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Abstract

We present a unified framework for the renormalisation of the Hamiltonian and eigenbasis of a system of 
correlated electrons, unveiling thereby the interplay between electronic correlations and many-particle en-
tanglement. For this, we extend substantially the unitary renormalization group (URG) scheme introduced 
in Refs. [1–3]. We recast the RG as a discrete flow of the Hamiltonian tensor network, i.e., the collection 
of various 2n-point scattering vertex tensors comprising the Hamiltonian. The renormalisation progresses 
via unitary transformations that block diagonalizes the Hamiltonian iteratively via the disentanglement 
of single-particle eigenstates. This procedure incorporates naturally the role of quantum fluctuations. The 
RG flow equations possess a non-trivial structure, displaying a feedback mechanism through frequency-
dependent dynamical self-energies and correlation energies. The interplay between various UV energy 
scales enables the coupled RG equations to flow towards a stable fixed point in the IR. The effective 
Hamiltonian at the IR fixed point generically has a reduced parameter space, as well as number of de-
grees of freedom, compared to the microscopic Hamiltonian. Importantly, the vertex RG flows are observed 
to govern the RG flow of the tensor network that denotes the coefficients of the many-particle eigenstates. 
The RG evolution of various many-particle entanglement features of the eigenbasis are, in turn, quantified 
through the coefficient tensor network. In this way, we show that the URG framework provides a micro-
scopic understanding of holographic renormalisation: the RG flow of the vertex tensor network generates 
a eigenstate coefficient tensor network possessing a many-particle entanglement metric. We find that the 
eigenstate tensor network accommodates sign factors arising from fermion exchanges, and that the IR fixed 
point reached generically involves a trivialisation of the fermion sign factor. Several results are presented 
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for the emergence of composite excitations in the neighbourhood of a gapless Fermi surface, as well as for 
the condensation phenomenon involving the gapping of the Fermi surface.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The renormalization group (RG) is a formalism that enables the description of complex mi-
croscopic models in terms of simpler effective theories at infrared (IR) energy scales, obtained
via the integrating out of high-energy (UV) degrees of freedom [4–7]. This aids in studying 
critical phenomena through the identification of universality classes [8,9]. An advanced version 
of the Wilsonian RG program, known as functional RG (FRG), deals with problems involving 
electronic correlations via the RG flow of the Grassmanian many-body action [10–13]. Here, the 
exact Wetterich equations [10] incorporate all orders of quantum fluctuations by accounting for 
the entire hierarchy of 2n-point vertex RG flow equations [14,15]. This formalism has been suc-
cessful in capturing a wide variety of strongly correlated phases of electronic quantum matter, 
e.g., the pseudogap, strange metal, d-wave superconductivity etc. [16–21].

In recent times, many-particle quantum entanglement [22–25] has emerged as an important 
feature for the study of quantum many-body systems with strong correlations, e.g., quantum 
spin liquids, fractional quantum hall phases, high Tc superconductors etc. [26–28]. In such sys-
tems, a marked (and sometimes dramatic) change in the nature of many-particle entanglement 
is observed as a signature of quantum criticality [29–34]. In order to characterize the nature of 
many-particle entanglement in quantum many body system in the IR, as well as near criticality, 
an entanglement renormalization group (ERG) based on tensor network (TN) states has emerged 
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as an indispensable tool [35–39]. For instance, TN states such as matrix product states (MPS) 
(developed initially in DMRG [40]) has been shown as being highly accurate for studying the 
ground state properties of 1D gapped phases. In 2D, tree tensor network states (TTN) [41,42]
and projected entangled pair states (PEPS) are useful for studying gapped phases (see references 
in [38]). The multiscale entanglement renormalization group ansatz (MERA) is yet another ten-
sor network RG program in which each layer of RG transformations is organized as a stacking of 
layers of tensor products of two-local unitary operations (i.e., perform entanglement renormaliza-
tion) and a layer composed of isometries that remove the disentangled qubits (i.e., carry out the 
process of coarse-graining). MERA has been used for studying both quantum criticality [43–45], 
as well as gapped topological quantum liquids [46–50].

We present here an unitary RG (URG) program for electronic states that generates RG flows, 
on the one hand, the entire hierarchy of 2n-point vertex tensors comprising the Hamiltonian, and 
on the other hand, the entire set of many-body wavefunction coefficient tensors that govern the 
renormalization of the eigenbasis. Indeed, the renormalization of the wavefunction coefficient 
tensors comprise the entanglement RG flow. In this way, URG provides a unified framework 
by which we obtain both the vertex and entanglement RG flows. Further, we show that the ver-
tex RG flows feed into the entanglement renormalization. As a result, stable fixed points are 
reached simultaneously for both. URG is carried out via a sequence of unitary disentanglement 
operations on a graph, each of whose nodes corresponds to one electronic state. Each unitary op-
eration on the graph disentangles an electronic state from the rest (the coupled subspace), leading 
simultaneously to block diagonalisation of the Hamiltonian in the occupation number basis. This 
involves the removal of off-diagonal terms with respect to a given electronic state |N〉, making 
good quantum numbers of the occupation numbers (1 and 0) of that state.

The URG formalism was introduced in Ref. [1,2,51], and applied to (a) the repulsive 2D 
fermionic Hubbard model on a square lattice at half-filling and with hole doping, as well as (b) 
the Kagome XXZ antiferromagnet at finite magnetic field. In Ref. [1,2], a comparative study of 
the URG and FRG programs was offered using the two-particle vertex RG flow equations ob-
tained from the two approaches. In URG, the RG flow equations for the various 2n-point vertices 
have several important features. First, while the FRG scheme is exact in principle, it involves 
a truncation in the loop expansion in practice [15,52]. In contrast, the URG equations are non-
perturbative, with contributions from all loops resummed into closed-form analytic expressions. 
Second, the URG equations possess a non-trivial denominator containing the renormalized corre-
lation energies and self-energies, i.e., the number diagonal pieces of the renormalized many-body 
Hamiltonian. Further, the denominator of the vertex URG flow equations have an explicit depen-
dence on an energy scale (ω) for quantum fluctuations that arises from the renormalization of 
the remnant off-diagonal terms in the coupled subspace. Thus, the retardation effects observed 
in FRG [53] are manifest in the URG scheme as well.

Although the URG flows do not involve loop truncation approximations, the complete hierar-
chy of 2n-point vertex URG equations are challenging to solve as they are coupled nonlinearly. 
As a result, in Refs. [1,2,51], we truncated the hierarchy of the 2n-point vertex URG flows at 
six-point vertices. In the present work, we aim to improve on this substantially by presenting 
a unified treatment of the entire hierarchy of 2n-point vertices. Finally, the form of the URG 
equations yields stable fixed points that are governed by the quantum fluctuation energy scale 
ω. It is also noteworthy that, upon reaching a stable fixed point, we can construct an effective 
Hamiltonian from the final values of the 2n-point vertices. In this way, we have obtained effective 
Hamiltonians and eigenstates at the stable fixed points for 2D Hubbard model (both at 1/2-filling, 
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as well as upon hole-doping away from it) in Refs. [1,2] and the Kagome XXZ antiferromagnet 
at finite field in Ref. [51].

The URG has also been validated quantitatively in Refs. [1,2] for the 2D Hubbard model with 
high accuracy by benchmarking two quantities obtained from the URG against other numerical 
methods [54]: the ground state energy per particle (within an errorbar of 10−4t), and the doublon 
fraction. Recently, in Ref. [3], we have also implemented the URG as a reverse renormaliza-
tion group flow, i.e., by starting from the many-body eigenstates of the effective Hamiltonian 
for the Mott insulating state at IR stable fixed point of the 2D Hubbard model at 1/2-filling, 
we have reconstructed the eigenstates of the parent model in the subspace associated with the 
most relevant scattering diagrams. Ref. [3] shows that the reverse URG procedure generates an 
entanglement holographic mapping (EHM) network [55,56] along the RG flow direction. This is 
a generalization of MERA that involves only unitary transformations.

In the present work, we aim at extending the URG framework in several important ways. 
First, we show that the unitary operation for a given RG step is determined by the Hamilto-
nian obtained from the previous RG step. As a result, the action of the unitary operation on the 
many-body eigenstates naturally involve RG flows of the wavefunction coefficient tensor that 
incorporate contributions from the RG flow of all 2n-point vertices. As a result, the bulk of the 
EHM generated along the URG direction is composed of various 2-point, 4-point, 6-point and 
all higher order correlators. This is in contrast with the EHM formulation of Ref. [55], where the 
bulk is composed of two-point correlators. Furthermore, we show that the quantum fluctuation 
scales (ω) themselves undergo a non-trivial renormalization in the bulk of the EHM. The re-
sulting interplay between the RG dynamics of quantum fluctuations and that of the Hamiltonian 
shows that the bulk of the EHM manifestly possesses non-trivial quantum as well as RG dynam-
ics [57–59]. We also offer here comparisons between URG and other entanglement RG methods. 
URG is carried out on generally on a graph, such that the notion of a physical distance is not 
essential for its implementation. This is a crucial departure from the implementation of MERA 
and EHM networks that depend upon a real-space geometry [37]. Note that URG should also be 
contrasted with the continuous unitary transformation (CUT) based RG schemes [9,60,61] that 
successively band diagonalize the Hamiltonian over an infinite number of steps; URG involves 
a discrete set of unitary rotations that block diagonalise the Hamiltonian in a finite number of 
steps. Instead, the URG method is related to the strong-disorder RG approaches of Dasgupta et 
al. [62], Fisher [63], Rademaker et al. [64] and You et al. [65]. The philosophy of URG is simi-
lar to the entanglement based CUT (E-CUT) RG of Ref. [66] in that both attempt to bridge the 
Hamiltonian RG with entanglement (tensor network) RG.

The rest of the work is organized as follows. In Sec. 3, we derive the disentangling unitary 
transformation, and the block-diagonal Hamiltonian that results from the iterative application of 
a sequence of such unitary transformations. Specifically, the electronic states are disentangled 
in the order of the single-particle energy, from higher to lower. In this way, the entire hierar-
chy of 2n-point scattering vertex tensors evolve from UV to IR via a series of disentanglement 
transformations. This allows us to interpret the Hamiltonian RG as a vertex tensor network RG, 
where the network is formed from the 2n-point scattering vertices. Sec. 4 is devoted to incorpo-
rating the effects of Hamiltonian block diagonalization on its eigenbasis. This is carried out by 
via applying the unitary transformations to perform disentanglement of UV degrees of freedom, 
and noting the subsequent entanglement renormalization of the remnant IR degrees of freedom. 
In this way, the Hamiltonian (vertex) tensor network is shown to govern the eigenstate tensor 
network (itself an EHM network [3]). We demonstrate that the eigenstate tensor network accom-
modates fermion exchange sign factors arising from the vertex renormalisations, and that the IR 
4
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fixed point reached generically involves a trivialisation of the fermion sign factor. Additionally, 
we show that the Hilbert space geometry quantified by a many-particle entanglement metric also 
undergoes a RG flow. Sections 5.1 and 6 are devoted to demonstrating the usage of the URG 
for a general model of interacting electrons with translation invariance. Specifically, we show 
the existence of log-divergences in one-particle and two-particle self-energies that result in the 
breakdown of the Landau quasiparticle picture and the gapping of the Fermi surface respec-
tively. We demonstrate that various sum rules are obeyed by the URG method, and reach very 
broad conclusions for the emergence of novel states of fermionic quantum matter. We conclude 
in Sec. 7. The details of various calculations are provided in several appendices.

2. Summary of main results

We summarise here the main results of the paper for the benefit of the reader.

• In Sec. 3, we provide the derivation of the unitary disentanglement operator [1] and the form 
of the rotated Hamiltonian (eq. (21)). The rotated Hamiltonian is found to commute with 
the number operator (n̂j ) associated with the disentangled |j 〉, and generates an integral of 
motion. Following this, we compare and contrast the URG with other unitary transformation-
based RG methods (e.g., continuous unitary transformation (CUT) RG, spectrum bifurcation 
RG (SBRG), strong disorder RG etc.). For instance, in CUT RG, the off-diagonal matrix 
elements connecting energy states with highest energy differences are eliminated in a per-
turbative fashion via an infinitesimal Schrieffer-Wolff transformation, such that a succession 
of such transformations makes the Hamiltonian increasingly band-diagonal. Owing to the 
perturbative nature of the transformation, the disentanglement between electronic degrees of 
freedom is partial. On the other hand, every unitary of the URG disentangles perfectly the 
highest energy electronic qubit from the rest degrees of freedom at a given RG step, thereby 
block-diagonalizing the Hamiltonian in Fock space (eq. (21)).

• In Sec. 3, we provide a detailed description of the number-diagonal and off-diagonal parts 
of the disentangling unitary operator. The RG evolution of the Hamiltonian’s spectrum 
is tracked as a function of the quantum fluctuation scale ω that originates from non-
commutativity between off-diagonal and diagonal parts of the Hamiltonian.

• In Sec. 3, we present the scattering vertex tensor network representation of the complete 
Hamiltonian in eqs. (44). From this, we obtain the entire hierarchy of the 2n-point vertex 
RG flow equations (eq. (61)) that involves the resummation of contributions from all orders 
in the loop expansion of various couplings resummed into closed form expressions. Finally, 
in Fig. 8, we represent the renormalization as a Hamiltonian vertex tensor network whose 
construction is equivalent to that of an exact holographic mapping (EHM) network.

• In Sec. 4, we study the renormalization of the eigenbasis generated by the unitary transfor-
mations of the URG method. In this way, we obtain the entire family of RG equations for 
the many-body coefficients to comprise the eigenstates (eq. (87)). These RG equations also 
account for the electron-exchange signatures generated by the 2n-point scattering processes.

• In a generic Hamiltonian comprising of electronic dispersion and attractive four-fermionic 
interactions, we apply the URG to demonstrate the RG flow of the effective Hamiltonian 
towards that of the reduced BCS model. Alongside, we show that the eigenbasis renormal-
izes towards an eigen-subspace for the reduced BCS model composed of Anderson BCS 
pseudospins [67], thereby mitigating the Fermion sign problem in the IR effective theory.
5
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• Further, in Sec. 4, we also show the renormalisation flow of the Fubini-Study metric of the 
many-body Hilbert space, and use this to classify flows to both gapless as well as gapped 
fixed point theories.

• Finally, starting from a generic model of interacting fermions, we depict in Sec. 5 and Sec. 6
the emergence of two-particle one-hole composite and pseudospin degrees of freedom for 
gapless and gapped phases respectively.

3. Hamiltonian RG flow

The renormalization group program will be set up in this section in order to describe flow 
of effective Hamiltonians and their associated eigenspaces across a range of energyscales at 
zero temperature. This range in energyscales arises from the quantum fluctuations associated 
with the non-commutativity between off-diagonal and diagonal parts of the Hamiltonian in the 
occupation-number representation of the single-electron states. The renormalization group flow 
involves resolving these quantum fluctuations with respect to a single electronic state at every 
RG step. Below, we will first develop the Hamiltonian RG program in section.

3.1. Renormalization group as fermion occupation number block diagonalisation

Single electron states constituting an electronic system with N degrees of freedom (d.o.f) can 
be assigned indices ranging from 1 to N . The index j ∈ (1, . . . , N) refers to a collection of at-
tributes that label the electron creation (c†

j ), annihilation (cj ) and occupation number (n̂j = c
†
j cj ) 

operators in the second-quantized representation. For example, j ≡ {n, r, σ } refers to band index 
(n), position vector (r) and spin (σ ). The electron creation and annihilation operators satisfy the 
usual on-site commutation and anti-commutation relation dictated by the Pauli exclusion princi-
ple

{cj , c
†
j } = 1 , [c†

j , cj ] = 2n̂j − 1. (1)

The numerical ordering of the indices 1 to N describes the single-particle energy eigenvalues 
sorted in ascending order. (For degenerate energy values the states are labelled via a specified 
random choice.) The Hamiltonian H governing the dynamics of this system will contain two 
kinds of terms: (i) scattering terms that are off-diagonal in occupation number basis, i.e., causing 
fluctuations in the occupancy of a electronic state, and (ii) self/correlation energy terms that are 
diagonal in occupation number basis, i.e., causing a shift in energy associated with a given elec-
tronic occupancy configuration. Such a partitioning of the Hamiltonian matrix was formalised in 
the context of quantum mechanical perturbation theory by Lowdin [68–70], and independently 
by Feshbach [71,72]. Via this technique, the Hamiltonian (H ) is represented as a block matrix, 
in the occupation number basis of the state N: {|0N〉, |1N 〉},

H = n̂NHn̂N + (1 − n̂N )H(1 − n̂N ) + (1 − n̂N )H n̂N + n̂NH(1 − n̂N ) (2)

=
[
T rN(Hn̂N) T r(HcN)

T r(c
†
NH) T rN(H(1 − n̂N ))

]
. (3)

The occupation number operators n̂N = c
†
NcN and 1 − n̂N = cNc

†
N represent electron and hole 

subspace projections in the second quantized notation respectively. We define the unitary trans-
formation U(N) as that which decouples state N from all others, i.e., it block diagonalises H
6
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by removing the off-diagonal quantum fluctuation blocks, resulting in the new Hamiltonian 
HN−1 = U(N)HU

†
(N) (see Fig. 2b). U(N) is determined by the decoupling equation,

n̂N Û(N)HU
†
(N)(1 − n̂N ) = 0 . (4)

In this way, the label (N) (representing the decoupling of state N ) is the first step of the RG trans-
formations. Below we recollect the steps from Ref. [1] for deriving U(N) for a general fermionic 
Hamiltonian H .

The fermionic Hamiltonian H(N) = H can, very generally, be decomposed as

H(N) = HD
(N) + H

X,N
(N) + H

X,N̄
(N) , (5)

where the number diagonal part of the Hamiltonian (HD
(N)) is associated with n-particle self/cor-

relation energies, and the term HX,N̄
(N) represents coupling only among the other degrees of 

freedom {1, . . . , N − 1}. These comprise the diagonal blocks in the block matrix representation 
of H eq. (3). HX,N

(N) = c
†
NT r(H(N)cN) + h.c. represents the off-diagonal blocks in H eq. (3) that 

are responsible for quantum fluctuations in the occupation number of state N . We are searching 
for a rotated many-body basis of states |�〉’s in which the old Hamiltonian H(N) attains a block 

diagonal form H(N−1) = HD
(N−1) + H

X,N̄
(N−1)

(HD
(N) + H

X,N
(N) + H

X,N̄
(N) )|�〉 = (HD

(N−1) + H
X,N̄
(N−1))|�〉 . (6)

To proceed further in solving this equation, we write |�〉 in the occupation number basis of states 
0N and 1N

|�〉 = a1|�1,1N 〉 + a0|�0,0N 〉 , (7)

where the pair of states |�1〉 and |�0〉 belong to the remnant 2N−1 dimensional Hilbert space of 
1, .., N − 1 single electron degrees of freedom. The 2 dimensional Hilbert space of the electron 
N is spanned by |1N 〉 and |0N 〉. Replacing eq. (7) in eq. (6), we obtain a set of simultaneous 
equations

a1N
(ω̂(N) − T rN(n̂NHD

(N))n̂N )|�1,1N 〉 = a0N
c

†
NT rN(H(N)cN)|�0,0N 〉 ,

a0N
(ω̂(N) − T r((1 − n̂N )HD

(N))(1 − n̂N ))|�0,0N 〉 = a1N
T rN(c

†
NH(N))cN |�1,1N 〉 , (8)

where

ω̂(N) = HD
(N−1) + H

X,N̄
(N−1) − H

X,N̄
(N) . (9)

In reaching the above simultaneous equations, we have used Appendix A to obtain the occupation 
number representations of the diagonal/off-diagonal parts of H . From equation set (8), we deduce 
the following equations

η
†
(N)η(N)|�1,1N 〉 = |�1,1N 〉 =⇒ η

†
(N)η(N) = n̂N , (10)

η(N)η
†
(N)

|�0,0N 〉 = |�0,0N 〉 =⇒ η(N)η
†
(N)

= 1 − n̂N , (11)

where η† and η(N) are defined as
(N)

7
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η
†
(N) = 1

ω̂(N) − T rN(HD
(N)n̂N )n̂N

c
†
NT rN(HcN), (12)

η(N) = 1

ω̂(N) − T rN(HD
(N)(1 − n̂N ))(1 − n̂N )

T rN(c
†
NH)cN . (13)

Finally, the above equations enable us to relate |�〉 and |�1, 1N 〉 via a similarity transformation 
as follows

|�〉 = a1(1 + η(N))|�1,1N 〉 = a1 exp(η(N)))|�1,1N 〉 . (14)

The similarity transformation exp(η(N))) can be used to construct a unitary operator U(N) [73,
74],

U(N) = exp
π

4
(η

†
(N) − η(N)) = 1√

2
(1 + η

†
(N) − η(N)) . (15)

The property of a unitary transformation U(N)U
†
(N)

= U
†
(N)

U(N) = I can be immediately checked 

from the anti-commutation relation {η(N), η
†
(N)} = 1. Via applying the unitary operator U(N) on 

H , we will obtain the form of the rotated Hamiltonian in the next section.

3.2. Derivation for the rotated Hamiltonian UNHU
†
N

We note that the rotated Hamiltonian should be purely diagonal in the occupation-number ba-
sis states 1N and 0N . In order to verify this, we decompose the rotated Hamiltonian into diagonal 
and off-diagonal components

UNHU
†
N = H1 + H2,

H1 = 1

2

[
H + [η†

N − ηN,H ] + ηNHη
†
N + η

†
NHηN

]
,

H2 = 1

2

[
HX

N − η
†
NT rN(c

†
NH)cNη

†
N − ηNc

†
NT rN(HcN)ηN

]
, (16)

where the off-diagonal component H2 must vanish. To show that, we first set up the preliminaries 
(using eq. (12) and eq. (13))

η
†
NηN = n̂N =⇒ ω̂ − T rN(HDn̂N)n̂N = c

†
NT rN(HcN)ηN ,

=⇒ ηNc
†
NT rN(HcN)ηN = T rN(c

†
NH)cN . (17)

The definition of HX
N = c

†
NT rN(HcN) + h.c., along with eq. (17), then implies that H2 = 0. 

In the other component, H1, we first unravel the terms ηNHη
†
N and η†

NHηN . Using eq. (36), 
eq. (12) and eq. (13), we obtain

1

Ĥ ′ − T rN(Hn̂N)n̂N

c
†
NT rN(HcN) = c

†
NT rN(HcN)

1

Ĥ ′ − T rN(H(1 − n̂N ))(1 − n̂N )
,

=⇒ T rN(Hn̂N)n̂Nc
†
NT rN(HcN) = c

†
NT rN(HcN)T rN(H(1 − n̂N ))(1 − n̂N ) . (18)

The above relation then allows us to simplify ηNHη
†
N and η†

NHηN as follows

ηNHη
†
N = T rN(H(1 − n̂N ))(1 − n̂N ) ,

η
†

HηN = T rN(Hn̂N)n̂N . (19)
N

8
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Next, we deduce [η†
N − ηN, H ], i.e., the renormalization of the Hamiltonian using the relations 

obtained above

[η†
N − ηN,H ] = 2τN {c†

NT rN(HcN), ηN } . (20)

Finally, by combining the result H2 = 0 together with eqs. (19) and (20), we obtain the form of 
the rotated H

UNHU
†
N = 1

2
T rN(H) + τNT rN(HτN) + τN {c†

NT rN(HcN), ηN } . (21)

One can easily check that the rotated Hamiltonian [UNHU
†
N, τ̂N ] = 0, i.e., τN is an integral of 

motion. Turning to the quantum fluctuation operator ω (eq. (36)), we note that its eigenvalues 
represent energy scales for the fluctuations in the occupation number of state |N〉.

We will now put our unitary disentangling transformation in context with the unitary transfor-
mations used in various other RG methods, including continuous unitary transformation (CUT) 
RG [9,60,61,75] strong disorder RG [64,76] and spectrum bifurcation RG [65]. We recall that 
CUT RG schemes aim, via the iterative application of unitary transformations, to remove off-
diagonal entries coupling various energy configurations using a variety of choices for the RG flow 
generator. The goal is, in this way, to make the Hamiltonian matrix more band-diagonal. Never-
theless, this implementation of the RG in terms of unitary transformations eventually becomes 
perturbative in nature, as at any given RG step, the rotated Hamiltonian cannot be computed 
exactly owing to the appearance of an infinite series expansion in the couplings. Instead, an ef-
fective Hamiltonian is obtained perturbatively through a truncation of the coupling expansion. 
This is also true of the recently developed entanglement-CUT RG scheme [66], where the RG 
flow of the entanglement content between operators is studied using tensor networks. Similarly, 
in various recent strong disorder RG schemes [64,76], the generator of transformations is chosen 
such that certain terms in the Hamiltonian can be dropped. As with the CUT RG, this leads to 
only the partial disentanglement of a single electronic degree of freedom at any given RG step. 
Finally, in the spectrum bifurcation RG scheme [65], the Hamiltonian is made progressively 
block diagonal at each RG step via the iterative application of local unitary rotations along with 
coarse-graining transformations that are perturbative in nature.

