16.6... 0.240 40 9.60 ≤ 9.60 46580 1.093(0.008)syst(0.021)stat 1.31(0.05)
24.5... 0.163 60 9.78 ≤ 26.1 78470 0.944(0.012)syst(0.004)stat 0.95(0.03)
32.5... 0.123 80 9.84 ≤ 12.3 59652 0.870(0.023)syst(0.012)stat 0.68(0.03)
40.0... 0.100 96 9.60 ≤ 14.0 41132 0.816(0.059)syst(0.010)stat —
53.3... 0.075 128 9.60 ≤ 12.0 33373 0.742(0.112)syst(0.015)stat —

Table 1. Our results for the sphaleron rate for Nc = 2, compared with “cooled” rates from table 2
of ref. [25], however we have undone the improvement employed in the latter study, by making use
of eq. (5.2). The values of abare g

2T are treated as “exact”, whereas digits have been truncated from
the values of βL shown (cf. eq. (5.3)). These results are illustrated in figure 3.

whereas the variation θ̄ = 5− 8 (4− 6) for Nc = 2 (3) has been employed for estimating
the systematic uncertainty of this procedure. The final statistical error is the average
of the jackknife errors from all values of θ̄ considered. In tables 1 and 2, the systematic
and statistical uncertainties are displayed separately, whereas in figure 3, they have been
combined in quadrature.

Finally, we note that a finite value of tmax implies that we have a limited resolution
in ω. Recalling the symmetry of C(cl)

S (t) under t→ −t, independent frequencies should be
chosen as multiples of π/tmax.

5 Fresh look at the sphaleron rate

Having established the technical setup, we proceed to the results, considering first the
sphaleron rate,

Γsph = lim
ω→0

CS(ω) . (5.1)

The sphaleron rate has previously been measured with Hamiltonian simulations in refs. [10,
25], however with a different definition. While the simulation itself proceeded in the same
way, for measurements the gauge configurations were “cooled” towards the solution of
classical equations of motion, removing short-distance fluctuations and arguably turning χ
into a topological observable.5 Subsequently, Γcooled

sph was extracted as a diffusion coefficient
related to the movement of the cooled Chern-Simons number. We note that even though
physically intuitive, such a definition does not lend itself to an operator definition that
emerges naturally from quantum field theory; a cooled spectral function is not the same

5Cooling in those studies amounts to the introduction of a fictitious coordinate η and the solution of
equations of the type ∂ηΦ = −δSE/δΦ, where SE denotes the (3-dimensional) Euclidean action and Φ the
ensemble of fields. The initial condition Φ(η → 0+) is taken from the Monte Carlo history, whereas the
asymptotic value Φ(η →∞) satisfies δSE/δΦ = 0 and is thus a solution of equations of motion.
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Nc = 3

βL abare g
2T Ns Lg2T tmax g

2T # traj. Γsph/(αT )4 Γcooled
sph[10]/(αT )4

9.35... 0.642 20 12.8 ≤ 10.0 78775 5.054(0.037)syst(0.024)stat 41.6(0.7)
10.8... 0.553 20 11.1 ≤ 10.1 41738 5.575(0.038)syst(0.040)stat 29.6(0.4)
12.3... 0.488 20 9.76 ≤ 10.2 32207 6.101(0.061)syst(0.055)stat 24.1(0.5)
13.8... 0.433 20 8.66 ≤ 10.0 59666 6.434(0.011)syst(0.045)stat 20.3(0.5)
16.8... 0.356 20 7.12 ≤ 10.0 54168 6.764(0.022)syst(0.025)stat 16.5(0.3)
19.8... 0.302 20 6.04 ≤ 10.3 58157 6.917(0.037)syst(0.058)stat 13.6(0.3)
25.8... 0.232 36 8.35 ≤ 8.12 48400 6.977(0.084)syst(0.090)stat 11.4(0.2)
31.9... 0.188 40 7.52 ≤ 8.46 63657 6.641(0.026)syst(0.069)stat 9.9(0.3)
48.0... 0.125 60 7.50 ≤ 8.75 55072 5.780(0.158)syst(0.086)stat —
60.0... 0.100 80 8.00 ≤ 8.00 48968 5.300(0.227)syst(0.086)stat —
80.0... 0.075 96 7.20 ≤ 8.25 35815 4.903(0.393)syst(0.130)stat —

