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Recently, one- and two-parameter deformed Einstein equations have been studied for extremal quantum black holes which have
been proposed to obey deformed statistics by Strominger. In this study,we give a deeper insight into the deformedEinstein equations
and consider the solutions of these equations for the extremal quantum black holes. We then represent the implications of the
solutions, such that the deformation parameters lead the charged black holes to have a smaller mass than the usual Reissner-
Nordström black holes. This reduction in mass of a usual black hole can be considered as a transition from classical to quantum
black hole regime.

1. Introduction

Recently, one- and two-parameter deformed Einstein equa-
tions, which are thought to describe the gravitational fields
of extremal quantum black holes, have been studied in the
framework of entropic gravity proposal [1]. Extremal black
holes form by a process in whichmass of a charged black hole
decreases due to the Hawking radiation. Mass of the black
hole reaches a minimum value proportional to its charge and
this value is equal to𝑄/√𝐺 (or𝑄𝑀Planck) [2, 3]. On the other
hand, a black hole is a structure where mass or energy should
be concentrated at a region in which an object must have a
velocity above the speed of light in order to escape from the
gravitational field of that mass.Then, the radius of that region
is the Schwarzschild radius 𝑅

𝑆
= 2𝐺𝑚/𝑐

2.
On the other hand, quantummechanically, mass can only

be localized into a region, reduced Compton wavelength 𝜆 =

ℏ/𝑚𝑐. When a mass is localized into the reduced Comp-
ton wavelength, then it automatically contains the Schwarz-
schild radius. This means that localizing a mass into the
reduced Compton wavelength creates a black hole since it
is concentrated in a region whose radius is smaller than the
Schwarzschild radius. Therefore, the mass concentrated into
the reduced Compton wavelength is a quantum black hole.

These extremal black holes with a possible minimum
mass are quantum mechanically stable objects and are useful
for studying the quantum mechanics of black holes [4].

Extremal black holes are used to study the quantum
mechanics of black holes. For large 𝑄 the black holes are
macroscopic and for small 𝑄 the black holes are microscopic
so that the quantum gravity is needed. In order to obtain the
quantumfield theoretical description of black holes, extremal
black holes are considered to be as point particles [5].

One of the ways of studying quantummechanics of black
holes is the scattering of black holes to investigate whether
they are bosons, fermions, or something else [4, 5]. Under-
standing the quantum statistics obeyed by the black holes is
a good idea for solving the quantum black hole puzzle. The
leading studies have shown that the statistical description of
quantum black holes obeys neither Bose nor Fermi statistics.
Instead, the quantum black holes obey infinite statistics or
more generally deformed statistics, since infinite statistics
firstly introduced by Greenberg [6, 7] is the special case of
deformed Bose and Fermi algebra [8].

Therefore, the extremal quantum black holes can be
considered as deformed bosons or fermions and the statistics
obeyed by the extremal quantum black holes is deformed
statistics.Moreover, the statistical mechanics of the deformed
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bosons and fermions have been studied in the literature
through recent years [9–15]. For a particular class of quantum
black holes, one type of deformed gasmodel can be accompa-
nied according to the physical specifications of the black hole
and deformed gas model. Arbitrarily, two different deformed
gas models have been devoted to the different family of
extremal quantum black holes in two recent studies [1].

𝑞-deformed Bose gas model and (𝑞, 𝑝)-deformed Fermi
gasmodel have been taken into account as the quantum black
holes. Then, the 𝑞-deformed and (𝑞, 𝑝)-deformed Einstein
equations have been obtained as the gravitational field equa-
tions for these deformed gas models. To obtain the deformed
Einstein equations, Verlinde’s entropic gravity approach [16]
has been applied to the deformed entropy of the considered
gas model. Verlinde connects the entropy of a source mass to
gravitational field equations with a statistical description and
reformulated the equations by an entropy-area law. Verlinde’s
statistical description of gravity has also been inspiring to
more studies on modifications of Einstein equations [17–33].

