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Abstract We show that three generations of leptons and
quarks with unbroken Standard Model gauge symmetry
SU (3)c × U (1)em can be described using the algebra of
complexified sedenions C ⊗ S. A primitive idempotent is
constructed by selecting a special direction, and the action of
this projector on the basis of C ⊗ S can be used to uniquely
split the algebra into three complex octonion subalgebras
C ⊗ O. These subalgebras all share a common quaternionic
subalgebra. The left adjoint actions of the 8 C-dimensional
C ⊗ O subalgebras on themselves generates three copies of
the Clifford algebra C�(6). It was previously shown that the
minimal left ideals of C�(6) describe a single generation of
fermions with unbroken SU (3)c ×U (1)em gauge symmetry.
Extending this construction from C ⊗ O to C ⊗ S naturally
leads to a description of exactly three generations.

1 Introduction

The role of division algebras, particularly the octonion alge-
bra, in particle physics has a long history. Theorems by Hur-
witz [1] and Zorn [2] guarantee that there are only four
normed division algebras, which are also the only four alter-
native division algebras; the reals R, complex numbers C,
quaternions H, and the octonions O. The first results relating
the octonions to the symmetries of (one generation of) quarks
goes back to the 1970s [3,4]. The hypothesis that octonions
might play a role in the description of quark symmetries fol-
lows from the observation that Aut(O) = G2 contains the
physically important subgroup SU (3), corresponding to the
subgroup that holds one of the octonionic imaginary units
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constant. Octonions also describe geometry in 10 dimen-
sions [5], which have made them useful in supergravity and
superstring theories [6–9]. Recently there has been a revived
interest in using the division algebras to attempt to construct
a theoretical basis for the observed Standard Model (SM)
gauge groups and observed particle spectrum [10–17].

A Witt decomposition of the adjoint algebra of left actions
(C⊗O)L ∼= C�(6) of C⊗O, generated from all composed
left actions of the complex octonions on themselves decom-
poses (C⊗O)L into minimal left ideals [18]. The basis states
of these ideals were recently shown to transform as a single
generation of leptons and quarks under the unbroken uni-
tary symmetries SU (3)c and U (1)em [11]. In a complemen-
tary work by [19] it was shown that by considering the right
adjoint action of C�(6) on the eight minimal left ideals of the
algebra, one can also include the spinorial degrees of free-
dom.1 One copy of C�(6) = C(8) therefore provides the full
degrees of freedom for one generation of Dirac spinors. The
main result presented here is that if we instead consider a
decomposition of (C ⊗ S)L , where the sedenions S are the
next Cayley-Dickson algebra after the octonions, then these
earlier results are naturally extended from one single gener-
ation to exactly three.

Given that a considerable amount of the SM structure for
a single generation of fermions can be realised in terms of the
complex octonions C⊗O, and its associated adjoint algebra
of left actions (C⊗O)L ∼= C�(6), a natural question is how to
extend these encouraging results from a single generation to
exactly three generations. Although it is possible to represent
three generations of fermion states inside a single copy of
C�(6) [20,21], in that case the physical states are no longer

1 [11] describes one generation of fermions in terms of two out of
eight minimal left ideals of C�(6), without any mention of spinorial
degrees of freedom. These can be acocunted for by including a copy of
the complex quaternions C⊗H. [19] on the other hand writes down all
eight of the minimal left ideals, which explicitly includes the spinorial
degrees of freedom.
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the basis states of minimal left ideals as for the case of a
single generation. A three generation representation in terms
of C�(6) therefore comes at the cost of giving up the elegant
construction of minimal left ideals giving rise to a single
generation. Instead, one might therefore look for a larger
mathematical structure to describe three generations.

Since describing a single generation requires one copy of
the octonions, it seems reasonable to expect a three gener-
ation model to require three copies of the octonions. This
makes the exceptional Jordan algebra J3(O) a natural can-
didate. This intriguing mathematical structure and its role
in particle physics has recently been explored by various
authors [22–24].

A different approach is taken here. C and O are both divi-
sion algebras, and starting fromR, all the other division alge-
bras can be generated via the Cayley-Dickson process. Given
that this process continues beyond the octonions, one may
wonder if the next algebra in the sequence, the sedenions S,
may be a suitable mathematical structure to represent three
generations of fermions. This paper confirms that the answer
is yes.

Starting with C⊗S we repeat the initial stages of the con-
struction of [11]. We define a projection operator by choos-
ing a special direction, and use it to obtain a split basis of
14 nilpotent ladder operators, defining two maximal totally
isotropic subspaces (MTIS). But instead of using these nilpo-
tents to construct two minimal left ideals of (C ⊗ S)L , we
instead observe that these 14 nilpotents uniquely divide into
three sets of ladder operators, in such a way that each set pro-
vides a basis for a C⊗O subalgebra of C⊗S. Our approach
therefore gives rise to three copies of the octonions from the
sedenions. In this construction one raising operator and one
lowering operator is common to all three sets. The shared
ladder operators generate a common quaternionic subalge-
bra C⊗H ∼= C�(2). From the three sets of ladder operators
we construct six ideals. These ideals transform as three gen-
erations of fermions and antifermions under the unbroken
gauge symmetry SU (3)c ×U (1)em .