Table 2. Like table 1 but for Nc = 3. In this case the cooled rates originate from table 3 of ref. [10],
after undoing the improvement employed in that study.

object that affects, e.g., the motion of an axion field coupled to a local pseudoscalar operator.
In other words, cooling changes the expectation value of Γsph, not only its variance.

Another feature in refs. [10, 25] is O(a) improvement of the parameters used. The idea
is that the coefficient in front of the Hamiltonian in eq. (3.1) is replaced through [10]

1
ag2T

−→ 1
abare g

2T
≡ 1
aimpr g

2T
+Nc

(
0.12084− 1

6N2
c

)
. (5.2)

The lattice spacing is conventionally reparametrized as

βL ≡
2Nc

abare g
2T

. (5.3)

For us improvement is unnecessary and complicates the discussion, whence we re-tabulate
the results from refs. [10, 25] in the last columns of tables 1 and 2 without it. In our notation,

ag2T ≡ abare g
2T . (5.4)

Our results for Γsph are listed in tables 1 and 2, and shown in figure 3. The pattern
observed is simple to state: at coarse lattices, ag2T � 0.2, our results are clearly below the
cooled ones. In contrast, as we go to ag2T � 0.2, two things happen simultaneously:

(i) Our results for Γsph are of the same order of magnitude as Γcooled
sph . The reason

should be that in this regime a scale hierarchy sets in, and the universal IR dynamics
responsible for the sphaleron rate takes over from non-universal UV fluctuations. The
results are not exactly the same, however. This need not be surprising, as the IR
and UV fluctuations do not decouple from each other in a non-renormalizable theory,
and as it is difficult to specify which precise UV fluctuations have been removed by
the cooling.

(ii) The sphaleron rate Γsph displays approximately linear scaling with ag2T , as expected
from eq. (6.9). This is a key feature of the universal IR dynamics. It has, however,
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Figure 3. Comparison of our Γsph from eq. (5.1) (“direct”) against literature results employing a
different definition (“cooled”) [10, 25]. The data are as given in tables 1 and 2, with errors combined
in quadrature. The results do not agree quantitatively, but both approach zero in the scaling regime
ag2T � 0.2, with an approximately linear slope, modified by a complicated logarithmic dependence.

been modified by a complicated (unknown but likely non-polynomial) logarithmic
dependence, originating from the non-decoupling of the IR and UV fluctuations.

We refer to the regime ag2T � 0.2, in which these observations apply, as the scaling
regime. It is only in the scaling regime that classical lattice gauge theory can be employed
for extracting physical information, and therefore we focus on it in the following.

6 Estimate of the shape of the spectral function

We finally turn to the ω-dependence of C(cl)
S (ω). In figure 4, results normalized according to

eq. (3.12) are plotted at a few small lattice spacings, where we are in the scaling regime. The
results are compared with a leading-order perturbative evaluation, detailed in appendix A.
For a better resolution, these results are replotted in figure 5, after the subtraction of the
perturbative part and a conversion of the frequency scale into units of g2T .

The results in figure 5 represent an IR contribution, whose shape we would like to
understand. Generalizing on ref. [14], the IR part may be parametrized as

∆ρ(ω)
∣∣
cont ≡ ρ(ω)

∣∣
cont − ρUV(ω)

∣∣
cont (6.1)

|ω|� gT
' ωΥIRF

(
ω2

ω2
IR

,
ω2

ω2
M

, . . .