This should be contrasted with the non-local nature of the unitary operations employed in 
our RG scheme (eq. (15)), that implement coarse-graining transformations through the precise 
disentanglement of one electronic state at every step. Further, unlike the RG schemes discussed 
above, we obtain closed-form expressions for the rotated Hamiltonian at every step of the RG 
transformations. Finally, our Hamiltonian RG flow evolves across multiple quantum-fluctuation 
scales, the eigenvalues (ω) of ω̂ eq. (9). This helps obtain effective theories for various subparts 
of the many-body spectrum.

This brings us to an important outcome of our RG transformation scheme H → UNHU
†
N : – 

if along the RG flow, one of the energy eigenvalues of ω̂ operator matches with an eigenvalue 
of the diagonal operator HD , we obtain a stable fixed point of the RG transformations that is 
signalled via the vanishing of the off-diagonal blocks in the occupation basis of the electronic 
state being disentangled at that step. This can be seen by starting from equation eq. (13), with 
ηN acting on any one of the eigenstates of the ω̂ operator (say |�1, 1kσ 〉) with eigenvalue ω

(ω − T rN(HDn̂N)|�1,1N 〉 = c
†
NT r(HcN)ηN |�1,1N 〉

Det(ω − T rN(HDn̂N)) = 0 =⇒ HX|�1,1N 〉 = 0 . (22)
N

9
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This shows that if one of the eigenenergies of HD becomes equal to fluctuation energy scale ω, 
a stable fixed point is reached due to a vanishing off-diagonal block [77]. In what follows we 
initially discuss various features of this unitary transformation, rotated Hamiltonian and using 
it propose a Hamiltonian renormalization group scheme. Eventually from there we arrive at a 
hierarchy of n-point scattering vertex flow equations.

Note that with the removal of the off-diagonal blocks, the Hamiltonian H(N−1) commutes with 
n̂N , i.e. [H(N−1), n̂N ] = 0, generating a good quantum number (n̂N ). Further, the new Hamilto-

nian blocks H 1N

(N−1) and H 0N

(N−1) Fig. 2 individually have dimensions (2N−1 × 2N−1) halved 
compared to that of H (2N × 2N ). We note that the idea behind using unitary block diagonaliza-
tion transformations to decouple partitions has been discussed in the past mainly in the context 
of nuclear physics, quantum chemistry [78–88]. In this work we provide an concrete form for the 
unitary ansatz that satisfies the decoupling equation eq. (4).

For the next RG step, H(N−1) is written in a block representation with respect to the next d.o.f 
(say, the electronic state N − 1) and the entire procedure is repeated iteratively. This is repre-
sented by the flow diagram Fig. 2a. The iterated block diagonalisation leads to a RG recursion 
flow relation for the Hamiltonian

H(j−1) = U(j)H(j)U
†
(j)

, ∀ j ≤ l ≤ N (23)

where H(N) = H is the bare Hamiltonian. As seen earlier, given that [H(j−1), n̂l] = 0, the eigen-
values of the n̂l operators are associated with a set of integrals of motion that are generated under 
the RG flow. Another aspect of the unitary RG transformation is that it preserves the Hilbert 
space of N fermionic states by preserving the canonical anticommutation relation

{c†(j)
i , c

(j)
k } = δik , {c(j)

i , c
(j)
k } = 0 , (24)

where c†(j)
i = U(j)c

†(j+1)
i U

†
(j) is the rotated creation operator. Similarly, the unitary operation 

leads to rotation of the annihilation operator c(j)
i and the occupation number operator n̂(j)

i . These 
rotated operators form the Pauli group P (j), composed of the direct product of all possible 4N

combinations of N matrices, where for every label j there are 4 matrices: Ii , τ
(j)
i = n̂

(j)
i − 1

2 , 

τ
(j)
x,i = 1

2 (c
†(j)
i + c

(j)
i ) and τ (j)

y,i = i
2 (c

†(j)
i − c

(j)
i ) :

P (j) = {I, {τ (j)

x,1, τ
(j)

y,1, τ
(j)

1 , ..., τ
(j)
x,N , τ

(j)
y,N , τ

(j)
N },

{τ (j)

x,1τ
(j)

x,2, ...︸︷︷︸
(N

2)elements

, τ
(j)

x,N−1τ
(j)
x,N }, {...xy...},

{...xz...}, {...yy...}, {...yz...}, {...zz...}, ...} . (25)

The set of operators denoted {...xy...} is the collection of product of the τ (j)
x,l and τ (j)

y,m Pauli 
matrices for a pair of electronic states; the other {...} set of operators are defined similarly.

The rotated operators composing the Pauli group at step j (P (j)) are emergent from the Pauli 
group of the earlier step (P (j+1)): P (j) = U(j+1)P

(j+1)U
†
(j+1), where the U(j) non-local uni-

tary operations are generalized Clifford group transformations. We recall that a restricted class 
of Clifford group rotations [89], employed in the spectrum bifurcation RG (SBRG) of Ref. [65], 
rotates one Pauli operator to another while preserving the Pauli group P . Together with the 
Schrieffer-Wolff transformations (see Ref. [90] a review), such restricted Clifford transforma-
tions are observed to remove the entanglement content of the Hilbert space only approximately. 
10
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Fig. 1. Schematic representation of the Hamiltonian RG flow. The feedback loop j → j − 1 depicts the iterative RG 
process. Each RG step involves the creation of one integral of motion τj that commutes with the rotated Hamiltonian.

Fig. 2. Representation of the Hamiltonian as a block matrix in the occupation number basis of single-electron states, and 
where the unitary rotation removes the off-diagonal blocks.

On the other hand, the general Clifford group transformations (U(j)) presented above cause non-
local rotations in the many-body space of tensor product of Pauli operators, leading to the perfect 
removal of entanglement between a given state j and the rest of the coupled states. This leads 
to the emergence of conserved quantities, together with the morphing of entanglement content 
within the coupled space. As the states have been labelled in ascending order of energy, the it-
erative decoupling of states and the concomitant renormalization of the effective Hamiltonians 
represents a flow from the ultraviolet (UV) to the infrared (IR). We recall that the strategy of 
repeatedly decoupling one fermion state at every step was independently proposed by Choi [91]
and Wilson [92] for treating degeneracies within Rayleigh-Schroedinger perturbation theory and 
in the formulation of a Hamiltonian RG method applied to the meson-nucleon interaction prob-
lem respectively. The algorithm for the RG is shown schematically in Fig. 1.

The form of the unitary operator for an arbitrary RG step j is given similar to eq. (15)

U(j) = 1√
2
[1 + η(j) − η

†
(j)], {η†

(j), η(j)} = 1, (26)

Here, η(j) and η†
(j) are the electron-hole (e-h) transition operators associated with the j th RG 

step, they possess the usual anti-commutation relation as well as satisfy the following relations

(1 − n̂j )η(j)n̂j = η(j) , n̂j η(j)(1 − n̂j ) = 0

η2
(j) = 0 ,

[
η

†
(j), η(j)

]
= 2n̂j − 1 . (27)

It can be easily seen that the operators η(N) and η†
(N) defined in eqs. (12), (13) satisfies the above 

properties. Using the above relations we obtain an simplified form for the Hamiltonian flow 
equation eq. (23),

Ĥ(j−1) = 1
T rj (Ĥ(j)) + T rj (Ĥ(j)τj ) + τj {c†

j T rj (H(j)cj ), η(j)} . (28)

2

11
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Here, the off-diagonal term c†
jT rj (H(j)cj ) is a compact representation of the multi-particle scat-

tering terms via which the state labelled j is coupled to the remaining j − 1 d.o.f. Importantly, 
as shown in Appendix A, this compact representation of the off-diagonal block respects the 
signatures arising from fermion exchanges. It is evident from the expression eq. (28) that the 
renormalization of the Hamiltonian blocks marked by the two values of the occupation number 
of the j th state (Ĥ

1j

(j−1) and Ĥ
0j

(j−1)) take place in an opposite manner. Further, the approach 
makes manifest the renormalization of the Hamiltonian as an outcome of the mixing between 
UV and IR d.o.fs [93].

It is easily seen from Fig. 2 that the Hamiltonian spectrum of H(j) splits into two branches via 
the unitary operation U(j). This branching is a many-body analog of the avoided level-crossing 
mechanism. At the RG step j , there are 2j decoupled blocks marked by the occupation numbers 
of decoupled states and every individual block has 2N−j coupled many-body configurations. 
We note that a similar approach to an iterative decoupling of states has been investigated in 
the context of spectrum bifurcation RG (SBRG) [65]. In contrast to our method, however, the 
effective Hamiltonian generated by the SBRG method involves a perturbative treatment of inter-
particle interactions.

3.3. Form of the unitary operator U(j)

At this point, we compare the form of the Unitary operator Uj with those that have appeared 
in the literature. First, U(j) can be cast in the familiar Van Vleck form [78]

U(j) = exp[π
4

(η
†
(j) − η(j))] , (29)

providing a geometric representation of a rotation angle (whose value here is π/4) between the 
old and new configuration subspaces [94]. This π/4 unitary gate has the property: (U(N))

4 = −I . 
In this form, it can be compared to the unitary exponential wave operator investigated in the 
context of coupled cluster theory [95–98]. We further note that the form eq. (26) is a simpli-
fied version of the canonical transformation advocated first by Shavitt and Redmond [73] (see 
also [74,99]). Unlike the wave operator of coupled cluster theory, however, it is clear from the 
relations given earlier in eqs. (27) that the unitary operator in eq. (26) does not involve a infinite 
series expansion.

Recently, in the context of the phenomenon of many-body localisation in systems with 
both strong correlations as well as disorder (see, e.g., [100]), versions of the strong disorder 
RG [62,63,101–105] have been proposed. These involve a RG flow arising from the diagonal-
ization of Hamiltonians via the iterative application of unitary operators [64,106–109]. A similar 
renormalisation scheme for Hamiltonians had also been proposed earlier by White [110] in the 
context of the quantum chemistry of molecular clusters. These schemes rely essentially on Jaco-
bi’s method for the iterative diagonalisation of Hermitian matrices [111]. This involves the appli-
cation of a unitary displacement operator which removes the largest off-diagonal element in the 
Hamiltonian matrix: D = exp(iλ(X† − X)), where λ is the displacement angle and the operator 
X satisfies the properties: X2 = 0, XX†X = X. A comparison with our unitary operator reveals 
that the η(j) transition operator given earlier satisfies the same properties as X, as well as certain 
others (see eqs. (27))). This leads to an important difference in terms of the results obtained from 
the two approaches. The strong-disorder style RG schemes lead to an effective Hamiltonian at 
low energies that is an expansion in terms of products of the emergent local integrals of motion 
(τi ) that are generated, i.e., Heff =∑

εiτi +∑
Vij τiτj +∑

Vijkτiτj τk + . . .. On the other 
i ij ijk

12
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hand, we will see below that the effective Hamiltonian reached from our RG scheme involves 
only a small number of such terms, as the rest can be shown to be irrelevant under the RG trans-
formations. Another important difference is that in our RG, the iterative decoupling procedure 
can be inhibited if a stable fixed point theory (involving residual occupation number quantum 
fluctuations due to the remaining coupled states) is attained. This leads to breakdown of the adi-
abatic continuity between the states at higher and lower energies, signalling instead the emergent 
condensation of composite degrees of freedom at low energies. This, as we shall see later, is an 
outcome of the UV-IR mixing. In this case, the local integrals of motion will not form a complete 
set.

It is also worth noting the efforts of Wilson [92], who attempted the partitioning of the Hamil-
tonian into low and high energy subspaces. To decouple the blocks at a particular step of the RG 
flow, Wilson proposed an operator R that mixes states between the two subspaces. The effective 
Hamiltonian then obtained possesses a Bloch-Brandow form [80,81,86]

Heff = 1 + R − R†

√
1 + R†R + RR†

H
1 + R† − R√

1 + R†R + RR†
, (30)

which can be seen as the action of a unitary transformation UW = exp(arctanh(R − R†)) on 
H [73,74,78,79,94,95]: Heff = UWHU

†
W .

The η(N) transition operator obtained by us is analogous to Wilson’s R operator, with the dif-
ference that, in our case, the partitioning (or decoupling procedure) is carried out in the fermion 
occupation number (i.e., Fock) basis of the state N . The relations eq. (27) then allow for a sim-
plification of both the unitary operator as well as the effective Hamiltonian at every step of the 
RG procedure. In Appendix B, we will also elaborate on how to recast our RG scheme in terms 
of a sequence of continuous unitary transformations [9,60,61].

3.4. Form of the e-h transition operator η(j)

As derived in eq. (12) and eq. (13) the solution to the decoupling equation eq. (4) for the j th 
RG step determines the form of transition operator η(j)

η(j) = T rj (c
†
jH(j))cj

1

ω̂(j) − T rj (H
D
(j)n̂j )

. (31)

Here, the operator ω̂(j) is associated with the 2j−1 energy eigenvalues that represent the quantum 
fluctuation energyscales of the {1 . . . j − 1} coupled single-particle states having 2j−1 occupa-
tion number configurations (see Fig. 3). There are also 2N−j+1 number diagonal configurations 
associated with the subspace of states (labelled {j + 1, . . . , N}) that have been decoupled under 
the RG and are no longer affected by quantum fluctuations. The complete configuration space 
comprises, thereby, of 2N−j+12j−1 = 2N many body states.

The quantum fluctuations originating from scattering processes, T rj (c
†
jH(j))cj , occupy off-

diagonal terms in the Hamiltonian matrix represented in the occupation number basis of single-
particle states. The term T rj (c

†
jH(j))cj involves various 1-particle, 2-particle and higher cor-

related scattering events of the state j with the degrees of freedom {1, . . . , j − 1}. Such an 
expansion of the off-diagonal part of the Hamiltonian is similar to the cluster expansion em-
ployed in the coupled cluster methods [83,84]. For example, in the case of the generic four-Fermi 
interaction model for a system of N spinless fermions
13
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Fig. 3. Disentangling the state labelled j via the unitary operation U(j) . The black circles represent the remnant coupled 
single-particle states, red circles the states to be decoupled, and the blue circles represent the states that are already 
decoupled. The black line marked ‘a’ represents the entanglement between the states {0, j − 1} and the state j that is to 
be removed in the RG step j . (For interpretation of the colours in the figure(s), the reader is referred to the web version 
of this article.)

H 4 =
∑
ij

hij [c†
i cj + h.c.] +

∑
ijkl

Vijklc
†
i c

†
j ckcl , (32)

the partitioning in the occupation number representation of the state labelled N (i.e., the first 
RG step) gives rise to an off-diagonal block represented as the sum of 1 and 2-particle scattering 
vertices

TrN(c
†
NH 4

(N))cN = {
∑

i

hiNc
†
i +

∑
ijk

VijkNc
†
i c

†
j ck}cN . (33)

In Appendix A, we show that this compact representation of the off-diagonal block using partial 
trace operations with respect to a given single-particle state respects signatures arising from 
fermion exchanges. The operator T rN(HD

(j)n̂j ) appearing in the transition operator eq. (31) refers 
to all the n-particle self energies in the number occupation subspace (I ⊗ n̂j ) of state j , and 
appear along the diagonal of the Hamiltonian. Again, for the case of four Fermi Hamiltonian 
(H 4)

T rN(H
4,D
(N)

n̂j ) =
∑

i

hini +
∑
ij

Vij ninj , (34)

i.e., it contains the one-particle self-energy and two-particle correlation energies.

3.5. Origin of the quantum fluctuation scales ω̂(j)

The Hamiltonian can, very generally, be decomposed into three parts

H(j) = HD
(j) + H

X,j

(j) + H
X,j̄

(j) , (35)

where the number diagonal part of the Hamiltonian (HD
(j)) is associated with n-particle self en-

ergies, while the term HX,j

(j) represents quantum fluctuations in the occupation number of state 
j , i.e., n-particle scattering induced coupling between the state j and the other {1, . . . , j − 1}
states (shown via the black line labelled by ‘a’ in Fig. 3). Finally, the term HX,j̄

(j) represents cou-
pling among the other degrees of freedom {1, . . . , j − 1} (shown via the orange circle in Fig. 3). 
Following eq. (7) and eq. (8) an explicit form for the quantum fluctuation operator ω̂j can be 
derived
14
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Fig. 4. An example describing the quantum fluctuations originate from the coupling of 3 electronic states with the state 
j via off-diagonal Hamiltonian blocks. The fluctuation operator ω̂ then describes the energy scales ω1

(3)
, ..., ω8

(3)
for 

occupation number fluctuations generated about the 23 = 8 number diagonal configurations of the coupled states, with 
blue/white filled circles representing occupied/unoccupied states respectively.

ω̂(j) = HD
(j−1) + �H

X,j̄

(j) . (36)

The two components of ω̂j encode the renormalisation of different aspects of the remaining 

coupled degrees of freedom {1, j − 1}: the first (�H
X,j̄

(j)
= H

X,j̄

(j−1)
− H

X,j̄

(j)
) corresponds to the 

renormalization of various scattering vertices, and the second (HD
(j−1)

) to the renormalization of 
various n-particle self energies.

The operator ω̂(j) has 2j−1 eigenvalues (ωi
(j)) corresponding to the 2j−1 occupation number 

configurations for the remaining j − 1 coupled single-electron states, and these are determined 
as the RG proceeds. Fig. 4 illustrates the 8 configurations of three electronic states labelled by 
the associated quantum fluctuation energyscales ωi

(j) of a 4th state’s (labelled j ). In this way, the 
renormalisation procedure outlined above is a multireference method, i.e., the RG steps resolve 
the multiple energyscales for quantum fluctuations in an iterative fashion.

From the form of the operator ω̂(j), we can also obtain its RG flow equation

�ω̂(j) = �HD
(j−1) + �H

X,j̄

(j−1) − �H
X,j̄

(j) . (37)

This flow equation naturally encodes the interplay of the RG dynamics of the Hamiltonian (seen 
from the second order discrete derivative of the off-diagonal component’s HX,j̄ ) with the RG dy-
namics of the quantum fluctuations (ω). In this way, we realise the bulk of the EHM as manifestly 
possessing non-trivial quantum as well as RG dynamics [57–59].

Another important outcome of the decoupling procedure can now be understood. The vanish-
ing of the off-diagonal scattering processes via, say,

H
X,j,0→1
(j∗)

|�(j),0j
〉 = 0 (38)

at RG step j and fluctuation scale ωi
(j) = Ei

(j),1j
leads to Ei

(j),1j
becoming the eigenvalue of 

HD
(j),1j

containing all n-particle self energies of the state j . No further decoupling of states can 
take place at this energyscale, signalling that a fixed point of the RG transformations has been 
reached. Indeed, this is the many-body analog of the fixed point condition obtained from the 
similarity RG flow by Glazek and Wilson [77] for the case of a simple discrete Hamiltonian.
15
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3.6. Spectral decomposition of ω̂(j) and η(j)

The operator ω̂(j) can be given a spectral representation (eq. (9)),

ω̂(j) =
2j−1∑
i=1

ωi
(j)Ô(j)(ω

i
(j)) , (39)

where Ô(j)(ω
i
(j)) is a projection operator that projects onto one among the 2j−1 eigenstates of 

the operator ω̂(j). This eigenstates represent many body entangled configurations of the {1, j −1}
single-particle states. With this, a spectral representation can also be found for the e-h transition 
operator,

η
†
(j) =

∑
i

η
†
(j)(ω

i
(j))Ô(j)(ω

i
(j)) ,

η
†
(j)(ω

i
(j)) = 1

ωi
(j) − T rj (H

D
(j)n̂j )

c
†
j T rj (H(j)cj ) (40)

Thus, η†
(j)

(ωi
(j)

) represents the collection of all scattering processes that takes the electronic 
state j between the unoccupied and occupied configuration, in turn causing quantum fluctuations 
involving many-body configurations of the coupled {0, j − 1} single-particle states (Fig. 4). The 
term (ωi

(j) − T rj (H
D
(j)n̂j ))

−1 represents the operator Green’s function for the diagonal part of 

the renormalised Hamiltonian (HD
(j)). As HD

(j) is in general a sum of the products of number 
diagonal operators (ni − 1/2) with lengths lying between 1 and N , we will see below that this 
Green’s function plays a key role in determining the hierarchy of RG equations for members of 
the n-particle interaction vertices (eq. (61)).

We can also define a wave-operator (j) = exp(−η
†
(j)), such that |�1j ,i

(j) 〉 = (j)|�(j),i〉. This 
wave-operator is an equivalent non-unitary transformation that can be employed in solving the 
decoupling equations and obtaining the effective Hamiltonian [88]. A similar wave-operator ap-
pears in the generalized Bloch equations and multireference coupled-cluster methods [112–114]
for solving the decoupling equations between two subspaces of many-body configurations.

The spectral decomposition of ω̂ in the form employed in multireference Brillouin-Wigner 
perturbation theory [114,115]

|�(j),1(ω
i
(j)),1j 〉 = η

†
(j)

(ωi
(j))|�(j),0,0j 〉 ,

|�(j),0(ω
i
(j)),0j 〉 = η(j)(ω

i
(j))|�(j),1,1j 〉 . (41)

The multireference nature of the approach allows for the treatment of dynamical fluctuations 
associated with the 2j−1 occupation number configurations of the {1, j} coupled states, i.e., 
it enables the exploration of ground state as well as excited states of the Hamiltonian spectrum 
[116–118]. An important distinction can now be made. In the standard Brillouin-Wigner method, 
the denominator of the frequency resolved e-h transition operator, η†

(j)(ω
i
(j)) contains a many-

body Hamiltonian with off-diagonal terms (of the kind indicated by HX in our formalism). This 
leads to a Dyson series-like expansion of the propagator, whose truncation makes the approach 
perturbative. On the other hand, we have recast the denominator in η†

(j)(ω
i
(j)) such that it contains 

only the number diagonal many-body operator HD
(j) at every RG step. This resolves the problem 

associated with the inversion of a large many-body matrix, allowing the closed form derivation of 
16
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flow equations along multiple many-body configuration channels without the need for truncation 
of any series expansion.

We use the spectral representations of ω̂(j) and η†
(j) to rewrite the Hamiltonian flow equation 

eq. (28) generated via URG

�Ĥ(j) =
2j−1∑
i=1

�Ĥ(j)(ω
i
(j))Ô(j)(ω

i
(j)) ,

�Ĥ(j)(ω
i
(j)) =

(
n̂j − 1

2

)
{c†

j T rj (H(j)cj ), η(j)(ω
i
(j))} . (42)

The dependence of ωi
(j) in �Ĥ(j)(ω

i
(j)) reflects retardation effects in the effective Hamiltonian 

at multiple energyscales, and date back to the early work of Breit [119]. Frequency dependent 
effects have recently also been taken account of within the functional RG approach to strongly 
correlated condensed matter systems [120], as well as in QCD in the form of the dynamical 
renormalisation group formalism of Refs. [121–123].

A multireference formalism leading to effective Hamiltonians at various energy scales de-
serves to be contrasted with the single-reference Wilsonian approach to RG: there, we typically 
obtain only the effective Hamiltonian at low energies via the application of projection operators. 
In our formalism, the lowest energy state for the effective Hamiltonian H(j)(ω

i
(j)) can be ob-

tained from the asymptotic imaginary time (τ ) evolution operation exp(−τH(j)(ω(j),i )) on any 
arbitrary state |�(ω(j),i)〉 belonging to its Hilbert space [124,125]

|�0
(j)(ω

i
(j))〉 = lim

τ→∞ exp(−τH(j)(ω
i
(j)))|�(ωi

(j))〉. (43)

As a fixed point is reached for the Hamiltonian RG flow (i.e., H(j)(ω
i
(j)) → H(j)(ω

i
(j∗)), via 

the condition eq. (22)), the lowest energy state for that spectrum (eq. (43)) |�0
(j)(ω

i
(j))〉 is also 

obtained. In this way, we can explore the spectrum around any fluctuation scale ωi
(j).