Here, we firstly give a brief summary of one- and two-
parameter deformed Einstein equations and then the solu-
tions of the deformed Einstein equations for charged black
holes. Since the solutions of standard Einstein equations for
charged black holes are the Reissner-Nordström solutions
in classical gravity, the solutions of the deformed Einstein
equations for charged black holes can be considered in
quantum gravity. Lastly, the implications of the solutions are
represented. These are that the deformation parameters lead
the charged black holes to have a smaller mass than the usual
Reissner-Nordström black holes. This reduction in mass of
a usual black hole can be considered as a transition from
classical to quantum black hole regime.

2. Deformed Einstein Equations

By using the entropy of the deformed gasmodels in Verlinde’s
entropic gravity approach, the deformed Einstein equations
are obtained to describe the gravitational fields of these
deformed objects. For a 𝑞-deformedBose gasmodel, we iden-
tify its quantum algebraic structure by the 𝑞-deformed boson
algebra [34]:
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Here, 𝑎 and 𝑎
∗ represent the deformed annihilation and

creation operators, respectively. 𝑞 is also a real deformation
parameter with 0 ≤ 𝑞 < ∞. The grand partition function of
the 𝑞-deformed boson model is [34]

𝑍 = ∏

𝑘

∞

∑
𝑚=0

(𝑚 + 1) 𝑒
−𝛽𝜀𝑘{𝑚}𝑧

𝑚
, (2)

where 𝛽 = 1/𝑘𝑇 and 𝑘 is the Boltzmann constant, 𝑧 = 𝑒
𝛽𝜇 is

the fugacity, 𝜀
𝑘
is the energy of the single-particle state, 𝑚 is

the occupation number of the single-particle state, and {𝑚} is
the deformed occupation number and is given by

{𝑚} =
1 − 𝑞
2𝑚

1 − 𝑞2
. (3)

The deformed entropy of the model is also given as

𝑆 =
4𝜋𝑉 (2𝑚)

3/2

ℎ3𝑇
𝐸
5/2

[
5√𝜋

4
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2 ln 𝑧 + ⋅ ⋅ ⋅] ,

(4)

where 𝐸 = 𝑘𝑇 is the average energy of single particle,𝑉 is the
volume enclosed by the deformed bosons, 𝑚 is the mass of
deformed bosons, 𝑇 is the temperature of the model, and
𝛿(𝑞) = (1/4) ⋅ {[3/(1 + 𝑞

2
)
3/2
] − (1/√2)} [34]. The deformed

entropy in (4) is used to obtain the one-parameter deformed
or equivalently the 𝑞-deformed Einstein equations for 𝑞-
deformed bosons.

On the other hand, to obtain the two-parameter de-
formed Einstein equations, it is suitable to introduce the
(𝑞, 𝑝)-deformed Fermi gas model whose quantum algebraic
structure is given by the equations
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(5)

where 𝑐
𝑖
and 𝑐
∗

𝑖
are fermion annihilation and creation oper-

ators, respectively, and the total deformed number operator
is

𝑑

∑

𝑖=1

𝑐
∗

𝑖
𝑐
𝑖
= [�̂�
1
+ �̂�
2
+ ⋅ ⋅ ⋅ + �̂�

𝑑
] = [�̂�] . (6)

Eigenvalue spectrum of total number operator is given by the
following generalized Fibonacci basic integers:

[𝑛] =
𝑞
2𝑛
− 𝑝
2𝑛

𝑞2 − 𝑝2
, (7)

where 𝑞 and 𝑝 are the real positive independent deformation
parameters [35]. The deformed entropy of the model is

𝑆 =
(2𝜋𝑚)

3/2
𝑉

ℎ3𝑇

⋅ 𝐸
5/2

[
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2
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5/2
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(𝑧, 𝑞, 𝑝) ln 𝑧] ,
(8)
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where

𝑓
𝑛
(𝑧, 𝑞, 𝑝) =

1
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(9)

This deformed entropy in (8) is also used to obtain the
two-parameter deformed or equivalently the (𝑞, 𝑝)-deformed
Einstein equations for (𝑞, 𝑝)-deformed fermions.