)
, (6.2)

ΥIR

∣∣
cont ≡ κα5N3

c

(
N2

c − 1
)
T 3 , (6.3)

lim
ω→0
F ≡ 1 . (6.4)
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Figure 4. Lattice data (open symbols) for C(cl)
S (ω)/(αT )4, with values of ag2T chosen from the

scaling regime (cf. figure 3), compared with the perturbative contribution from appendix A (lines).
The latter is a fairly good approximation in the UV domain ω ∼ 1/a, with the small discrepancy
conceivably due to next-to-leading order corrections. Our physics conclusions come instead from the
IR domain aω = ag2T × ω/(g2T )<∼ 1.3, cf. figure 5, so we need to zoom very close to the origin to
extract them.

Here ρUV(ω) denotes a perturbative contribution, applicable to large frequencies |ω|>∼ gT .
The scaling factor N2

c − 1 in ΥIR conforms with ref. [10], and is reproduced by a per-
turbative computation, cf. eq. (A.21), where it appears as the dimension of the adjoint
representation, dA. According to eq. (2.6), the corresponding statistical correlator reads

∆CS(ω)
∣∣∣∣
cont

|ω|� gT
' 2TΥIR︸ ︷︷ ︸

Γsph

F
(
ω2

ω2
IR

,
ω2

ω2
M

, . . .

)
. (6.5)

The parameters ωi in eq. (6.5) represent frequency scales, the most IR of which is
of order

ωIR

∣∣
cont ' cIR α

2N2
c T , (6.6)

for a suitable coefficient cIR. But there are also other frequency scales, for instance the
“magnetic” or Linde scale [35], required for exciting non-perturbative glueball-like states,

ωM

∣∣
cont ' cM αNcT , (6.7)

where cM is another coefficient of order unity.
Now, we cannot directly convert eq. (6.5) to lattice units, as one combination ∼ α2N2

c T ,
closely related to ωIR, will be modified on the lattice into ∼ α2N2

c T
2a. It is understood,

however, that modulo an unknown logarithmic dependence, this frequency scale is inversely
proportional to a Debye mass scale m2

D [24], where

m2
D,cont

Nf =0= Nc g
2T 2

3 , m2
D,latt = 2Nc g

2T ×
Σv1

4πa . (6.8)
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Figure 5. Lattice data for ∆C(cl)
S (ω)/(αT )4 as a function of ω/(g2T ), after the subtraction of the

perturbative contribution from appendix A, computed up to leading order (“LO”). The lines indicate
a qualitative representation of the subtracted data, according to eqs. (6.13) and (6.14).

The coefficient here has the numerical value Σv1 ≈ 2.1498783949, where we adopted the
more general notation of ref. [38]. Therefore, continuum estimates can be converted into
lattice estimates, by rescaling them with appropriate powers of the Debye mass squared [24].

Concretely, multiplying the intercept Γsph by m2
D,cont/m

2
D,latt, we expect the ω → 0 limit

to take the form

lim
ω→0

∆C(cl)
S (ω)

(αT )4

∣∣∣∣
latt
'
m2

D,cont

m2
D,latt

{
lim
ω→0

∆CS(ω)
(αT )4

∣∣∣∣
cont

}
' κN3

c
(
N2

c − 1
)
ag2T

3Σv1
. (6.9)

Scaling similarly the width from eq. (6.6), we find

ωIR

∣∣
latt '

m2
D,cont

m2
D,latt

ωIR

∣∣
latt '

cIR a
(
g2TNc

)2
24πΣv1

. (6.10)

In contrast, the magnetic scale ωM from eq. (6.7) should remain intact on the lattice.
Taking a look at figure 5, we observe that the intercept at ω → 0 scales towards zero

as the lattice spacing is decreased, in accordance with eq. (6.9). But the curves cross each
other as ω is increased, and the plateau obtained at ω>∼ g

2T scales in the opposite direction,
as ∼ 1/(ag2T ). This suggests that

F
ω�ωIR, ωM≡ 1 , F

ω�ωIR, ωM∝ ω2
M

ω2
IR

. (6.11)

A simple ansatz satisfying eq. (6.11) reads

F '
1 + ω2

ω2
IR

1 + ω2

ω2
M

, (6.12)
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which gives a 3-parameter model (κ, cIR, cM) with which to compare the lattice data, viz.

