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Abstract In addition to the strong and electromagnetic
decay modes, the ¥ (1S, 25) and n.(1S, 25) can also decay
via the weak interaction. Such weak decays can be detected
by the high-luminosity heavy-flavor experiments. At present,
some of the semileptonic and nonleptonic J /W weak decays
have been measured at BESIII. Researching for these char-
monium weak decays to D) meson can provide a platform
to check of the standard model (SM) and probe new physics
(NP). So we investigate the semileptonic and nonleptonic
weak decays of ¥ (15, 25) and 1. (1S, 25) to D, within the
covariant light-front quark model (CLFQM). With form fac-
tors of the transitions ¥ (1S5, 25) — D) and (1S5, 25) —
Dy, calculated under the CLFQM, we predict and discuss
some physical observables, such as the branching ratios,
the longitudinal polarizations f7 and the forward—backward
asymmetries Arp. One can find that the Cabibbo-favored
semi-leptonic decay channels ¥ (15,2 S) — D; ¢ty with
£ = e, u and the nonleptonic decay modes ¥ (1S,2S5) —
D; p™T have relatively large branching ratios of the order
O(1077), which are most likely to be accessible at the future
high-luminosity experiments.

1 Introduction

The ¥ (1S,2S) and n.(1S,2S) are S-wave charmonium
states below the open-charm kinematic threshold. They pre-
dominantly decay through the strong and electromagnetic
interactions. By contrast, their weak decays are rare processes
due to the smallness of the weak interaction strength. While
such decays have evoked a lot of interest from theoretical
research [1-6], because they build a bridge between pertur-
bative and nonperturbative physics and provide a valuable
platform to comprehend the intricate behaviors and dynam-
ics of strong interactions. The hadronic decays of these char-
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monia via the annihilation of cc¢ to gluons are of a high order
in strong coupling o and are severely suppressed by the
phenomenological Okubo-Zweig—lizuka (OZI) rule [7-9].
Numerically the total branching ratio of the charmoium weak
decays was estimated to be at the order of 10-8 [10]. New
physics may have a chance to show up in such rare decays.
Furthermore, for the weak decays of charmonia ¥ (1S, 25),
the polarization effect may play an important role to probe
the underlying dynamics and hadron structures [10].

The BESIII Collaboration has reported on the results of
searches for the hadronic and semileptonic weak decays
J/y — Dynt, J/y — D nt,J/y — DUKO[11],
J/¥ — Dypt 121, J/y — D& etv, [13], T/ —
D~ eTv, [14], respectively. Very recently, the semileptonic
weak decay J/Y — D~ utv, was firstly researched at
BESIII [15]. The branching ratios at 90% confidence level
were found to be Br(J/y¥ — Dnt) < 1.4 x 1074,
Br(J/¥ - D nt) <7.5x 1072, Br(J /¥ — D°K?) <
1.7x 1074, Br(J /¥ — D7 p™) < 1.3x 1072, Br(J /¢ —
DM 7etv,) < 13 x 1076, Br(J/y — D~ etv,) <
7.1 x 1078 and Br(J/y — D™ V) < 5.6 x 10~7. Cer-
tainly, these upper limits greatly exceed the predicted values
within the Standard Model (SM), which are in the order of
1072 ~ 10712 [1,2,5,6,16-23]. Even so, with the significant
annual accumulation of 10'°J /v events, BESIII will soon be
capable of detecting some of these decays in the near future.

For the semileptonic decays, the hadronic transition
matrix element between the initial and final mesons is most
crucial for the theoretical calculations, which can be charac-
terized by several form factors. As to the form factors, they
can be extracted from data or relied on some non-perturbative
methods. The covariant light-front quark model (CLFQM)
as one of popular non-perturbative methods has been suc-
cessfully used to calculate the form factors [24-29]. Com-
pared with the semileptonic decays, the nonleptonic decays
are more complex in dynamics due to both of the two final
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states being hadrons, where more long distance effects are
involved. The factorization assumption based on the vacuum
saturation approximation is often used to simplify the cal-
culations. Specificly, the matrix elements are factorized into
a product of two single matrix elements of currents, where
one is parameterized by the decay constant of the emitted
meson and the other is represented by the transition form
factors. In a word, the form factors are important to both
semileptonic and nonleptonic decays. A variety of models
have been applied to study the transition form factors, such as
the Bauer-Stech—Wirbel (BSW) model [16], the QCD sum
rules (QCDSR) [3,4,18], the Bethe-Salpeter (BS) method
[19]. Based on the form factors and helicity formalisms, we
also calculate another two physical observables: the forward—
backward asymmetry A rp and the longitudinal polarization
fraction fr, respectively.

This paper is organized as follows. The formalism of
the CLFQM, the hadronic matrix elements and the helicity
amplitudes combined via form factors are listed in Sect. 2. In
addition to the numerical results for the v/ (1S, 2S) — Dy
and (1S, 2S) — Dy transition form factors, the branch-
ing ratios, the forward—backward asymmetries A rp and the
longitudinal polarization fractions f; for the correspond-
ing decays are presented in Sect. 3. Detailed comparisons
with other theoretical values and relevant discussions are also
included. The summary is presented in Sect. 4. Some specific
rules when performing the p~ integration and the expression
for each form factor are collected in the Appendix A and B,
respectively.

2 Formalism
2.1 The form factors

The Bauer—Stech—Wirble (BSW) form factors for the n, —
D5y and J /Y — Dyy) transitions are defined as follows!,

2 2
i N\ _ _ My. — mD(s)
(Do) (P") Vil me (P)) = | Py = ——5—"au

q
m2 —m2
XFlm-Dm <q2> n e - Dy qﬂFch(” (qz) ’ (1
(D<S) (PH) |VH - Au| S/ (P/’ E))
Vv 2
— —euuaﬁ63/¢q“ PﬁL

myjy +mpy,

2mypyery - q
i /Y 2/1// g, Ao <q2>
q
—i€sppp (mapy +mpg,) Al (42)
' Tt is similar for the .2 S) — D5y and /(2 S) — Dy transitions.
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mjjy +mpg,
2myy€gry - q
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where P = P’ + P”,qg = P’ — P” and the convention
€0123 = 1 is adopted. In order to calculate the amplitudes
of the transition form factors, we need the following Feyn-
man rules for the meson—quark—antiquark vertex iF;W, where
the subscript M represents a pseudoscalar (P) or vector (V)
meson

iTp = Hpys, ©)

iTy = iH; [y - (Pl - p) } @
14 v |V W, 1 u

The results of the lowest order form factors could be
obtained by calculating the Feynman diagram shown in
Fig. 1, where the Feynman diagram for the charmonium
decay is also included. In the covariant quark model, the treat-
ment of transition form factor is relatively covariant through-
out the calculation process, where the light-front coordi-
nates of a momentum p are used p = (p~, pT, p1) with
pr=p"£p.,p>=ptp - pi.