In order to construct the deformed Einstein equations
from the entropies in (4) and (8), Verlinde’s proposal is
applied to the deformed gas models.The fundamental notion
needed to derive the gravity is information in Verlinde’s
proposal. It is formally the amount of information associated
with the matter and its location, measured in terms of
entropy. When matter is displaced in space due to a reason,
the result is a change in the entropy and this change causes a
reaction force.This force is the gravity being an entropic force
as an inertial reaction against the force causing the increase
of the entropy [16].

The source of gravity is energy or matter and it is dis-
tributed evenly over the degrees of freedom in space-time.
The existence of energy or matter in space-time causes a tem-
perature in the space-time. The product of the change of
entropy during the displacement of source and the temper-
ature is in fact the work and this work is originally led by the
force which is known to be gravity [16].

By using Verlinde’s idea, one- and two-parameter
deformed Einstein equations are recently derived from the
deformed entropies (4) and (8) of the 𝑞-deformed Bose gas
model and (𝑞, 𝑝)-deformed Fermi gasmodel, respectively [1].
Eventually, the 𝑞-deformed Einstein equation is given as [1]

10𝜋𝑉 (2𝑚𝐸)
3/2

ℎ3
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1
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(11)

Then, the (𝑞, 𝑝)-deformed Einstein equation is similarly
given as

5𝑉 (2𝜋𝑚𝐸)
3/2

2ℎ3
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where
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The equations in (10) and (12) are one- and two-parameter
deformed Einstein equations, respectively, and they are

assumed to describe the gravitational fields generated by the
extremal quantum black holes which obey the statistics of
deformed particles in accordance with Strominger’s proposal.

In the next section, we solve one- and two-parameter
deformed Einstein equations for a charged extremal black
hole and investigate the implications of the solutions.

3. Solution of Deformed Einstein Equations

Since the underlying statistics of the extremal quantum black
holes is known to be the deformed statistics, we admit the
particles forming deformed gas models to be the quantum
black holes and the corresponding deformed Einstein equa-
tions for these deformed particles are assumed to describe
the gravitational fields of the quantum black holes of these
deformed particles.

We know that the extremal quantum black holes should
be charged, because the mass of them should decrease to
the minimum value proportional to the charge. The classical
charged black holes are treated by the standard Einstein
equations and the classical solutions of the standard Einstein
equations for the charged black holes are known as the
Reissner-Nordström solutions. Here, we obtain the quantum
analogs of the solutions of the Einstein equations for these
classical charged black holes.

Deformed version of the Einstein field equations is
assumed to describe the geometry of the space-time sur-
rounding a charged spherical quantum black hole.Therefore,
we need to solve the deformed Einstein-Maxwell equations
for the charged quantum black holes. Because of the spherical
symmetry, the generic form for the metric in 4 dimensions is
[36]

𝑑𝑠
2
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2
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2
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2
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2sin2𝜃𝑑𝜙2. (14)

The deformed Einstein equation for the charged spherical
quantum black hole is

Ψ
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(𝑅𝜇] −
1

2
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where
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(16)

for 𝑞-deformed and (𝑞, 𝑝)-deformed Einstein equations,
respectively. The energy-momentum tensor 𝑇

𝜇] here is one
for electromagnetism in this problem and

𝑇
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1
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𝜇]𝐹𝜌𝜎𝐹

𝜌𝜎
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where 𝐹
𝜇] is the electromagnetic field strength tensor [36].

Also, trace of 𝑇
𝜇] for 𝐹𝜇] is
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since 𝑔𝜇]𝑔
𝜇] = 4 in 4 dimensions. Taking the trace of (15)

gives Ψ𝑞,𝑝𝑅 = −8𝜋𝐺𝑇 and then by using this and (18) in (15)
gives

Ψ
𝑞,𝑝
𝑅
𝜇] = 8𝜋𝐺𝑇

𝜇]. (19)

Since there is spherical symmetry and only electric charge for
our quantum black hole, the electromagnetic field strength
tensor has no magnetic field components and the only
nonzero component of electric field is radial component
which should be independent of 𝜃 and 𝜙. Then, the radial
electric field component is in the form of