The next section reviews the construction of one gener-
ation of fermions with unbroken SU (3)c × U (1)em gauge
symmetry starting from the complex octonions C⊗O. Then
in Sect. 3 it is shown that the same construction can be
used to describe three generations of leptons in terms of
three C�(2) subalgebras of C�(6), generated from three
C ⊗ H subalgebras of C ⊗ O. The main results of the
present paper are presented in Sect. 4, where three genera-
tions of fermions with unbroken SU (3)c × U (1)em gauge
symmetries are constructed from the complex sedenions
C⊗S. The generators for these symmetries are constructed in
Sect. 5.

2 One generation of fermions as the basis states of the
minimal left ideals of (C ⊗ O)L ∼= C�(6)

One of the main observations in [11]2 and [19] is that the
basis states of the minimal left ideals of C�(6) transform
as a single generation of leptons and quarks with unbro-
ken SU (3)c and U (1)em gauge symmetries. In [11] the alge-
bra C�(6) is identified as the adjoint algebra of left actions
(C ⊗ O)L whereas in [19] C�(6) is taken without any ref-
erence to division algebras. In this section the minimal left
ideals of (C ⊗ O)L ∼= C�(6) are constructed using the Witt
decomposition for C�(6). The basis states of these ideals are
then shown to transform as a single generation of leptons and
quarks with unbroken SU (3)c and U (1)em . More details of
can be found in sections 4.5 and 6.6 of [11].

Leptons and quarks are Dirac spinors. One way of includ-
ing the spinorial degrees of freedom is to enlarge the algebra
from C ⊗ O to C ⊗ H ⊗ O and to consider both right and
left adjoint actions. The approach taken in [11] it to con-
sider the combined left and right adjoint action of C ⊗ H

which is C�(2) ⊗C C�(2) ∼= C�(4), providing a representa-
tion of the Dirac algebra. On the other hand, in [19] all the
spinor degrees of freedom are contained in a single copy of
C�(6). The left actions of C�(6) on its eight minimal left
ideals generates the unbroken gauge symmetries, whereas
the right actions contain the Dirac and isospin symmetries
C�(6) ∼= C�(4)Dirac ⊗C C�(2)isospin. Therefore, C�(6) is
large enough to contain the full degrees of freedom for a
single generation of leptons and quarks.

The octonions O are spanned by the identity 1 = e0 and
seven anti-commuting square roots of minus one ei satisfying

ei e j = −δi j e0 + εi jkek, (1)

where

ei e0 = e0ei = ei , e2
0 = e0, (2)

and εi jk is a completely antisymmetric tensor with value +1
when i jk = 124, 156, 137, 235, 267, 346, 457. The mul-
tiplication of octonions is shown in Fig. 1. The multiplication
structure here follows that of [11], but is not unique. In par-
ticular, the Fano plane in the earlier work [3] is based on a
different multiplication structure.

Each pair of distinct points lies on a unique line of three
points that are cyclically ordered. If ei , e j and ek are cyclically
ordered in this way then

ei e j = ek, e j ei = −ek . (3)

2 This work is also consistent with the works of Dixon [10,25–27].
Those works include a copy of the quaternion algebra, recovering the
full SM gauge group from the algebra T = R ⊗ C ⊗ H ⊗ O. The
quaternionic factor in T is responsible for the broken SU (2) chiral
symmetry.
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Fig. 1 Octonion multiplication represented using a Fano plane

Fig. 2 Fano planes of three octonionic subalgebras in the sedenions

Every straight line in the Fano plane of the octonions (taken
together with the identity) generates a copy of the quater-
nions, for example {1, e4, e6, e3}. Furthermore {1, e1, e2, e4}
also gives a copy of the quaternions, making for a total of
seven copies of the quaternions embedded within the octo-
nions.

One starts by choosing a privileged imaginary unit from
the standard octonion basis e0, e1, ..., e7 and uses this to
resolve the identity into two primitive idempotents. The com-
mon choice is e7, so that

1 = ρ+ + ρ− = 1

2
(1 + ie7) + 1

2
(1 − ie7). (4)

Multiplying the standard octonionic basis elements on the
left by ρ+ defines a split basis of nilpotents, and allows one
to define the new basis vectors,3 along with their conjugates
as

3 Following the convention of [11].

α1 ≡ 1

2
(−e5 + ie4), α

†
1 ≡ 1

2
(e5 + ie4),

α2 ≡ 1

2
(−e3 + ie1), α

†
2 ≡ 1

2
(e3 + ie1),

α3 ≡ 1

2
(−e6 + ie2) α

†
3 ≡ 1

2
(e6 + ie2). (5)

The hermitian conjugate simultaneously maps i �→ −i and
ei �→ −ei . The new basis vectors span the two MTIS satis-
fying4

{
αi , α j

} = 0,
{
α

†
i , α

†
j

}
= 0,

{
αi , α

†
j

}
= δi j . (6)

Care should be taken here (and later) not to confuse the com-
plex i satisfying i2 = −1, and the index i = 1, 2, 3. If one
now considers these basis vector operators as elements of
(C ⊗ O)L ∼= C�(6), then one can construct the primitive
idempotent ωω† = α1α2α3α

†
3α

†
2α

†
1. The first minimal left

ideal is then given by Su ≡ C�(6)ωω†. Explicitly:

Su ≡ νωω†

+d̄rα†
1ωω† + d̄gα†

2ωω† + d̄bα†
3ωω†urα†

3α
†
2ωω†

+ugα†
1α

†
3ωω† + ubα†

2α
†
1ωω†

+e+α
†
3α

†
2α

†
1ωω†, (7)

where ν, d̄r etc. are suggestively labeled complex coefficients
denoting the isospin-up elementary fermions. The conjugate
system analogously gives a second linearly independent min-
imal left ideal of isospin-down elementary fermions:

Sd ≡ ν̄ω†ω

+drα1ω
†ω + dgα2ω

†ω + dbα3ω
†ωūrα3α2ω

†ω

+ūgα1α3ω
†ω + ūbα2α1ω

†ω

+e−α3α2α1ω
†ω. (8)

One can show that these representations of the minimal
left ideals are invariant under the color and electromagnetic
symmetries SU (3)c and U (1)em , and each of the basis states
in the ideals transforms as a specific lepton or quark under
these symmetries as indicated by their suggestively labeled
complex coefficients.

In terms of the Witt basis ladder operators, the SU (3)

generators take the form

4 The split basis in [11] differs slightly from the one given in [3]. The
split basis of the latter uses the complex conjugate ∗ instead of the
hermitian conjugate †, and satisfies the additional multiplication rules
αiα j = εi jkα

∗
k , α∗

i α
∗
j = εi jkαk . These additional multiplication rules

are not satisfied by the split basis of [11].
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Λ1 = −α
†
2α1 − α

†
1α2, Λ2 = iα†

2α1 − iα†
1α2,

Λ3 = α
†
2α2 − α

†
1α1, Λ4 = −α

†
1α3 − α

†
3α1,

Λ5 = −iα†
1α3 + iα†

3α1, Λ6 = −α
†
3α2 − α

†
2α3,

Λ7 = iα†
3α2 − iα†

2α3,

Λ8 = −1√
3
(α

†
1α1 + α

†
2α2 − 2α

†
3α3). (9)

The U (1) generator can be expressed in terms of the Witt
basis ladder operators as

Q = 1

3
(α

†
1α1 + α

†
2α2 + α

†
3α3). (10)

As an illustrative example we consider [Λ1, ug]:
[
Λ1, u

g] =
(
−α

†
2α1 − α

†
1α2

)
α

†
1α

†
3

−α
†
1α

†
3

(
−α

†
2α1 − α

†
1α2

)
,

= −α
†
2α

†
3α1α

†
1 + α

†
3α

†
2α

†
1α1,

= α
†
3α

†
2

(
α1α

†
1 + α

†
1α1

)
,

= α
†
3α

†
2 = ur . (11)

3 Three generations of leptons from three minimal left
ideals of (C ⊗ H)L ∼= C�(2) ⊂ C�(6)

Instead of defining the MTIS of Eq. (6), one can instead
define the six totally isotropic (but not maximal) subspaces

{
α

†
i

}
, {αi } , i = 1, 2, 3. (12)

Each of these totally isotropic subspaces is a MTIS not of the
full C�(6), but rather of a C�(2) subalgebra of C�(6). Note
that C�(2) ∼= (C ⊗ H)L , and so each C�(2) subalgebra is
generated from aC⊗H subalgebra ofC⊗O. Associated with
these subspaces one can define six primitive idempotents

ω1ω
†
1 = α1α

†
1, ω2ω

†
2 = α2α

†
2, ω3ω

†
3 = α3α

†
3, (13)

together with their conjugates, and subsequently three ideals

νeω1ω
†
1 + e+α

†
1ω1ω

†
1,

νμω2ω
†
2 + μ+α

†
2ω2ω

†
2,

ντω3ω
†
3 + τ+α

†
3ω3ω

†
3, (14)

with their conjugates. Here as before, the suggestively
labeled complex coefficients denote the isospin-up leptons.
The twelve states of these six ideals transform as three gen-

erations of leptons withU (1)em symmetry. TheU (1)em gen-
erator is given by5

Q = α1α
†
1 + α2α

†
2 + α3α

†
3 . (15)

Starting from (C⊗O)L ∼= C�(6), one can represent either
a single generation of leptons and quarks with unbroken
SU (3)c × U (1)em symmetry, or alternatively three gener-
ations of leptons with U (1)em symmetry. The former results
from constructing the minimal left ideals of C�(6), whereas
the latter corresponds to constructing the minimal left ide-
als of three (in this case independent) C�(2) subalgebras of
C�(6). Choosing a preferred octonionic unit e7 singles out
three natural quaternionic subalgebras of O which contain
e7. These may be identified as describing three generations
of leptons.

This same description of three generations of leptons was
considered in [28,29], although there these three genera-
tions emerged from a dimensional reduction of an octonionic
massless Dirac equation in ten dimensions to four dimen-
sions. This reduction likewise leads to three quaternionic sub-
algebras, singled out because they contain e7, each identified
as describing a generation of (massive and massless) leptons.
In the next section we demonstrate that the same approach
for the sedenions singles out three octonionic algebras, each
of which describes a generation of leptons and quarks with
electrocolour symmetry.

4 From octonions to sedenions: one generation to three
generations

The previous section reviewed earlier results that a single
generation of fermions with unbroken SU (3)c × U (1)em
gauge symmetry can be described starting from C ⊗ O.
Whereas C and O are each individually division algebras,
the tensor product C ⊗ O is not. Nor is C�(6), the adjoint
algebra of left actions ofC⊗O on itself. Indeed, the construc-
tion of minimal left ideals is very dependent on defining a
nilpotent basis of ladder operators. The zero divisors inC⊗O

therefore play an important role.
The division algebras C,H,O can each be generated via

the Cayley-Dickson process. This process however does not
terminate with the octonions, but can be used to generate
a 2n-dimensional algebra for any positive integer n. For
n > 3 however, the Cayley-Dickson algebras are no longer
division algebras. However, given the observations above,
this should not dissuade us from considering larger Cayley-
Dickson algebras.