The incoming (outgoing) meson has the mass M’ (M")
with the momentum P’ = p/| + p> (P” = p} + p2), where

1(17)

Py
inside the incoming (outgoing) meson with the mass m; ~and
my, respectively. Here we use the same notations as those in
Refs. [24,30] and M’ refers to the charmonium mass. These
momenta can be expressed in terms of the internal variables
(xi, p'1) as

and p; are the momenta of the quark and anti-quark
(1)
1

Pih=x12P", plag =xi2P £, )

with x; + xp = 1. Using these internal variables, we can
define some quantities for the incoming meson which will
be used in the following calculations

) ” 2 2
pi+mj +pL—f-m2
x1 x2

MG = (¢ +e) =

By = /M — (] — mo)?.

ef/) = \/ml@2 + pf + Péz,

x2 M B m% + pf

, 6
2 szM(/) ©

p. =

where M|, is the kinetic invariant mass of the incoming meson
and can be expressed as the energies of the quark and the anti-
quark el.(/) . Itis similar to the case of the outgoing meson. For
the general (1S, 2S) — Dy transition, the corresponding
the matrix element is
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Fig. 1 Feynman diagrams for charmonium decay (left) and tran-
sition (right) amplitudes, where P’ is the incoming (outgoing)

meson momentum, p/l(”) is the quark momentum, p» is the anti-quark

Ne D(s)
B, = (D(S) (P") ‘VM - AM‘ Ne (P/)>
N, HT/] g neD
_j3 e 4 1 Ne " D) (neDis)
= d —S , 7
(2n)4/ PUNTNTN, @
where N{(”) = p/l(//)2 - m/l(//)2 and N = p% — m% arise from

L’D s
the quark propagators, and the trace SZ ©

obtained by using the Lorentz contraction,

can be directly

D)

Sp O = Tr [ys (p] +mY) v (£ +m))

X ys5(— p2+m2)]. (3

It is similar for the v (15, 2S) — D) transition amplitude,

H/ (H// )
B]//D(.Y) — _:3 NC fd4 14 D(s) SWD(-V)S*U (9)
Q) VUONNIN, T ’
where

S‘/fD(s) (S‘//D(s) SXD(S))
v

1
=Tr |:<Vv - W (P/f - Pz)v>

x (pY +m) (v = vuys) () +m)

X ys5(— p2+m2)]. (10)
The specific expressions for Sn” “ and Sw © are listed in
the Appendix B. In practice, we use the light-front decompo-
sition of the Feynman loop momentum and integrate out the
minus component through the contour integral method. If the
covariant vertex functions are not singular when performing
integration, the transition amplitudes will pick up the singu-
larities in the anti-quark propagators. The integration then
leads to

N]/(//) = ](]1/(//) = X (M/(//)Z _ M(’)(’/)2> ,

(1) /(1)
Hy '~ — hy,,

d4p/1

W// N w//
M M> | NIN{N,

HpHys™™

Pl P//

—D2

momentum and X denotes the vector or axial-vector transition vertex.
One can fix the shape parameter through the left Feynman diagram

dx,d?
- —infz—pih/,)h” §PM. (1)
NN
where
//2 7”2 7”2
+m + m3
M//2 1 + pJ_ 2 (12)
X1 X2

with p’| = p’| — x2q.1. The explicit forms of /',
are given by [24]

/
and w),

) X1X2 1 ’
— =9,
Ne V2M]

wl, = My +m| +my, (14)

Wy =, = (M’z— 2 (13)

with ¢’ being the light-front momentum distribution ampli-
tude for the S-wave mesons,

3
T \* |dp; P2+ p?
o' =¢ (Xzy Pl) =4 (ﬁ) dx; exp < == ’3,2 ,

(15)

where 8’ is a phenomenological parameter and can be fixed
by fitting the corresponding decay constant. As to the radi-
ally excited charmonia (2 §) and 1.(2 §), the distribution
functions are given as

% dp/ p/2 + PE
_ zZ z
©'(28) =4 <ﬂ’2> _dxz exp (——2'3/2 )

1 pz+pL
|34 UL 16
XJB( + 57 ) (16)

Using Eqgs. (7)-(12) and taking the integration rules given
in Refs. [24,30], we can obtain the 7.(1S,2S) — D) and
Y (1S, 2S5) — Dy transition form factors, which are shown
in the Appendix B.

2.2 Helicity amplitudes and observables

Since the form factors involving the fitted parameters for
the n.(1S,2S5) — D) and ¥ (1S,2S5) — Dy transitions
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have been investigated in above subsection, it is convenient
to obtain the differential decay widths of these semilepton-
tic n.(1S, 28) and ¥ (1S, 25) decays by the combination of
the helicity amplitudes via form factors, which are listed as
follows

dF(]’]C — D(S)ng)

dq?
7 —m2\ i mp, g G Vekm?
=\ 384m3 3 e
Ne

x { (mg +2¢H)Amy  mp, . aP)F{(g”)

+3mi(m; —mp )’ Fj (qz)} (17)

dT'p(f — D5 Lve)

dq2
1/)»(Wl]/,,rnl)(),qz)G \Vegxml?

q> 384m¢n3

1

— g))(my +mp,)A1(q?)

; (18)

dT+ (Y — D5 €vy)

dq2
2 Jrmg mp,  q) G Vekm

q2 384m¢n3

X § (m7 +2gM)A(my, mp, . q°)

2
(my +mp,,)A1(q?)

:F
Ay my, %)

N 2 2 2 _ 2 2
where A(g7) = A(my, (), M, > 47) = () + My
g*)? - 4m%6(¢)m%(:) and my is the mass of the lepton £ with

V(g%
My, =+ mp,

19)

L=e, . 2 Itis noted that although the electron and nuon are
very light compared with the charm quark, we do not ignore
their masses in our calculations in order to check the mass
effects. The combined transverse and total differential decay

2 From now on, we use £ to represent e, u for simplicity.
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widths are defined as

dl'r dl'y  dI'_ dar dl'y  dI'p

dg? ~ dq® ' dg® dq? T dg® " dg?
For the ¥ (1S, 25) decays, it is meaningful to define the

polarization fraction due to the existence of different polar-
izations

(20)

= o @1)
SR VI R O

As to the forward-backward asymmetry, the analytical
expression is defined as [31]

App = fO dcostcose f ldu)sedcose
ffl dcos@dcosg
_ [bo@Pdg? 22
Cnewy

where 6 is the angle between the 3-momenta of the lepton £
and the initial meson in the £v rest frame. The function by (q2)
represents the angular coefficient, which can be written as

(31]
bo(a?) = GH\Vekml? et (1 m? 2
O ggimy TV 7
my
X CHY O HY ), (23)
2
Gh\Vekm|? mj
bo(q?) = —L 2@ 1 - =5
0(q”) 12873 gy 2q?) 7

1 2
X[E(Hé,+ H2 )+ ‘<HVOHV,>]<24>

where the helicity amplitudes

Hy o <q2> = %q;)ﬂ (612),

2 — md
H‘S/J <q2> _ e _ ® Fy (q2> 7

q

forthe n.(1S, 28) — Dy transitions, and the helicity ampli-
tudes

(25)

A (g
VHE) Gy,
mw+mD®

o (o) = " (-, - )
(@) 420
( ) (m1/f+m0<s))2:|’

i () = a0 (7).

Hy + (qz) = (mw-i-ml)(x)) Ay (qz) F

(26)
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for the ¥ (15, 25) — Dy transitions. Here the subscript V
in each helicity amplitude refers to the y,, (1 — ys) current.