3.7. Cluster expansion and hierarchy of RG flow equations

The Hamiltonian operator’s diagonal (HD
(j)

) and off-diagonal (HX
(j)

) parts at a given RG step 
(j) can be written as a closed-form cluster decomposition

H(j) = HD
(j) + HX

(j). (44)

HD
(j) =

2j−1∑
i=1

N∑
n=1

∑
α,α′

{c̃†
α

�2n
αα′(ωi)

2n
c̃α′Ô(ωi)}(j) ,

HX
(j) =

2j−1∑
i=1

amax
j∑

n=1

∑
α,β

{c̃†
α�2n

αβ(ωi)c̃βÔ(ωi)}(j) . (45)

We now clarify the various terms and notations appearing in these equations. The index i is 
associated with the 2j−1 configurations of the coupled j − 1 single-particle states. The index 
n labels the various n-particle (or 2n-point) scattering process, and runs from 1 to N for the 
contributions to HD

(j) for a system of N particles. On the other hand, n runs from 1 to an upper 
limit amax (indicating the highest off-diagonal n-particle vertex possible at the RG step j , as 
j
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Fig. 5. The 2-point �2, 4-point �4 and 6-point �6 scattering vertex tensors. The blue legs represent electronic states, the 
dashed/solid line represents the outgoing/incoming electrons.

discussed in detail in Appendix C) for the contributions to HX
(j)

. The indices α, α′ and β are 
defined as follows: α := {(l, μ)} is an ordered set of n pairs of indices l and μ, where the index 
0 ≤ l ≤ j (the subspace of coupled single-particle states) and μ = 0, 1 refers to either unoccupied 
(0) or occupied (1) state. Thus, the operator c̃†

α refers to a string of n fermionic creation and 
annihilation operators for the 0, . . . , n states in product. The index α′ := {(l, μ̄)}, where 0 ≤ l ≤ j

once again but μ̄ is the complement of μ, i.e., μ̄ = 1, 0 refers to unoccupied (1) and occupied 
(0). Thus, by construction, the operator c̃α′ also refers to a string of n fermionic creation and 
annihilation operators for the 0, . . . , j states in product, and which are the complement to the 
string given by c̃†

α . In this way, the product c̃†
αc̃α′ defines a product of n number operators. Thus, 

the vertex function associated with this term, �2n
αα′(ωi), denotes the magnitude of the diagonal 

n-particle correlation energy HD
(j). The presence of the projection operator Ô ensures a sum over 

each member of 2j−1 many-body configurations. The closed form representation of H eq. (45)
can be interpreted as a tensor network formed from the 2n-point vertex tensors. As shown in 
Fig. 5, the node of each such vertex tensor �2n,(j)

αα′ (ωi) represents the scattering process, while the 
blue legs of the tensors represent the electronic states. The black dashed/solid edges represent the
outgoing/incoming electronic states respectively. The number 2n is the total number of incoming 
and outgoing lines.

The sum over the indices α and α′ is an anti-symmetrised summation over the indices μ and 
μ̄, as can be seen from the following. Under interchange of α and α′, �2n

αα′ satisfies the relation

�2n
αα′ = (−1)

∑n
i=1(μ̄i−μi)�2n

α′α . (46)

This allows the recasting of HD
(j) as a sum over various n-particle vertex terms

c̃†
α

�2n
αα′(ωi)

2n
c̃α′ = �2n

αα′
n∏

s=1

τls , (47)

where τls = (n̂ls − 1
2 ) is the occupation number operator defined in an electron-hole symmetric 

fashion, and 0 ≤ ls ≤ j . We illustrate this representation in an example of a 2-particle correlation 
energy

�4
αα′τl1τl2 = 1

4
�4

αα′

[
n̂l1 n̂l2 − n̂l1(1 − n̂l2) − (1 − n̂l1)n̂l2 + (1 − n̂l1)(1 − n̂l2)

]
. (48)

In the same way, the index β := {(l′, μ′)} refers to an ordered set of n pairs of indices l′ and 
μ′, where the index 0 ≤ l′ ≤ j (the subspace of coupled single-particle states) and μ′ = 0, 1
refers to either unoccupied (0) or occupied (1) state, but with l′ and μ′ being distinct from l
and μ. Then, the product c̃†

αc̃β appearing in HX
(j) defines a product of fermionic annihilation and 

creation operators that transfer electrons between the sets of states given by {(l, μ)} and {(l′, μ′)}. 
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Naturally, the vertex function associated with this term, �2n
αβ(ωi), denotes the magnitude of the 

off-diagonal element for n-particle (or 2n-point) scattering.
In the off-diagonal n-particle terms within HX

(j), the ordering of any given creation and an-
nihilation operator string can be seen as a permutation of the normal ordered form arranged in 
an ascending sequence of the entries of the labels α and β . The sign of this permutation can be 
accommodated within the n-particle vertex

�2n
αβ = sgn(Pαβ)�2n

(α0β0)
, (49)

where (α0β0) represents a two-level sorting of the indices α and β . Pαβ represents the permuta-
tion operation on the sorted list. The first involves a sorting of the labels μ and μ′ in a descending 
fashion: this creates a normal ordered string, i.e., c† operators followed by c operators. The sec-
ond sorting involves a further arrangement of the labels l and l′ in ascending order. The sign of the 
permutation generated in this process, sgn(Pαβ), nullifies the fermion sign of the unsorted list. It 
can also be seen that the largest off-diagonal operator string has a length of aj . We have shown 
in Appendix C that aj has a non-monotonic behaviour with the RG step j : it increases initially, 
peaks and then falls till the fixed point is reached. A similar behaviour is displayed in Fig. 7 for 
the total number of off-diagonal terms with RG step j (eq. (C.4)). Further, the off-diagonal parts 
of the Hamiltonian can be seen to describe both number conserving as well as non-conserving 
terms. For example, the n = 1 vertices with α = (l1, 1), β = (l2, 0) and α′ = (l1, 1), β ′ = (l2, 1)

correspond to the following number conserving and non-conserving terms respectively

c̃†
α�2

αβ c̃β = �2
αβc

†
l1
cl2 , c̃

†
α′�2

α′β ′ c̃β ′ = �2
α′β ′c

†
l1
c

†
l2
. (50)

In order to obtain the vertex RG flow equations from the renormalized Hamiltonian, we decom-
pose it into a sum of strings comprised of number diagonal and off-diagonal operators. This 
decomposition is carried out as follows. First, we write one spectral component of the rotated 
Hamiltonian H(j) using eq. (45), i.e., H(j)(ω

i
(j)) as a cluster expansion of 2-point, 4-point, 6-

point and higher order vertices

H(j)(ω
i
(j)) = H 2

(j)(ω
i
(j)) + H 4

(j)(ω
i
(j)) + H 6

(j)(ω
i
(j)) + . . . . (51)

The term H 2
(j)(ω

i) can, very generally, be decomposed into diagonal and off-diagonal parts, 

H 2
(j)

= H
2,D
(j)

+H
2,X
(j)

, and each of the two parts renormalized via contributions from all 2n-point 

vertices. For instance, the contribution to H 2,D
(j) is given by

H
2,D
(j)

=
(∑

l

�
2,(j)

αα′ (ωi
(j))σl + 2

∑
α,γ

{�2
αγ G2

γ γ ′�2
γα′ }(j)(ωi

(j))τj σl

+ 8
∑
α,γ

{�4
αγ G6

γ γ ′�4
γα′ }(j)(ωi

(j))τj σj1σj2σl

+ 32
∑

{�6
αγ G10

γ γ ′�6
γα′ }(j)(ωi

(j))τj σj1σj2σj3σj4σl + . . .

)

α,γ
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×
(

1 +
N∑

k1=j+1

τk1 +
N∑

k1 �=k2∈{j+1,N}

τk1τk2 + ..

)

=
∑

l

�
2,(j−1)

αα′ τl

⎛
⎜⎜⎝

N−j+1∑
i=1,

{k1,...,ki }

i∏
l=1

τkl

⎞
⎟⎟⎠ , (52)

where

�
2,(j−1)

αα′ (ωi
(j)) = �

2,(j)

αα′ (ωi
(j)) +

∑
α,γ

{�p1
αγ G

2p1−2
γ γ ′ �

p1
γ ′α′ }(j)(ωi

(j)) , (53)

G
2p1−2
γ γ ′ is the Green’s function containing the correlation energies of p1 − 1 particle labelled 

j1, . . . , jp1−1

G
2p1−2
γ γ ′ = 2p1−1 ∏p1−1

s=1 σjs τj

ωi
(j) −

p1−1∑
α,l=1

(�
2l,(j)

αα′ (ωi
(j)) + �

2l+2,(j)

αα′ (ωi
(j))τj )

∏l
s=1 σns

, (54)

and the operators τki
= nki

− 1
2 in eq. (52) represent decoupled degrees of freedom that commute 

with the Hamiltonian H(j). Note, however, that the operators σns = nns − 1
2 do not commute with 

H(j) as they belong to the coupled space, and the labels n1, ..., nl ∈ j1, ..., jj lie within 1, ..., j .
Similarly, the contribution to H 2,X

(j) is given by

H
2,X
(j) =

(∑
l

�
2,(j)
αβ (ωi

(j))c
†
l cl′ + 2

∑
α,γ

{�2
αγ G2

γ γ ′�2
γβ}(j)(ωi

(j))τj c
†
l cl′

+ 8
∑
α,γ

{�4
αγ G6

γ γ ′�4
γβ}(j)(ωi

(j))τj σj1σj2c
†
l cl′

+ 2
∑
α,γ

{�6
αγ G10

γ γ ′�6
γ ′β}(j)(ωi

(j))τjσj1σj2σj3σj4c
†
l cl′ + ..

)

×
(

1 +
N∑

k1=j+1

τk1 +
N∑

k1 �=k2∈{j+1,N}

τk1τk2 + . . .

)

=
∑
l,l′

�
2,(j−1)
αβ c

†
l cl′

⎛
⎜⎜⎝

N−j+1∑
i=1,

{k1,...,ki }

i∏
l=1

τkl

⎞
⎟⎟⎠ , (55)

where

�
2,(j−1)
αβ (ωi

(j)) = �
2,(j)
αβ (ωi

(j)) + 2p1−1
∑
α,γ

{�p1
αγ G

p1+p2−2
γ γ ′ �

p2
γ ′β}(j)(ωi

(j)) . (56)

Similarly, the renormalisations of H 4 and H 6 are given by
(j) (j)
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Fig. 6. The RG evolution of the 2n-point vertices �2n,(j) . The green disk with multiple legs in black/blue (shown via a 
span of dots) on the left hand side of the equation represents a 2n-point vertex (�2n,(j)), while on the right, it represents a 
p1-point (�p1,(j)) and a p3-point vertex (�p3,(j)) respectively. The blue disk (sandwiched between the two green disks) 
represents a 2p2-point Green’s function (G2p2,(j)) in which the blue legs represent the states involved in the scattering 
process. The blue legs of the Green’s function G2p2,(j) are shown to be contracted with the legs of the green disks (also 
marked in blue), so as to generate the tensor legs of the 2n-point vertex. The index p1 and p3 are summed over, as 
discussed in the main text.

H 4
(j) =

⎡
⎢⎢⎣∑

l1.l2

�
4,(j−1)

αα′ σl1σl2 +
∑
l1,l2,
l3,l4

�
4,(j−1)
αβ c

†
l1
c

†
l2
cl3cl4

⎤
⎥⎥⎦
⎛
⎜⎜⎝

N−j+1∑
i=1,

{k1,...,ki }

i∏
l=1

τkl

⎞
⎟⎟⎠ , (57)

H 6
(j) =

(∑
l1.l2

�
6,(j−1)

αα′ σl1σl2σl3+
∑

l1,l2,l3
l4,l5,l6

�
6,(j−1)
αβ c

†
l1
c

†
l2
c

†
l3
cl4cl5cl6

)⎛⎜⎜⎝
N−j+1∑

i=1,
{k1,...,ki }

i∏
l=1

τkl

⎞
⎟⎟⎠ , (58)

where �4,(j−1)
αβ and �6,(j−1)

αβ are given by

�
4,(j−1)
αβ (ωi

(j)) = �
4,(j)
αβ (ωi

(j)) + 2p1−1
∑
α,γ

{�p1
αγ G

p1+p2−4
γ γ ′ �

p2
γ ′β}(j)(ωi

(j)) , (59)

�
6,(j−1)
αβ (ωi

(j)) = �
6,(j)
αβ (ωi

(j)) + 2p1−1
∑
α,γ

{�p1
αγ G

p1+p2−6
γ γ ′ �

p2
γ ′β}(j)(ωi

(j)) . (60)

We now present one of the important results of our work. Using the method of induction, 
we generalize the expressions for the 2-, 4- and 6-point vertex RG flow eqns. eq. (53), eq. (55), 
eq. (59) and eq. (60) in order to recast the Hamiltonian flow equation in terms of an entire 
hierarchy of 2n-point vertex RG equations �2n

αβ (see Fig. 6)

��
2n,(j)
αβ (ωi) =

2amax
j∑

p1,p3

∑
γ

{�p1
αγ G

2p2
γ γ ′�

p3
γ ′β}(j)(ωi) , (61)

where α := {(l, μ)} is an ordered set of p1 −p2 pairs of indices, and l and μ are defined precisely 
as earlier. The indices γ := {(l′, μ′)} and γ ′ := {(l′, μ̄′)} are ordered sets of p2 pairs of indices, 
where l′ and μ′ are defined similarly to l and μ, and μ̄′ is the complement of μ′. The index 
β := {(l′′, μ′′)} is also an ordered set of p3 − p2 pairs of indices, where l′′ and μ′′ are defined 
similarly to l and μ. The indices p1 and p3 take value from the set of even positive integers lying 
in [n + 1, 2amax

j ] and [2, 2amax
j ] respectively while p2 takes values among the set of all positive 

integers lying in [1, 2amax
j − n], such that p1 + p3 − 2p2 = 2n.

The Green’s function G2p2,(j)

γ γ ′ (ωi
(j)) contains all correlation energies (�2k,(j)

δδ′ ) for 1 ≤ k ≤ p2
particles

G
2p2,(j)

γ γ ′ =
(

ωi
(j) −

p2∑∑
′
�

2k,(j)

δδ′

k∏
(n̂ls − 1

2
)

)−1

2p2

p2∏
(n̂ls − 1

2
) , (62)
k=1 δδ s=1 s=1
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Fig. 7. Variation of the total number of off-diagonal terms Kj (red pluses, eq. (C.4) defined in Appendix C) with RG 
step j . The analysis has been carried out for N = 50 electronic states and a0 = 4. The dimensionality is given by 
dim(C50 = 250).

where the indices δ := {(l, μ)} and δ′ := {(l, μ̄)} are ordered sets of k pairs of indices, l and 
μ are defined as earlier, and μ̄ is the complement of μ. The index ls denotes the entries of l
that appear within δ. As shown in the diagrammatic representation of Fig. 6, various 2p2-point 
Green’s functions connect the p1- and p3-point interaction vertices in renormalising the 2n-
point vertex. The appearance of the frequency dependent correlation energies within the Green’s 
function leads to two non-perturbative features of the RG transformations. First, the interplay of 
the multireference quantum fluctuation scale ωi

(j) and the correlation energies in the vertex RG 
flows eq. (61) enables the distillation of the relevant vertices from the irrelevant ones. Second, 
following the discussion of eq. (22), the fixed points of the RG equations are given by the poles of 
eq. (62) and allows the fixed point effective Hamiltonians to be derived. In subsequent sections, 
we will demonstrate the fixed point effective Hamiltonians that arise from the RG treatment of 
various microscopic models.

It should be noted that the feedback from correlation energies and the hierarchical nature of 
RG flow equations are also features of the FRG scheme [120]. For instance, the recent multi-
loop functional RG scheme [14,15] contains a systematic way of dealing with various 2n-point 
vertices, but the hierarchy of flow equations typically requires a truncation. The unitary RG for-
mulation for the Hamiltonian presented here does not, however, need any truncation. Instead, its 
non-perturbative nature overcomes the limitations of both a coupling expansion [65] as well as a 
cluster expansion [64] prevalent in other Hamiltonian RG formulations.

3.8. Relation between quantum (ω) and thermal (T ) fluctuation scales

In the RG formalism described so far the nature of the renormalized Hamiltonian at an RG step 
j is intrinsically associated with an emergent quantum fluctuation scale ω(j) eq. (39). Importantly 
the fluctuation scale determines, whether the low energy spectrum is gappedor gapless at the IR 
fixed point. This energy scale ω(j) was shown in [1] to be equivalent to a thermal energy scale 
kBT upto which a given fixed point theory H ∗(ω) and its low energy Hilbert space persist. This 
relation is derived in Ref. [1,2] and has the form
22
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Fig. 8. Hamiltonian (or vertex) tensor network representation of URG. The blue legs represent the holographic boundary 
made of the physical fermionic qubits coupled via the bare 2n-point vertex tensors. The yellow blocks represent nonlocal 
unitary disentanglers that iteratively map the boundary qubits to the bulk decoupled qubits (on left of each yellow block) 
with energies varying from high (light red) to low (deep red). Colour variation of the input legs into each subsequent 
unitary operator (yellow block) depicts the variation in the nonlocal structure of the vertex tensor network within the 
remnant coupled states as the RG flows from UV to IR.

T = 1

kBπ2P
∞∫

−∞
dω′ �∗(ω)

ω − ω′ . (63)

The above relation shows that the finite lifetime τ of the single-particle states can be viewed as 
an effective temperature scale arising out of the unitary disentanglement: it is the highest temper-
ature upto which the one-particle excitations can survive. Beyond it, the one-particle excitations 
are replaced by 2e-1h composite excitations. We will see in later sections that the RG transfor-
mations lead generically to two scenarios: the first involves the iterative block diagonalisation 
procedure reaching a fixed point with a gapless Fermi surface, and the second the reaching of 
a fixed point involving the gapping of the Fermi surface via the formation and condensation of 
bound states. The temperature scale we have just obtained has a meaning for both scenarios. For 
the first, it indicates the lifetime of the gapless excitations in the neighbourhood of the Fermi 
surface. On the other hand, it indicates the regime of validity of the emergent condensate at finite 
temperatures for the second scenario.

3.9. Tensor network representation of the unitary RG

Similar to the case of SBRG [65], the unitary transformation based RG shown in eq. (23)
preserves the Hilbert space (eq. (24)) and the spectrum. Thus, by following Ref. [55,126], we 
demonstrate that this RG has an EHM interpretation in the form of an emergent vertex tensor 
network (see Fig. 8). In another work Ref. [3] we have shown that indeed the entanglement 
renormalization group flow generated by the unitary transformations U(j) also describes an EHM 
network. In the next section below we will formulate the many body coefficient (i.e. a tensor) 
RG flow generated by URG.

In the RG step j , the unitary transformation U(j) (yellow block in Fig. 8) causes the disen-
tanglement of precisely one electronic state (blue leg enclosed by a dotted rectangle) from the 
rest of the electronic states (blue legs). In this process, U(j) leads to the renormalization of the 
Hamiltonian and its associated eigenbasis. This causes the blue physical electronic states (i.e., 
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the occupied/unoccupied basis of fermionic qubits) from the left of the holographic boundary to 
be mapped onto the red emergent bulk physical qubits. The initially entangled boundary qubits 
(blue legs) are arranged in descending order of the single-electron energy contribution εi from 
left to right, i.e., εN ≥ . . . ≥ ε1. The Hilbert space of the bulk qubits is spanned by Pauli gates 
τ

(j)
x,i , τ (j)

y,i and τ (j)
i ).

The colour variation of the disentangled qubits from light (high energy) to deep red (low 
energy) in proceeding between the various layers of Fig. 8 represents the RG flow from UV 
(high energy physical qubits) to IR (low energy physical qubits). This also reflects the fact that, 
due to the nonlocal nature of the unitary transformations, the nature of entanglement within the 
remnant coupled states morphs along with disentanglement of the boundary qubits. As discussed 
in an earlier section, this results from the fact that the unitary gates we have presented here belong 
to a generalised notion of the Clifford gates discussed in Ref. [89]: at every RG step, the Pauli 
group morphs according to eq. (25). In this way, the tensor network structure shown in Fig. 8
represents the RG flow of the entire set of 2n-point vertex tensors (eq. (61))

4. Geometry of eigenbasis renormalization

Having formulated the RG procedure for the Hamiltonian, we will now provide a geometric 
view of many-body eigenbasis renormalization in terms of the RG flow of Fubini-Study quantum 
distances [127] between many body states. As discussed earlier, the bare (or starting) Hamilto-
nian H(N) of the RG flow has N coupled electronic degrees of freedom, with and eigenbasis of 
2N eigenstates B(N) = {|�i〉, i ∈ [1, 2N ]} that satisfy the eigenvalue relation

H(N)|�i〉 = Ei |�i〉 . (64)

The eigenbasis B(N) is renormalized via the same unitary rotation that block diagonalizes 
H(N) (eq. (4))

H(j−1) = U(j)H(j)U
†
(j) , B(j) = U(j+1)B(j+1) . (65)

This ensures the spectrum preserving nature of RG flow

H(j)|�i
(j)〉 = Ei |�i

(j)〉 ⇒ H(j−1)|�i
(j−1)〉 = Ei |�i

(j−1)〉 . (66)

We have already seen that the Hamiltonian is block diagonalized in the occupation number basis 
of j , i.e., [H(j−1), n̂j ] = 0, such that the occupation eigenvalues of n̂j (1j and 0j ) are good 
quantum numbers that label the renormalized eigenstates. By writing the Hamiltonian in terms 
of diagonal (HD) and off-diagonal (HX) parts as before, the renormalized eigenstates will have 
a renormalized value of the quantum distance measured with respect to the separable eigenstates 
(φl) of HD . This allows us to observe the geometry of eigenbasis renormalization. In this way, 
by using Shimony’s geometric measure of entanglement [128], we will show that the quantum 
distance RG will guide the renormalization flow of many-body entanglement.

4.1. Eigenbasis renormalization scheme

The iterative block diagonalization of the Hamiltonian and concomitant renormalisation of 
the eigenbasis (eq. (65)) partitions B(j) into a direct sum of two halves (see Fig. 9) labelled by 
the occupation number of the decoupled state j + 1

B(j) = B0j+1 ⊕B1j+1
. (67)
(j) (j)
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Fig. 9. The RG evolution of the Hamiltonian’s eigenbasis B(N) (blue disk, top left) via the disentangling unitary op-
erations. Upon the application of the first unitary operation U(N) , B(N) bifurcates into two blue semicircular disks 
representing the eigenbasis of the entangled electronic states B0N

(N−1)
, B1N

(N−1)
labelled by the occupation of the disen-

tangled state. The red handles (on the blue semicircular disks) with filled (black)/unfilled (white) circles represent the 
occupied (1N )/unoccupied (0N ) configurations of the disentangled state. Upon subsequent application of the next unitary 
operation U(N−1) , the blue disk further bifurcates into four quadrants, and so on.

As the RG procedure is iterative, every RG step halves the sub-bases obtained at the earlier step 
into two equal parts. As observed earlier, the subparts of the renormalized eigenbasis B(j) can 
be denoted by the collection of occupation numbers of all the decoupled states (Qj , {j + 1, N}), 
represented by blue and red handles with filled (1l)/unfilled (0l) circles in Fig. 9). These sub-

spaces satisfy the following completeness relation: B(j) =⊕
Qj

BQj

(j) , where Qj labels the 2N−j

number diagonal configurations that complete the separable subspace. The configurations of the 
separable subspace are visualised in Fig. 9 in terms of the filled/unfilled circles on the handles 
attached to any one light blue subpart. The state |Qj 〉 which is a collection of the separable elec-
tronic state occupation numbers is composed of a string of 1’s and 0’s, and can be represented as a 
tensor. This tensorial representation is visualised in Fig. 10(c) by treating the occupied electronic 
state configurations as legs of the object marked 1 in red.

The iterative decoupling of the eigenbasis into smaller sub-bases (Fig. 9) indicates that the 
renormalized eigenstates at RG step j possess an interaction-driven many-body entanglement 
that is limited to within the subspace of coupled states labelled {1, j} (shown by light blue filled 
regions in Fig. 9). On the other hand, the entanglement of the decoupled states {j + 1, N} is 
limited to that arising from the Pauli exclusion principle for fermions. This allows us to write a 
many-body eigenstate at RG step (j), |�i,r

(j)
〉, labelled by pair of indices (i, r). Here, the index 

r indicates the configurations belonging to the separable (or decoupled) subspace (Qr
j ), and 

i indicates the many-body configuration involving the states {1, j} that are still coupled. The 
configuration of coupled states is then described uniquely by the index α1 (defined similarly 
to α in (eq. (61)), α1 := {(l, μ)} is an ordered set of m pairs of indices, 1 ≤ l ≤ j and μ = 1
throughout. Thus, α1 denotes the set of coupled occupied single-particle states {l1, . . . , lm}, as 
shown in Fig. 10c.

Thus, very generally, we can write the eigenstates |�i,r
(j)

〉 as sum over all α1 configurations

|�i,r
(j)〉 =

∑
Ci,(j)

α1
|α1〉|Qr

j 〉 . (68)

α1
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Fig. 10. (a) The entangled subspace AN−1 resulting from the partial inner product of the eigenstates in B(N−1) with 
the occupation states 1N , 0N of the disentangled electronic state N . (b) The shrinking entangled subspace A(N) →
A(N−1) → A(N−2) upon the action of successive unitary operations. (c) The eigenstate of renormalized Hamiltonian 
|�i,r

(j)
〉 is represented as a sum over tensor coefficients Ci,(j)

α , where α := (l1, ..lm) are the legs of tensors labelling the 
occupied states. This state is represented as a direct product of |�i

(j)
〉 ∈ Aj belonging to the space of entangled states, 

and |Qr
j
〉 belonging to the separable subspace.