∆C(cl)
S (ω)

(αT )4

∣∣∣∣
latt
' κN3

c (N2
c − 1)ag2T

3Σv1

1 +
(

ω
g2T

)2 ( 24πΣv1
cIRag

2TN2
c

)2

1 +
(

ω
g2T

)2 ( 4π
cMNc

)2 . (6.13)

As demonstrated by the lines in figure 5, the data can indeed be represented with
eq. (6.13) on a qualitative level. The representation is not perfect, with perhaps the main
deficiency that the threshold between the dip at small ω and the plateau at large ω is
somewhat too shallow. Overlooking this feature, the parameters can be chosen as6

κ ' 1.5 , cIR ' 106 , cM ' 5.1 . (6.14)

On the qualitative level, the same parameters κ, cIR, and cM can be used in the continuum
estimates of eqs. (6.4)–(6.7), cf. eq. (7.1).

We conclude this section by recalling that an alternative view on the conversion from
lattice to continuum units is that, following refs. [10, 24], we can equate the two Debye
masses in eq. (6.8), yielding

g2

4π '
ag2T

6Σv1
. (6.15)

This implies that a study with ag2T ' 0.20 can “simulate” a world with α ' 0.015, as was
the case during the reheating period as studied in ref. [14]. The corresponding IR part of
the spectral shape could be extracted from figure 5, directly in physical units.

7 Conclusions and outlook

Several frequency scales characterize the dynamics of thermalized non-Abelian fields (cf.,
e.g., ref. [39]). As reviewed at the end of section 2, the most IR among them, playing an
essential role for sphaleron dynamics, is of order ωIR ∼ (αNcT )3/m2

E ∼ α2N2
c T/π, where

m2
E ∼ g2NcT

2 is the electric Debye mass squared. A parametrically larger scale is the
magnetic one [35], ωM ∼ αNcT , which gives the screening masses of spatial correlations in
the scalar channel [37]. As such, ωM determines the magnitude of finite-volume effects [36],
but it could also affect real-time phenomena. Further frequency scales originate through
mE, as well as through the thermal (ωUV ∼ πT ) and confinement (ωvac ∼ ΛMS) scales of the
full quantum theory.

The purpose of the present paper has been to carry out numerical simulations within
thermally averaged classical SU(2) and SU(3) lattice gauge theories, in order to test which
of the frequency scales make an appearance in the IR part of the hot topological charge
density spectral function. We have found that this spectral function, or more precisely

6Technically, the parameters have been found with a χ2 minimization of SU(2) data, weighting however
the important intercepts at ω → 0 with an additional factor ∼ 103, but we refrain from citing χ2 for such
a fit, as the representation is a phenomenological one, rather than based on an a priori justified ansatz.
The SU(3) data was not used for tuning the coefficients, but it is nevertheless represented reasonably well
by them.
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the subtracted statistical correlator ∆CS(ω)
|ω|�T
≈ 2T∆ρ(ω)/ω, is quadratically growing at

ω ∼ ωIR, reaching a plateau at ω ∼ ωM (cf. figure 5). In terms of eq. (6.4), this means that

∆ρ(ω)
∣∣
cont

|ω| � mE' κω α5N3
c (N2

c − 1)T 3
1 + ω2

(cIRα
2N2

c T )2

1 + ω2

(cMαNcT )2

. (7.1)

Qualitative values for the coefficients κ, cIR and cM can be found in eq. (6.14). We stress
that this representation is of empirical nature, as we are not aware of a solid theoretical
argument for the correct frequency shape in the non-perturbative domain.