2.3 Hadronic matrix elements

In phenomenology, the effective Hamiltonian of charmomium
weak decays ¥ (1S5,2S8) — DM and n.(15,2S5) —
DM with M = 7, K, p, K* can be written as [32]

Gr
Heit = —= > Vity Vug (C1 (1) Q1 (1)
ﬁ q1.92 1

+Ca () Q2(w)} + Hec. 27

where G is the Fermi coupling constant, V7, Vig, is the
product of the CKM matrix elements with g12) = s, d, and
C1,2(p) are the Wilson coefficients. The local tree four-quark

operators Q> are defined by

(28)
(29)

01 = [Gravu (1 = y5) o] [apy" (1 — v5) q2.8] .
02 = [Gravu (1 = y5) cg] [ipy™ (1 — ¥5) g2.0] »

where o and B are color indices. Based on the effective
Hamiltonian and the naive factorization approach, the matrix
elements for the decays n.(1S,25) — DM can be
expressed as

A (770 - D(S)M) = <D(S)M [ Het | 770)
GF

= EV:;] Vugar (M | 7| 0){Des) [y ).
where the combination of the Wilson coefficients a; =
C1 + C2/3 and (M |J"]0) is defined as (P(q) |A*]|0) =
—1fpq, for pseudoscalar (P) mesons and (V (g, €) |[V#|0) =
fvmve;'; for vector (V) mesons. Specifically, the total ampli-
tude for each decay channel can be further written as follows

(30)

A(ne = Dyne™)
. GF (,’DS
= lﬁVudesal (I’l’l%r - m2D3> fn’ F(;’ (m%) s (31)
A(ne — Dy KT)
Gr

= i VsV (], b, ) feFg (mk). @)
A(ne - D™

-, o
A(ne — D”K™)

= i%vwvgg,al (’"3;( - m%)) fKF(?CD (”ﬁ() L))
A(ne — Dy pt)

= V2GpVuaVisarm, (€5 - py.) fo FI*™ (mf)> . (39)

A(ne — Dy K*)
om0 ()
(36)
A(ne — D™ p™)
= V2G pVaaVEaimy (- py.) foFeP (m%) 37)
A (nc — DfK*+)
= \/EGFV,”VC*dalmK* (6;(* ‘Pnc) fi+ Fln"D (m%) )
(38)

In addition, the amplitudes for the decays ¢(1S5,2S) —
D) P with P = 7, K can be expressed as

AW — D(yP) = (D) P [Hesr| V)

Gr WD
= S Va2 (e p2) S AL ().
(39)

As to the specific decay channels, the amplitudes are given
as

A(y — Dyxt)

= V2G pVaaViamy (ey - pr) fu AV (m,%) (40)
A(y - Dy KY)

= V2G Vs Visarmy (ey - px) fx AY (’"%<> > (4D
Ay — D ™)

= V2GrViaVigarmy (e - pa) fAY (m2). @2)
A(y — D™ KY)

= V2G Vi Vigamy (ey - px) fx Ay (mk ). @3)

For the decays ¥ (1S,2S) — D)V, the hadronic matrix
elements can be expressed as

A = Dy)V) = D)V [Het| ¥)

_GrF x

= Echl Vuga1 Hj.,
where A denotes the helicity of vector meson, and H), =
(V |J#]0) (D(S) |J#| W) is given as follows

(44)

Ho = (V (), pv) |a7"q| 0)
<D(S) (I’D(x)) |EVH a- YS)b’ v (80’ pw))

ify o0
= Jmy |:<m12/, - szm +m%/> (my +mpy,) ALY (m})

4m12/,P? A\//D(;) (m2 ) ]
m,/,—l—mD(S) 2 vy
He = (V (¢4, pv) |gv"q|0)
(Dgs) (ppy)) ey (1= y5) b| ¥ (ex. py))

(45)
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Table 1 The values of the input parameters [29,33-37]

Mass (GeV) mp = 4.8 me, = 1.4 mg = 0.37 my.q = 0.25 me = 0.000511
my = 0.140 mg = 0.494 m, =0.775 mg+ = 0.892 m, = 0.106
my. = 2.9839 myy = 3.0969 my.2s) = 3.6377  my@s) = 3.68610 mp = 1.86966
mp, = 1.96835

CKM Vea = 0.221 £ 0.004 Vus = 0.2243 £ 0.0008

Viua = 0.97373 £ 0.00031 Ves = 0.975 £ 0.006

Decay constants (GeV)  fr = 0.132 fx =0.16 fo =0.209 frx==0.217

Sfryw =0.431 Jfn. =0.387 fp =0.235 fp, = 0.290

’

_ +0.092
Bp.2s) = 0-388 1006

! +0.049
:31/;(29 = 0.385") 063

! +0.014
By, = 07545014

! +0.041
:Bj/w =0.64615 4

Shape parameters (GeV)

Full width

I, = (32.0£0.7)MeV
r, (28) = (113733 MeV

4 0.043
Bp = 0-541f0.o42
/ +0.136
ﬁDS =0.6451 17
Ly =(92.6 £ 1.7)keV
I'yes) = (294 £8)keV

= ifvmv [— (m¢ + mDm) A://D(x) (m%/)

2myPe_ypy, (m2v)] .
my +mp

x £ (46)

3 Numerical results and discussions
3.1 Transition form factors

The input parameters, including the masses of the initial and
the final mesons, the CKM matrix elements, the shape param-
eters fitted by the decay constants, the full widths of the initial
mesons, and so on are listed in Table 1. It is noted that the
decay constant of charmonium 7.(2S) is calculated as fol-
lowing formula [37]

(47)

Froos) = \/81mm-(25)1"nc(25>—>w
Ne - ’
64mwaz,

where I'y 25y — vy = (1.3 £0.6) keV is taken from the
CLEO measurement [38]. Then one can obtain fy 25y =
(189fg8) MeV with smaller uncertainty compared with

foes) = (243ﬂ?1) MeV [29]. As to the decay constant

fvs)

of ¥ (25), it is estimated from the relation F = Tnc2s)

e
[39] and given as fy@s) = (2101“;;) MeV. Based on the
input parameters from Table 1, one can obtain the numeri-
cal results of the transition form factors at g> = 0 shown in
Table 2.

All the computations are carried out within the g7 =
reference frame, where the form factors can only be obtained
at spacelike momentum transfers g = —qu_ < 0.Itisneeded
to know the form factors in the timelike region for the physi-
cal decay processes. Here we use the following double-pole
approximation to parametrize the form factors in the space-
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like region and then extend to the timelike region,

F(0)
F(q*) = :
(q ) 1 —aq?*/m? + bg*/m*

(48)

where m represents the initial meson mass and F' (¢%) denotes
the different form factors Fj, Fy, V, Ag, A1 and A,. The
values of a and b can be obtained by performing a 3-
parameter fit to the form factors in the range —10GeV? <
g> < 0, which are collected in Table 2. The uncertain-
ties arise from the decay constants of the initial charmo-
nia (n.(18, 25), ¥ (1S, 2S)) and the final charmed mesons
(D, Dy).

In Table 3, we compare the values of form factors at
maximum recoil (> = 0) with those obtained within the
nonrelativistic quantum chromodynamics (NRQCD) [5], the
BSW model [16] and the QCDSR [18]. It is found that our
predictions for the form factors of the transitions n, —
D¢y, J/¥ — D) are comparable with those given in the
NRQCD and the BSW model with the parameter = 0.5
GeV. Certainly, our results are also consistent with the pre-
vious CLFQM calculations [17] within errors. While those
form factors predicted in the QCDSR [18] are much smaller
than other theoretical predictions. As to the form factors of
the n.(2S) — D), ¥(25) — D) transitions, only the
theoretical results from the NRQCD approach are available,
there exist obvious differences for some of values between
these two approaches.