The coefficient Ci,(j)
α1 is a tensor with m legs representing the superposition weight of the con-

figuration of occupied single-electron states. The wave function at RG step (j) (Fig. 10c) is 
therefore a summation of all such tensors chosen from among the remaining j coupled states. 
The index α1 is arranged as l1 < l2 < . . . < lm, such that an even/odd permutation of this order 
due to electron exchanges will be compensated by a signature (+1/ − 1) in the coefficient Ci,(j)

α1

C
i,(j)

Pα1
= eiπnPCi,(j)

α1
, (69)

where nP is the no. of electron exchanges in the permutation. The subspace of coupled states 
A(j) (Fig. 10(a)) can be removed from eigenbasis partitions B(j) obtained at RG step j by taking 
a partial inner product of |�i,r

(j)〉 with the configurations of the decoupled states (|Qi
j 〉)

A(j) = {|�i
(j)〉 := 〈Qr

j |�i,r
(j)〉, r = [1,2N−j ], i = [1,2j ]} . (70)

This partial inner product procedure preserves orthogonality between the basis elements of A(j)

(Fig. 10(a)).
In this way, at every RG step, one single-electron state is decoupled from the coupled sub-

space Aj (Fig. 10b) and added to the separable subspace Qj . This leads to the partitioning of 
the occupation number eigenbasis B (Fig. 9), such that there is no superposition between states 
belonging to different occupation number sub-bases of the decoupled single-electron state. This 
is the many-body disentangling procedure in our renormalization group formalism. It should be 
noted that similar disentanglement procedures are employed in the Tensor Network Renormal-
ization and the Multiscale Entangled Renormalization Ansatz approaches [129–131], albeit for 
removing short-ranged many-body entanglement. In contrast, the unitary decoupling operation 
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eq. (4) in our method removes every type of entanglement between a given electronic state j
and all others, and the unitary operations comprising the corresponding tensor network are thus 
non-local in nature. This will be presented in the section below.

An important feature of the vertex tensor network shown in Fig. 8 and the EHM network 
(generated from entanglement RG of correlated electron systems) [3] must now be discussed. 
Implicit to the construction of this tensor network is the fact that it has another dimension ωi , 
i.e., an eigenvalue of the quantum fluctuation operator ω̂|�i〉 = ωi |�i〉 (eq. (39)) correspond-
ing to the eigenstate �i . The 2N eigenvalues of ω̂ correspond to the 2N orthogonal directions 
encoding the entire many-body eigenbasis B. Separate tensor networks are then generated by 
projecting the master tensor network shown in Fig. 8 along each of these 2N directions. The 
nature of the individual projected tensor network encodes the entanglement content of the many-
body eigenstate |�i〉 it describes. For instance, a projected tensor network corresponding to a 
gapless eigenstate will possess equal numbers of boundary and emergent bulk qubits [55]. On 
the other hand, a projected tensor network corresponding to a gapped eigenstate will possess 
a lesser number of emergent bulk qubits than the boundary qubits and the remnant will form 
a emergent tensor network with finite entanglement [3]. In geometrising these projected tensor 
networks, one can employ quantum information theoretic measures such as mutual information 
in computing the information geodesics (shortest distance) between any pair of boundary qubits 
[3,39,132,133].

4.2. Disentangling single-electron occupation number states

The many-body eigenstate |�i
(j)〉 within the coupled subspace Aj is transformed at RG step 

j via the unitary evolution equation

|�i
(j−1)〉 = U(j)|�i

(j)〉. (71)

Inspired by the exponential form of the unitary operator U(j) = exp(π
4 (η

†
(j) − η(j))), we write 

the state |�i
(j)〉 as

|�i
(j)〉 = 1√

2
(j)|�i,0j

(j)
〉 , (72)

where (j) = exp(−η
†
(j)) is the wave operator discussed below eq. (40), and |�i,0j

(j) 〉 denotes the 
many-body state with the decoupled electronic state j being unoccupied. The normalization fac-
tor above can be determined from the e-h transition operator relations given in eq. (27). Further, 
the e-h transition operator relations (η†

(j))
2 = 0 and n̂j η

†
(j)(1 − n̂j ) = η

†
(j) allow a remarkable 

simplification of the wave operator: (j) = 1 − η
†
(j). Thus, we find that (j) contains the entan-

glement content of the state j with the rest of the coupled states.
Further, using eq. (29) and the form of the wave operator obtained just above, eq. (71) simpli-

fies to

|�i
(j−1)〉 = 1√

2
U(j)̂j |�i,0j

(j) 〉 = |�i,0j

(j) 〉 . (73)

This confirms the disentanglement procedure from the action of the unitary operator on the eigen-
states, and is a complementary view of basis partitioning (eq. (65)). Finally, we can use eq. (73)

together with eq. (72) to obtain the renormalisation of the many-body eigenstate |�i,0j

(j) 〉 in going 
from RG step j to step j − 1
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|�i,0j−1
(j−1) 〉 = √

2−1
(j)|�

i,0j

(j) 〉 , (74)

where −1
(j−1) = eη† = 1 + η†. A renormalisation of the eigenstate |�i,1j

(j) 〉 can be obtained simi-
larly

|�i,1j−1
(j−1) 〉 = √

2(
†
(j))

−1|�i,1j

(j) 〉 . (75)

4.3. RG flow of entanglement within subspace Aj

We will now quantify the RG flow of entanglement through measures like Shimony’s ge-
ometric measure and entanglement entropy. The flow is manifested in the renormalization of 
the tensors comprising the configuration space expansion of the states |�i

(j)〉 belonging to the 
coupled (or entangled) subspace (Aj )

|�i
(j)〉 =

∑
α1

Ci,(j)
α1

|α1〉 +
∑
β1

C
i,(j)
β1

|β1〉 , (76)

where α1 := {(l, μ)} is an ordered set of m pairs of indices, 1 ≤ l ≤ j , μ = 1 throughout, and 
one of the occupied single-particle states is the state j . Similarly, β1 := {(l, μ)} is an ordered 
set of m pairs of indices, 1 ≤ l ≤ j − 1, μ = 1 throughout, i.e., the occupied states do not in-
clude the state j . The tensor coefficients Ci,(j)

α1/β1
fulfil the normalization condition: 〈�i

(j)|�i
(j)〉 =∑

α1,β1

(
|Ci,(j)

α1 |2 + |Ci,(j)
β1

|2
)

= 1. The renormalization of tensor coefficients Ci,(j)
α1/β1

proceeds 
via the wave operator operating on the eigenstates. Using the decomposition of the wave opera-
tor (j) (in terms of eqs. (45) and eq. (39)) in eq. (75), we obtain a set of tensor flow equations 

for �C
i,(j)
β1

= C
i,(j−1)
β1

− C
i,(j)
β1

�C
i,(j)
β1

= (
√

N(j) − 1)C
i,(j)
β1

−
√

N(j)

amax
j∑

n=1

∑
α1,α

′
1,β

′
1

sgn(α1, α
′
1, β

′
1){�2n

β ′
1α1

G
2p̄

α1α
′
1
Ci

α′
1
}(j),

(77)

where N(j) is the normalization coefficient for the RG step j given by

(N(j))−1 =
∑
β1

1

2

[
C

i,(j)
β1

−
amax
j∑

n=1

2n∑
p̄=1

∑
α1,α

′
1,β

′
1

sgn(α1, α
′
1, β

′
1){�2n

β ′
1α1

G
2p̄

α1α
′
1
Ci

α′
1
}(j)

]2

, (78)

sgn(α1, α′
1, β

′
1) is a fermion sign function arising from electron exchanges due to n-particle scat-

tering processes, and the various indices are described as follows. The index α′
1 := {(l, μ)} is 

an ordered set of m̄ + p̄ pairs of indices, 1 ≤ l ≤ j , μ = 1 throughout, and one of the occupied 
single-particle states is the state j . On the other hand, α1 := {(l, μ)} is an ordered set of p̄ pairs of 
indices, 1 ≤ l ≤ j , μ = 0 throughout. Clearly, the set of values of l taken within α1 is contained 
within the set of values of l taken within α′

1. In this way, the indices α1α
′
1 in the Green’s function 

G
2p̄

α1α
′
1

indicate the p̄ single-electron states undergoing a scattering via the vertex �2n
β ′

1α1
, and the 

sum over the index α1 involves only these p̄ single-electron states. In turn, the index β ′
1 within 

the vertex �2n
β ′

1α1
is an ordered set β ′

1 := {(l, μ)} of p = 2n − p̄ pairs of indices, 1 ≤ l ≤ j − 1, 

μ = 1 throughout, such that the occupied single-particle states do not include the state j . Finally, 
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the index that labels the flow equation of the tensor coefficient, β1 := {(l, μ)}, is an ordered set 
of m̄+p pairs of indices, 1 ≤ l ≤ j − 1, μ = 1 throughout, such that the occupied single-particle 
states do not include the state j . The index β1 emerges from the convolution of the indices α1, α′

1
and β ′

1, i.e., it is defined as β1 := (β ′
1 ∪ α′

1) − ᾱ1, i.e., a set formed from the union of the sets β ′
1

and α′
1 and from which a set ᾱ1 has been removed, where ᾱ1 := {(l, μ̄)} is an ordered set of p̄

pairs of indices, 1 ≤ l ≤ j , μ̄ = 1 throughout. Note that the set of values of l with α1 is the same 
as those within ᾱ1. However μ̄ values in ᾱ1 are different from μ in α1.

We will now describe the fermion sign function sgn(α1, α′
1, β1). For this, we write the state 

|α′
1〉 (that contributes to the coefficient tensor flow eq. (77)) in second quantized notation as

|α′
1〉 = |lm̄+p̄ . . . l1〉 = c

†
lm̄+p̄

. . . c
†
l1
|0〉 , (79)

where l1 < l2 < . . . < lm̄+p̄−1 < lm̄+p̄ belong to the ordered set α′
1. Similarly, the set α1 =

{(bp̄, 0), . . . , (b1, 0)} and β ′
1 = {(ap, 1), . . . , (a1, 1)} (see also below eq. (77)). As α1 ⊂ α′

1, the 
label bi in α1 corresponds to a label lk in the list β ′

1. This information will be useful below in 
counting the electron exchanges. Now, the phase collected from counting the electron exchanges 
in the n-particle scattering process is accounted for as follows

�
2n,(j)

β ′
1α1

c†
ap

. . . c†
a1

cbp̄
. . . cb1 |α′

1〉,

= exp

(
iπ

b1∑
i=1

ni

)
�

2n,(j)

β ′
1α1

c†
ap

. . . c†
a1

cbp̄
. . . cb2 |lm̄+p̄ . . . lk+1lk−1 . . . l1〉,

= exp

⎛
⎜⎜⎝iπ

b2∑
i=1,
i �=b1

ni

⎞
⎟⎟⎠

× exp

(
iπ

b1∑
i=1

ni

)
�

2n,(j)

β ′
1α1

c†
ap

. . . c†
a1

cbp̄
. . . cb3 |lm̄+p̄ . . . lk′+1lk′−1 . . . lk+1lk−1 . . . l1〉 .

(80)

In the expression for the phase exp
(
iπ

∑b1
i=1 ni

)
, the number ni = 1 if i ∈ α′

1 and ni = 0 other-

wise. The labels b1 and b2 in set α1 correspond to labels k and k′′ in set α′
1. In this way, the state 

resulting from the operation of the entire string of annihilation operators comprising the 2n-point 
scattering vertex is given by

�
2n,(j)

β ′
1α1

c†
ap

. . . c†
a1

cbp̄
. . . cb1 |α′

1〉 =
p̄∏

k=1

Pk�
2n,(j)

β ′
1α1

c†
ap

. . . c†
a1

|α′′
1 〉 , (81)

where index α′′
1 = {(l, μ)} is an ordered set of m̄ pairs of indices with μ = 1. The net phase 

comprising the operation of p̄ annihilation operators is given by 
∏p̄

k=1 Pk , where

Pk = exp

⎛
⎝iπ

bk∑
i∈α′

1−ρ

ni

⎞
⎠ , ρ = {b1, . . . , bk−1} . (82)

In the above summation, the index i is restricted to the set α′
1 − ρ, as electrons in set ρ are 

annihilated. Finally, the net electron exchange phase generated by the string of electron creation 
and annihilation operators is
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sgn(α1, α
′
1, β

′
1) =

p∏
k=1

Qk

p̄∏
k=1

Pk , (83)

where Qk is given by

Qk = exp(i(k − 1)π) exp

⎛
⎜⎜⎝iπ

ak∑
i=1,

i /∈γ∪α1

ni

⎞
⎟⎟⎠ , (84)

and the index γ = {a1, . . . , ak} is a set of labels for the states where electrons are created. In the 
expression for Qk , the number ni = 1 if i ∈ α′′

1 and ni = 0 otherwise.
We have seen earlier that the action of the unitary operator U(j) on state |�i

(j)〉 (eq. (71)) led 
to a subspace rotation of the state onto one of the occupation number configurations of state j , 
such that the projection along the other occupation number configuration axis is precisely zero

|�i,0j

(j) 〉 = 1√
2
(1 + η

†
(j) − η(j))|�i

(j)〉

= 1√
2
(1 + η

†
(j))

∑
γ ′

1

C
i,(j)

γ ′
1

|γ ′
1〉 + 1√

2
(1 − η(j))

∑
ρ′

1

C
i,(j)

ρ′
1

|ρ′
1〉

⇒ η
†
(j)

∑
γ ′

1

C
i,(j)

γ ′
1

|γ ′
1〉 +

∑
ρ′

1

C
i,(j)

ρ′
1

|ρ′
1〉 = 0 , (85)

where ρ′
1 and γ ′

1 are defined identically to the indices α′
1 and β ′

1 defined earlier respectively. The 
index ρ′

1 = {(l, μ)} is, similar to α1, an ordered set of p̄ elements with state j occupied. This 

leads to a constraint on the value of tensor coefficient Ci,(j)

α′
1

given by

C
i,(j)

α′
1

= −
amax
j∑

k=1

∑
γ1,γ

′
1,ρ

′
1

sgn(γ1, γ
′
1, ρ

′
1){�2k

ρ′
1γ1

G
4k−2p̄

γ1γ
′
1

Ci
γ ′

1
}(j) , (86)

where the index γ1 is defined in the same way as α1. The index γ1 := {(l, μ)} is an ordered set of 
2k − p̄ indices with all μ = 0 and the state j excluded. This comprises the (2k = p̄ + 2k − p̄)-
point off-diagonal vertex �2k,(j)

ρ′
1γ1

. The index γ ′
1 = {(l, μ)} is an ordered set of m̄+ 2k − p̄ indices 

with all μ = 1 and the state j is excluded. Similar to α1 and α′
1 we observe γ1 is a subset of γ ′

1. 

So the indices γ1γ
′
1 in the Green’s function G4k−2p̄

γ1γ
′
1

represent only the 2k − p̄ single electron 

states which get scattered by the vertex �2k,(j)

ρ′
1γ1

. Similar to β1, the index α′
1 emerges from the 

convolution of the indices γ1, γ ′
1 and α′

1: α′
1 := (ρ′

1 ∪ γ ′
1) − γ1. In other words, α′

1 corresponds to 
a set formed from the union of the sets ρ′

1 and γ ′
1, and from which a set γ1 has been removed.

Using the constraint eq. (86) together with the n-particle vertex flow eq. (61), the tensor flow 
eq. (77) can be written as

�C
i,(j)
β1

= (
√

N(j) − 1)C
i,(j)
β1

+
√

N(j)

amax
j∑
¯

∑
γ ,γ ′,β ′

sgn(γ1, γ
′
1, β

′
1){��2k̄

β ′
1γ1

G
4k̄−2p

γ1γ
′
1

Ci
γ ′

1
}(j) , (87)
k=1 1 1 1
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where the RG flow for 2k̄-point vertex (2k̄ = 2n + 2k − 2p̄) is given by

��2k̄
β ′

1γ1
=

2amax
j∑

n,k

∑
ρ1

{�2n
β ′

1ρ1
G

2p̄

ρ1ρ
′
1
�2k

ρ′
1γ

′
1
}(j) . (88)

As observed previously, the phase sgn(γ1, γ ′
1, β

′
1) in eq. (87) is obtained via counting the elec-

trons exchanged via the 2k̄ point scattering vertex. Importantly, eq. (87) relates the RG flow of the 
many-body state space to that of the effective Hamiltonian (through the vertex flow equation). 
We now arrive at an important result. When the final fixed point of the vertex tensor network 

RG flow is reached, i.e., when ��
2k̄,(j∗)

β ′
1γ1

= 0, N(j∗) = 1, the RG flow of the coefficient tensor 

also ceases, �C
i,(j∗)
β1

= 0. Note that the renormalization of the coefficient tensors is responsible 
for the renormalization of the many-particle entanglement features; this implies that the vertex 
tensor network RG flow guides the entanglement RG. Thus, the entanglement RG fixed points 
and vertex tensor RG fixed points are attained concurrently. In a recent work [3], we have shown 
the connection between the nonlocal unitary disentangler based entanglement renormalization 
group and the EHM of Ref. [56]. An EHM is a tensor network formed via a stacking of unitary 
transformation layers, where each such layer disentangles a certain set of qubits. The input elec-
tronic states/nodes comprise the boundary layer describing the UV theory, and the unitary map 
generates the bulk of the EHM such that the IR fixed point theory is obtained deep in the bulk. 
In this way, eq. (87) above shows that the vertex tensor network RG generates the EHM.

4.4. Mitigating the fermion sign problem through URG flow

In this section, we will show that by applying the URG to models of interacting electrons, 
certain classes of stable fixed points are obtained from the RG flow in the IR that are free from 
the signatures that arise from electronic exchanges. A system of interacting electrons with trans-
lational invariance can very generally be described by the Hamiltonian

Ĥ =
∑

k

(εk − μ)n̂kσ +
∑

k,k′,p
V σσ ′

k−k′c
†
k,σ c

†
p−k,σ ′cp−k′,σ ′ck′,σ . (89)

The k are wave-vectors belonging to the first Brillouin zone. We consider that the Fermi surface 
of the non-interacting part, defined as a collection of wave-vectors kF such that εkF

= EF = μ, 
to be described as an extended object in the Brillouin zone. Further, we explore the sub-parameter 
space of H where (i) all opposite-spin electron exchange scattering vertices are attractive: 
V

σ,−σ
k−k′ �=0 < 0, as well as Hartree terms V σ,σ ′

0 > 0 and the same-spin electron exchange scattering 

vertices V σ,σ ′
k−k′ �=0 > 0 are repulsive.

In applying the URG method to this problem, we adopt a RG scheme where the states farthest 
away from the Fermi surface are disentangled first. Following Refs. [1,2], this is carried out by 
defining curves parallel to the Fermi surface. The wave-vectors k�ŝ = kF (ŝ) + �ŝ are repre-
sented in terms of the distance (�) normal from the Fermi surface and the unit normal vector, 
ŝ = ∇εk/|∇εk||εk=EF

. At each RG step, the entire isogeometric curve at a distance �j from 
the Fermi surface is disentangled via a product of unitary operations Uj = ∏

l U(j,l), such that 
Uj,l = √

2−1[1 +ηj,l −η
†
j,l] disentangles the electronic state |j, l〉 = |k�j ŝ , σ 〉 from the rest. This 

iterative disentanglement procedure leads to the URG flow equation H(j−1) = U(j)H(j)U
† .
(j)
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Fig. 11. Schematic representation of Fermi sea for representing the electron counting scheme. The labels N and N − 1
correspond to the partner electronic states k�ŝ , ↑ and −k�ŝ, ↓ of the opposite-spin zero momentum pair. N − 1, N − 2
are the next pair of such electronic states. The red curve represents the Fermi surface.

URG generates the 2n-point vertex tensor RG equation hierarchy eq. (61). We initially restrict 
ourselves to studying just the four-point vertex RG flow equations

��
σ,σ ′,(j)
q,p = �

σ,σ ′,(j)
q1,p �

σ,σ ′,(j)
q2,p

ω − εj,a − εj,a′ − 1
4�

(j)
0,p

(90)

where the labels (j, a) := k�j ŝ , σ , (j, a′) := p −k�j ŝ , σ ′. The momentum transfer wave-vectors 
q1 = k − k�j ŝ and q2 = k�j ŝ − k′, such that q = q1 + q2. In the discussion below, we will be 
asking the following question: can a excited pair of electrons with momenta k and p − k residing 
outside the Fermi surface (εk, εp−k > EF ) have a condensation energy lower than the Fermi 
energy? This is the primary ingredient for bound-state condensation. If the answer is yes, can the 
effective theories describing the IR fixed points reached from URG analysis be free of fermion 
exchange signatures?

To proceed further, we work in the regime of quantum fluctuation energyscales: ω < 2−1(εk +
εp−k). As the electronic states k and p − k are both occupied and are the primary two-particle 
excitations with εk, εp−k > EF , we have

|ω − 2−1(εk + ε−k)| < |ω − 2−1(εk + εp−k)| < 0 . (91)

Along the URG flow within the regime of eq. (91), the p = 0-momentum electron exchange 
scattering vertex tensors |��

(j)
q,0| are the most dominant among all finite-momentum pairs

|��
(j)
q,0| > |��

(j)
q,p| . (92)

As a resulting, the RG flow of the 6-point vertices �6,(j) in eq. (61) are also sub-dominant, as 
they arise from the interplay between different pair-momentum vertices. On the other hand, the 
repulsive Hartree terms and the same-spin electron exchange scattering vertices are RG irrele-

vant: ��
σ,σ ′,(j)
0,p , ��

σ,σ ′,(j)
q,p < 0.

Armed with this insight, we now explore the wavefunction coefficient tensor flow equation 
(eq. (87)) while taking into account only the RG dominant four-point vertices. For this, we de-
fine the ordering scheme of the electronic states shown in Fig. 11. The electronic state on the 
isogeometric curve farthest from the Fermi surface is defined as N := k�0,ŝ0, ↑, while the elec-
tronic state with opposite-spin residing on the diametrically opposite position (and on the same 
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isogeometric curve) is labelled N − 1 := k�0,−ŝ0, ↓. The electronic state along the next normal 
direction on the same isogeometric curve �0 is labelled N − 2 := k�0,ŝ1, ↑, while the diamet-
rically opposite state is labelled N − 3 := k�0,−ŝ1 , ↓, and so on. In this way, all the states are 
labelled by progressively decreasing integers as they approach the Fermi surface. The states on 
the Fermi surface (red curve in Fig. 11) are marked as 2NF : kF,ŝ0, ↑, 2NF − 1 : kF,−ŝ0, ↓, lead-
ing down to the last two state 2 : kF,ŝNF

, ↑ and 1 : kF,−ŝNF
, ↓. Here, NF is the number of normal 

directions ŝ’s on the Fermi surface. The coefficient tensor flow equation for the eigenstates |�i
(j)

〉
of H(j) is then given by

�C
i,(j)
β1

= (
√

N(j) − 1)C
i,(j)
β1

+
√

N(j)
∑

γ1,γ
′
1,β

′
1

sgn(β ′
1, γ1, γ

′
1)��

σ,σ ′,(j)
q,p

ω − 1
2 (εk�ŝ

+ εp−k�ŝ
) − 1

4�
(j),σ,σ ′
0,p

C
i,(j)

γ ′
1

, (93)

where the index γ ′
1 = {l} refers to a collection of labels where the electronic state is occupied. 

The indices γ1 = {a := (k�ŝ, σ), b := (p − k�ŝ, σ ′)} and β ′
1 = {c := (k�ŝ + q, σ), d := (p −

k�ŝ − q, σ ′)} respectively. Keeping only the dominant RG flow contribution from ��
σ,−σ,(j)

q,0 in 
eq. (92), the coefficient RG equation simplifies to

�C
i,(j)
β1

= (
√

N(j) − 1)C
i,(j)
β1

+
√

N(j)
∑

q,k�ŝ

sgn(β ′
1, γ1, γ

′
1)��

σ,−σ,(j)

q,0

ω − εk�ŝ
− 1

4�
(j),σ,−σ
0,0

C
i,(j)

γ ′
1

. (94)

Here, γ ′
1 reduces to a special class of sequences comprised of only consecutive pairs of in-

tegers (l, l + 1). This marks the pair of electronic states with opposite-spins and zero net-
momentum: γ ′

1 = {(l1, l1 + 1), (l2, l2 + 1), . . .}, and γ1 = {(m, m + 1)}, β ′
1 = {(n, n + 1)}.

Importantly, for this case, the fermion exchange sign function sgn(β ′
1, γ1, γ ′

1) trivializes to 1, 
as can be seen by recalling eq. (83)

sgn(β ′
1, γ1, γ

′
1) = Q2Q1P2P1

= exp(iπ

m−1∑
i=1

ni) exp(iπ

m−1∑
i=1

ni) exp(iπ

n−1∑
i=1

ni) exp(iπ

n−1∑
i=1

ni)

= 1 . (95)

In this way, we observed that in this case, the fermion string essentially counts an even number of 
electron exchanges for any configuration, rendering the p = 0 pair-momentum subspace free of 
fermion signatures. As a result, we obtain a reduced BCS effective Hamiltonian for this subspace 
obtained at the fixed point ω = maxŝ εk�∗ ŝ

given by

Heff =
∑

k

εkAz
k −

∑
q,k

|V ∗
q,0|A+

k A−
k+q , (96)

where A+
k = c

†
k↑c

†
−k↓ and A−

k = c−k↓ck↑, Az
k = 2−1

[
A+

k ,A−
k

]
are Anderson pseudospins [67]. 