5 In the present case we can define a single U (1) generator Q which
acts on all three generations. This will not work in general, where one
should instead define one U (1)em generator for each generation.
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4.1 The sedenion algebra

The 16-dimensional sedenion algebra is the fifth Cayley-
Dickson algebra A4 = S. The algebra is not a division
algebra, and is non-commutative, non-associative, and non-
alternative. However it is power-associative and distributive.

One can choose a canonical basis for S to be E16 = {ei ∈
S|i = 0, 1, ..., 15} where e0 is the real unit and e1, ..., e15 are
mutually anticommuting imaginary units. In this canonical
basis, a general element a ∈ S is written as

A =
15∑

i=0

ai ei = a0 +
15∑

i=1

ai ei , ai ∈ R. (16)

The basis elements satisfy the following multiplication rules

e0 = 1, e0ei = ei e0 = ei ,

e2
1 = e2

2 = ... = e2
15 = −1,

ei e j = −δi j e0 + γ k
i j ek, (17)

where the real structure constants γ k
i j are completely anti-

symmetric. The multiplication table of the sedenion base ele-
ments is given in Appendix A. For two sedenions A, B, one
has

AB =
(

15∑

i=0

ai ei

)(
15∑

i=0

b j ei

)

=
15∑

i, j=0

aib j (ei e j ),

=
15∑

i, j,k=0

fi jγ
k
i j ek, (18)

where fi j ≡ aib j . Addition and subtraction is component-
wise.

Because the sedenion algebra is not a division algebra, it
contains zero divisors. For S these are elements of the form

(ea + eb) ◦ (ec + eb) = 0, ea, eb, ec, ed ∈ S. (19)

There are 84 such zero divisors, and the subspace of zero
divisors of unit norm is homeomorphic to G2 [30].

4.2 Why sedenions?

One appealing reason for considering division algebras in
relation to particle symmetries (both spacetime and internal)
is that, unlike Lie algebras and Clifford algebras, there are
only a finite number of division algebras.6 At the same time,
each division algebra generates very specific Lie and Clif-
ford algebras. Starting with a division algebra, the physical
symmetries are dictated.

6 There are many convincing arguments that the four division algebras
should play a special role in particle physics. Many of these arguments
can be found in the extensive works of Dixon [10,31].

Unlike the four division algebras, the sedenions have not
been the focus of much study in relation to particle physics,
presumably due to the fact that they are not a division algebra
and are neither associative nor alternative. Tensor products
of division algebras however also contain zero divisors. The
constructions of particle symmetries from C⊗O [11], C�(6)

[19], and T = R ⊗ C ⊗ H ⊗ O [10], all contain zero divi-
sors, and these play an important role. It seems reasonable
therefore to continue the Cayley-Dickson algebra into the
non-division algebras.

The symmetries of these algebras can be extracted from
their automorphism groups. Interestingly, for the sedenions
one finds that

Aut(S) = Aut(O) × S3. (20)

The only difference between the octonions and sedenion
automorphism groups is a factor of the permutation group
S3. This permutation group can be constructed from the tri-
ality automorphism of Spin(8), the spin group of C�(8) [32].
This automorphism is of order three. Interestingly then, what
Eq. (20) suggests is that the fundamental symmetries of S are
the same as those of O, although the factor of S3 suggests
we get three copies. This is exactly what we want in order to
describe the observed three generations of fermions.

For higher Cayley-Dickson (n > 3) algebras one has

Aut(An) = Aut(O) × (n − 3)S3. (21)

This tells us that the underlying symmetries are G2, the
automorphism group of the octonions. The higher Cayley-
Dickson algebras only add additional trialities, and perhaps
no new fundamental physics should be expected beyond
C ⊗ S.

4.3 From one generation to three generations

A natural way to extend the intriguing results from Section
(2) beyond a single generation of elementary fermions is to
consider the complex sedenions C ⊗ S instead of complex
octonions C⊗O. This larger algebra also generates a larger
adjoint algebra of left actions (C⊗S)L . The key point of this
paper is to demonstrate:

C ⊗ O → C ⊗ S

(C ⊗ O)L → (C ⊗ S)L

1 generation → 3 generations.