𝐸
𝑟
= 𝐹
𝑡𝑟
= −𝐹
𝑟𝑡
= 𝑓 (𝑟, 𝑡) . (20)

The nonzero components of the Ricci tensor for metric (14)
are given as [36]
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(21)

Also, the corresponding nonzero components of the energy-
momentum tensor, which is obtained by (17) and (20), are
given as [36]
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2
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(22)

By using the two sets of equations in (21) and (22), it is also
obtained that 𝛽(𝑟, 𝑡) = 𝛽(𝑟) and

𝛼 (𝑟, 𝑡) = 𝛼 (𝑟) = −𝛽 (𝑟) . (23)

Now, the solutions of the Maxwell equations 𝑔𝜇]∇
𝜇
𝐹]𝜎 = 0

and ∇
[𝜇
𝐹]𝜌] = 0 are needed to determine the components

of the electromagnetic field strength tensor, 𝑓(𝑟, 𝑡), in (20).
Solving the Maxwell equations for (20) gives

𝑓 (𝑟, 𝑡) = 𝑓 (𝑟) =
𝑄

√4𝜋

1

𝑟2
. (24)

The final step to obtain the solution of the deformed Einstein
equations for a charge 𝑄 quantum black hole is to find the
remaining unknown variable 𝛼(𝑟) appearing in metric (14)
for the space-time which is curved by the charged quantum
black hole. To this end, one equation is enough to determine
the unknown variable. It can be the 𝜃𝜃 component of the
deformed Einstein equation (15):

Ψ
𝑞,𝑝
𝑅
𝜃𝜃
= 8𝜋𝐺𝑇
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The solution is found to be

𝑒
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𝑆

𝑟
+

1

Ψ𝑞,𝑝

𝐺𝑄
2

𝑟2
, (26)

where 𝑅
𝑆 is the integration constant and is known to be the

Schwarzschild radius 𝑅𝑆 = 2𝐺𝑚. Rewriting metric (14) with
(26) gives

𝑑𝑠
2
= Δ𝑑𝑡

2
+ Δ
−1
𝑑𝑟
2
+ 𝑟
2
𝑑𝜃
2
+ 𝑟
2sin2𝜃𝑑𝜙2, (27)

where

Δ = 1 −
2𝐺𝑚

𝑟
+

1

Ψ𝑞,𝑝

𝐺𝑄
2

𝑟2
. (28)

The singularities and the event horizons for these black holes
are determined by the function Δ and the radius 𝑟. There is a
true curvature singularity at 𝑟 = 0, since the metric goes to
infinity for this value. The coordinate singularity also occurs
atΔ = 0 and the conditions giving this singularity occur from
the solution of Δ = 0, such as

𝑟± = 𝐺𝑚 ± √𝐺2𝑚2 −
𝐺𝑄
2

Ψ𝑞,𝑝
. (29)

This implies that for some suitable cases we can have the
event horizons 𝑟

+
and 𝑟

−
which determine the place of

the coordinate singularity in the space-time. Equation (29)
constitutes three cases of solutions such that𝐺𝑚2 < 𝑄

2
/Ψ
𝑞,𝑝,

𝐺𝑚
2
> 𝑄
2
/Ψ
𝑞,𝑝, and 𝐺𝑚2 = 𝑄

2
/Ψ
𝑞,𝑝.

The first case 𝐺𝑚
2
< 𝑄
2
/Ψ
𝑞,𝑝 is unphysical since this

solution states that the total energy of the black hole is less
than the energy of the electromagnetic contribution. Also,
this condition makes Δ different from zero, which makes the
first case invalid.

The second case 𝐺𝑚2 > 𝑄
2
/Ψ
𝑞,𝑝 implies a physical situ-

ation since the energy of electromagnetic field is less than the
total energy. Two event horizons 𝑟+ and 𝑟− also make Δ = 0.