We plot the qz-dependences of the n.(1§,2S) — Dy,
and ¥ (1S,2S5) — Dy transition form factors shown in
Fig. 2. It is very different for the ¢2-dependences of the form
factors Fy(g?) between the transitions 7.(1 §) — D) and
nc(28) — D). Among the form factors of the transition
J/W (W (2S)) — Dy, V/YPo(VVCHDw)Y is the most
sensitive to the g2 variation compared with other three form
factors.
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Table 2 Form factors of the transitions 7.(1.5,2.8) — D), ¥(1S,28) — D) in the CLFQM. The uncertainties are from the decay constants
of initial and final state mesons

ne = D J/¥ — D
Fl FO |4 A() A] A2
F(0) 0.73%500 00a 0737550 004 17345027005 04570000 0.53%00 00 013T50e 0%
Fgra) — 075%00%000 0597000 004 1385000 0 0457505 000 054750000 0111505 006
e i S R i Ry N 0 - S R L A
LA0TOGT0% 4SSN 8741050 145 207505 05 2165056705 198TGR0N
ne = Dy J/¥ — Dy
F Fy \4 Ao Al Ar
F(0) 0827050 0 082705070 L8700 000 049%00 005 05900 ons  0.08%00 00
Fgra) — 086%G50%00 0757550 00 LO9TOOMo0e  0S0MOGRT00e  06ITGGIRR 006750 008
0497661 000 —0497008%0% 0207050 034T0RTen  045T05 0o — 1590 st
088705 0m 2497036 560704450 123451 0% 1294513 083 158503 001
n.(2S) - D v(2S) - D
Fi Fy 1% Ao Ay Az
F(0) 036" 566003 0365050 03 0835150 08 0317568 0 0p 0315665 000 0321524000
F(@as) 037507 004 0397015 003 0.61% 5157009 0.28% 556 001 0307563 001 0197645 004
a 0725335011 077563707 0685957023 062554 009 065558006 —0.09%031"03
2521155503 172455570 87871231049 4315555575 3315557 10527357400
1:(28) — Dy ¥ (2S) — Dy
F Fy \% Ao Ay Ar
F(0) 04470037007 04470057007 0.9970157 5% 03070067005 033T00a003 0.19731576%
F(Gpar) 048" 507008 05066010 086" 566013 030750508 0357504 003 0155137015
a 083053015 0.79% 005 0% 09155405 0547035 0 0.71517 7023 —0.393110 58
b 1874156 0% 10045077053 74515055171 23275357160 1.99% 565" 001 42175595

3.2 Semileptonic decays

The semileptonic decay of heavy flavor mesons offers a
excellent platform for extraction of the Cabibbo—Kobayashi— 2.
Maskawa (CKM) matrix elements, which describe the CP-
violating and flavor changing processes in the Standard
Model. The form factors involving the dynamical informa-
tion play an essential role in these semileptonic decays. Based
on the form factors and the helicity amplitudes provided in
the previous section, the branching ratios of the semileptonic
ne (1S, 2S) and ¥ (1S, 2S) decays are presented in Table 4,
where the uncertainties arise from the decay widths of ini-
tial charmonia, the decay constants of initial and final state
mesons, respectively. Several remarks are in order

1. Forthese semileptonicn.(1 S,2 S)andy (1 S,2 S)decays, 3.
their branching ratios are in the range 10714 ~ 10712
and 10711 ~ 10710, respectively. Some of these decays

might be detected by the future high-luminosity exper-
iments, such as the Super Tau-Charm Factory (STCF),
BESIII and LHC.

Our predictions for the branching ratios of the decays
J/¥ — D(;)E+U[ are consistent with those given in the
BSW model [16]. Certainly, they are also agreement with
the previous CLFQM estimates and the differences are
mainly from the input parameters. While these results
are some three or more times as large as those given by
the BS approach [19], the CCQM [23] and the QCDSR
[20]. Except the variations from the input parameters, the
main reason is the distinct treatment of nonperturbative
dynamics, which can to be clarified by the future accurate
measurements. At present BESIII only gives some upper
limits, which are still much larger than all the theoretical
values.

The branching ratios of the decays n.(2.S) — D(;)ﬁ‘vg

are larger than those of the decays n. — D(;)ZJ“W. It
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Table 3 Numerical values of the transition form factors at g2 = 0, together with other theoretical results

Transition Reference Fo(0) V(0) Ao(0) A1(0) A2(0)
Ne, J/¥ — D This work 0.73 1.73 0.45 0.53 0.13
[5] 0.85 1.76 0.85 0.72 -
[16]* - 2.14 0.55 0.77 0.31
[16]° - 2.21 0.54 0.80 0.47
[2]¢ - 1.82 0.61 0.68 0.33
[17] - 1.6 0.68 0.68 0.18
[18] - 0.81 0.27 0.27 -
Ne, J /¥ — Dy This work 0.82 1.81 0.49 0.59 0.08
[5] 0.90 1.55 0.90 0.81 -
[16]* - 2.30 0.71 0.94 0.33
[161° - 2.36 0.69 0.96 0.51
[21¢ - 1.80 0.66 0.78 0.12
[17] - 1.8 0.68 0.68 0.13
[18] - 1.07 0.37 0.38 -
n:(28), ¥ (28) - D This work 0.36 0.83 0.31 0.31 0.32
[5] 0.62 1.00 0.61 0.54 -
nc(28), ¥ (2S) — Dy This work 0.44 0.99 0.30 0.33 0.19
[5] 0.65 0.83 0.64 0.59 -
2The form factors are computed with flavor dependent parameter @ using the WSB model
The form factors are computed with the QCD inspired parameter @ = ma; using in the WSB model
€The form factors are computed with the parameter w = 0.5 GeV using the WSB model
is contrary for the cases of the decays ¥ (1S,2S5) — w o S — Dty 16.59 4 2.36
Dy, v, where Br (¥ (2 S) — D, 0 ve) < Br(J/¥ — I g — Dty ’ o
D(_S)EJFVZ). These are related with their total widths, W ¥Q2S) = Diptuy 20714362 (49)

Iy (T'y2s)) is about 3 times as large as 'y 25)(I'y/w).

4. In order to cancel out a large part of the theoretical
and experimental uncertainties, to check the lepton fla-
vor universality (LFU) and to detect the effect of SU(3)
symmetry breaking, it is helpful to consider the ratio
R = Br(ne(y) — Dy €+vy)/Br(ne() — D~ €+uy),
which should be equal to |V,/ Vcdl2 ~ 19.46 under the
SU (3) flavor symmetry limit. Their values in this work
are listed as

ne — Dyetv,

R, = =16.52 +2.73,
e ne — D~etv,
28) - D-et
RS o5 = 1e(28) = Dy e Ve _ 3 591 13,06,
e nc:(2S) = D=eTv,
.= D ut
R* = e = Ds H Y =16.43 £3.27,
Ne Ne — D—M+UM
(28) = D ut
Ry os) = Ne@8) = Dy IV _ o3 544 1307,
129 T n.(28) > D=ty
J D-et
RS, = IV = Dieve 46044037,
J/¥ — Detv,
28) — Det
e V2N Dietve o074 409,

V@S Ty (28) — D—etv,

@ Springer

V@ Ty 28) - D-ptyy,

Itis obviously there exist some effects of SU (3) symmetry
breaking in these semi-leptonic decays. The ratios Rj/’fp
are consistent with that given in Ref. [19], where R‘} =
18.1. Certainly, the values of these ratios are in agreement
with the predictions under the SU (3) flavor symmetry
limit within errors. The large uncertainties from the ratios
Rf;c (s) are mainly induced by the decay width of . (2S5),

Tps = (11.3%33) MeV.
3.3 Physical observables

In order to study the impact of lepton mass and provide a
more detailed physical picture for the semileptonic decays,
we also define other two physical observables on the basis
of form factors and helicity formalism, that is the forward—
backward asymmetry Arpp and the longitudinal polariza-
tion fraction f7. The results of these two physical observ-
ables are listed in Tables 5 and 6, respectively. We find that
the ratios of the forward—backward asymmetries A’Iﬁ 5/ A%g
between the semileptonic decays n, — D(;);ﬁuu and

ne — D, et v, are about 1.9(1.8) x 10* for n.(1S) and
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16(28)D —F