As in section (2), we start by choosing e15 as a special
imaginary unit from the sedenion basis, mimicking the com-
mon choice of e7 for O. One can then define the primitive
idempotents

ρ+ = 1

2
(1 + ie15), ρ− = 1

2
(1 − ie15), (22)
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satisfying

ρ+ + ρ− = 1, ρ2± = ρ±, ρ+ρ− = 0. (23)

We now act with ρ+ on the sedenion basis elements ei ,
and subsequently define a split basis for C ⊗ S. This gives
a set of seven nilpotents ηk , k = 1, 2, ..., 7 of the form
1
2 (−ea + ie15−a) where a ∈ 5, 7, 13, 1, 4, 6, 12, together

with seven nilpotent conjugatesη
†
k of the form 1

2 (ea+ie15−a).
Considered as elements of (C⊗S)L , these define two MTIS
satisfying
{
η

†
i , η

†
j

}
= {

ηi , η j
} = 0,

{
η

†
i , η j

}
= δi j . (24)

These η
†
i and ηi uniquely divide into three sets of ladder

operators that do

α
†
1 = 1

2
(e5 + ie10), β

†
1 = 1

2
(e7 + ie8),

γ
†
1 = 1

2
(e13 + ie2),

α
†
2 = β

†
2 = γ

†
2 = 1

2
(e1 + ie14),

α
†
3 = 1

2
(e4 + ie11), β

†
3 = 1

2
(e6 + ie9),

γ
†
3 = 1

2
(e12 + ie3), (25)

together with

α1 = 1

2
(−e5 + ie10), β1 = 1

2
(−e7 + ie8),

γ1 = 1

2
(−e13 + ie2),

α2 = β2 = γ2 = 1

2
(−e1 + ie14),

α3 = 1

2
(−e4 + ie11), β3 = 1

2
(−e6 + ie9),

γ3 = 1

2
(−e12 + ie3). (26)

Here, {α†
i , αi }, {β†

i , βi }, and {γ †
i , γi } each individually form

a split basis for C ⊗ O and satisfy the anticommutator alge-
bra of fermionic ladder operators exactly as in section (2).7

By uniquely we mean that any other division of the seven η
†
i

and seven ηi into equally sized sets does not result in three
C ⊗ O subalgebras. Thus, what we find is that the action
of the projector ρ+ on the standard sedenion basis uniquely
divides the algebra into three sets of split basis elements for
C ⊗ O. This reflects what happened earlier when consider-
ing C⊗O. There, choosing e7 as the special unit imaginary

7 There is a slight deviation here in the definition of ladder operators
as in [11]. Here we have multiplied the standard basis elements ei on
the left by ρ+ and from the result have immediately identified ηi and
η

†
i . This means that the real parts α

†
i (and similarly for β

†
i and γ

†
i ) form

a quaternion subalgebra. In [11] it is the imaginary parts that form a
quaternion subalgebra.

singles out three quaternionic subalgebras. In [28,29] these
are identified with three generations of leptons. Instead here
we have found that selecting e15 as the special unit imag-
inary singles our three octonionic subalgebras. This allows
us to describe three generations of leptons and quarks with
unbroken SU (3)c × U (1)em symmetry. These three C ⊗ O

subalgebras are however not independent. All three subal-
gebras share a common quaternionic subalgebra spanned by
{1, e1, e14, e15}. The three intersecting octonion subalgebras
together with the multiplication rules of their base elements
may be represented by the three Fano planes in Fig. 2.

In addition to the standard fermionic ladder operator alge-
bras satisfied by the α’s, β’s, and γ ’s separately, we also have

{α†
i , β

†
j } = {β†

i , γ
†
j } = {γ †

i , α
†
j } = 0,

{αi , β j } = {βi , γ j } = {γi , α j } = 0,

{α†
i , β j } = {β†

i , γ j } = {γ †
i , α j } = δi j . (27)

From each of the three C ⊗ O subalgebras we can now
construct an ideal following the procedure or Section 2. These
ideals will be minimal left C�(6) ideals embedded within the
full (C⊗ S)L algebra. Using the first set of ladder operators
{α†

1, α
†
2, α

†
3, α1, α2, α3}, we can now construct the first ideal

as Su1 = C�(6)ω1ω
†
1, where ω1ω

†
1 = α1α2α3α

†
3α

†
2α

†
1 is a

C�(6) primitive idempotent.

Su1 ≡ νeω1ω
†
1

+d̄rα†
1ω1ω

†
1 + d̄gα†

2ω1ω
†
1 + d̄bα†

3ω1ω
†
1u

rα
†
3α

†
2ω1ω

†
1

+ugα†
1α

†
3ω1ω

†
1 + ubα†

2α
†
1ω1ω

†
1

+e+α
†
3α

†
2α

†
1ω1ω

†
1, (28)

The complex conjugate system gives a second linearly inde-
pendent C�(6) minimal left ideal

Sd1 ≡ ν̄eω
†
1ω1

+drα1ω
†
1ω1 + dgα2ω

†
1ω1 + dbα3ω

†
1ω1ū

rα3α2ω
†
1ω1

+ūgα1α3ω
†
1ω1 + ūbα2α1ω

†
1ω1

+e−α3α2α1ω
†
1ω1. (29)

One can likewise construct the ideals of the other two
C�(6) subalgebras from the sets of ladder operators {β†

i , βi }
and {γ †

i , γi }. In total we find six minimal left ideals which
we write as {Su1 , Sd1 , Su2 , Sd2 , Su3 , Sd3 }. Whereas Sui and Sdi are
linearly independent, Sui and Suj are not.

So far we have not commented on the spinorial degrees
of freedom. In our construction we have followed [11], mak-
ing use of only two of the eight ideals of C�(6). The full
C�(6) ∼= C(8) algebra however contains eight minimal left
ideals. Compactly, for i = 1, · · · , 8 these eight ideals can be
written as:

Pi = Su1 � {1, α23, α31, α12, α123, α1, α2, α3} (30)

123
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for the first generation, and similarly for the second and third
generations with the α’s replaced by β’s and γ ’s respectively.
As demonstrated by [19], incorporating all eight of the min-
imal left ideals allows one to include the spinorial degrees of
freedom. In particular, the chiral assignments are as follows:

P1 = P1R1 , P2 = P2R2 , P3 = P3L1 , P4 = P4L2 ,

P5 = P5L1 , P6 = P6L2 , P7 = P7R1 , P8 = P8R2 ,

where P1 = P1R1 and P5 = P5L1 are the two ideals Su1 and Sd1
explicitly considered above and in [11]. All the results from
[19] for a single generation generalize to three generations
in the current construction.