Finally, the third case 𝐺𝑚2 = 𝑄
2
/Ψ
𝑞,𝑝 gives the extremal

charged black hole solution, since the mass of the black hole
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decreases to theminimum value from the second case𝐺𝑚2 >
𝑄
2
/Ψ
𝑞,𝑝. This minimum mass solution for extremal black

holes remains stationary for all times. Also, this case makes
Δ = 0 at a single radius 𝑟

±
= 𝐺𝑚 and this states a single event

horizon. This deformed case solution 𝐺𝑚
2
= 𝑄
2
/Ψ
𝑞,𝑝 is the

analog of classical Reissner-Nordström solution 𝑚 = 𝑄/√𝐺

which is often examined in the studies of quantum gravity. In
the second case, the mass of the black hole is allowed to be
in very large classical scales due to the capability of getting
bigger values than the charge, implied in the inequality
𝐺𝑚
2
> 𝑄
2
/Ψ
𝑞,𝑝, whereas themass of the deformed black hole

is allowed to decrease by very small values which could fall
into the quantum regime, because the decrease of the mass is
governed by a very small term 1/Ψ

𝑞,𝑝 being order of ℎ6/7 in
the right hand side of the third-case equation𝐺𝑚2 = 𝑄

2
/Ψ
𝑞,𝑝.

In our deformed case, this decrease in mass of black hole
which is controlled by the term 1/Ψ

𝑞,𝑝 is different from the
classical Reissner-Nordström solution. We now discuss the
effects of this extra term on mass reduction.

We investigate the reduction of the mass with respect to
the classical Reissner-Nordström case, for the 𝑞-deformed
and (𝑞, 𝑝)-deformed Einstein cases. From (16), we have two
1/Ψ
𝑞,𝑝 values for themass of the extremal quantumblack hole

in the third case of 𝐺𝑚2 = 𝑄
2
/Ψ
𝑞,𝑝; that is,

𝑚
𝑞
= (

ℎ
3

10𝜋𝑉 (2𝐸)
3/2

1

𝑔 (𝑧, 𝑞)
)

2/7

(
𝑄
2

𝐺
)

2/7

, (30)

𝑚
(𝑞,𝑝)

= (
2ℎ
3

5𝑉 (2𝜋𝐸)
3/2

1

𝐹 (𝑧, 𝑞, 𝑝)
)

2/7

(
𝑄
2

𝐺
)

2/7

. (31)

While the minimum mass of an extremal quantum black
hole for the 𝑞-deformed case is (30), it is (31) for the (𝑞, 𝑝)-
deformed case. However, the minimum mass of a classical
Reissner-Nordström black hole is given as𝑚 = 𝑄/√𝐺. When
we compare theminimummasses of deformed quantum case
and the classical Reissner-Nordström cases, we obtain

𝑚
𝑞
= (

1

10𝜋𝑉 (2𝐸)
3/2

𝑄3/2
)

2/7

(
ℎ
3
𝐺
3/4

𝑔 (𝑧, 𝑞)
)

2/7

𝑚, (32)

𝑚
(𝑞,𝑝)

= (
2

5𝑉 (2𝜋𝐸)
3/2

𝑄3/2
)

2/7

(
ℎ
3
𝐺
3/4

𝐹 (𝑧, 𝑞, 𝑝)
)

2/7

𝑚. (33)

Equations (32) and (33) imply that the mass of the charged
extremal black hole in the deformed quantum case can
decrease to a smaller value than that of the classical Reissner-
Nordström case. To understand the decrease in the mass,
we examine the behaviors of the factors (ℎ3𝐺3/4/𝑔(𝑧, 𝑞))2/7

and (ℎ3𝐺3/4/𝐹(𝑧, 𝑞, 𝑝))2/7 in front of the classical mass of the
charged black hole in (32) and (33), respectively. Therefore,
the behavior of (ℎ3𝐺3/4/𝑔(𝑧, 𝑞))2/7 with respect to 𝑧 and 𝑞 in
Figures 1 and 2 is represented, for 𝑞 < 1 and 1 < 𝑞, respec-
tively.We also represent the behavior of (ℎ3𝐺3/4/𝐹(𝑧, 𝑞, 𝑝))2/7
with respect to 𝑧, 𝑞, and 𝑝 in Figures 3 and 4, for 𝑞, 𝑝 < 1 and
1 < 𝑞, 𝑝, respectively.
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Figure 1: The 𝑞-deformed mass reduction factor (ℎ3𝐺3/4/𝑔(𝑧, 𝑞))2/7
for 𝑞 < 1.
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Figure 2:The 𝑞-deformedmass reduction factor (ℎ3𝐺3/4/𝑔(𝑧, 𝑞))2/7
for 𝑞 > 1.
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Figure 3: The 𝑞, 𝑝-deformed mass reduction factor (ℎ3𝐺3/4/𝐹(𝑧,
𝑞, 𝑝))