°

6! 16(28)-Ds
0.5F e
0.4/
0.3
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[ Ne-D —F R o Ne~Ds —F R 05
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Fig. 2 Form factors Fj (qz) and F()(qz) for the transitions 7.(1S,2S) — D) and form factors V(qz), Ao(qz), Al(qz) and Az(qz) for the
transitions ¥ (1S, 2S) — Dy, respectively

Table 4 The branching ratios of the semileptonic 7.(1S, 25) and ¥ (1S, 25) decays

This work

This work
QCDSR [20]
LFQM [17]
BSW [16]
CCQM [23]
BS [19]
Exp. [13-15]

This work

This work

10714 % Br(ne — D™ et v,)

4£0.1240.0040.47
5437012 70.00-0/60

1071 x Br(J/y — D et vp)

F0.11-40.10+0.14
6.1020 11 20.1220.19

0.73
5.1~57
6.0

1.71

2.03
<7.1x103

10713 x Br(ne(28) - D~ et ve)

+1.08+0.47+0.56
3'127046971.35—0.53

1071 x Br(y(28) = D™ ete)

+0.10+0.49+0.23
3'4570.097020—0‘25

10714 x Br(ne — D_M+VM)

5 15+0.12+0.00+0.45
7 =0.11-0.00-0.57

107" x Br(J/y — D™ ptuy)

H0.1140.1140.16
5.781071020.13-0.11

0.71
47~55
5.8

1.66

1.98

<5.6 x 10

10713 x Br(ne(28) — D~ ptvy)

+1.06+0.47+0.56
308 0 68-1.34-0.52

1071 x Br(y(28) — D~ utuy)

+0.09+0.11+0.21
3'39—009—()‘35—0.23

10713 x Br(ne — Dy etve)

4£0.2040.0140.51
8977019 0.01-1.48

10710 x Br(J/y — Dy etve)

0.19-40.66--0.56
102175187 0/61-1.41

1.8
53~58
10.4

33

3.67

<13 x10%

10712 x Br(ne(28) — Dy et )

+2.5440.93+0.62
736 211752222

10710 x Br(y(28) — Dy et ve)

+0.204-0.97+0.60
7'20—0. 19-0.44-0.92

10713 x Br(ne — D;[L+UM)

+0.19+0.01+0.50
8'467018—0‘01 —1.40

10719 x Br(J/y — Dy utvp)

+0.18+0.62+0.63
9'59704 17-0.58—1.34

1.7
55~57
9.93

32

3.54

10712 x Br(c(28) — Dy nFvp)

+2.50+0.91+0.60
72571 60-1.73-2.19

10719 x Br(y (28) — Dy utvw)

+0.20+0.99+0.65
7'02704 19-0.38—-0.83

Table 5 The forward—backward asymmetry Arp

Channel

AFrp
Channel

AFp
Channel

AFp
Channel

AFp

Ne — D_€+Ve
+0.09+0.00+0.37 —6

421700570007 036) x 10

J/¥ — D7etv,
+0.00+0.01+0.01

—0.237 500 0'00-0:00

7:(28) — D~ eT v,

+0.58--0.21+0.30 —6
(1.695537 0 76—0728) < 10

Y(2S) — D et v,

+0.0140.09+0.03
_0'28—0.01—0.02—0402

ne — D™ utvy
0.0805:0070.000-0-009
J/¥ = D~ utvy
~0.2315007 5017000
1:28) = D~ ptu,

+0.016+0.006+0.008
0'04570.01 0-0.021-0.007

v(2S) — D_M‘W#

-+0.014-0.09+0.03
_0'28—0.01—0.02—0402

ne = D7etv,

(5.08+0A 1 l+0A00+0.28) x 1

—0.11-0.00—0.84
J/y — Dyetv,

+0.004-0.0140.03
—0.21 —0.00—0.01-0.01

nc(28) — D;e‘*’ve

(1 .86+0'64+0'27+0'19) x 1076

—0.41-0.41-0.56
v(2S) — Ds_e+ve

+0.014-0.07+0.07
_0'27—0.01—0402—0401

076

ne = Dy vy
0.09175:065 00000015
J/¥ = D7ty
~0.224 550 0017001
1c28) — Dy putv,

+0.017+0.007+0.005
0'048—0.01 1-0.011-0.015

v(2S) — Ds_,u‘*'vu

+0.014-0.07+0.07
_0'27—0.01—0402—0401
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%i %? % §§I 2.7(2.6) x 10* for nc(2S), respectively. The reason is that
= 8¢ 28 = 8Ze &8 the forward-backward asymmetries Arp for the decays
oo oo (=1 - .
é gs‘ é gé '9 gé '9 55' n.(18,28) — D(S)E+v1g are proportional to the square
X S x S X S x 9% of the lepton mass. Undoubtedly, the effect of lepton mass
P Y. P
- I I7 |~ T I
HEBERERAE R can be well checked in such decay mode with a pseu-
= n o o © | K n O~ O .
doscalar meson involved in the final states. It is similar to
the decays B, — n.(1S5,28,38)¢"v, [40]. While for the
= S T SI decays (15,2 5) — D(;)ZJrvg, the values of the forward—
| |
a2 = al 2 =2 backward asymmetries A%, and A%, are almost equal to
= = o FB FB
§| X X gl o - — each other. It is noted that the dominant contributions to the
e YL | IS .
2l & s 4 s || = S &S App for the transitions ¥ (1§,2S) — Dy arise from the
terms proportional to (Hy; L —Hy _)in Eq. (24).
o In Table 6, we can clearly find that the longitudinal polar-
5 - o y g p
& = = D D ization fractions f; between the decays ¥ (1S,2S8) —
Zl=1s = = % » D etv, and ¥ (18,28) — D, utv, are very close to
s = | ~ g ®) ®)
S I O e ] IR g each other
HBHEERFEIEIEEEE
E" fL(p(1S,28) — D(;)ﬁve) ~ fL(p(1S,28) — D(})lﬁvp),
= ~ o~~~ (50)
N ~ o~~~ T X 2 =
= S £ 441
< R A FEEE which reflects the lepton flavor universality (LFU). In order
S v . . .
Q a a 5 & NN to investigate the dependences of the polarizations on the
T8 8 1 1 1 1 different ¢, we calculate the longitudinal polarization frac-
R 2l aea g q g p
Il I I il B ISR AR S AR tions by dividing the full energy region into two regions
s 23 % 2 2 2 ?”( % ? ?'2 for each decay. Region 1 is defined as m? < ¢*> <
|09 29 S|0|g 2g = (Mg ns)—m D, )2Fm2 (g us) =M D) )2+
by D TR0 T and Region 2 s —l P T
> 2 2 :
s q° < (myus) — mDm) with n = 1, 2. Interestingly, for
o [salse] [sef=e) 0 0 — . .
s 22 22 SS §§ the decays ¥ (1S, 2S) — D(S)ZJrvg the longitudinal (trans-
§ _ &4 = I - g o g 2 verse) polarization is dominant in Region 1 (Region 2). While
5 - 88 = - 8= 88 : ning : .
- 537237 L5375 Ei these two kinds of polarizations are comparable in the entire
2 S 2z 7 is 23328z p >
2 x 35 X 33| _ | x 33 x 35 physical region. These results can be tested by the future
g § = a 387 ‘§ 3 i § i high-luminosity experiments.
Q o O — O . .
£ In Figs.3 and 4, we also display the g>-dependences of
g differential decay rates d I‘(L)/dq2 and forward—backward
g = o = =] asymmetries App, respectively. It can be observed that the
g T T ! ! BT
= o é 'c_: « = = values of dI'(y) /dq2 and App coincide with O at the zero
7:; °§D vf - :; - 091) g g : = recoil point (q2 = q,%m) since the coefficient \/A(g2) =
= < < Q ) . . .
E gld SS9 S|E| =S @3 \/)»(mimj/w,m%x,qz) shown in Eqs. (17-24) at the same
%" zero recoil point being equal to 0. The lepton mass effects
E, B - = ° can be obviously observed from Fig. 4a—d.
= = = | |
L) | | =] =]
s |—12 s = < - .
2 g| x % g x - S . 3.4 Nonleptonic decays
1 = &0 =
R 2ERE|I222F 3
w [F] @S v The decays rates of the charmonium weak decays 7. (1 S, 2 S)
‘é DM and ¥ (1S5,28) — DM with M standing for a
g A a A A 333 pseudoscalar meson (P) or a vector meson (V') can be writ-
= Pl Tm Tm Tm T\» ten as
E oS QR AQa
& QA aA]aAa Pem
é sl 111 1|3 Tt Br (n(18,28) — DM) = yo— -
i) S~ ~ ~ ~ _ (15.25)
e | E == 5388338 ne(18,28)" 1 .
BRI EEEE | A (ne(18,28) — DsyM)|”,
Eldl g 28 2|8l a g (51)
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Fig. 4 The theoretical predictions for the g2 dependences of the forward—backward asymmetries A rp