Very generally, we can redefine a pair of legs l := (l, l + 1) as the Anderson pseudospin l. The 
eigenstates of Hamiltonian Heff can be written as

|�i〉 =
∑

Ci,∗
ρ A+

l1
..A+

ln
| ⇓ ... ⇓〉 , (97)
ρ
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Fig. 12. (a) The figure represents a collection of orthogonal separable states labelled β1 (black disks), and where the green 
disk is an entangled state. The quantum distances between the green disk and black disks d2(β1, �) are represented by the 
lines connecting them. The red dashed line encircling the minimum non-zero quantum distance is a geometric measure 
of entanglement E(�i

(j)
). (b) The figure shows the situation where the state (green disk) is not entangled.

where ρ = {l} is the label for the set of Anderson pseudospins which are in the |1l1l+1〉 = | ⇑〉
configuration. We stress that exchanging the legs of the coefficient tensor Ci,∗

ρ here is free of 
fermion exchange signatures. In this way, we have mitigated the problem of fermion exchange 
signatures via the URG flow to the reduced BCS theory obtained in the IR.

4.5. RG flow of a geometric measure of entanglement and its relation to bound state spectral 
weight

The Fubini-Study distances (represented by black lines in Fig. 12) d(β1, �i
(j)) between the 

separable states |β1〉 (black disk in figure) and the renormalized eigenstates |�i
(j)〉 (green disk in 

figure) of H(j) belonging to A(j) is defined as [134,135]

d2(β1,�
i
(j)) = 1 − |〈β1|�i

(j)〉|2 = 1 − |Ci,(j)
β1

|2 , (98)

where Ci,(j)
β1

is the fidelity between the entangled state |�i
(j)〉 and a separable state |β1〉 [134]. 

If |�i
(j)〉 lies in the UV and |β1〉 lies in the IR, the fidelity corresponds to a transition amplitude 

obtained from the RG flow between UV and IR [55]. In general, Ci,(j)
β1

= W(j)e
iF(j) , i.e., 0 ≤

W(j) ≤ 1 and F(j) correspond to the magnitude and phase of the fidelity respectively. Across a 
quantum critical point, W(j) is expected to display a non-monotonic behaviour [136]. We will 
now obtain the RG evolution of the distance d , and observe its behaviour as the stable fixed point 
is obtained.

The RG equation for the Fubini-Study distances d(β1, �i
(j)) (eq. (98)) is obtained using the 

RG flow of tensor coefficient (eq. (87))

�d2(β1,�
i)(j) = −�|Ci,(j)|2 = |Ci,(j)

β1
|2 − |Ci,(j−1)

β1
|2

= |Ci,(j)
β1

|2 − |Ci,(j)
β1

+ �C
i,(j)
β1

|2

= −|�C
i,(j)
β1

|2 − 2Re(C̄
i,(j)
β1

�C
i,(j)
β1

) , (99)

where C̄i,(j)
β1

are the complex conjugate tensor coefficients. The RG flow of the geometric mea-

sure of entanglement (E(�i
(j))) [128,134,135] for an eigenstate |�i

(j)〉 can now be obtained from 
the quantum distance RG equations (eq. (99)) by computing the minimum distance (red dashed 
circle in Fig. 12) of the state |�i 〉 from the product states |φ(j)〉
(j) l
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�E(�i
(j)) = �(minβ1d

2(β1,�
i
(j))) . (100)

The RG flow of the entanglement content E(j) within the entire energy eigenbasis (eq. (65)) is 

defined as E(j) = {E(�1
(j)

), .., E(�2N−j

(j)
)} is represented by the variation in the colour of the legs 

of tensor network from blue to red in Fig. 8.
We can see from eq. (99) that the quantum distance d2(β1, �i

(j∗)) and the geometric mea-

sure of entanglement E(�i
(j∗)) will reach a fixed point j∗ under RG flow, �d2(β1, �i

(j∗)) = 0 =
�E(�i

(j∗)), simultaneously along with the tensor coefficients �C
i,(j∗)
β1

= 0. Given a fluctuation 
scale ω, the RG relevance and irrelevance of various n-particle vertices are guided by the sig-
nature in the denominator of the Green’s function present in the vertex flow eq. (88). Fig. 12(a) 
represents the quantum geometric distances (d(β1, �i

(j))) and entanglement measure (E(�i
(j))) 

for RG flow that leads to an emergent subspace with finite entanglement content at the final fixed 
point. On the other hand, Fig. 12(b) represents the case when the final low-energy subspace is 
disentangled. As discussed in an earlier section, the fixed point is determined among the various 
RG flow equations by considering those in which there is a signature change in the denominator 
coming from level crossing of fluctuation scale ω and the renormalized n-particle self/correlation 
energies. In eq. (22), we saw that the fixed point condition is accompanied by vanishing of the 
off-diagonal block with respect to state j∗ (i.e., those terms that change the occupation number 
of state j ). At the final fixed point j∗, there are 2j∗

configurations in A(j∗). A non trivial fixed 
point with remnant fluctuation in A(j∗) implies that these configurations describe a condensate 
of composite degrees of freedom protected by a many body gap. The Fubini-Study distances 
between separable states |φ(j∗)

l 〉 projected onto the subspace of coupled states {1, . . . j∗} and the 
entangled eigenstate configurations |�i

(j∗)〉 ∈ A(j∗) of H(j∗)(ω) form a squared-distance matrix 

D, whose elements are D(l)1
m,�i

(j∗)
= d2((l)1

m, �i
(j∗)). D has dimensions dim(D) = 2j∗ × 2j∗, 

and accounts for the dynamical spectral weight transfer at the fixed point (i.e., the electronic 
spectral weight that has converted to bound states). This can be seen from the following relation 
connecting the net Friedel’s phase shift (or change in Luttinger volume �N for systems with 
translational invariance, as will be discussed in more detail in Sec. 6) to dim(D)

�N = log2

√
dim(D) = j∗. (101)

4.6. Relation between geometric measure of entanglement and composite p-h residues

The squared minimum distance between separable states |φ(j)

(l)1
m
〉 and eigenstate |�i

(j)〉 ∈ A(j)

(in the m particle-(p − m) hole projected subspace) is given by

E(κ,�i
(j)) = minβ(1 − |〈β|

m∏
i=1

nli

p∏
i=m+1

(1 − nli )|�i
(j)〉|2) , (102)

where κ = {(l1, 1), . . . , (lm, 1), (lm+1, 0), . . . , (lp, 0)} is a collection of pairwise indices defined 
similarly to α. By decomposing the projection operator as a product of composite excitation and 
de-excitation operators,

∏m
i=1 nli

∏p
i=m+1(1 − nli ) = M+

j (m, p)M−
j (m, p), we are able to relate 

E to the spectral weight/residue (Zj(κ, i)) of the composite m electron-(p − m) hole associated 
with the cluster excitation operator M−

j (m, p, P)

E(κ,�i ) = 1 − Zj (κ, i) . (103)
(j)
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This results in the quantum fluctuation scale-dependent renormalization of m particle-(p − m)

hole spectral weight: �Zj(κ, i) = −�E(κ, �i
(j)). This relation clearly demonstrates the dynam-

ical nature of the renormalization group: it shows the connection between the phenomenon of 
UV-IR mixing [93] and dynamical spectral weight transfer (as observed, for instance, between 
the lower and upper Hubbard bands of a Mott insulator [137]). On the other hand, passage under 
RG from a fixed point at which Z1 = 1, E = 0 (Fermi liquid) to one at which Z1 → 0, E → 1
(non-Fermi liquid) signals a quantum phase transition in which the ground state fidelity (in terms 
of one-particle excitations) vanishes. This is a realisation of the Anderson orthogonality catas-
trophe [136,138,139].

For the case of an fluctuation scale ω at which all n-particle off-diagonal vertices are RG 
irrelevant, i.e. ��

2n,(j)

(l,μ)1
2n

< 0, the RG flow leads to a number-diagonal Hamiltonian HD
(j)(ω). In 

fermionic systems with translational invariance, such RG flows approach the Fermi surface. By 
this, we mean that states at a distance �j from the Fermi surface (FS) are successively decoupled 
leading to a more number-diagonal Hamiltonian, i.e. with a lower magnitude of the off-diagonal 
coefficients. Further, among the n-particle self/correlation energies, if only the single-particle 
self-energy is relevant: ��

2,(j)
l > 0, ��

2n,(j)
l < 0 ∀ n > 2, the Fermi liquid fixed point is 

reached at the FS with a growth of the one-particle residue

lim
�j →0

Zj (k�j ŝ ,ω) = 1 − E(k�j ŝ ,ω) → 1 , (104)

where ŝ denotes the directions normal to the FS. This relation shows the decay of the entan-
glement measure E at the Fermi liquid fixed point, resulting in a separable state (green disk in 
Fig. 12(b)). Similar arguments can also be formulated for RG flows that approach a fixed point 
corresponding to a gapless non-Fermi liquid.

Finally, the quasiparticle residue defined precisely on the Fermi surface, ZF = (〈n̂kF ŝ
〉)2 = 1, 

allows us to recast Volovik’s topological invariant N1 [140] along every normal direction ŝ for 
every point on FS (see discussion in Sec. 5) in terms of the entanglement measure

N1 =√
1 − E(kF ŝ,ω) . (105)

Remarkably, this relation links the topological stability of the FS to an entanglement property of 
the FS.

4.7. Evolution of the Fubini study metric under RG flow

The Hilbert space geometry of many-body eigenstates can be quantified via a Fubini-Study 
metric defined in the space of parameters: polar and azimuthal angles-(θl, φl) for electronic states 
labelled by l ranging between 1 and N . The rotation θl, φl for electronic state l is a ray on a unit 
Bloch sphere constructed in the occupancy basis: {1l, 0l}. We will now show that the unitary RG 
evolution of the eigenbasis eq. (65) yields a RG flow of the Fubini-Study metric, thus describing 
the holographic renormalization of Hilbert space geometry within the bulk of the EHM (see 
discussion below eq. (87)). To begin with, the Fubini-Study distance between a separable state 
|θ, φ〉 and the many-body eigenstate |�〉 is given by

d2(θ,φ,�) = 1 − |〈θ,φ|�〉|2 . (106)

We note that |θ, φ〉 is a many-particle separable state whose entanglement arises purely from 
fermionic statistics. Here, θ = {θ1, . . . , θN } and φ = {φ1, . . . , φN } are a collection of polar of 
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azimuthal angles respectively. The state |θ, φ〉 is constructed by applying a direct product of 
local unitary rotations in the space of occupied/unoccupied electron states

|θ,φ〉 = U(θ1, φ1) ⊗ . . . ⊗ U(θN,φN)|0〉 , (107)

where

Ul = exp

(
i
θ

2
σ ˙̂n

)
, n̂ = cosφx̂ + sinφŷ , (108)

and σ = 2−1(c
†
l + cl), 2−1i(c

†
l − cl), nl − 1/2. Upon performing a variation of the distance by 

infinitesimal variations of θ and φ, we obtain

δd2(θ,φ,�i) =
N∑

i,j=1

gθiθj
δθiδθj + gθiφj

sin θj δθiδφj + gθj φi
sin θj δθiδφj

+ gφiφj
sin θi sin θj δφiδφj , (109)

where the metric

gij = 〈∂ij , (θ,φ)|�〉 − 〈∂i, (θ,φ)|�〉〈∂j , (θ,φ)|�〉 . (110)

In the above equation for the metric gij , the labels (i, j) belong to the four possible pairs of 
parameters, i.e., (θi, θj ), (θi, φj ), (φi, θj ) and (φi, φj ). The holographic renormalization of the 
metric is then obtained by incorporating the state space renormalization of eq. (87) in the RG 
relation for the metric

�g
(l)
ij = 〈∂ij , (θ,φ)|U(j)|�(j)〉 − 〈∂i, (θ,φ)|U(j)|�(j)〉〈∂j , (θ,φ)|U(j)|�(j)〉

− 〈∂ij , (θ,φ)|�(j)〉 + 〈∂i, (θ,φ)|�(j)〉〈∂j , (θ,φ)|�(j)〉 , (111)

where l is the RG step number.
Note that the state |θ, φ〉 can be written down as a superposition of occupation number con-

figurations

|θ,φ〉 =
∑
β

Cβ(θ,φ)|β〉 . (112)

The coefficients are constrained such that for any given bipartition of the state, the Schmidt 
rank is one [141]. This is the criterion for the separability of the state |θ, φ〉. With the above 
representation in place, we can write down the RG flow for the quantum metric in terms of the 
wavefunction coefficient RG flow eq. (87)

�g
(l)
ij =

∑
β

∂ijCβ(θ,φ)�C
(l)
β

−
∑
β,β ′

∂iCβ(θ,φ)∂jCβ ′(θ,φ)(�C
(l)
β �C

(l)

β ′ + C
(l)
β �C

(l)

β ′ + �C
(l)
β �C

(l)

β ′ ) . (113)

Note that since the coefficient RG flow �C
(j)
β is generated via vertex renormalization ��(j) (as 

seen in eq. (87)), the RG flow of the quantum metric is also governed by that of the vertices. 
This interplay is another important finding of our work, as it provides an explicit demonstration 
of the holographic principle (or holographic renormalisation) for the case of correlated electrons. 
Finally, we also note that, upon tracking the geodesic in this metric space, we obtain the RG 
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flow of the geometric measure of entanglement [128,135] given earlier in eq. (100). For the case 
of the Fermi liquid metal with a gapless Fermi surface discussed earlier in eqs. (103)-(105), we 
find that the journey from UV to IR establishes adiabatic continuity with the non-interacting 
Fermi gas via the disentanglement of all degrees of freedom in momentum-space. This reflects 
the self-similarity of the state space generated by the RG flow to an integrable, quantum critical 
IR theory.

4.8. Change in entanglement entropy generated in disentangling one electronic state per RG 
step

We end this section by accounting for the change in entanglement entropy generated by the 
process of disentangling a single electronic state at every step of the RG. We begin by writing 
the state |�i

(j)
〉 as a superposition of two many-body entangled states

|�i
(j)〉 =

√
ai
(j)|�

i,1j

(j) 〉 +
√

bi
(j)|�

i,0j

(j) 〉, (114)

where |�i,1j

(j) 〉, |�i,0j

(j) 〉 are orthogonal many-body states with electron occupancy and non-
occupancy for the state j defined following eq. (76)

|�i,1j

(j)
〉 = 1√

ai
(j)

∑
α1

Ci,(j)
α1

|α1〉, ai
(j) =

∑
α1

|Ci,(j)
α1

|2,

|�i,0j

(j) 〉 = 1√
bi
(j)

∑
α1

Ci,(j)
α1

|α1〉, bi
(j) =

∑
β1

|Ci,(j)
β1

|2 . (115)

We observe that the criterion for the disentanglement of the state j involves the vanishing of one 
of the coefficients of the above linear superposition, say, ai

(j−1) = 0. By placing eq. (114) into the 

unitary flow eq. (71) for the state |�i
(j)〉, and using the constraint equation eq. (86), the vanishing 

of the coefficient ai
(j−1)

then leads to

ai
(j)

bi
(j)

=
∑

α1

∣∣∣∣∑amax
j

k=1

∑
γ1

{�2k
α′

1γ1
G

4k−2p̄

γ1γ
′
1

Ci
γ ′

1
}(j)

∣∣∣∣2∑
β1

|Ci
β1

|2 . (116)

The reduced single-electron density matrix prior to the RG step j can be computed from eq. (114)
via partial tracing over the states {1, j − 1} = j̄

ρ(j),j = T rj̄ (|�i
(j)〉〈�i

(j)|)
= |ai

(j)|2|1j 〉〈1j | + |bi
(j)|2|0j 〉〈0j | ,

which is clearly a mixed state. Upon disentanglement via the RG step j (see also discussion be-
low eq. (73)), the single-electron density matrix becomes pure ρ(j−1),j = |0j 〉〈0j |. The change in 
entanglement entropy of the state j is �SEE,(j) = −T r(ρ(j),j logρ(j),j ). The difference of this 
entropy gain and the maximum entropy gain possible from the process of disentanglement (ln2) 
gives us a measure of probing the quantum entanglement from the perspective of the decoupled 
states

S1 = �SEE,(j) − ln 2 . (117)
38



A. Mukherjee and S. Lal Nuclear Physics B 960 (2020) 115170
The ln 2 is a signature of a maximally mixed single-electron density matrix, i.e., denoting states 
that were maximally entangled prior to the process of disentanglement. Thus, the quantity S1 is 
a measure of the quantum entanglement content of the decoupled states.

5. The gapless Fermi surface: Fermi liquid and beyond

In a strongly correlated electronic system, the electronic spectral weight is widely dis-
tributed across various inter-electron interaction-induced scattering channels. Indeed, the phe-
nomena of spectral weight transfer has a long history in the context of Mott Hubbard sys-
tems [137,142–145]. These studies indicate the breakdown of Landau’s paradigm of adiabatic 
continuity (between the non-interacting electron and the electronic quasiparticle for the Fermi 
liquid [146]) for the normal state of the Mott-Hubbard system, owing to the strong mixing of 
spectral weight between ultraviolet and infrared degrees of freedom. Instead, in the Mott insu-
lating state at T = 0, a (Luttinger) surface of zeros is observed for the single particle Green’s 
function from both numerical and analytical techniques [147–150]. Further, a non-Fermi liquid 
nature has been proposed for the normal metallic state of such Mott-Hubbard systems, and at-
tributed to the phenomena of UV-IR mixing [151]. This appears to be consistent with findings 
from cluster variants of the dynamical mean-field theory (e.g., CDA+DMFT [152–154]) and 
CDMFT ([155])). As mentioned earlier in Sec. 3, the RG method proposed by us can account for 
such UV-IR mixing. Thus, in this section, we employ our method in unveiling the physics lead-
ing to the breakdown of the Landau quasiparticle in the presence of strong correlations. For this, 
we depict the usage of the unitary decoupling operation eq. (4) towards identifying a composite 
degree of freedom that can replace the quasiparticles of the Fermi liquid in the normal state of 
strongly correlated systems. The propagator associated with the composite degree of freedom 
will be shown to preserve the Luttinger volume for the Fermi surface (FS) [156,157] (as long 
as there are no instabilities of the FS). Further, the geometry of the FS will also be shown to 
be affected by the presence of such composite objects in its immediate neighbourhood. Finally, 
we will demonstrate the need for a full-fledged RG treatment in deciding whether or not Landau 
quasiparticles populate the low-energy neighbourhood of the FS.

5.1. Fate of single-particle excitations

Let |ψ〉 be an eigenstate of a many-particle Hamiltonian, Ĥ |ψ〉 = E|ψ〉, such that adding an 
electronic excitation of momentum k and spin σ to it leads to the following many-body state

|ψ1kσ
〉 = Z

−1/2
1 c

†
kσ |ψ〉 , (118)

where Z1 is the wavefunction renormalisation known as the quasiparticle residue (and identical 
to ZF (1, 1) in the previous section). If the single-particle occupation number operator n̂kσ com-
mutes with the Hamiltonian, [H, n̂kσ ] = 0, the state |ψ1kσ

〉 is also an eigenstate of H but with 
a shifted energy. On the other hand, the case of [H, n̂kσ ] �= 0 denotes the existence of quantum 
fluctuations (QF) given by

(H − E)|ψ1kσ
〉 = [H,c

†
kσ ]ckσ |ψ1kσ

〉 .

The expression on the R.H.S. can, very generally, be decomposed into number diagonal (energy 
shift) and off-diagonal (QF) parts with respect to the state |ψ1 〉
kσ
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(i) n̂kσ [H,c
†
kσ ]ckσ n̂kσ |ψ1kσ

〉 = �Ekσ |ψ1kσ
〉 , (119)

(ii) (1 − n̂kσ )[H,c
†
kσ ]ckσ n̂kσ |ψ1kσ

〉 = C|ψ0kσ
〉 , (120)

where 〈ψ1kσ
|ψ0kσ

〉 = 0. We see that the number diagonal term shifts the energy of the many-
body configuration, but preserves the spectral weight of the single particle excitation. The off-
diagonal term encodes QF in the occupation number space of the state |ψ1kσ

〉, preventing the 
single-particle excitation from being infinitely long-lived. Given the presence of such QF terms, 
we present below the qualitative outcome of the creation of a single particle excitation on a 
many-body eigenstate in a very general setting of a system of interacting fermions with lattice 
translational symmetry.

We begin by defining a single particle excitation Hamiltonian (SEH) using the e-h scattering 
terms,

H[kσ ] = 1

2

(
[H,c

†
kσ ]ckσ + h.c.

)
.

It is important to note that the Hamiltonian H of a system of electrons with four-Fermi interac-
tions and lattice translation symmetry can be built from the Hamiltonian H[kσ ]

H =
∑
kσ

[
T rkσ (H[kσ ]n̂kσ )n̂kσ + 1

2

(
c

†
kσ T rkσ (H[kσ ]ckσ ) + h.c.

)]
, (121)

where the first and second terms denote the energy shift and QF terms associated with the state 
|ψ1kσ

〉 sum up to give the various scattering terms of the entire Hamiltonian. Thus, for the generic 
case of a single band of strongly correlated electrons with four-fermionic interactions

HSFIM =
∑

k

εkn̂kσ +
∑
kk′q

V σσ ′
kk′qc

†
k+qσ c

†
k′−qσ ′ck′σ ′ckσ , (122)

the single-particle excitation Hamiltonian H[kσ ] has the form

H[kσ ] = (εk +
∑
k′σ ′

V σσ ′
kk′0n̂k′σ ′)n̂kσ +

∑
k′σ ′,q

V σσ ′
kk′q̂ c

†
kσ c

†
k′σ ′ck′−qσ ′ck+qσ . (123)

The number diagonal and off-diagonal contributions of the SEH, H[kσ ], can be written in the 
occupation number representation of the state |ψ1kσ

〉 as

H[kσ ] =
(

H[kσ ],e c
†
kσ T[kσ ],e−h

T
†
[kσ ],e−hckσ H[kσ ],h

)
, (124)

where the energy shifts are obtained from

H[kσ ],e = T rkσ (H[kσ ]n̂kσ ),H[kσ ],h = T rkσ (H[kσ ](1 − n̂kσ )) , (125)

and the QF are indicated by the term

T[kσ ],e−h = T rkσ (H[kσ ]ckσ ) . (126)

The off-diagonal (QF) elements in eq. (124) are associated with the mixing between UV and 
IR degrees of freedom via the occupation number fluctuations of the state |ψ1kσ

〉 (eq. (120)). By 
solving the decoupling equation eq. (4), the Hamiltonian eq. (124) can be brought into a block 
diagonal form
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H[kσ ] = U
†
[kσ ]

(
H̃ e

[kσ ] 0
0 H̃ h

[kσ ]

)
U[kσ ] , (127)

and where the form of decoupling unitary operator is given by eq. (26). Following the decompo-
sition shown in eq. (44), the block diagonal forms H̃ e/h

[kσ ] can be resolved into number diagonal 
piece (D) and off-diagonal (X) pieces

H̃
e/h
[kσ ] − H

e/h
[kσ ] = �H

e/h,D
[kσ ] + �H

e/h,X
[kσ ] , (128)

where the number diagonal term He/h,D
[kσ ] contains the renormalised energy shift terms (i.e. shifts 

in both self and correlation energies). On the other hand, the off-diagonal term He/h,X
[kσ ] con-

tains the renormalised scattering vertices with respect to the remaining coupled single particle 
states. By putting eq. (127) into the Hamiltonian H eq. (122), and using the following unitary 
transformation relations for the creation (c†

kσ ) and number (n̂kσ ) operators

U[kσ ]n̂kσ U
†
[kσ ] = 1

2

[
1 + η[kσ ] + η

†
[kσ ]

]
, (129)

U[kσ ]c†
kσ U

†
[kσ ] = 1

2
c

†
kσ − 1

2
[η[kσ ], c†

kσ ] − 1

2
η[kσ ]c†

kσ η[kσ ] , (130)

we obtain the renormalized Hamiltonian for the occupied/unoccupied (e/h) block as

H̃ e/h = H +
∑
kσ

(�H
e/h,D
[kσ ] + �H

e/h,X
[kσ ] ) . (131)

The detailed derivation of this renormalisation procedure is presented in the Appendix D. 
Here, the e-h transition operator η[kσ ] is defined by putting the block-matrix representation of 
the excitation Hamiltonian (eq. (124)) H[kσ ] in eq. (40) and has the form

η[kσ ] = G[kσ ],h�4,(0)
kσ,α c̃†

αckσ , (132)

where the Green’s function G4[kσ ],h is associated with the intermediate many-body configurations 
and is given by

G[kσ ],h = 1

ω̂ + εkτkσ + V
σσ1
kk1

τkσ τk1σ1

. (133)

Note that we have used the Einstein summation convention on the indexes (k1, σ1). In the above 
Green’s function operator eq. (133), τkσ = n̂kσ − 1

2 is the occupation number operator defined 
about the electron/hole symmetric point. The operator ω̂ is the quantum fluctuation operator
defined in eq. (36), whose spectral decomposition (given by eq. (39)) corresponds to quantum 
fluctuation energy eigenvalues. These quantum fluctuation energy scales are the correlation/self 
energies of the number-diagonal configurations of the coupled states as seen from the cluster ex-
pansion of the Green’s function (eq. (62)). The action of the unitary operator on the single-particle 
creation/annihilation operator leads to the expansion given in eq. (130), where the commutator 
between the e-h transition operator and the creation operator appears as the first higher order 
term

U[kσ ]c†
kσ U

†
[kσ ] → 1

2
[η[kσ ], c†

kσ ] = 1

2
τkσ G[kσ ],h�4,(0)

kσ,α c̃†
α , (134)

where α = {(k′σ ′, 0), ((k′ − q)σ ′, 1), ((k + q)σ, 1)}. Here c̃†
α represents a 2-electron 1-hole cor-

related excitation.
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Fig. 13. (a) Schematic diagram representing decay of the single-electron spectral weight into the one-electron channel 
and 2 electron-1 hole channel. (b) A pictorial depiction of the composition of a three-particle dispersion, i.e., one particle 
self-energy (�2), two-particle correlation energy (�4) and three-particle correlation energy (�6).