2/7 for various values of the deformation parameters 𝑝 and
𝑞 < 1.

4. Conclusions

Recently, 𝑞-deformed and (𝑞, 𝑝)-deformed Einstein equa-
tions have been proposed for the investigations of charged
extremal quantum black holes, in the framework of entropic
gravity approach [1]. In this study, we give a review and
deeper meaning to the deformed Einstein equations, which is
based on Strominger’s idea, such that the quantumblack holes
obey the deformed statistics. We then consider the solutions
of these equations for the charged extremal quantum black
holes. We analyze the obtained solutions for 𝑞-deformed and
(𝑞, 𝑝)-deformed cases, separately.



6 Advances in High Energy Physics

1 1.2 1.4 1.6 1.8 20.2 0.4 0.6 0.8 1

0

q
z

(h
3
G
3
/4
/F

(z
,q
,p

))
2/
7 ×10−31

p = 1.1

p = 1.5

0
1
2
3
4
5

Figure 4: The 𝑞, 𝑝-deformed mass reduction factor (ℎ3𝐺3/4/𝐹(𝑧, 𝑞,
𝑝))
2/7 for various values of the deformation parameters 𝑝 and 𝑞 > 1.

We represent the true and coordinate singularities from
the solutions for quantum black holes. Also, the event
horizons for these singularities are mentioned briefly. We
also investigate the possible decrease in mass via Hawking
radiation to a minimum value which is determined by the
charge of quantum black hole. The difference in the decrease
in classical black holes and quantum black holes is obvious
from (30), (31), and𝑚 = 𝑄/√𝐺. According to this difference,
the reduced quantum and classical mass of the extremal black
holes are represented in (32) and (33).

We illustrate the decreases in quantum masses 𝑚𝑞 and
𝑚
𝑞,𝑝 in Figures 1–4 with respect to the classical mass 𝑚.

According to Figures 1 and 2, the mass of the quantum black
hole𝑚𝑞 in (32) is at least 10−30 times smaller than the classical
black hole mass𝑚, in the 𝑞-deformed case. After considering
the inverse of the volume, charge, and energy factors, mass
𝑚
𝑞 gets smaller than 10−30𝑚. We again see a similar situation

for the mass of the quantum black hole 𝑚𝑞,𝑝 in (33) from
Figures 3 and 4. 𝑚𝑞,𝑝 is at least 10−30 times smaller than
the classical black hole mass 𝑚, in the (𝑞, 𝑝)-deformed case.
Considering the inverse of the volume, charge, and energy
factors, mass 𝑚𝑞,𝑝 similarly gets smaller than 10

−30
𝑚 in the

(𝑞, 𝑝)-deformed case.
Since the theoretical possibility of concentrating a mass

into its reduced Planck mass gives a radius containing the
Schwarzschild radius and the obtained quantum masses
of the extremal black holes in (32) and (33) are at least
10
−30 times smaller than the classical masses due to possible

Hawking radiation, the solutions of the deformed Einstein
equations imply that all the propositions and ideas con-
sidered here seem to be consistent with each other. Three
independent ideas have been used to obtain these equations.
Verlinde’s proposition is on gravity having an entropic origin,
Strominger’s proposition is on the type of the underlying
statistics obeyed by the quantum black holes, and our idea
is to get the gravitational field equations for these quantum
black holes from Verlinde’s proposition, by considering the
quantum black holes as the deformed bosons or fermions
due to Strominger’s statement that the statistics obeyed by the
quantum black holes is deformed statistics.
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