Further features are expected to appear in ρ(ω) and CS(ω) if we go to larger frequencies,
|ω| >∼ mE. However, in this domain no simulations are needed (if αNc � 1): the corre-
sponding physics can be addressed with a perturbative computation in the full quantum
theory [40]. For ω ∼ mE this requires Hard Thermal Loop resummation, while for ω ∼ πT
a loop computation suffices. In our study, this physics was addressed by a leading-order
perturbative computation within the classical approximation, whose result was subtracted
from the lattice measurements. The spectral function in the full quantum theory can then
be estimated by adding together the subtracted classical IR and full quantum UV parts [14],

ρ(ω)
∣∣
cont ' ∆ρ(ω)

∣∣
cont + ρUV(ω)

∣∣
cont . (7.2)

The IR shape that we have found can be rephrased by stating that there is no transport
peak in ∆CS(ω), but rather a “transport dip”, centered at around zero frequency. A physical
consequence could be a rapid thermalization of an axion-like inflaton field, as the friction
that it feels is not cut off by the width of a transport peak [14], but rather increases if the
mass exceeds ∼ αNcT . In the context of non-perturbative estimates of the sphaleron rate
from imaginary-time lattice simulations [6], such a shape represents possibly a challenge, as
a fit to the flat part of ∆CS(ω) could lead to an overestimate of Γsph.
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A Perturbative evaluation of the spectral function

The purpose of this appendix is to present a perturbative determination of C(cl)
S (ω), accurate

for ω ∼ 1/a. A convenient method goes through an unlikely detour, which however has
the advantage that we can employ usual perturbative tools, such as Wick contractions and
propagators. To this aim, we backtrack to the quantized theory; turn Tr [(. . .) e−H/T ] into
a path integral in a spacetime with an imaginary-time coordinate τ ∈ (0, β), β ≡ 1/T ;
represent the Gauss laws in eq. (3.1) as integrals over an auxiliary field Ãa0; and take the
classical limit only in the end.7 The spacetime coordinates are now denoted by x ≡ (τ,x).

7A benefit of this approach is that as an aside we can reproduce the correct leading-order quantum-
mechanical result, cf. footnote 8.
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With discretized spatial directions, the analogue of the continuum field strength,
F̃ a0i|cont ≡ ∂0A

a
i −Dabi Ãb0, can be defined as

F̃0i
∣∣
latt ≡

1
iag

[∂τUi(x)]U †i (x) + Ã0(x)− Ui(x)Ã0(x+ ai)U †i (x)
a

. (A.1)

When we represent the Gauss laws as integrals over the Lagrange multiplier Ãa0, and turn
e−H/T into an imaginary-time path integral, the dependence of the Euclidean action on Ei,
incorporating the term from eq. (3.5), takes the form

SE ⊃
∫ β

0
dτ
∑

x
a3∑

i

Tr
[(
Ei − iF̃0i

)2
+ F̃ 2

0i

]
. (A.2)

When we subsequently integrate over the Gaussian fields Ei, we see that insertions of the
operator Ei get replaced by iF̃0i,∫

DEi (Ei) e−#(Ei−iF̃0i)
2 =

∫
DEi

(
Ei − iF̃0i︸ ︷︷ ︸

odd

+iF̃0i

)
e−#(Ei−iF̃0i)

2
. (A.3)

Therefore, the operator χ from eq. (3.6) is represented as

χ −→ χ̃ ≡ 4icχ εijk g2F̃ b0iF
b
jk . (A.4)

Less pedantically, the same recipe could be obtained from a naive Wick rotation of χ from
Minkowskian to Euclidean spacetime.

We then compute the imaginary-time correlator corresponding to eq. (2.3),

CE(τ) ≡
∫

x
〈χ̃(τ,x) χ̃(0,y)〉 , 0 < τ < β . (A.5)

After determining the Fourier transform, CE(ωn) ≡
∫ β

0 dτ eiωnτCE(τ), where ωn = 2πnT
are Matsubara frequencies, we can extract the retarded correlator, CR(ω) = CE(ωn →
−i[ω+ i0+]). This in turn permits to determine the statistical correlator in accordance with
eq. (2.5), CS(ω) = [1 + 2nB(ω)] ImCR(ω). In order to take the classical limit from eq. (2.7),
we recall that had we kept ~ explicit, energy would appear as ~ω, so that

nB(~ω) ~→0−→ T

~ω
. (A.6)

To avoid clutter we suppress ~ from the notation, and simply adopt eq. (A.6) at the end of
the computation (cf. eq. (A.20)).