We note that a similar expansion was obtained in Ref. [158] in the context of decoupling 
total doublon-number subspaces in the 2D Hubbard model. Note that we have used the Einstein 
summation convention on the indexes (l, μ)1

3. In the expression above, �4,(0)
kσ,α is the bare 2-particle 

(or 4-point) vertex Vkk′q in Hamiltonian eq. (122). The two-particle vertex is connected to the 
leading correlated excitation c̃†

α (defined in Sec. 3.1), which corresponds here to a two-electron 
and one-hole (2e-1h) creation operator with indices (l, μ)1

3 given by

α = {(k′σ ′,0), ((k′ − q)σ ′,1), ((k + q)σ,1)} . (135)

The members of the set α are constrained indexes that manifest the translation symmetry of the 
Hamiltonian H1, and are responsible for pairwise momentum conservation. This 2e-1h excitation 
configuration is therefore the primary decay channel for the single-electron excitation (Fig. 13a), 
as can be seen by the unitary map of the many body state |ψ1kσ

〉 (eq. (118))

U[kσ ]|ψ1kσ
〉 = Z

−1/2
1

(
U[kσ ]c†

kσ U
†
[kσ ]

)
U[kσ ]|ψ〉

= −1

2
Z

−1/2
1 τkσ G[kσ ],h�4,(0)

kσ,α c̃†
αU[kσ ]|ψ〉 + 1

2
c

†
kσ U[kσ ]|ψ〉 . (136)

The rotated state U[kσ ]|ψ〉 is in the hole-occupation subspace corresponding to the label kσ , 
and annihilated by the third term in eq. (130). We can, therefore drop the third term. From this 
demonstration, we conclude that the spectral weight transfer naturally happens from the single 
particle excitation to the next term in the expansion of the unitary transformed electron creation 
eq. (130): the 2-electron 1-hole composite. As shown in eq. (131), these changes are also brought 
about concomitantly in the effective Hamiltonian blocks at a given QF scale. Thus, the dispersion 
of these composite objects is given by the change in the number-diagonal part of the Hamiltonian 
�HD

e (ω)

�HD
e (ω) = G[kσ ],h(ω)(V σσ ′

kk′q)2(1 − n̂k′σ ′)n̂k+qσ n̂k′−qσ ′ ,

(137)

where the 2e-1h projector is equal to the product of the composite e-h excitation/de-excitation 
operators

(1 − n̂k′σ ′)n̂k+qσ n̂k′−qσ ′ = c̃†
αc̃α . (138)
42



A. Mukherjee and S. Lal Nuclear Physics B 960 (2020) 115170
We recall that such three-particle terms were studied on phenomenological grounds in Refs. [159]
and [160] towards explaining the linear resistivity of the marginal Fermi liquid. The associated 
new three-particle number off-diagonal scattering terms that are generated in �HX[kσ ],e provide 
the source of three-particle bound-state formation [160].

From the cluster decomposition of �H̃D (see Sec. 3.7), we obtain the self/correlation energies 
as

�HD(ω) =
3∑

n=1

��2n
(kσ)1

n

n∏
l=1

τklσl
. (139)

This cluster decomposition reveals the one-, two- and three-particle contributions (Fig. 13b) to 
the 2e-1h composite.

5.2. One-particle self-energy

From eq. (139), the one-particle components in the 2e-1h composite lead to the leading order 
one-particle self-energy (�̂I

k′σ ′ = �2
k′σ ′ ) in the form of an energy shift of the kinetic energy

�̂I
k′σ ′ =

[∑
kσ

T r
(
�HD[kσ ],eτk′σ ′

)]
τk′σ ′ . (140)

For the Hamiltonian eq. (122), the self energy �k′σ ′ for the state k′σ ′ is computed by taking the 
bare Fermi distribution θ(EF − εk) at T = 0 and EF being the Fermi energy, and by considering 
the contribution from all kσ states withing the energy range εk′ > εk ≥ EF

�̂I
k′σ ′(ω) =

∑
kσ,q

(V σσ ′
kk′q)2fk,k′,qG[kσ ],h(ω)τk′σ ′ . (141)

In the above equation, fk,k′,q is a function that sets the allowed energy ranges of the 2e-1h 
composite

fk,k′,q = θ(εk+q − EF )θ(εk′−q − EF )

θ(εk′ − εk+q)θ(εk′ − εk′−q) .

The QF term associated with q �= 0 scattering terms leads to a self-energy term �̂k′σ ′(ω) that can 
be decomposed into a zeroth piece of the self-energy shift and another contribution associated 
with changes in the shape of the Fermi surface

�̂I
k′σ ′(ω) = �̂

I,(0)

k′σ ′ (ω) + (�̂I
k′σ ′(ω) − �̂

I,(0)

k′σ ′ (ω)) , (142)

where �̂I,(0)

k′σ ′ (ω) defined as (here �εk = εk − EF ),

�̂
I,(0)

k′σ ′ (ω) =
∑
kσ

C(0)

ω + 1
2�εk + V (0)

θ(εk′ − εk)θ(εk − EF ) ,

C(0) = 1

Vol2
∑

k′kqσσ ′
(V σσ ′

kk′q)2fk,k′,q ,

V (0) = 1

Vol2
∑
′ ′

Vkk′θ(EF − εk′) . (143)

k kσσ
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The Fermi surface (FS) geometry is identified by the family of unit vectors ŝ = vF /|vF |, where 
vF are the Fermi surface velocities vF = ∇εk|k=kF

at every point on the FS. The self-energy 
component �(0)

k′σ ′(ω) then leads to

ε̃k′ = εk′ + �
I,(0)

k′σ ′ (ω) ,

∇k′ ε̃k′ =
[
|∇k′εk′ | + C(0)

ω + �εk′ − V (0)

4

|∇k′εk′ |
]

ŝ ,

ˆ̃s = ∇k′ ε̃k′

|∇k′ ε̃k′ | |k′=kF
= ŝ . (144)

Thus, we find that the zeroth self-energy piece �(0)

k′σ ′(ω) leaves the Fermi surface normal vectors 
ŝ′s invariant preserving the Fermi surface geometry.

5.3. Universal logarithmic contribution to self-energy from the Fermi surface

Within the zeroth piece of the self-energy, �I,(0)

k′σ ′ (ω), there exists a logarithmic contribution 
to the energy shift arising from the density of states D(E) =∑

εk
δ(E − εk) at the Fermi surface

�
I,(0)

k′σ ′ (ω) =
E′∑

E=EF

C(0)D(E)

ω + (E − EF ) + V (0)

= C(0)

(εk′ − EF )
D(EF ) log

(
1 + εk′ − EF

ω − V (0)

4

)

+
E′∑

E=EF

C(0)(D(E) − D(EF ))

ω + (E − EF ) − V (0)

4

. (145)

For instance, for the Hubbard model with V σσ ′
kk′q = U , the self-energy term �(I)

k′σ ′(ω) is equal 
to its zeroth piece

�I
k′σ ′(ω) = �

I,(0)

k′σ ′ (ω) , (146)

leading to the conclusion that, while there is no shape deformation of the Fermi surface caused by 
the Hubbard repulsion, there is nevertheless a logarithmic contribution to the self-energy coming 
from the density of states at the Fermi surface eq. (145). In this case, the logarithmic singularity 
of the self-energy shows that the FS is shifted from the non-interacting FS at ω = 0 and εk = EF

to ω → V (0)/4 and εk → EF , due to the zero momentum transfer q = 0 mode forward-scattering 
amplitudes arising from the 2e-1h composites (eq. (139)). Such log-divergences provide a reason 
to turn to a renormalization group procedure that takes account of the QF term (eq. (120)). The 
QF term can lead to two important possibilities: (a) the destabilization of the Fermi surface 
through bound-state formation (as seen via generalized Luttinger surfaces of zeros of the one-
particle Green’s function [149,157]) and, (b) renormalization of the 2e-1h dispersion. We will 
provide results obtained for these possibilities from the RG formulation in a later section.

Below, we assume that the self-energy contribution �I
kσ of the non-interacting single-particle 

Green’s function respects separate conservation laws for every direction ŝ normal to the Fermi 
surface in the form of Luttinger-Ward identities. We then demonstrate the topological features of 
the count of occupied states along the orientation ŝ associated with a given point on the Fermi 
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surface. This enables the definition of a Luttinger point, together with the notion of a partial 
Luttinger sum associated with every Luttinger point.

5.4. Partial Luttinger sum, Luttinger points

The single-particle Green’s function is given by

Gkσ (ω) = 1

ω − T r(H[kσ ]
(
n̂kσ − 1

2

)
) − �kσ (ω)

. (147)

With the set of reference normal vectors of the Fermi surface {ŝ}, we recast the momentum-space 
wave-vectors as follows

k = k⊥ŝ + k||ŝ , k⊥ŝ · k||ŝ = 0 ,

k||ŝ = (k · ŝ)ŝ , k⊥ŝ = ŝ × (k × ŝ) . (148)

With respect to the Fermi surface curvilinear frame of reference, we write the single-particle 
Green’s function in the coordinates of ŝ and the distance from FS along ŝ, � = (k||ŝ − kF ŝ) · ŝ, 
as

G�ŝ,σ (ω) = 1

ω − T r(H[�ŝσ ]
(
n̂�ŝσ − 1

2

)
) − ��ŝσ (ω)

. (149)

Theorem 1. If the Luttinger-Ward identity

∂ω��ŝσ (ω) + ∂ωG−1
�ŝσ

(ω) = 1

holds for every ŝ normal to FS, and if

I2,�ŝ =
∞∑

ω=−∞
G�ŝ,σ (ω)

∂��ŝσ (ω)

∂ω
= 0 ,

then the partial Luttinger sum defined as

Nŝ =
∑

ω,�,σ

G�ŝ,σ (ω)

is an integer, and corresponds to a topological winding in the energy-momentum space along ŝ.

Proof. The single-particle Green’s function G is defined as G−1 = G−1
0 − �, where G−1

0 =
ω − εk is the Green’s function of the non-interacting problem and � is the self-energy. The 
Luttinger Ward identity [161] satisfied by the Green’s function is: ∂ωG−1 + ∂ω� = 1. Following 
Dzyaloshinskii [156], the summation of the Green’s function over an energy-momentum space 
contour

N =
∑

�,ŝ,σ

[∮
dz

∂

∂z
lnG�,ŝ,σ (z)−1 +

∫
dzG�,ŝ,σ (z)

∂

∂z
��ŝ,σ (z)

]
, (150)

equals the number of electrons N . Further, if the relation

I2ŝ =
∑∫

G�ŝ,σ (z)
∂

∂z
��ŝ,σ (z) = 0 (151)
�
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Fig. 14. Graphical representation of the Fermi volume (light blue region) and Fermi surface (FS, red boundary) for the 
triangular lattice. The small dark blue circle represents a given point on the FS, and N1 is the Volovik invariant associated 
with this Fermi point (see discussion in text). The line extending from the origin of the Brillouin zone to the FS point 
represents the partial Luttinger volume N̂ŝ − N1 for that particular FS point.

holds, N corresponds to the total number of occupied states such that the count stops due to a 
change of sign of Green’s function upon reaching the unoccupied states in energy-momentum 
space. N can then be written as a sum of integers 

∑
ŝ Nŝ , where the number Nŝ is defined as 

follows

Nŝ =
∑
�σ

∮
dz

∂

∂z
ln detG�,ŝ,σ (z)−1 .

This proves that Nŝ is the count of occupied states, the partial Luttinger sum, along the direction 
ŝ normal to the Fermi surface, and corresponds to a topological winding number in energy-
momentum space centred around a point on the Fermi surface point k = kF (ŝ), EF = εkF (ŝ). 
For every such point on the Fermi surface, there exists an associated Volovik invariant [140]

N1 = − i

2π

∑
σ

∮
dzG−1

�,ŝ,σ
(z)∂zG�,ŝ,σ (z)|�=0 , (152)

such that the partial Luttinger count can be written as a sum of the Volovik invariant at points on 
the Fermi surface and the partial Luttinger volume leading upto it

Nŝ =
∑

� �=0,σ

∮
dz

∂

∂z
lnG�,ŝ,σ (z)−1 + N1 , (153)

where N1 is represented by the Fermi surface point (the centre of the blue circle) in Fig. 14 and 
the rest of the partial volume leading upto it is represented by the black line. This completes the 
proof that a partial Luttinger sum is a topological winding number associated with the existence 
of a pole at the Fermi surface point.

Further, following Ref. [162], the existence of separate Luttinger-Ward identities [161] along 
every direction normal direction to the FS allows us to visualize the FS as a collection of 1+1D 
chiral conformal field theories (CFTs).

5.5. Oshikawa’s counting argument

Following Oshikawa [163], we can now connect the topological invariant Nŝ with the change 
in the centre of mass momentum arising from changing boundary conditions along the direction 
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normal to the Fermi surface given by ŝ. For this, we need a twist operator that changes precisely 
the momentum of electronic states along ŝ

Oŝ = exp

⎡
⎣2πi

∑
x||ŝ

x||ŝ n̂x

L

⎤
⎦ , (154)

and the centre of mass momentum vector along ŝ is defined as Pcm,ŝ = ∑
� k||ŝ n̂kσ . Applying 

the twist operator on the Hamiltonian changes H → OŝHO
†
ŝ

, and the state space |ψ〉 → Oŝ |ψ〉. 
Defining T̂ŝ = exp[iPcm,ŝ] as the translation operator, we use the identity

OŝT̂ŝO
−1
ŝ

= exp

⎡
⎣i2π

∑
x||ŝ

n̂x

L

⎤
⎦ T̂ŝ ,

to we see that the centre of mass momentum along ŝ changes as

P ′
cm,ŝ

= Pcm,ŝ + 2π

L
Nŝ . (155)

This change arises from the fact that, for I2ŝ = 0, the quantity 
∑

x||ŝ n̂x is preserved in the pres-
ence of interactions.

5.6. Preservation of partial Luttinger’s count

In Theorem 1, we have shown that when I2ŝ = 0, the total particle number is conserved in the 
presence of interactions

N =
∑

ω,�,ŝ,σ

G0
�,ŝ

(ω) =
∑

ω,�,ŝ,σ

GI
�ŝ

(ω) , (156)

where GI
�ŝ

(ω) and G0
�ŝ

(ω) are the interacting and non-interacting single-particle Green’s func-
tions respectively. The second of these relations is non-trivial, as a state count over the entire 
energy-momentum space for the interacting Green’s function GI

�ŝ
(ω) involves keeping track of 

both its poles as well as its zeros. The unchanged Luttinger count in the presence of interactions 
leads to a relation for I2ŝ involving the ratio of G0 and G [157]

I2ŝ =
∑
�

0∫
−∞

dz
∂

∂z
ln

(
1 − �I

�ŝ
(ω)G0

�ŝ
(ω)

1 − �I∗
�ŝ

(ω)G0∗
�ŝ

(ω)

)
.

We can see that the integral I2ŝ becomes equal to the difference of phase of G0/G

I2ŝ =
∑
�

[φ�,ŝ(−∞) − φ�,ŝ(0)] ,

where φ�,ŝ(ω) = ln

(
1−�I

�ŝ
(ω)G0

�ŝ
(ω)

1−�I∗
�ŝ

(ω)G0∗
�ŝ

(ω)

)
.

We can now reach some conclusions for the single-particle self-energy �I
kσ (ω) (eq. (141)) 

computed earlier for the generic interacting Hamiltonian (eq. (122)). As �I
kσ (ω) is analytic at 

ω = 0, the phase difference [φ�,ŝ(−∞) −φ�,ŝ(0)] = 0 and leads to I2ŝ = 0. The partial Luttinger 
sum Nŝ is then preserved for every ŝ, and we can use the individual Luttinger-Ward identity for 
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every Fermi point in reconstructing the Luttinger sum for the entire connected Fermi surface. 
This is despite the fact that, upon the inclusion of two-particle interactions, the resulting three-
particle effective Hamiltonian �HD[kσ ],e(ω) (eq. (137)) leads to a damping of the quasiparticle 
peak in the single-particle Green’s function. However, the concomitant appearance of logarithmic 
non-analyticities at finite frequencies signals the need for a renormalization group treatment in 
reaching a firmer conclusion. We will turn to this in a later section.

6. RG for bound state condensation: gapping the Fermi surface

In a strongly coupled electronic system, the destabilization of the gapless Fermi surface is 
signalled by the appearance of surfaces of zeros of the single-electron Green’s function in the 
complex frequency vs. momentum plane [149,156]. This surface of zeros brings about a change 
in Luttinger’s sum [156,157], and is accounted for by the Friedel-Levinson phase shift [164,
165] indicating the number of bound charge composites formed out of a collection of single 
electronic states. The change in the Luttinger sum has, for instance, been investigated in the 
context of Anderson impurity models [166], and Kondo lattice systems [167] where a larger 
Fermi surface replaces the non-interacting Fermi surface in the heavy-electron phase. We recall 
that, in the context of electronic pairing via a attractive interaction potential, Cooper [168] had 
demonstrated bound-state formation out of degenerate electron pairs with zero pair-momentum
placed outside the Fermi surface. A condensation of such bound Cooper pair states leads to the 
BCS instability [169] for the Fermi surface.

The associated loss of electronic spectral weight in the condensation process is accounted for 
by the Ferrel-Glover-Tinkham sum rule [170,171] via an addition of the zero-frequency super-
fluid spectral weight along with the normal state quasiparticle spectral weight at finite frequency. 
This addition of partial spectral weights, i.e., the spectral weight from the Fermi surface to a cut-
off scale together with that beyond the cut-off scale, is required for the conservation of the f-sum 
rule and denotes the process of dynamical spectral weight transfer between high and low ener-
gies [172]. The cut-off scale itself emerges from some underlying microscopic mechanism, e.g., 
the Debye cutoff scale for phonon-driven BCS superconductivity. In this way, both Luttinger’s 
sum rule and the f-sum rule carry signatures of bound state formation. Other examples of the 
gapping of the Fermi surface, and a subsequent breakdown of the Luttinger sum rule, include the 
high-TC superconductors [173,174] and doped Mott insulators [149,175]. Both examples again 
imply the formation of bound states in these states of matter.

Indeed, the pairing of electronic states (e.g., Cooper pairing of k ↑ with −k ↓) happens 
together with a projection of the microscopic Hamiltonian and its associated eigenbasis onto 
a sub-configuration space (e.g., the Anderson-pseudospin subspace with the constraint n̂k↑ =
n̂−k↓ [67]), enabling an effective description in terms of bound objects. As we shall see below, 
by starting from a microscopic theory, a renormalization group treatment is best suited towards 
generating such an effective description in a controlled manner. By starting from a microscopic 
Hamiltonians for electrons like eq. (122), the renormalization group treatment we have outlined 
in Sec. 3 can be used to reach effective Hamiltonians at stable fixed points in terms of paired 
electronic states or Anderson-like pseudospins [67]. We note that the problem of BCS supercon-
ductivity, as well as in theories of nuclear pairing, models belonging to the Richardson class of 
Hamiltonians (see Ref. [176] and references therein) are written in terms of paired electronic 
state operators or generalized Anderson pseudospins. This includes the BCS reduced Hamilto-
nian [169] and the nuclear pairing force models [177,178].
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In order to the set the stage for a renormalization group analysis, we will demonstrate the 
generalized Cooper-pairing problem for strongly correlated systems. By creating a two-electron 
or electron-hole excitation on the eigenstates of the Hamiltonian H , and then applying the uni-
tary decoupling operation eq. (4) on it, we will observe the phenomenon of dynamical spectral 
weight distribution across multiple two-electron or electron-hole pair-momenta channels. From 
the most singular spectral weight transfer process (and its associated correlation energy), we will 
find signatures of bound-state formation in the form of log-divergent T-matrix elements and an 
associated Friedel’s scattering phase shift. This approach is similar to the calculation presented 
for the Kondo problem in, e.g., Ref. [172]). These signatures will, very generally, help in iden-
tifying the appropriate pairing-force Hamiltonian for strongly correlated electronic systems. We 
will then verify the connection between the total Friedel’s phase shift of the electronic pairs and 
the change in Luttinger’s volume [157,166] of strongly correlated electrons, thereby revealing the 
Luttinger surface of zeros [147–150] in the reduced Hilbert space of the associated pairing-force 
Hamiltonians.

6.1. Outcome of two-particle excitations

We begin by considering a two-electron (ee) or electron-hole (eh) excitation on an eigenstate 
|ψ〉 of a Hamiltonian H with E as its eigenvalue

|ψ̄1kσ 1k′σ ′ 〉 = Z
−1/2
pp,2 c

†
kσ c

†
k′σ ′ |ψ〉 , (157)

|ψ̄1kσ 0k′σ ′ 〉 = Z
−1/2
ph,2 c

†
kσ ck′σ ′ |ψ〉 . (158)

Our considerations are in the same spirit as Cooper’s problem [168] of placing two electrons in 
proximity to the effectively noninteracting Fermi sea, but with one major difference: here, |�〉
is the eigenstate of the complete Hamiltonian H . This being the case, the final outcome of such 
excitations will have contributions from strong electronic correlations present in the Hamiltonian. 
The action of H on the state |ψ̄1kσ 1k′σ ′ 〉 leads to a number diagonal two-particle energy shift of 
the bare energy E

n̂kσ n̂k′σ ′
[
H,c

†
kσ c

†
k′σ ′

]
ck′σ ′ckσ n̂kσ n̂k′σ ′ |ψ̄1kσ 1k′σ ′ 〉

= �E|ψ̄1kσ 1k′σ ′ 〉 , (159)

as well as an off-diagonal quantum fluctuation (QF) term (similar to that present in eq. (120) for 
a single electron excitation) induced by two particle scattering

(1 − n̂kσ n̂k′σ ′)
[
H,c

†
kσ c

†
k′σ ′

]
ck′σ ′ckσ n̂kσ n̂k′σ ′ |ψ̄1kσ 1k′σ ′ 〉

= C|ψ̄⊥
kσ,k′σ ′ 〉 . (160)

A similar set of matrix elements exist for an eh excitation. Using the ee and eh scattering terms 
and their conjugate processes, the two-particle excitation Hamiltonian (TEH) H[kσ,k′σ ′] can be 
written as

H[kσ,k′σ ′] = 1

2

(
[H,c

†
kσ c

†
k′σ ′ ]ck′σ ′ckσ

+ [H,c
†
kσ ck′σ ′ ]c†

k′σ ′ckσ

)
+ h.c. . (161)

The sub-figures in Fig. 15 represent the QF terms in TEH for the single-band four-fermion inter-
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Fig. 15. Schematic diagram of various 2-particle (i.e., 4-point) vertices representing the quantum fluctuation terms in 
the two-particle excitation Hamiltonian. (a) represents the ee/hh 2-particle scattering vertex, (b) represents the eh/he 
2-particle scattering vertex and (c,d) represent 2-particle scattering vertices involving another state k′′σ ′′ .

acting model H1 (eq. (122)) as follows: (a) represents the ee/hh scattering vertices containing the 
pair of two-electron excitations (eq. (157)) while (b) represents the eh/he scattering vertices for 
electron-hole excitations (eq. (158)). Sub-figure (c) represents the correlated scattering of state 
kσ with other electronic states not including k′σ ′, and (d) represents the same for the state k′σ ′.

In order to observe the effect of QF terms (e.g., eq. (160)) on the self/correlation energies and 
correlated scattering terms, we proceed as in Sec. 5 for the case of single-particle excitations. We 
begin by bringing the Hamiltonian H[kσ,k′σ ′] into block-diagonal form. This is accomplished by 
first by writing the Hamiltonian H[kσ,k′σ ′] in the form of a block matrix

H[kσ,k′σ ′] =
(

H
1kσ

[kσ,k′σ ′] c
†
kσ T[kσ,k′σ ′],e−h

T
†
[kσ,k′σ ′],e−h

ckσ H
0kσ

[kσ,k′σ ′]

)
,

and then by decoupling the state kσ in the TEH

H[kσ,k′σ ′] = U
†
[kσ,k′σ ′]

(
H̃

1kσ

[kσ,k′σ ′] 0

0 H̃
0kσ

[kσ,k′σ ′]

)
U[kσ,k′σ ′] .