5 Unbroken SU(3)c × U(1)em gauge symmetries

As for the case of a single generation constructed fromC⊗O,
the physical states of the three generation extension pre-
sented here transform as three generations of SM fermions
under SU (3)c × U (1)em . Each generation has its own copy
of SU (3) and U (1), which we label SU (i)(3) and U (i)(1),
i = 1, 2, 3.

The SU (1)(3) generators can be represented in the first
C�(6) ⊂ (C ⊗ S)L as

Λ
(1)
1 = − i

2
(e1e10 − e14e5), Λ

(1)
2 = i

2
(e14e10 − e5e1),

Λ
(1)
3 = − i

2
(e5e10 − e1e14), Λ

(1)
4 = − i

2
(e5e11 − e10e4),

Λ
(1)
5 = − i

2
(e10e11 − e4e5), Λ

(1)
6 = − i

2
(e4e14 − e11e1),

Λ
(1)
7 = i

2
(e11e14 − e1e4),

Λ
(1)
8 = −i√

3
(e5e10 + e1e14 − 2e4e11). (31)

This can be rewritten in terms of the ladder operators, taking
the form

Λ
(1)
1 = −(α

†
2α1 + α

†
1α2), Λ

(1)
2 = −i(α†

2α1 − α
†
1α2),

Λ
(1)
3 = α

†
2α2 − α

†
1α1, Λ

(1)
4 = −(α

†
1α3 + α

†
3α1),

Λ
(1)
5 = i(α†

1α3 − α
†
3α1), Λ

(1)
6 = −(α

†
3α2 + α

†
2α3),

Λ
(1)
7 = −i(α†

3α2 − α
†
2α3),

Λ
(1)
8 = −1√

3
(α

†
1α1 + α

†
2α2 − 2α

†
3α3). (32)

The explicit SU (3) generators for the other two generations
are given in Appendix B. Under the action of SU (1)(3), one
finds that the ideals Su1 and Sd1 transform as [3,11,26]

Su1 ∼ 1 ⊕ 3̄ ⊕ 3 ⊕ 1̄, Sd1 ∼ 1̄ ⊕ 3 ⊕ 3̄ ⊕ 1. (33)

As two illustrative examples, consider
[
Λ

(2)
1 , sr

]
and

[
Q(3), t̄ b

]
:

[
Λ

(2)
1 , sr

]
= −(β

†
2β1 + β

†
1β2)β1

+β1(β
†
2β1 + β

†
1β2),

= β
†
1β1β2 + β1β

†
1β2,

= (β
†
1β1 + β1β

†
1 )β2 = β2 = sg, (34)

[
Q(3), t̄ b

]
= 1

3
(γ

†
1 γ1 + γ

†
2 γ2 + γ

†
3 γ3)γ2γ1

−1

3
γ2γ1(γ

†
1 γ1 + γ

†
2 γ2 + γ

†
3 γ3),

= −1

3
γ2γ1γ

†
1 γ1 + 1

3
γ1γ2γ

†
2 γ2,

= −1

3
γ2γ1(−γ1γ

†
1 + 1) + 1

3
γ1(−γ

†
2 γ2 + 1)γ2,

= −2

3
γ2γ1 = −2

3
t̄ b. (35)

5.1 Mixing between generations

The ladder operators for each generation in our three genera-
tion model belong to a Fano plane. Each Fano plane gives the
projective geometry of the octonionic projective plane OP2

[5], which is the quantum state space upon which the quan-
tum exceptional Jordan algebra J3(O) acts [33]. One might
therefore expect a relationship between the approach pre-
sented here, based on (C⊗O)L and three generation models
based on J3(O) [22–24].

For the case of three non-intersecting Fano planes, the total
state space is given by the tensor product of the three individ-
ual state spaces. This would mean that what we called Λ

(1)
i

is really Λ⊗ 1 ⊗ 1, and what we called a blue top quark tb is
really 1⊗1⊗tb. It follows that any inter-generational commu-
tator such as [Λ(1)

i , tb] vanishes trivially. In our construction
however, the three Fano planes are not truly independent of
one another, but actually share a common complex quater-
nionic line of intersection. This means that the tensor product
structure is not perfectly commutative, and this can lead to
mixing between generations. For example
[
Λ

(2)
1 , α

†
2

]
= β

†
1 . (36)

What this curious behaviour corresponds to physically is cur-
rently being investigated. One interesting proposal is that the
mixing between generations might form a basis for the weak
PMNS and CKM mixing matrices.8

8 It may also be that the tensor product gets braided. The relation
between braids and the minimal left ideals of C�(6) were reported on in
[12]. Embedding braided matter into Loop Quantum Gravity is possi-
ble when the underlying group representations that label the edges of a
spin-network are q-deformed. Such a q-deformation has an associated
R-matrix that braids any tensor products. This idea is still speculative.
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6 Discussion

The adjoint algebra of left actions of the complex octonions
was previously shown to have the right mathematical struc-
ture to describe one generation of SM fermions with the
unbroken gauge symmetries SU (3)c × U (1)em [11]. In this
paper we have extended these results to exactly three gen-
erations by instead starting from the complex sedenions. A
split basis for this algebra naturally divides fourteen nilpotent
ladder operators into three sets, each of which gives a split
basis for a complex octonion subalgebra. Each of these sub-
algebras generates, via the minimal left ideals of their adjoint
algebra of left actions, a single generation of fermions.