Proceeding with CE(ωn), the electric field E bi is defined in eq. (3.7), and the correspond-
ingly symmetrized Euclidean field strength is denoted by F̃ b0i |symm. We associate T bF bjk
with the clover from eq. (3.8). The links are parametrized as

Uj(x) = eiag T
bAbj(x) , Abj(x) =

∑∫
P

Abj(P ) eiP ·(x+aj
2 ) , (A.7)
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where Σ
∫
P = T

∑
pn

∫
p represents a Matsubara sum-integral, with P = (pn,p) and pn = 2πnT ;

and the spatial integral
∫

p is restricted to a Brillouin zone. Adopting the notation

p̃j ≡
2
a

sin
apj
2 , p̊j ≡

1
a

sin apj , pj˜ ≡ cos
apj
2 , p̊j = p̃j pj˜ , (A.8)

the electric and magnetic fields can be expressed as

F̃ b0i(x)
∣∣
symm = i

∑∫
P

eiP ·x pi˜
[
pnA

b
i(P )− p̃iÃb0(P )

]
+O(g) , (A.9)

F bjk(x) = i
∑∫
P

eiP ·x
[
p̊j pk˜ Abk(P )− p̊k pj˜ Abj(P )

]
+O(g) . (A.10)

Then the topological charge density from eq. (A.4) becomes

χ̃(x) = 8icχεijk g2∑∫
P,Q

ei(P+Q)·x pi˜
(
δµi pn − δµ0 p̃i

)
q̊k qj˜ Abµ(P )Abj(Q) +O

(
g3
)
, (A.11)

where Greek indices take values µ ∈ {0, 1, 2, 3}; Latin indices are spatial, i, j, k ∈ {1, 2, 3};
and repeated indices are summed over.

Carrying out the contractions for eq. (A.5), the Fourier transform takes the form

CE(ωn) = −64dAc
2
χ g

4T
∑
pn,qn

δ0, ωn+pn+qn

∫
p
εijkεsuv pi˜ pj˜ p̊k ps˜ pu˜ p̊v

(
δµi pn − δµ0 p̃i

)
×
{

∆µα (pn,p) ∆ju (qn,−p) (δαs pn − δα0 p̃s)

−∆µu (pn,p) ∆jα (qn,−p) (δαs qn + δα0 p̃s)
}

+O
(
g6
)
, (A.12)

where dA ≡ N2
c − 1, and ∆µν is the gauge field propagator.

As a first check, it can be verified that longitudinal parts of the propagators, ∆αβ(P ) ⊃
c p̃αp̃β , where p̃0 ≡ pn, yield no contributions. This is fairly simple in the three cases where
a “projector”, e.g. δαs pn − δα0 p̃s, is contracted with a propagator, e.g. ∆µα(P ). More
work, making use of the antisymmetry of the Levi-Civita symbols, is required for the fourth
propagator, viz. ∆ju(qn,−p), to see that its longitudinal part does not contribute either.

Given that the longitudinal parts do not contribute, propagators can be replaced by
their Feynman parts, ∆αβ(P )→ δαβ/(p2

n + p̃2). Here we have introduced the notation

p̃2n ≡
3∑
j=1

p̃2n
j , n = 1, 2, . . . . (A.13)

We then end up with

CE (ωn) = −64dAc
2
χ g

4T
∑
pn,qn

∫
p
δ0, ωn+pn+qn

2
(
p2
n + pnqn

)
p̃2 Θ (p)

(p2
n + p̃2) (q2

n + p̃2) , (A.14)

Θ (p) = p2
1˜ p2

2˜ p2
3˜ =

(
1− a2p̃2

1
4

)(
1− a2p̃2

2
4

)(
1− a2p̃2

3
4

)

= 1− a2p̃2

4 +
a4
[(
p̃2)2 − p̃4

]
32 −

a6
[(
p̃2)3 − 3p̃2p̃4 + 2p̃6

]
384 . (A.15)