Note that in the block matrix form of the Hamiltonian H[kσ,k′σ ′], the off-diagonal blocks con-
tain the electron creation/annihilation operator in product with T[kσ,k′σ ′],e−h. The definition of 
T[kσ,k′σ ′],e−h is that given in eq. (126), and represents the associated electronic states that com-
prise the various n-particle vertices of the cluster expansion. As before, the unitary decoupling 
operator U[kσ,k′σ ′] is determined by solving eq. (4). The e-h transition operator ηkσ constitut-
ing the unitary operator, U[kσ,k′σ ′] = √

2−1[1 + ηkσ − η
†
kσ ], is written down in terms of the 

off-diagonal occupation number fluctuation terms (c†
kσT[kσ,k′σ ′],e−h) and the number-diagonal 

many-body Green’s function (Ge
[kσ,k′σ ′] = (ω̂ − HD

[kσ,k′σ ′])
−1, using eq. (40)):

ηkσ = 1

ω̂ − HD
[kσ,k′σ ′]

c
†
kσ T[kσ,k′σ ′],e−h , (162)

where ω̂ represents the QF operator (eq. (36)) taking account of the differences between exact 
energies of the TEH and its diagonal part HD ′ ′ .
[kσ,k σ ]
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Fig. 16. The figures represent the 2- and 3-particle vertices that are generated via the unitary decoupling of the state kσ

that block diagonalizes the TEH. (a,b) represent the 2-particle scattering vertices (green circles) generated via the ee/hh 
and eh/he intermediate configurations respectively of the states kσ and k′σ ′ (light blue circles). These processes involve 
the intermediate two particle propagator G2 (dark blue circles) for the kσ and k′σ ′ states. (c) represents the three-particle 
vertex generated via the sandwiching of the single-particle propagator G1 in the e/h-configuration of the state kσ by the 
ee/hh scattering vertex (for states kσ , k′σ ′) on one side, and the scattering vertex of kσ with the state k′′σ ′′ on the other 
side.

For the four-fermion interacting model (H1), the diagonal piece of TEH is given by

HD
[kσ,k′σ ′] = εkτkσ + εk′τk′σ ′ + V σσ ′

kk′ τkσ τk′σ ′ , (163)

containing both the individual kinetic energy and correlation energy terms. The operator τkσ is 
the occupation number operator n̂kσ defined in a manifestly particle-hole symmetric manner. The 
one-step renormalization of the two decoupled blocks in the block-diagonal Hamiltonian can be 
decomposed generically into number-diagonal and number off-diagonal parts

H̃
1kσ

[kσ,k′σ ′] − H
1kσ

[kσ,k′σ ′] = �H
D,1kσ

[kσ,k′σ ′] + �H
X,1kσ

[kσ,k′σ ′] , (164)

containing contributions due to QFs in occupation number of state kσ that are generated via 
2-particle scattering processes given by Fig. 15(a,b,d). The two-particle scattering (off-diagonal) 
and energy shift terms (diagonal) terms present in �H (the RHS of eq. (164)) possess contri-
butions from three classes of processes. The first two of these are: (i) the ee or hh mediated 
scattering (Fig. 16(a)) with occupied/unoccupied configurations of the states kσ and k′σ ′ and 
involving diagram Fig. 15(a) and, (ii) the eh or he mediated scattering (Fig. 16(b)) with only 
one among the states kσ and k′σ ′ being occupied and involving diagram Fig. 15(b). These two
processes generate one step renormalization of the two particle vertices. The third process mixes 
ee/hh and eh/he configurations. This process proceeds as follows: first, an ee/hh (or eh/he) pair 
of kσ and k′σ ′ states are created by the 2-particle vertices Fig. 15(a) (or (b)) in the intermedi-
ate occupation number configuration. Then, that pair is broken due to kσ scattering with other 
electronic states like k′′σ ′′, as shown in Fig. 15(d). This involves an intermediate single-electron 
Green’s function G1 (for the state kσ ), and the result three particle scattering process is shown 
in Fig. 16(c). The detailed formulation of these scattering processes is presented in Appendix E.

The processes (i), (ii) and (iii) described above lead to new energy costs and quantum dy-
namics of various (ee/hh), (eh/he) and higher (n-particle, m-hole) composite objects into which 
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Fig. 17. The decay channels of the many-body wave function |ψ̄1kσ 1k′σ ′ 〉 containing the two-electron excitation config-
uration.

the two-electron or electron-hole configurations decay. This can, for instance, be seen from the 
application of the unitary operator on the state space of the ee/hh excitations (eq. (157))

U[kσ,k′σ ′]|ψ̄1kσ 1k′σ ′ 〉 = Z−1
pp,2c̃

†
kσ c̃

†
k′σ ′U[kσ,k′σ ′]|ψ〉 , (165)

where c̃†
kσ = U[kσ,k′σ ′]c†

kσ U
†
[kσ,k′σ ′] represents the rotated electron creation operators. This ro-

tated operator can be recast in the cluster expansion as in eq. (136) (see Sec. 3.7). Then, the 
cluster expansion of the single creation operator will contain (as before) a 1-electron creation 
operator and a 2-electron+1-hole (a three-fermion) creation operator. Therefore, the cluster ex-
pansion of the product of the rotated two e-creation operator will contain a 2-e configuration, a 
3-e+1-h configuration and a 4-e+2-h configuration. The 4-e+2-h configuration appears at a next-
to-leading order in the bare interaction vertex (�4,(N))2, making the 3-e+1-h configuration the 
leading decay channel for the two-particle excitation (Fig. 17). This 3-e+1-h excitation is com-
posed of an ee excitation together with an eh excitation, and manifests in the dynamical mixing 
of the pairs with different net electronic charge. We will now detail this process.

6.2. Dynamical mixing between ee/hh, eh/he pairs

The feedback of the three-particle scattering process (Fig. 16(c)) on ee/hh and eh/he scattering 
processes (Fig. 16(a,b)) is an outcome of the non-commutativity between two operators. The first 
of these is the composite-electron creation operator (1 − n̂kσ )c

†
k′σ ′ , which is dependent on the 

occupation of the state k′σ ′ (as can be seen from the blue k′σ ′ circle adjacent to the green circle in 
Fig. 16(c)), and the second are the ee-hh/eh-he pseudospin operators [67], c†

kσ c
†
k′σ ′ and c†

kσ ck′σ ′ . 
The leading contributions of the three-particle vertices resulting from Fig. 16(c) can then be 
included into the two-particle vertices (Fig. 16(a,b)) by performing a rotation in the space of 
operators described above. This rotation induces a probabilistic superposition between these two 
kinds of pairs, with p being the probability coefficient.

The composite-electron operator carries 1 unit each of electronic charge and spin, the ee/hh 
pair operator has a 2 units of charge and the eh/he pair operator has a 0 unit charge. The spin-
charge hybridized pseudospin excitations resulting out of the rotation are then given by

c
†
kσ γ

p†
k′σ ′ = √

pc
†
kσ c

†
k′σ ′ +

√
1 − p(c

†
kσ ck′σ ′)c†

k′σ ′ ,

c
†
kσ ν

p†
k′σ ′ = −√

1 − pc
†
kσ c

†
k′σ ′ + √

p(c
†
kσ ck′σ ′)c†

k′σ ′ , (166)

and describe mixed valence configurations arising out of electronic correlations. Such mixed 
valence regimes are known to exist in the heavy fermion systems, where they arise from quan-
tum fluctuations between different electron occupation number configurations mixing spin and 
charge degrees of freedom [179]. The basis states that are obtained via rotations of the empty 
configurations of kσ and k′σ ′ are (using Appendix E)
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|1kσ ψk′σ ′,p〉 = √
p|1kσ 1k′σ ′ 〉 +√

1 − p|1kσ 0k′σ ′ 〉
|1kσ ψ⊥

k′σ ′,p〉 =√
1 − p|1kσ 1k′σ ′ 〉 − √

p|1kσ 0k′σ ′ 〉 . (167)

The spectral decomposition (eq. (39)) of the spin-charge hybridized pseudospin Green’s func-
tions can now be written down in this basis. Here, we present the Green’s function corresponding 
to the configuration |1kσψk′σ ′,p〉

Ge
[kσ,k′σ ′],p(ω) = 1

ω − pεee
kσ,k′σ ′ − p′εeh

kσ,k′σ ′ − 1
4V σσ ′

k,k′
, (168)

where εee/eh

kσ,k′σ ′ = 2−1(ε̃kσ ± ε̃k′σ ′) and V σσ ′
k,k′ represent the ee/hh and eh/he pairwise kinetic ener-

gies and pair correlation energy respectively, and the probability p′ = 1 −p. The energy ε̃kσ is the 
electronic dispersion measured from Fermi energy (EF ), i.e., ε̃kσ = εkσ − EF , such that states 
lying outside/inside Fermi sea has positive/negative energy. The magnitude of the spin-charge 
hybridization term p ≡ p(ω) is determined by maximizing the two-electron Green’s function 
contribution at a given quantum fluctuation scale ω (i.e., the eigenvalue of the ω̂ operator) in the 
spin-charge hybridized second-quantized basis of the operators c†

kσγ
p†
k′σ ′ and c†

kσ ν
p†
k′σ ′ . With this 

set up in place, we will determine the two particle self-energies.

6.3. Self-energy hybridized by ee-eh pair mixing

The two-electron spin-charge hybridized Green’s function Ge
[kσ,k′σ ′],p sandwiched between 

off-diagonal two-particle scattering vertices (Appendix E) results in the (ee/hh)/(eh/he) hy-
bridized self-energies. Taking account of the hybridized pseudospin correlation terms present 
in the renormalized TEH, �H

D,1kσ

[kσ,k′σ ′], we obtain the two-particle self-energy

�̂2
kσ,k′σ ′,p(ω) =

∑
q�=0

Ge
[k+qσ,k′−qσ ′],p(V σσ ′

kk′q)2fkk′qτkσ τk′σ ′ .

Here, fkk′q (eq. (141)) represents the restriction of the scattered states energies as follows: 
εk′ , εk > εk+q, εk′−q ≥ EF . The self-energy �̂kσ,k′σ ′(ω) can be decomposed into a two-particle 

correlation energy shift (�̂2,(0)

kσ,k′σ ′,p) and terms that are dependent on the lattice geometry

�̂2
kσ,k′σ ′,p = �̂

2,(0)

kσ,k′σ ′,p + (�̂2
kσ,k′σ ′,p − �̂

2,(0)

kσ,k′σ ′,p) , (169)

with �̂2,(0)

kσ,k′σ ′,p(ω) given by

�
2,(0)

kσ,k′σ ′,p(ω) =
∑
q�=0

C
(0)

kσ,k′σ ′

ω − E
p

kk′q − 1
4V

σσ ′(0)

kk′
. (170)

In the above, C
(0)

kσ,k′σ ′ = N−1 ∑
q(V σσ ′

kk′q)2fkk′q and V
σσ ′(0)

kk′ = N−1 ∑
q V σσ ′

k+qk′−q. The hy-

bridized pairwise-energy is given by Ep

kk′q = pε̃
pp

k+q,k′−q + p′ε̃ph

k+q,k′−q.
We will show below that one part of the zeroth piece of the hybridized pairwise correlation 

energy �2,(0)

kσ,k′σ ′,p(ω) has a generic logarithmic form in the vicinity of the erstwhile Fermi sur-
face, enabling the observation of a pairing instability of the Fermi surface associated with the 
formation of two-particle bound condensates.
53



A. Mukherjee and S. Lal Nuclear Physics B 960 (2020) 115170
6.4. Bound state formation near the Fermi surface

The T = 0 Fermi distribution functions in fkk′q (eq. (141)) cut off the momentum-space states 
through a lower cutoff qmin = 0, and an upper qmax cutoff given by

if εk < εk′ → qmax = kF − k else qmax = k′ − kF . (171)

The kinetic energy associated with the wavevectors qmax, qmin, k and k′ measures how close 
excitations can approach Fermi energy, as seen from the hybridized kinetic energy Ep

kk′qmax
given 

by

E
p

kk′qmax
= p(εk+k′−kF

− EF ) + (1 − p)(EF − εk′+k−kF
) ,

E
p

kk′qmin
= p(εk + εk′ − 2EF ) + (1 − p)(εk − εk′) . (172)

Thus, one finds that the constraints on the summation over q′s in eq. (141) are given by

EF < εk+q < εk , EF < εk′−q < εk′ . (173)

Using the definition of qmax , we then write the summation eq. (170) as

�
2,(0)

kσ,k′σ ′,p(ω) =
E

p

kk′qmax∑
E

p

kk′qmin=0

C
(0)

kσ,k′σ ′gkk′q

ω − E
p

kk′q − 1
4V

σσ ′(0)

kk′
, (174)

where gkk′q = D(εk+q)θ(εk′ − εk) + D(εk′−q)θ(εk − εk′). The density of states (DOS) D(E) is 
defined as usual: D(E) =∑

k δ(E − εk). Writing the DOS about the Fermi surface as D(E) =
D(EF ) + D(E) − D(EF ), we have

�
2,(0)

kσ,k′σ ′,p(ω) =
E

p

kk′qmax∑
E

p

kk′qmin=0

C
(0)

kσ,k′σ ′D(EF )

ω − E
p

kk′q − 1
4V

σσ ′(0)

kk′

+
E

p

kk′qmax∑
E

p

kk′qmin=0

C
(0)

kσ,k′σ ′(gkk′q − D(EF ))

ω − E
p

kk′q − 1
4V

σσ ′(0)

kk′
. (175)

The first summation in eq. (175) gives a logarithm contribution to the 2-particle self-energy

�
2,(0)

kσ,k′σ ′,p(ω) ≈ C
(0)

kσ,k′σ ′

E
p

kk′qmin
− E

p

kk′qmax

D(EF )

× log

(
1 + E

p

kk′qmin
− E

p

kk′qmax

ω − 1
4V σσ ′

kk′

)
. (176)

This calculation shows that �2,(0)

kσ,k′σ ′,p(ω) has a logarithmic non-analyticity at ω → V σσ ′
kk′ and 

E
p

kk′qmin
= E

p

kk′qmax
. The leading contribution to this non-analyticity exists for total momenta 

k + k′ pairs whose energy is resonant with the Fermi energy EF , satisfying the condition

E
p

′ = 0 ≡ k + k′ = kF + k′ , (177)
kk qmax F
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where k′
F is a general Fermi wave vector not necessarily the same as kF . Such a logarithmic 

term signals an instability of the Fermi surface via a four-fermion interaction with the above pair-
momentum constraint (eq. (177)). As mentioned earlier, this is a generalized version of Cooper’s 
pairing instability [168] for attractive interactions on a circular Fermi surface. We remind the 
reader that the dynamical spectral weight transfer along channels such a logarithmic instability 
is observed in the decay of the two-particle excitation (Fig. 17) from the action of the unitary 
operator on the two-particle excitation subspace (eq. (165)).

6.5. Bound states, Friedel’s phase shift and RG flows

We will now show that the formation of pairwise spin-charge hybridized composites is ac-
companied by a change in Luttinger’s volume [149,156] via the appearance of surfaces of 
Luttinger zeros. This change in Luttinger volume is quantified by the Freidel-Levinson phase 
shift [166,180], and can be seen naturally through a scattering-matrix formulation of the above 
problem. The emergence of pseudospin pairing will, in general, be restricted to a energy-
momentum shell �∗ around the erstwhile Fermi surface of the non-interacting problem, where 
�∗ is the normal displacement from the Fermi sea (described in text below eq. (148)). The �∗
momentum-space scale ought to arise from a stable fixed point theory attained via renormal-
ization group procedure implemented on the microscopic model. The RG procedure we have 
detailed in an earlier section can be used to reach a final stable fixed point theory owing to a 
frequency dependent self energy feedback in the RG flow equations (eq. (62)), leading to the 
emergence of the momentum scale �∗.

From the cluster- and spectral-decompositions of the Hamiltonian RG relation H(j−1) =
U(j)H(j)U

†
(j) and state space renormalization |�(j−1)〉 = U(j)|�(j)〉, the 4-point vertex flow 

equation (using eq. (61)) and the 2-particle excitation flow equations (using eq. (157)) can be 
obtained. The cluster expansion of the excitations about the momentum-space number-diagonal 
configurations is given by

|�i
(j)〉 =

a
j
max∑

n=1

cn,(j)
α c̃†

α|�i
D,(j)〉 , (178)

here α is a set of electronic state labels which are in occupied configuration, and cn,(j)
α is the 

coefficient of the n-body cluster. Using eq. (178) with the cluster expansion of the Hamiltonian 
eq. (45) at every step of the RG, we find the RG flow equations for the 4-point vertex (�4

αβ ) and 
the coefficient of the 2-body cluster (c2

α) as

��
4,(j)
αβ (ωi) =

2amax
j∑

p1,p3

∑
γ,γ ′

{�p1
αγ G

2p2
γ γ ′�

p3
γ ′β}(j)(ωi),

�c2,(j)
α = 3

4
c2,(j)
α + 1

2

[
G

4,(j)

ββ ′ �
4,(j)
βα c

2,(j)
β + 1

2
��

4,(j)
αβ c

2,(j)
β

]
. (179)

At quantum fluctuation energy scales (ω) in the regime

n∑
εli > ε

ee/eh

kσ,p′σ ′ > ω > ε
ee/eh

kσ,pσ ′, (kσ,pσ ′) = (kσ,p − kσ ′) , (180)

i=1

55



A. Mukherjee and S. Lal Nuclear Physics B 960 (2020) 115170
the signature of the Green’s function G4
ββ ′ (eq. (62)) is negative, leading to the RG irrelevance 

of all vertices greater than the 4-point vertex: �2n, n > 2. The RG flow equations can, therefore, 
be simplified to contain only the 4-point vertices with pairing-momentum p. Subsequently, the 
two-particle Green’s function can be resolved in the spin-charge hybridized mixed valence basis 
(eq. (168)). Concomitantly, the leading contributer to the state-space renormalization (eq. (179)) 
are the two-electron/electron-hole pseudospins for p net momentum, as ��

4,(j)
p has relevant 

contributions only from 4-point vertices. As the denominator in the hybridized ee/eh Green’s 
function (eq. (168)) within the flow equations eq. (179) vanishes, the quantum fluctuation energy 
scale ω obtains the exact eigenvalue of the paired electronic states, and we attain a stable fixed 
point pairing force pseudospin Hamiltonian [176] along with its renormalized Hilbert space. This 
will be seen in more detail in a accompanying work for the effective Hamiltonians reached from 
the four-fermion interacting model eq. (122).

In the vicinity of the Fermi energy, these pseudospin pairs condense independently along 
every pairwise normal directions (ŝ, ̂s′), as seen from the constraint in eq. (177). Following 
this process for every normal direction ŝ, and at the quantum fluctuation scale ω, a momen-
tum scale �∗(ω, ̂s) is generated at the stable fixed point. This corresponds to the low-energy 
window formed around the Fermi surface (FS) associated with the condensation phenomenon. 
Using the unitary decoupling operator’s connection to the scattering matrix (Appendix F), we 
can define the T-matrix at the final fixed point theory. This T-matrix satisfies the generalized 
optical theorem [181], as shown in the appendix. We resolve this T-matrix within the low-energy 
window in the ee/eh mixed-valence configuration of pairwise states (k, k′) (eq. (167)) along 
pairwise normal directions (ŝ, ̂s′) at a distance � from the FS fulfilling constraint eq. (177). The 
backscattering T-matrix thus obtained has the form

T �
ŝ,ŝ′→−(ŝ,ŝ′)(ω) = i

V
σσ ′,eff
ŝ,ŝ′→−(ŝ,ŝ′)(ω)

ω − E
p

kk′ − �
2,(0)

ss′ (ω)
,

T �
ŝ,ŝ′→−(ŝ,ŝ′)(ω) = −(T �

ŝ,ŝ′→−(ŝ,ŝ′)(ω))∗ , � < �∗(ω, ŝ) ,

where we have carried out a spectral-decomposition of the unitary operator using eq. (40). The 
backscattering diagrams are present in H if kF,ŝ + kF,ŝ′ = kF,−ŝ + kF,−ŝ′ , or there is an off-
set in the pair-momentum equal to a reciprocal-lattice vector. Within a 2 × 2 subspace of four 
fermionic states (but with two states occupied), i.e., |1ŝσ 1ŝ′σ ′0−ŝσ 0−ŝ′σ ′ 〉, |0ŝσ 0ŝ′σ ′1−ŝσ 1−ŝ′σ ′ 〉, 
the T-matrix can be written as

T̂ �
ŝ,ŝ′→−(ŝ,ŝ′) =

(
0 Tŝŝ′→−ŝ−ŝ′

T ∗
ŝŝ′→−ŝ−ŝ′ 0

)
.

In the eigenbasis of bonding (+) and antibonding (-) states, the T matrix elements are given by

T̂ ±
ŝ ŝ′,−ŝ−ŝ′(ω) = ±1

2

∣∣∣∣ V
σσ ′,eff
s,s′→−(ŝ,ŝ′)(ω)

ω − E
p

kk′ − �
2,(0)

ss′ (ω)

∣∣∣∣ . (181)

A similar T-matrix calculation for the Kondo problem is presented in Ref. [172]. The change in 
the Luttinger volume �N [156,166] is known to be connected to the Friedel’s phase shift. In the 
same way, the change in the partial Luttinger volume for every normal ŝ defined in Theorem 1
can be connected to the net Friedel’s phase shift for states within the low energy window along a 
normal ŝ [157]
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Nŝ − N̄ŝ = − i

π

∑
�<�∗(ω,ŝ)

T r lnS�
ŝ,ŝ′→−(ŝ,ŝ′)(ω) , (182)

where the scattering matrix for the paired states

S�
ŝ,ŝ′→−(ŝ,ŝ′) = 1 + iT �

ŝ,ŝ′→−(ŝ,ŝ′) = e
iδ̂�

ŝŝ′ (183)

is written in terms of the T-matrix. The opposite signatures and equal magnitudes of the T matrix 
elements in eq. (181) leads to a net phase shift δ�,ŝ,ŝ′,+ + δ�,ŝ,ŝ′,− = 0 or 2π , where 2π origi-
nates from summing the phases δ�,ŝ,ŝ′+ = θ from a given Riemann sheet and 2π − θ from the 
next Riemann sheet. These phase shifts are the eigenvalues of the phase operator δ̂�

ŝŝ′ . The net 
phase shift leads to a integer change of 2 in the Luttinger volume for every pair of electrons at 
a given distance � (and involving the pair of normal directions (ŝ, ̂s′)). The change in partial 
Luttinger sum is given by

�Nŝ = Nŝ − N̄ŝ =
∑

�≤�∗(ω,ŝ)

2 , (184)

such that half of �Nŝ counts the number of bound states formed along the normal direction ŝ.
This patch of Luttinger zeros along the normal direction ŝ can also be seen through the sen-

sitivity towards boundary conditions by the adiabatic application of a twist operator that affects 
electronic states along a normal direction (eq. (154)) within the fixed point low-energy window. 
The change in partial Luttinger volume is given by the non-commutativity between twist and 
translation operator (T )

�Nŝ = i

π
T r ln(T ÔL

ŝ,�∗T †Ô
†L

ŝ,�∗) , (185)

offering an equivalent topological characteristic observed through an argument involving invari-
ance under a large gauge transformation. L is the total number of states along ŝ. Summing up 
this partial Friedel’s phase shift for all pair of normal directions, we get the change in Luttinger 
volume [157], �N =∑

ŝ �Nŝ . In this way, we find a precise signature of a connected Luttinger 
surface of zeros [147] describing a gapped phase in a strongly correlated system of electrons. 
Further note that in an earlier section Sec. 4 we had shown that the pairing of electrons into 
bound states mitigates the Fermion sign present in the electronic model. Via URG The Hilbert 
space morphs from an fermionic Hilbert space to a SU(2) spin 1/2 Hilbert space. The mechanism 
outlined here displays how a collection of 1+1D chiral conformal field theories (CFTs) compos-
ing a Fermi surface [162] breaks down due to the emergent momentum scale generated via the 
RG. In a companion work [182], we have performed the RG treatment on various microscopic 
strongly correlated electronic models, with a view towards obtaining therefrom simpler effective 
models from the stable fixed points of the RG flow. In some of these effective models, we will 
demonstrate the existence of (i) bound state formation with Luttinger zero surfaces, and (ii) two 
electron 1 hole composite degrees of freedom about a gapless Fermi surface which preserve the 
Luttinger volume.

7. Conclusions and discussions

The present work formalises as well as extends substantially the unitary renormalisation group 
(URG) procedure introduced in Refs. [1,2,51] for a finite system of interacting electrons on a lat-
tice, and described by the Hamiltonian framework. In doing so, we obtain a hierarchy of 2n-point 
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vertex RG flow equations, where all loop-contributions are resummed. By relating the 2n-point 
vertices to vertex tensors, we interpret the Hamiltonian renormalization as a vertex tensor net-
work RG scheme. The RG flow for the many-particle eigenspace of the Hamiltonian is generated 
via the action of the same unitary operations on the eigenstates. This is seen via the RG flow 
for the coefficient tensors comprising the many body eigenstates, generating the entanglement 
renormalization in the form of an EHM. In Ref. [3], we have employed the coefficient RG for-
malism developed here to demonstrate an entanglement renormalization group scheme/EHM 
constructed for the Mott liquid ground state of the 2D Hubbard model observed recently in 
Ref. [1]. Importantly, we have shown in Ref. [3] the validity of the Ryu-Takayanagi relation for 
the EHM constructed for the Mott liquid: the entanglement entropy of a subsystem is bounded 
from above by the area of the minimal surface isolating it from the rest of the system. Further, this 
approach has also enabled the computation of several observables such as correlation functions 
and structure factors.