The minimal left ideals in our case are minimal left ideals
of (C × O)L ∼= C�(6), but not of the full (C ⊗ S)L . Our
construction therefore generalizes the construction outlined
in Section 3, which follows [11], making use of only two of
the eight ideals of C�(6). As demonstrated by [19], when the
remaining six minimal left ideals are considered, one finds
that there are exactly enough degrees of freedom to describe
three generations of fermions, including the spinorial degrees
of freedom.

Instead of defining the minimal left ideals, via the MTIS,
of C�(6) one can instead divide the split basis for C⊗O into
three split bases for three C ⊗ H subalgebras. These three
quaternionic subalgebra all contain the special imaginary unit
e7 used to construct the projectors. In earlier works these three
quaternionic subalgebras have been identified with three gen-
erations of leptons [28]. For the case ofC⊗S, instead of con-
structing the minimal left ideals of (C ⊗ S)L , we have used
the special imaginary unit e15 to define three C ⊗ O sub-
algebras. These three subalgebras share a common C ⊗ H

algebras.
The sedenions are not a division algebra. Unlike R,C,H

and O they are not alternative. However the lack of alterna-
tivity, like the lack of associativity, does not affect the con-
struction of minimal left ideals. The fermion algebra satis-
fied by the split basis requires only two basis elements to
be multiplied together at any time. In any such calculation,
associativity or alternativity play no role. The ideals are con-
structed from the adjoint algebra of left actions of the algebra
on itself and is always associative, alternative, and isomor-
phic to a Clifford algebra.

The sedenions should not be ruled out as playing a role
in particle physics on the basis that they do not constitute a
division algebra. Whereas R,C,H and O are by themselves
division algebras, tensor products such as C⊗H and C⊗O

are not, and in fact the zero divisors of these algebra play
a crucial role in the constructions of left ideals [10,11,25].
Because Aut(S) = Aut(O)×S3, the fundamental symmetries
of S are the same as those of O. The factor of S3 is generated
by the triality automorphism of Spin(8). In a future paper
the relation between S, triality, and Spin(8) will be presented
in more detail. The combination of the octonion algebra and
triality leads naturally to the exceptional Jordan algebra, a 27-
dimensional quantum algebra. This should make it possible
to relate our work to the exceptional Jordan algebra [23,24].
Beyond the sedenions, one might not expect new physics.
This is because Aut(An) = Aut(O) × (n − 3)S3, where An

is the n-th Cayley-Dickson algebra. The fundamental sym-
metries remain those of the octonions, with only additional
factors of the permutation group S3 being added.

The three copies of (C ⊗ O)L ∼= C�(6) live inside the
larger algebra (C ⊗ S)L . This larger algebra may make it
possible to include additional particle degrees of freedom
(e.g spin). This idea is currently being investigated. Finally,
the three copies of (C ⊗ O)L ∼= C�(6) are not independent,
but share a common C�(2) subalgebra. One interesting idea
is that this C�(2) may form a theoretical basis for the PMNS
and CKM matrices that describe neutrino oscillations and
quark mixing.
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Appendix B: C�(6) minimal left ideals in (C ⊗ S)L

Generation 1

α
†
1 = 1

2
(e5 + ie10), α1 = 1

2
(−e5 + ie10),

α
†
2 = 1

2
(e1 + ie14), α2 = 1

2
(−e1 + ie14),

α
†
3 = 1

2
(e4 + ie11), α3 = 1

2
(−e4 + ie11), ω1ω

†
1

= α1α2α3α
†
3α

†
2α

†
1 . (37)

The first minimal left ideal is given by Su1 ≡ C�(6)1ω1ω
†
1.

Explicitly,

Su1 ≡ νeω1ω
†
1

+d̄rα†
1ω1ω

†
1 + d̄gα†

2ω1ω
†
1 + d̄bα†

3ω1ω
†
1u

rα
†
3α

†
2ω1ω

†
1

+ugα†
1α

†
3ω1ω

†
1 + ubα†

2α
†
1ω1ω

†
1

+e+α
†
3α

†
2α

†
1ω1ω

†
1, (38)

The complex conjugate system gives a second linearly inde-
pendent minimal left ideal

Sd1 ≡ ν̄eω
†
1ω1

+drα1ω
†
1ω1 + dgα2ω

†
1ω1 + dbα3ω

†
1ω1ū

rα3α2ω
†
1ω1

+ūgα1α3ω
†
1ω1 + ūbα2α1ω

†
1ω1

+e−α3α2α1ω
†
1ω1. (39)

The SU (3), written in terms of the ladder operators, are
given by

Λ
(1)
1 = −(α

†
2α1 + α

†
1α2), Λ

(1)
2 = −i(α†

2α1 − α
†
1α2),

Λ
(1)
3 = α

†
2α2 − α

†
1α1, Λ

(1)
4 = −(α

†
1α3 + α

†
3α1),

Λ
(1)
5 = i(α†

1α3 − α
†
3α1), Λ

(1)
6 = −(α

†
3α2 + α

†
2α3),

Λ
(1)
7 = −i(α†

3α2 − α
†
2α3),

Λ
(1)
8 = −1√

3
(α

†
1α1 + α

†
2α2 − 2α

†
3α3). (40)