Furthermore, by symmetry, we may replace 2
(
p2
n + pnqn

)
→ (pn + qn)2 = ω2

n.
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Subsequently, writing δ0, ωn+pn+qn = T
∫ β

0 dτ ei(ωn+pn+qn)τ , the two Matsubara sums in
eq. (A.14) can be carried out,

T
∑
pn

eipnτ

p2
n + p̃2 = nB(p̃)

2p̃
[
ep̃τ + ep̃(β−τ)

]
, (A.16)

where p̃ ≡
√
p̃2. When we multiply structures like in eq. (A.16) with each other, cross terms

are independent of τ , and yield no contribution in the end. For one of the remaining terms,
the Fourier transform yields

∫ β

0
dτ eiωnτ n2

B (p̃) e2(β−τ)p̃ =
n2

B (p̃)
(
1− e2βp̃

)
iωn − 2p̃ = −1 + 2nB (p̃)

iωn − 2p̃ . (A.17)

The cut then gives

Im
{

1
iωn − 2p̃

∣∣∣∣
ωn→−i[ω+i0+]

}
= −πδ(ω − 2p̃) . (A.18)

All in all, this implies that

T
∑
pn,qn

δ0, ωn+pn+qn
(p2
n + p̃2) (q2

n + p̃2)
cut−→ π [δ (ω − 2p̃) + δ (ω + 2p̃)] [1 + 2nB (p̃)]

4p̃2 . (A.19)

The final step is to consider the classical limit from eq. (2.7).8 Two Bose distributions
appear, one from CS(ω) = [1 + 2nB(ω)] ρ(ω), cf. eq. (2.5), and the other from eq. (A.19).
Reinstituting ~, we are faced with

lim
~→0

[1 + 2nB (~ω)]
[
1 + 2nB

(~ω
2

)]
= 2T

~ω
4T
~ω

. (A.20)

Then, from eqs. (A.14), (A.15) and (A.19),

C
(cl)
S (ω) = 64dAc

2
χ g

4T 2
∫

p
πδ

(
p̃− ω

2

)
Θ(p) . (A.21)

Proceeding to the numerical evaluation, we employ dimensionless units, writing

pi ≡
qi
a
, p̃i ≡

q̃i
a
. (A.22)

Normalizing like in eq. (3.12), eq. (A.21) becomes

C
(cl)
S (ω)

(αT )4
ag2T�aω
≈ 4dA

(ag2T )2 C
(
aω

2

)
, (A.23)

8If we take no classical limit but go to continuum, where p̃ → p and a → 0, then eqs. (A.14)–(A.19)
reproduce an expression employed in ref. [14],

ImCE(ωn → −i[ω + i0+]) = 64dAc
2
χ g

4
∫

p
p2[1 + 2nB(p)]πδ(ω − 2p) =

dAc
2
χ g

4ω4

π

[
1 + 2nB

(
ω

2

)]
.
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where the frequency range is the one in which corrections from higher loop orders are small.
The function C has been defined as

C(x) ≡
∫ π

0

d3q
π2 δ (q̃ − x) Θ

(q
a

)
= 2
π2

∫ π

0
dq1

∫ q1

0
dq2

∫ π

0
dq3 δ(q̃ − x) Θ

(
q1
a
,
q2
a
,
q3
a

)
. (A.24)

Here we made use of the symmetry of Θ in p1 ↔ p2. The last step is to carry out the
integral over q3, which yields [here φ is an arbitrary function, φ(q3) = Θ( q1

a ,
q2
a ,

q3
a )]

∫ π

0
dq3 δ(q̃ − x)φ(q3) = θ

(
x2

4 − sin2 q1
2 − sin2 q2

2

)
θ

(
1 + sin2 q1

2 + sin2 q2
2 −

x2

4

)

× x

| sin(q3)| φ

2 arcsin

√
x2

4 − sin2 q1
2 − sin2 q2

2

 , (A.25)

where θ is the Heaviside function.9 The argument of φ permits for us to evaluate x/| sin(q3)|
as well as powers like q̃2n. Numerical illustrations can be found as curves in figure 4.
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