Pcm
12nm12”(13,2s)1“‘,,(15’25)
|A(p(18,28) —> Dy M)I>.  (52)

Br (¥ (18,28) - DM) =

where p.,, represents the three-momentum of the final meson
D,y in the rest frame of n.(1S, 25) and ¥ (15, 25).

In Tables 7 and 8, we list the branching ratios of the non-
leptonic decays n.(1S,2S5) — DM and ¥ (1S,2S5) —

D5y M, including the values obtained from Refs. [1,5,6,16—
18,20,21,21,22] and BESIII collaboration [11,12] for com-
parison, where the uncertainties of our results arise from
the full widths of the charmonia n.(1S, 25), ¥ (1S, 25), the
decay constants of the initial and final state mesons, respec-
tively. The decay modes considered here are dominated by
the color-favored factorizable contributions and insensitive
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Table 7 Branching ratios of the nonleptonic ground charmonium state (J /v, 1.) decays

This work
[5]

This work
[5]

This work
(5]

[6]

[16]*

[17]

[18]

(1P

[21]

BES [11]

This work
(5]

[16]?

[17]

[18]

(1P

[21]

[22]

BES [12]

1072 x Br(n. — Dz )

+0.15+0.0140.32
6‘65—014—0‘()1—0‘10

7.35
10712 x Br(n. — D;p*)

+0.15+0.03+0.69
6'62—0414—0.03—1.34

5.28
10719 x Br(J /¥ — Dym™)

+0.064-0.344-0.78
3 '64—0406—038—0‘96

10.9
4.30

3.32

2.5

2.0

8.74

4.10

< 1.4 x10°

107 x Br(J /¥ — Dy p*)

+0.06+0.11+0.15
2'9570.0570]4—0‘19

3.82
1.77

2.8

1.26

3.63

2.21

3.33

<13 x10*

1075 x Br(n. — D7 K™*)

+0.09+0.00+0.35
4‘2270.09700070‘79

4.97

10713 x Br(n. — D7 K*T)

3 31+0A07+0A02+0A40
7 -0.07-0.02-0.72

1.18

107" x Br(J/¥ — Dy KY)

-+0.044-0.184-0.36
2'02—0.04—0420—0.48

6.18
2.69
2.4
1.6
5.5
2.32

10719 x Br(J /¢ — Dy K**)

+0.03+0.06+0.07
1 '42—0403—0.07—0.10

2.00
0.97
0.82
2.12
1.22
1.86

1078 x Br(ne —» D™= ")

+0.07+0.01+4-0.28
3‘34—00770‘0270‘33

4.39

108 x Br(ne - D= pt)

+0.07+40.00+0.33
3.01 —0.06—0.00—-0.37

4.32
10~ x Br(J/y — D—nt)

—+0.044-0.1740.11
1'90—0.03—019—0.14

6.37
2.09

1.5

0.80

5.5

221
<7.5x% 100

10710 x Br(J/y — D= p*t)

+0.03+0.03+0.07
]'70700370‘0570‘10

2.12
0.72
0.42
2.20
1.09
1.32

1071 x Br(ne. —> D™K™)

+0.054+0.014-0.21
2‘33—0‘05—0.01—0.24

3.04

107" x Br(ne. - D~ K*t)

+0.04+4-0.00+0.20
1'68—0.04—0.00—0.22

1.38

1072 x Br(J/y - D"K™)

1 16+0.02+0.03+0.13
*7+-0.02-0.02-0.18

3.79
1.34
1.2
50
36

1.31

10712 x Br(J/¥ — D™ K*1)

+0.16+0.20+0.42
8'59—0 15-0.29-0.60

11.4
4.2
550
154
6.14
8.0

4The branching ratios are computed with the average transverse quark momentum @ = 0.4 GeV under the WSB model
bThe branching ratios are computed with the average transverse quark momentum w = 0.5 GeV under the WSB model

Table 8 Branching ratios of the nonleptonic radially excited charmonium (1.(2S), ¥ (25)) decays

This work

[5]

This work
[51

This work
[5]

This work
[5]

1071 x Br(n.(2S) > Dy zt)

1 92+0.66+0A24+0A18
77—-0.42—-0.44-0.54

3.90
1071 x Br(ne(28) — Dy pt)

+0.66+0.10+0.67
1 ‘927044270, 11-1.16

7.24
10710 x Br(y(28) — Dy ™)

1.23710.03+0.08+0.59
7 —-0.03-0.18—0.51

5.07
1079 x Br(y(28) — Dy pt)

+0.03+0.01--0.41
12270 0370.1020.19

1.67

10712 % Br(n:2S) — Dy K™)

1 29+0,45+0.13+0A17
*©7-0.29-0.33-0.40

2.87
10713 x Br(c(2S) - Dy K*t)

+2.43+1.12+1.21
7‘05—1.5671A15—2A13

34.7
10712 % Br(y(25) - Dy K)

10.2242.6243.34
8.2003573550-3220

343
10711 % Br(y(25) - Dy K*1)

+0.2040.06-+0.42
7317079 0.21-0.13

9.6

10713 x Br(ne(28) - D~nh)

12.654+0.78+1.24
767 169 329" 1140

213
10713 x Br(ne(2S) — D~ p*)

+1.36+0.08+-0.68
3‘93—().87—0.3370471

413
10712 x Br(y28) > D~7h)

10.2242.3241.06
7587030 340~ 1.12

27.6
1071 x Br(y(28) > D= pt)

+0.16+0.59-+0.52
3-55001520.82-0.58

8.99

10714 x Br(n:28) - D~ k)

+1.75+0.63+0.90
5'0871,12—2.24—0.97

15.8
1071 x Br(ne(2S) - D~ K*1)

+0.88+0.38+0.44
2'547056—0‘78—0‘45

20.2
10713 x Br(y(28) > D™ K™T)

+0.14+1.42+0.56
4'96704 14-2.14-0.64

19
10712 x Br(y(2S) > D™K**)