The U (1) generator, written in terms of ladder operators is

Q(1) = 1

3
(α

†
1α1 + α

†
2α2 + α

†
3α3). (41)

Generation 2

β
†
1 = 1

2
(e7 + ie8), β1 = 1

2
(−e7 + ie8),

β
†
2 = 1

2
(e1 + ie14), β2 = 1

2
(−e1 + ie14),

β
†
3 = 1

2
(e6 + ie9), β3 = 1

2
(−e6 + ie9),

ω2ω
†
2 = β1β2β3β

†
3β

†
2β

†
1 . (42)
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The second minimal left ideal is given by Su2 ≡ C�(6)2ω2

ω
†
2. Explicitly,

Su2 ≡ νμω2ω
†
2

+s̄rβ†
1ω2ω

†
2 + s̄gβ†

2ω2ω
†
2 + s̄bβ†

3ω2ω
†
2c

rβ
†
3β

†
2ω2ω

†
2

+cgβ†
1β

†
3ω2ω

†
2 + cbβ†

2β
†
1ω2ω

†
2

+μ+β
†
3β

†
2β

†
1ω2ω

†
2, (43)

The complex conjugate system gives a second linearly inde-
pendent minimal left ideal

Sd2 ≡ ν̄μω
†
2ω2 + srβ1ω

†
2ω2 + sgβ2ω

†
2ω2 + sbβ3ω

†
2ω2

c̄rβ3β2ω
†
2ω2 + c̄gβ1β3ω

†
2ω2 + c̄bβ2β1ω

†
2ω2

+μ−β3β2β1ω
†
2ω2. (44)

The SU (3), written in terms of the ladder operators, are
given by

Λ
(2)
1 = −(β

†
2β1 + β

†
1β2), Λ

(2)
2 = −i(β†

2β1 − β
†
1β2),

Λ
(2)
3 = β

†
2β2 − β

†
1β1, Λ

(2)
4 = −(β

†
1β3 + β

†
3β1),

Λ
(2)
5 = i(β†

1β3 − β
†
3β1), Λ

(2)
6 = −(β

†
3β2 + β

†
2β3),

Λ
(2)
7 = −i(β†

3β2 − β
†
2β3),

Λ
(2)
8 = −1√

3
(β

†
1β1 + β

†
2β2 − 2β

†
3β3). (45)

The U (1) generator, written in terms of ladder operators
is

Q(2) = 1

3
(β

†
1β1 + β

†
2β2 + β

†
3β3). (46)

Generation 3

γ
†
1 = 1

2
(e13 + ie2), γ1 = 1

2
(−e13 + ie2),

γ
†
2 = 1

2
(e1 + ie14), γ2 = 1

2
(−e1 + ie14),

γ
†
3 = 1

2
(e12 + ie3), γ3 = 1

2
(−e12 + ie3),

ω3ω
†
3 = γ1γ2γ3γ

†
3 γ

†
2 γ

†
1 . (47)

The third minimal left ideal is given by Su3 ≡ C�(6)3ω3ω
†
3.

Explicitly,

Su3 ≡ ντω3ω
†
3

+b̄rγ †
1 ω3ω

†
3 + b̄gγ †

2 ω3ω
†
3 + b̄bγ †

3 ω3ω
†
3t

rγ
†
3 γ

†
2 ω3ω

†
3

+t gγ †
1 γ

†
3 ω3ω

†
3 + tbγ †

2 γ
†
1 ω3ω

†
3

+τ+γ
†
3 γ

†
2 γ

†
1 ω3ω

†
3, (48)

The complex conjugate system gives a second linearly
independent minimal left ideal

Sd3 ≡ ν̄τ ω
†
3ω3 + brγ1ω

†
3ω3 + bgγ2ω

†
3ω3 + bbγ3ω

†
3ω3

t̄ rγ3γ2ω
†
3ω3 + t̄ gγ1γ3ω

†
3ω3 + t̄ bγ2γ1ω

†
3ω3

+τ−γ3γ2γ1ω
†
3ω3. (49)

The SU (3), written in terms of the ladder operators, are
given by

Λ
(3)
1 = −(γ

†
2 γ1 + γ

†
1 γ2), Λ

(3)
2 = −i(γ †

2 γ1 − γ
†
1 γ2),

Λ
(3)
3 = γ

†
2 γ2 − γ

†
1 γ1, Λ

(3)
4 = −(γ

†
1 γ3 + γ

†
3 γ1),

Λ
(3)
5 = i(γ †

1 γ3 − γ
†
3 γ1), Λ

(3)
6 = −(γ

†
3 γ2 + γ

†
2 γ3),

Λ
(3)
7 = −i(γ †

3 γ2 − γ
†
2 γ3),

Λ
(3)
8 = −1√

3
(γ

†
1 γ1 + γ

†
2 γ2 − 2γ

†
3 γ3). (50)

The U (1) generator, written in terms of ladder operators
is

Q(3) = 1

3
(γ

†
1 γ1 + γ

†
2 γ2 + γ

†
3 γ3). (51)
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