This brings us to the main result of the present work. The unified RG formalism presented here 
for the Hamiltonian and its eigenspace, is a mathematical realisation of the holographic princi-
ple, i.e., a demonstration of how the entanglement renormalization seen via the EHM [3,55,56] is 
generated from the scattering vertex tensor network RG for the Hamiltonian. In order to under-
stand the EHM better, we define a metric space associated with the Fubini-Study distances [183]
between a given many-body eigenstate and all possible separable states. The vertex tensor RG 
is observed to generate the renormalization of the Fubini-Study metric in the bulk of the EHM. 
In Ref. [184], the geodesic on the Fubini-Study metric space is shown to be related to circuit 
complexity. A future direction would be check the “circuit complexity=volume” conjecture of 
holographic complexity [185–187] for the URG formalism.

Importantly, the renormalization of the geodesic on the Fubini-Study metric space is also 
related to the RG flow for the geometric measure of entanglement [128,135]. We argue that for 
gapped phases associated with bound state formation, the renormalization group flow for the 
geometric measure of entanglement attains a fixed point at a finite value. This describes the 
remnant entanglement content within the low-energy eigenstates of the IR stable fixed point. 
On the other hand, the geometric measure vanishes for gapless phases, as momentum-space 
coordinates remain good quantum numbers under the RG flow. In turn, this implies that the 
Hilbert space geometry generated along the RG direction in the IR is very different for gapless 
as against gapped phases. We have also demonstrated this distinction of entanglement space-
time using entanglement based measures (e.g., entanglement entropy, mutual information etc.) in 
Ref. [3] in a specific case of the Mott liquid phase of the 2D Hubbard model. It may be possible to 
further extend our study of the quantum geometry of the many-particle Hilbert space by following 
the methods developed in Refs. [188,189]. In a companion work [182], we show that the vertex 
tensor network generates a Hamiltonian gauge theory described in terms of nonlocal Wilson 
loop operators. In this way, we obtain an ab-initio perspective of the gauge/gravity (holographic 
spacetime) duality [190,191] from the URG framework.

Another important outcome is that the URG framework offers a renormalisation group per-
spective of the fermion sign problem, i.e., the appearance of sign factors in the wavefunction 
coefficient tensor network from the exchange of electrons in the vertex renormalisation functions. 
First, the fermion exchange sign factors signify the complex evolution of multipartite entangle-
ment within the many-particle wavefunction. We find that the stable fixed point theories obtained 
in the IR are generically free of all fermion exchange sign factors. This mitigation of the fermion 
sign factors appears to indicate a novel topological mechanism guiding the URG flows from 
UV to IR [192]. Thus, the URG provides a pathway for the discovery of effective Hamiltonians 
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and eigenbases that are fermion-sign free even in problems (i.e., bare Hamiltonians) that possess 
them [193]. Following the strategy adopted in Ref. [3] likely also paves the way for learning the 
many-particle content of theories that possess fermion signs.

We have also provided a preview of the usage of URG towards detecting composite degrees 
of freedom in problems of correlated electrons. These excitations either replace the Fermi liquid 
phase by another gapless phase, or generate a many-body gap via the destabilization of the Fermi 
surface. Both possibilities are explicitly demonstrated as obeying important spectral sum-rules. 
Specifically, we show that due to strong forward scattering processes, a 2-electron 1-hole degree 
of freedom can replace the Landau quasiparticle as the excitation proximate to the Fermi surface, 
and leads to a non-Fermi liquid metal. The nature of such excitations in the Marginal Fermi liquid 
phase of the 2D Hubbard model has been studied by us in Ref. [1,2]. We have also demonstrated 
the destabilisation of the Fermi surface towards the formation of bound states. The condensation 
of such bound states has, for instance, been shown to lead to the Mott liquid phase of the 2D 
Hubbard model in Ref. [1]. In a companion work [182], we perform the URG for two generic 
models of strong correlated electronic models, one with translational invariance and the other 
without, in order to demonstrate the emergence of composite degrees of freedom and the effective 
theories that describe their dynamics. The results obtained from those studies help concretise 
the URG framework presented in this work. They also offer fresh insight into the criticality of 
correlated fermions, and the novel states of quantum matter that are emergent therefrom.
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Appendix A. Block matrix representation of fermionic operators in single fermion 
number occupancy basis

The block matrix representation of fermionic operators using partial trace operations will be 
demonstrated here. Partial trace operations are prone to fermion sign ambiguities, as shown by 
Montero and Martinez [194], as well as Friis et al. [195]. We will show how we take care of 
fermion sign issues, and obtain a block matrix form for fermionic operators in the occupation 
number basis. A general number ordered (N.O.) operator in a 2N dimensional fermionic Fock 
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space created out of N single-particle number occupancy spaces labelled by l ∈ [1, N ] is repre-
sented as

B̂ =
∑

i

B̂i , B̂i =
pi∏

j=1

c
†
lie,j

qi∏
j=1

clih,j
,

pi∏
j=1

c
†
lie,j

:= c
†
lie,1

c
†
lie,2

. . . c
†
lie,pi

, (A.1)

where the indices lie,j and lih,j are the state labels acted upon by the electron creation and annihi-

lation operators contained within the ith operator B̂i .

Theorem 2. - With respect to the single particle number occupancy space labelled by l, the 
operator B̂ can be resolved into the following block form d

B̂ = n̂l ⊗ Ul + (I2 ⊗ Vl)(cl ⊗ I2N−1)

+ (c
†
l ⊗ I2N−1)(I2 ⊗ Wl) + (I2 ⊗ Xl)((1 − n̂l) ⊗ I2N−1)

=
(

Ul Wl

Vl Xl

)
. (A.2)

Above I2 = n̂l + 1 − n̂l represent the 2 × 2 identity matrix and fermion operators n̂l , c
†
l and cl

has the following matrix representation,

n̂l :=
(

1 0
0 0

)
, c

†
l :=

(
0 1
0 0

)
, cl :=

(
0 0
1 0

)
(A.3)

and I2N−1 is the 2N−1 × 2N−1 identity matrix.

Definition. The partial trace of Ô with respect to state l is defined as,

T rl(B̂) =
∑

i

T rl(B̂i)

where ,

T rl(B̂i) = 2

(
1 −

pi∑
j=1

δlie,j ,l

)(
1 −

qi∑
k=1

δlie,k,l

)
B̂i

+
pi,qi∑
j ′=1,

k′=1

δli
e,j ′ ,lδli

h,k′ ,l × eiπ[(j ′−1)+(qi−k′)] ×
pi∏

j=1,

j �=j ′

c
†
lie,j

qi∏
k=1,
k �=k′

clih,j
. (A.4)

For the rest of this appendix, we will represent the fermionic operators in the shorthand notation 
as follows c†

l := c
†
l ⊗ I2N−1 , cl := cl ⊗ I2N−1 , n̂l := n̂l ⊗ I2N−1 . Also, the operators U, V, W and 

X have the following definitions Ul := I2 ⊗ Ul , Wl := I2 ⊗ Wl , Vl := I2 ⊗ Vl , Xl := I2 ⊗ Xl . 
Using the above definition eq. (A.4), the following three identities can be derived
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n̂lT rl(B̂i n̂l) = eiπ(pi+qi )

[(
1 −

pi∑
j=1

δlie,j ,l

)(
1 −

qi∑
k=1

δlie,k,l

)
n̂l

+
pi,qi∑
j ′=1,

k′=1

δli
e,j ′ ,lδli

h,k′ ,l

]
B̂i , (A.5)

T rl(c
†
l B̂i )cl =

(
1 −

pi∑
j ′=1

δli
e,j ′ ,l

) qi∑
k′=1

δli
h,k′ ,l B̂i , (A.6)

c
†
l T rl(B̂icl) =

(
1 −

qi∑
k′=1

δli
h,k′ ,l

) pi∑
j ′=1

δli
e,j ′ ,l B̂i . (A.7)

The above three identities lead to the following fourth relation as a corollary

T rl(B̂i(1 − n̂l))(1 − n̂l) =
(

2 − eiπ(pi+qi )

)(
1 −

pi∑
j=1

δlie,j ,l

)

×
(

1 −
qi∑

k=1

δlie,k,l

)
B̂i(1 − n̂l) . (A.8)

The operator B̂i can now be reconstructed by using the partial traced operators (with respect to 
the state l) and multiplied by the triad of operators n̂l − 1

2 , c†
l , cl using eq. (A.5) – eq. (A.8)

B̂i = eiπ(pi+qi )T rl(B̂i n̂l)n̂l + T rl(c
†
l B̂i )cl + c

†
l T rl(B̂icl)

+
(

2 − eiπ(pi+qi )

)−1

T rl(B̂i(1 − n̂l))(1 − n̂l) .

Hence, any arbitrary N.O. fermionic operator can be reconstructed in terms of partial traced 
operators and the triad n̂l − 1

2 , c†
l , cl as follows

B̂ =
∑

i

[
eiπ(pi+qi )T rl(B̂i n̂l)n̂l + T rl(c

†
l B̂i )cl + c

†
l T rl(B̂icl)

+
(

2 − eiπ(pi+qi )

)−1

T rl(B̂i(1 − n̂l))(1 − n̂l)

]
. (A.9)

The operator decomposition proved above allows for a block matrix representation of the opera-
tor B̂

B̂ =
⎛
⎜⎝
∑

i e
iπ(pi+qi )T rl(B̂i n̂l) T rl(B̂icl)

T rl(c
†
l B̂i )

∑
i

T rl (B̂i (1−n̂l ))

2−eiπ(pi+qi )

⎞
⎟⎠ . (A.10)

For B̂ containing only even number of fermion operators, it has a block matrix form

B̂ =
⎛
⎝T rl(B̂i n̂l) T rl(B̂icl)

T r (c
†
B̂ ) T r (B̂ (1 − n̂ ))

⎞
⎠ . (A.11)
l l i l i l
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Appendix B. Connection to the continuous unitary transformation (CUT) RG

The complete number diagonal Hamiltonian is attained in n-steps given by

H(0) = [U(1) . . .U(N)]H(N)[U(1) . . .U(N)]† . (B.1)

This number diagonal Hamiltonian commutes with N local Hermitian operators

[H(0), n̂j ] = 0,∀j ∈ [1,N],
leading to a complete set of local integrals of motion [65]. The logarithm of the total unitary 
operation can be taken to obtain the generator of the complete rotation

Ĝ = −i log
N∏

j=1

U(j) . (B.2)

Now, the total unitary transformation can also be carried out as a product of infinitesimal rotations 
δθ on the configuration space as follows

N∏
j=1

U(j)= lim
L→∞

[
Û (δθ)

]L = lim
L→∞

[
1 + δθĜ

]L

, Lδθ=1, Û (δθ)= exp
[
iδθĜ

]
. (B.3)

The generator of the infinitesimal unitary operation Ĝ can now be related to the canonical gen-
erator of continuous unitary transformations based RG [9,60,61]

H(δθ) = Û (δθ)Ĥ Û†(δθ) = Ĥ + iδθ
[
Ĝ, Ĥ

]
⇒ dH(θ)

dθ
= i

[
Ĝ, Ĥ (θ)

]
. (B.4)

In this implementation, all the single electron states become partially disentangled at every RG 
step via an infinitesimal amount of rotation in the associated Hilbert space.

Appendix C. Highest n-particle vertex at the RG step j

Let aN be the order of the highest n-particle (i.e., 2n-point) vertex �aN ,(N) in the bare 
Hamiltonian. In the Hamiltonian RG iteration procedure, the next highest off-diagonal scattering 
element is generated by the sandwiching of two �aN,(N) with the smallest possible overlap (i.e., 
one single-electron state). Therefore, its magnitude is determined as

aN−1 = 2(aN − 1) . (C.1)

This suggests that, at the RG step j , the highest n-particle scattering vertex (appearing in eq. (61)) 
is given by

aj−1 = 2(aj − 1) . (C.2)

However, as the RG proceeds, integrals of motion are generated and lesser single-particle states 
participate in the off-diagonal scattering processes. At the RG step j , there are j single-particle 
states that are coupled with each other, such that the highest n-particle vertex is correctly deter-
mined by the relation

aj = min{2j a0 − 2j+1 + 2, j} . (C.3)
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For an arbitrary Hamiltonian with highest bare-level vertex a0, the total number of 1, 2, 3-particle 
... off-diagonal terms at the RG step j is given by

Kj =
aj /2∑
l=1

(
j

2l

)
< 2j−1 . (C.4)

Appendix D. Rearrangement scheme for generating the effective Hamiltonian

Using the unitary operators Ukσ together with the block diagonalized SEH H̃[kσ ] (eq. (127)) 
for every kσ , we write down the Hamiltonian HSFIM in eq. (122) as

H =
∑
kσ

T rkσ (U
†
[kσ ]H̃[kσ ]U[kσ ]n̂kσ )n̂kσ

+ 1

2

(
c

†
kσ T rkσ (U

†
[kσ ]H̃[kσ ]U[kσ ]ckσ ) + h.c.

)
. (D.1)

Using the form of the unitary operator, we obtain the following relations

U[kσ ]n̂kσ U
†
[kσ ] = 1

2

[
1 + ηkσ + η

†
kσ

]
,

U[kσ ]ckσ U
†
[kσ ] = 1

2
ckσ − 1

2
[η†

kσ , ckσ ] − 1

2
η

†
kσ ckσ η

†
kσ . (D.2)

Now, by putting these relations for U back in eq. (D.1), we obtain a rearrangement of the terms 
in Hamiltonian HSFIM as follows

H =
∑
kσ

[
1

2
T rkσ (H̃[kσ ])n̂kσ − 1

4

(
c

†
kσ T rkσ (H̃[kσ ][η†

kσ , ckσ ]) + h.c.
)]

. (D.3)

The block diagonalized SEH (T rkσ (H̃[kσ ]), eq. (127)) in the rearranged Hamiltonian eq. (D.3)
can be written as the sum of the blocks projected onto the electron-occupied (H̃ e

[kσ ]) and hole-

occupied subspaces (H̃ h
[kσ ])

T rkσ (H̃[kσ ]) = T rkσ (H̃[kσ ]n̂kσ ) + T rkσ (H̃[kσ ](1 − n̂kσ )) . (D.4)

Under block diagonalization, the partial trace operation T rkσ () remains preserved, implying that 
the changes induced by the quantum fluctuation terms in the block Hamiltonians for the electron 
occupied and hole occupied blocks are constrained as follows

�H̃[kσ ],e = −�H̃[kσ ],h , �H̃[kσ ]e/h = H̃[kσ ]e/h − H[kσ ]e/h , (D.5)

where the changes in the e and h block Hamiltonians are defined as

�H̃[kσ ],e = T rkσ (�H̃[kσ ]n̂kσ ) , �H̃[kσ ],h = T rkσ (�H̃[kσ ](1 − n̂kσ )) . (D.6)

The block diagonal Hamiltonian, H̃[kσ ], upon being projected onto the electron occupation sub-
space, i.e., T rkσ (H̃[kσ ]n̂kσ ), contains new energy shift and quantum fluctuations terms with 
respect to the rest of coupled states. Then, summing over all such kσ states leads to an effective 
Hamiltonian

H̃e = H +
∑

(�HD[kσ ],e + �HX[kσ ],e) . (D.7)

kσ

63



A. Mukherjee and S. Lal Nuclear Physics B 960 (2020) 115170
Here, �HD[kσ ],e accounts for the self energy/correlation energy terms that are number diagonal, 
and �HX[kσ ],e contains the renormalization of the scattering terms.

Appendix E. Constituents of the effective two-particle excitation Hamiltonian

The changes in the block Hamiltonian due to inter-particle scattering mediated via intermedi-
ate electron-electron or electron-hole configurations of Fig. 15(a,b) are described by

�H 1
[kσ,k′σ ′](ω) =

∑
qq′

V σσ ′
kk′qGkσ,k′σ ′V σ,σ ′′

kk′q′ τkσ τk′σ ′ × c
†
k+q′σ c

†
k′−q′σ ′ck′−qσ ′c†

k+qσ , (E.1)

where the Green’s function operator Gkσ,k′σ ′ is given by

Gkσ,k′σ ′ = (ω − εkτkσ − εk′τk′σ ′ − V σσ ′
kk′0τkσ τk′σ ′)−1 . (E.2)

The product of the τkσ = τk′σ ′ = ± 1
2 operators corresponds to the intermediate electron-

electron/hole-hole configuration entering the scattering process of Fig. 15(a). Similarly, the 
product of the τkσ = ±τk′σ ′ = ± 1

2 operators corresponds to an intermediate electron-hole con-
figuration entering the scattering process of Fig. 15(b). The third scattering process, Fig. 15(c), 
arises out of the mixing between ee (1kσ 1k′σ ′ ) and eh (1kσ 0k′σ ′ ) pairs, leading to effective three-
particle scattering terms given by

�H 2
[kσ,k′σ ′] =

∑
qq′k′′

V σσ ′
kk′qGkσ V σσ ′′

kk′′q′τkσ c
†
k′σ ′ + ck′+q′σ ′ck−q′σ c

†
k+qσ c

†
k′′−qσ ′′ck′′σ ′′ , (E.3)

where the effective 1-particle Green’s function is given by

Gkσ = (ω − εkτkσ −
∑
k′′

V σσ ′′
kk′′ τkσ τk′′σ ′′)−1. (E.4)

The three-fermionic operators τkσ c
†
k′σ ′ in eq. (E.3) lead to dynamical hybridization of the ee/hh 

creation operators (c†
kσ c

†
k′σ ′ , ckσ ck′σ ′ ) and eh/he creation operators (c†

kσ ck′σ ′ , c†
k′σ ′ck′σ ′ ). In or-

der to represent this mixing, let us first define the three-fermionic and two-fermionic creation 
operators as follows

μ
†
kσ,k′σ ′ = n̂kσ c

†
k′σ ′ , ρ

†
kσ,k′σ ′ = (1 − n̂kσ )c

†
k′σ ′ ,

C+
kσ,k′σ ′ = c

†
kσ c

†
k′σ ′ , S+

kσ,k′σ ′ = c
†
kσ ck′σ ′ , (E.5)

where μ
†
kσ,k′σ ′ − ρ

†
kσ,k′σ ′ = 2τkσ c

†
k′σ ′ . Similarly, we can define μ

†
k′σ ′,kσ

= n̂k′σ ′c†
kσ and 

ρ
†
k′σ ′,kσ

= (1 − n̂k′σ ′)c†
kσ . The source of the dynamical hybridization resides in the non-

commutativity of the three-fermionic operator n̂kσ c
†
k′σ ′ with the c†

kσ c
†
k′σ ′ , ck′σ ′ckσ , c†

kσ c
†
k′σ ′ and 

c
†
k′σ ′ckσ type operators

[C+
kσ,k′σ ′ ,μkσ,k′σ ′ ] = ρ

†
k′σ ′,kσ

,[
ρ

†
k′σ ′,kσ

,μ
†
kσ,k′σ ′

]
= C+

kσ,k′σ ′ ,[
ρk′σ ′,kσ ,C+

kσ,k′σ ′
]

= μ
†
kσ,k′σ ′ . (E.6)

Similar commutation relations are found for the S+
′ ′(≡ c

†
ck′σ ′) operators as well.
kσ,k σ kσ
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The effective three-particle term �H 2
[kσ,k′σ ′] does not, therefore, commute with the effective 

two particle term �H 1
[kσ,k′σ ′]. In order to take account of this non-commutativity, we perform a 

unitary rotation in the space of the operators defined above

c
†
kσ

⎛
⎝γ

p†
k′σ ′

ν
p†
k′σ ′

⎞
⎠=

⎛
⎝

√
p

√
1 − p

−√
1 − p

√
p

⎞
⎠
⎛
⎝C+

kσ,k′σ ′

ρ
†
k′σ ′,kσ

⎞
⎠ , (E.7)

where 0 ≤ p ≤ 1 represents the probability for the electronic state k′σ ′ to be occupied. Our goal 
is to rotate into a particular particle-hole superposition channel (say, p∗), such that the scattering 
amplitude of the particle-particle or particle-hole pairs in �H 1

[kσ,k′σ ′] are bigger compared to the 

three-particle scattering amplitudes in �H 2
[kσ,k′σ ′]. In this way, we will incorporate the effects 

of three-particle scattering physics and the spin-charge interplay phenomenon. To fulfil this, 
we perform the state-space rotation using the rotated operators of eq. (E.7), and compute the 
contribution of the �H 2

[kσ,k′σ ′] and �H 1
[kσ,k′σ ′] matrix elements in the rotated basis. First, we 

note that the rotated particle-hole superposition operators of eq. (E.7), γ p†
k′σ ′ , ν

p†
k′σ ′ , satisfy the 

following completeness relation

γ
p†
k′σ ′γ

p

k′σ ′ + ν
p†
k′σ ′ν

p

k′σ ′ = 1 . (E.8)

The action of the operators γ p†
k′σ ′ , γ̄

p†
k′σ ′ on the basis states |1k′σ ′ 〉 and |0k′σ ′ 〉 are given by

γ
p†
k′σ ′ |1k′σ ′ 〉 = 0 , γ

p†
kσ |0k′σ ′ 〉 = |ψk′σ ′,p〉 , |ψk′σ ′,p〉 = √

p|1k′σ ′ 〉 +√
1 − p|0k′σ ′ 〉 ,

ν
p†
k′σ ′ |1k′σ ′ 〉 = 0 , ν

p†
k′σ ′ |0k′σ ′ 〉 = |ψ⊥

k′σ ′,p〉 , |ψ⊥
k′σ ′,p〉 =√

1 − p|1k′σ ′ 〉 − √
p|0k′σ ′ 〉 ,

(E.9)

with 〈ψk′σ ′,p|ψ⊥
k′σ ′,p〉 = 0. Given eq. (E.8), the rotated states of eq. (E.9) also fulfil the complete-

ness relation given above. In the tensor product Hilbert space of kσ and k′σ ′, we then define the 
basis states

|1kσ ψk′σ ′,p〉 = √
p|1kσ 1k′σ ′ 〉 +√

1 − p|1kσ 0k′σ ′ 〉 ,

|1kσ ψ⊥
k′σ ′,p〉 =√

1 − p|1kσ 1k′σ ′ 〉 − √
p|1kσ 0k′σ ′ 〉 , (E.10)

as well as the states |0kσψk′σ ′,p〉, |0kσ ψ⊥
k′σ ′,p〉 similarly to those given above.

For the states with quantum numbers (kσ) and (k′σ ′), such that their kinetic energies are or-
dered as εk > εk′ > EF (the Fermi energy), the channel |1kσψk′σ ′,p〉 is composed of net positive 
energy states. Bound state formation occurs for such states via the lowering of the total energy 
below EF . This motivates a study of the changes induced in the two-particle (�H 1

[kσ,k′σ ′]) and 

three-particle (�H 2
kσ,k′σ ′]) scattering terms for the intermediate configuration |1kσψk′σ ′,p〉

�H 1
[kσ,k′σ ′](ω) =

∑
qq′

(1 − 2p)Vkk′qVkk′q′

ω − Ep,k,k′ − (1−2p)
4 Vkk′

,

× c
†
k+q′σ c

†
k′−q′σ ′ck′−qσ ′c†

k+qσ ,

�H 2
[kσ,k′σ ′](ω) =

∑
′′ ′

√
p(1 − p)V σσ ′

kk′qV σσ ′′
kk′′q′

ω − 1
2εk − 1

2

∑
k′′ V σσ ′

kk′′ �(εk′′ − EF )
, (E.11)
k q q
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where Ep,k,k′ = p
2 (εk + εk′) + (1−p)

2 (εk − εk′). In the regime given by ω > Ep,k,k′, 12εk > V σσ ′
kk′ , 

we find the optimal spin-charge mixing parameter p∗ subject to the condition

max
p∗ (ω − Ep,k,k′)−1 ≡ (ω − Ep∗,k,k′)−1 > (ω − 1

2
εk)−1 . (E.12)

This condition automatically fulfils our goal for the magnitude of the change in the two-particle 
vertices in �H 1

[kσ,k′σ ′](ω) to be of greater than the magnitude of the three-particle vertices in 

�H 2
[kσ,k′σ ′](ω).

Appendix F. Unitary matrix as a scattering matrix and the generalized optical theorem

The unitary matrix described in eq. (15) can be written in terms of the transfer matrix T , and 
also in terms of the exponential of a phase operator θ

UN = exp iθN = 1 + iTN , (F.1)

such that (using eq. (27))

θN = arctan i
(
ηN − η

†
N

)
,

TN = i

(
1 − 1√

2

)
− i√

2

(
ηN − η

†
N

)
. (F.2)

The requirement of unitarity UU† = U†U = I , together with the form of eq. (F.1), imposes a 
constraint on the T -matrix. The T -matrix form given by eq. (F.2) fulfils the optical theorem

i(TN − T
†
N) = TNT

†
N . (F.3)
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