3 31+0.O9+0.33+0.34
7 —0.09-0.49-0.37

52

to the nonfactorizable contributions. Therefore, even with
different phenomenological models, the branching ratios

for a given decay process of n.(1S5,28) — DM and

¥(1S,28) = DM have the same order of magnitude in

@ Springer

many cases. Numerically, we adopt the Wilson coefficient
ay; = 1.26. The following are some comments:

1. The branching ratios for the weak decays n.(2S) —
D5y M are approximately 1.5 ~ 3 times larger than those
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Table 9 The units of the branching ratios of the Cabbibo-favored and Cabibbo-suppressed decay channels

Cabbibo-favored decays Order of magnitude Cabibbo-suppressed decays Order of magnitude

nc(18,28) — Dyt (10712 — 10~ n.(18,28) - DK+ 10-14
¥v(1S,28) - Dyt (10~ — 10719y ¥(18,285) > DK+ 10-13
nc(18,28) — Dy p* (10712 — 10~ ne(18,28) - D-K*+ 10-14
¥ (18,28) — Dy p* 107° ¥ (1S,28) - D™ K**t 10-12

for the corresponding decays n. — D¢yM due to the
smaller decay width of 70(25), [y, 0s) = (11.3732)
MeV compared to I';,, = (32.0£0.7)MeV for 1, meson,
and the larger phase space for 1.(2S5). It is contrary for
the cases of weak decays between ¥ (25) — DM and
J/¥ — DM, where the branching ratios of the latter
are about 2 ~ 3 times larger than those of the former,
because the decay width of J/v, I'y/y = (92.6 & 1.7)
keV is only about one-third of that for ¥ (25), 'y 05) =
(294 £ 8) keV. These numerical relations are similar with
those given by the NRQCD [5] for the J/W and v (2S5)
decays, while are different for the 1. and n.(2 S) decays,
where the differences are five times even more large.

. It is worth mentioning that the branching ratios of the
decays n, — DM are in agreement with the results
obtained the NRQCD approach [5], while there exists
about 2 ~ 3 times even more large difference for those of
the decays n.(2S) — D) M. For the J /¥ weak decays,
the branching ratios of the channels J/¢¥ — D)V are
consistent with most of other theoretical results, such
as the NRQCD [5], the BSW model with the parame-
ter o = 0.5 GeV [1], the QCDF approach [21] and the
PQCD approach [22], but are larger than those given in the
QCDSR [18] except that of the decay J/¢ — D(S)K*Jr.
While the branching ratios of the decays J /v — D) P
are in agreement with than the calculations given in the
BSW model with the parameter ® = 0.4 GeV [16],
the PQCD approach [6] and the QCDF approach [21],
while are smaller than those given in the NRQCD [5]. As
to the ¥ (2S) decays, it is similar with the cases of the
J/W decays, that is the branching ratios of the decays
¥(25) — D)V are comparable with the current only
available theoretical results in NRQCD [5], but those
of the decays ¥ (2S) — D) P are much smaller. Cer-
tainly, the decays J/¢ — D;n*, J/Y — D rn™t,
J/¥ — Dy p* have been detected by the BESIII Collab-
oration but only with upper bounds [11,12] being avail-
able, which are much above all the theoretical predictions.
. Whether the ground or radially excited charmonium state
decays, there exists a clear hierarchical pattern among
their branching ratios

Br (nc(nS) — Dy ) > Br (n.(nS) — D; K™*)
~ Br (ne(nS) = D x*) > Br (n.(nS) — DKV,

Br (¥ (nS) — Dywt) > Br (v (nS) — Dy K™)
~ Br(y(nS) — D ) > Br (y(nS) - D"K™),
Br (n¢(nS) — Dy p*) > Br (ne(nS) — Dy K*F)
~ Br (ne(S) — D~ p*) > Br (n.(nS) - D™K*T),
Br (¢ (nS) — Dy p*) > Br (y(nS) - Dy K*T)
~ Br (y(nS) - D™ p*) > Br (y(nS) - D" K*T),
(53)

which are primarily due to the hierarchical structures
of CKM factors V. V,4(0.949) > V. V,s(0.219) ~
Ved Vua(0.215) > VeqV,5(0.049).

. Our primary focus lies on the nonleptonic decay chan-

nels that are most likely to be observed in future collider
experiments. In Table 9, we list the ranges of the branch-
ing ratios for the Cabibbo-favored decays n.(1S,2S) —
D;at,¢(18,28) — D;nt,n.(18,28) - D;p™,
¥(1S5,28) — D;pt and the Cabibbo-suppressed
decays n.(15,28) — DK™, %(1S5,25) —- D KT,
n:(18,28) — D™K*', 4 (15,25) — D™ K*'. Itis
obvious that the decays ¥ (1S,2S) — D, p™ have the
largest branching ratios and are most likely to be observed.

. From our calculations, one can obtain the following rela-

tive ratios of the branching fractions where the uncertain-
ties from the transition form factors are cancelled

B DKt
RD: = r(e = De K™ 063 +0.012,
¢ Br(ne — Dy )

p, _ Br(n.2S) — D;yK")

_ = 0.067 £ 0.033,
28 Br(n.(28) — Dy )
o, _BrU/W = DK _ s 40,000
I Br(Jjy — Dynt) ' o
Br(y(2S) — D7 KT)
Dy — =
D= L = 0.066 =+ 0.043.
Br(v(2S) — Dy )
(54)
D KT
D _ Br(ne — ) _ 0.070 % 0,010,
e ™ Br(ne — D—mt)
Br(ne(28) > D~K ™)
D c
_ = 0.066 + 0.041,
1e@$) = Br(n.(2S) — D-xt)
DK+
p _Brl/y — ) — 0.061 £ 0.011,

= Br(J/y — D—mt)

@ Springer
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p _ Br(y2S)— DK
Ve T Br(y(2S) - D-nt)

= 0.065 £0.041,
(55)

2
which are consistent with the estimation R = |V, |2 % 5
J

0.074 obtained from the factorization assumption. Fur-
thermore, the ratios R?/sw and R?N/ agree well with the
results 0.057 and 0.060 given in the QCDF [21]. Simi-
larly, we can also define the ratios RZZ.(IS’ZS), Ri,’j(ls’zs)
as follows

x _ Brinc— D~nt)
T Br(ne — Dy )

D 2
Vea e (m2)

— 0.050 % 0.006 ~ v
Ves Fy* 7 (m3)

= 0.041,
. _ Br(n.(2S) — D~ m™)
1@ 7 Br(n.(2S) — Dy )

«(2S)D 2
Vea FOP (m2)

= 0.040 £ 0.019 =~
Ves F 9P (m2)

— 0.035,

x Br(J/v — D~ nt)

I Br(J /¢ — Dyt

VeaAy'VP (m2)
Ves Aé/ijS (m%)

2
= 0.052 £0.015 =~

= 0.043,
. _ Br(y(2S) — D~ nh)
ves = Br(y(2S) — Dy t)

28)D 2
Vea AYPOP (m2)

Ves Agj(ZS)DX (myzf)
= 0.055. (56)

= 0.061 £ 0.040 =~

4 Summary

The charmonium weak decays provide a unique perspec-
tive on the underlying structures and dynamical mechanisms
of hadrons and currents. With the anticipation of abundant
data samples on charmonium at high-luminosity heavy-flavor
experiments, we calculated some semileptonic and nonlep-
tonic weak decays of charmonia 7.(1S, 25) and (1S, 25)
using the covariant light-front quark model. Here the nonper-
turbative weak transition form factors play a crucial role in
evaluating the weak meson decay amplitudes. We extended
analytically the expressions of the form factors of the tran-
sitions 1¢(1S,2S) — D¢ and ¥ (15,2S) — Dy in the
space-like region to the time-like region using the double-
pole model. The following are some points

@ Springer

1. In our considered decays, the channels J/y — Dy €T v,
and J/¥ — D; p" have the largest branching ratios,
which are very close to or even upto 107°. These val-
ues are still much below the present experimental upper
bounds.

2. The branching ratios for the semileptonic decays J/ ¥V —
D(_S)E*’vg are well consistent the results obtained from the
BSW model, but some three or more times as large as those
given by the BS approach, the CCQM and the QCDSR.
The semileptonic decays of the radially excited charmonia
¥ (2 §)and n.(2 S) have not been studied by any other the-
ory. We find that Br(J/V — D(;)EJFW) are about three

orders of magnitude larger than Br(n, — D(;)é"’ ve), and
Br(y(2S) — D(;)Eﬂ)g) are about two orders of magni-

tude larger than Br(n.(2S) — D(_S)Z*'vg).

3. Whether the semileptonic or the nonleptonic charmonium
weak decays, the branching ratios for the ground state
ne decays are smaller than those of the radially excited
state 7. (2S) ones. It is contrary to the cases of ¥ (15, 25)
decays, where the branching ratios of the ground sate J / W
decays are larger than those of the radially excited state
¥ (2S) ones. It is because of the larger (smaller) decay
width of n. (J/W¥) compared with that of its radially
excited state.

4. Theratios of the forward—backward asymmetries A’; 5/ A%g
between the semileptonic decays (1 S,2 S) — D(_S) M+Vu

and n.(1S5,285) — D(_S)eJ“vg are in the order of 10%,
and the forward-backward asymmetries for the decays
(18,28 — D(;);ﬁuu and ¥(15,2S8) — D(;)eﬂ)e
become minus in sign and lies in the range of (—0.3 ~
—0.2).

5. The longitudinal polarization fractions f; are close to
each other between the decays (15,2 S5) — D(E)e*‘ve

and ¥ (1S,2S) — D(_S) pﬁvu. Furthermore, the longitu-
dinal and transverse polarization fractions for each decay
are comparable.

6. Whether the ground or radially excited charmonium
decays, the final states Dy 71 (D; p™) always own the
largest yieldand D~ K (D~ K *T) always have the small-
est production, which are connected with the hierar-
chical structures of CKM factors, V.;V,4(0.949) >
Vea Vs (0.049).
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Appendix A: Some specific rules under the p~intergration

When preforming the integration, we need to include the
zero-mode contribution. It amounts to performing the inte-
gration in a proper way in the CLFQM. Specificlly we use
the following rules given in Refs. [24,30]

A/lu = PMAEI) + CIMAEI)’ (AD)
~ N . 2 2
Prubly = gAY + PP AT
2 2
+(Pugy + quPy) AL + ququ A, (A2)
Z) = ]\A/{ —l—m’lz —m%—l— (1 —2x1)M'2
/
“ql
+ (q2 +q- P) —quzq , (A3)
0 P @
P2 = | A 2o + LA (A4)
Prupi N2 = gAY 2
gy [A@)z + 2‘] A(I)A(Z)} , (AS)
/
Ail) =1 A(l) A(l) Py 2‘1{
2 q
AD = 4D AD, (A6)
1
AD = (Aa)) ~ L
q
AD _ 2 (P -q1)
1 = —PL 5>
q
AP = (A“)) (A7)

Appendix B: Expressions of 7.(¥) — D) form factors

SEEPO = Tr [ys (b +mY) v (b} +m)) vs (= 2 +m2)]

= 2p/m I:M/2 +M"? - q2 — 2Ny — (m/l — m2)2
= (m = m2)” + (] — )]

‘HI/J. [qz _2M/2 +N1/ _ N]//

+2Ny + 2 (m) — m2)2 — (m} — m/{)z]

+Pu [ = N = N{ = (m} = m{)?].
SZ/VDM _ (SgD(s) _ SX/D(”)
v
1
= Tr [(yu — 37 (P = P2),,> (P} +mf)
|4
(Vi — vuys) (B +my) vs (= b2 +m2)]

= —2i€ g PV PP (m] —mh)
+piq? (m}] +m| — 2m>) + ¢ PPm})

(BI)

B pp

(41)/11) —3qy — P,,) ieuaﬂpp/laq

1
+W{,/
28 {m2 (4% = N{ = N{ = m2 = m?)

_m/l (M//Z N// — Ny — //2 _ m%)
m (M? =N, — Ny —m? — -2

1 1 2 ml m2 m'ymmo
+8P1, P (mz —mh) = 2(Puqv + qu Py + 29,q,) m]
+2plu ( )
+2plﬂq,, (3m — ml — 2m2) + ZP/LPlu (ml + ml)
+2qﬂpll) (3ml +ml - 2m2)

1 2 2 2
+W‘/} (4p'1v —3qy — PU) {Zp/m [M/ +M'""—q
—2Np; +2 (m/l — m2) (m/{ + mz)]

4, |47 =247 + V] = N] 42N> = (m} +m])’
+2 (m} = m2)’]

+Pu [a? = N = N = (m} + )]} (B2)

The following are the analytical expressions of the form
factors of transitions 7.(1S5,2S8) — D), ¥(1S5,25) —
(18,28) — D) in the covariant light-front quark model

FlePo (qz) 12] - / dx,d*

h/ h//
[xl (M(/)2 + M”z) +x2¢% — x2 (m} — m’{)2

;e D)
1~ A,
X2 N{ N/

2 2
—x1 (m’l - m2) — X1 (m/{ — m2) ] (B3)
Fn( D(x) ( 2) 7]( D(r) c
0 q (g )+ (q P) 1673
om0
x | dxad*p', BRSO} { —x1xaM”? — p’? —mimo
/ NN/ s
+ (m/{ — mz) (xzm] + xlmg)
2 , 2
a-P( . ,(PL-a1) (Pl -q1)
L2 (p242 +2
9 ( * 9> 9>
/
_Pry z‘ll [M”z—xz (q2+q~P>
q
= (x2 = x1) M” + 2x M
2 = o) (o + )]} (B4)
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NC(M/ + M//)

1673 dxpd’

VYo g =
/ "

2 H

* NN

2
2|, (Par)

14

o' A p/J_'qJ.
2m1+x1m2+(m1 ml)iq2

(BS)

M/ _ M// DS
Ao g2

M/ + M//
2M

¥ Ds
A “ (g% -

Ds
4570 (g% =
_ 4 Ne
2M" 1673

',
x/dxzdzpj_T}é;:/Q(le -3)

A2V IV
(xzm/l + xlmz) -8 (m/] — mz)
72 ’o. 2
« [’;i n 2(’“614%)} —[(14 = 12x1) m]

/
g, 4
Pqu +
q

—2mY — (8 — 12x1) m3 ] -
Wy

X ([M/2 + M — g% +2(m} —my) (m] + mz)]
x (A9 + 49 = Al) + 2, (348" — 240 — 1)

1
+5 [xl <q2+q : P) —OM? - 2p - qu
=2m’ (m{ +m2) — 2my (m — mz)]

2 / 2
M M Pt (P -ar)
et e

q q*
x (4A§” - 3))}

Ds
4770 (g% = -

(B6)

1 N

2
M 1en | P4

h%h%
W — {le my —m) <M’2 + M”2> — dxym | M
szNiNi, ( 1) (Mg 0 1My
+2x2m/lq - P+ 2m2q2 —2x1my (M’2 + M”z)
2 (i — ) (o} + ) 48 (o} — )

/ 2 /
p' . p' -
X |:P/2 + 7( quq ) i| +2 (m’l + m/l’) (q2 +q - P) 7Lq2q

p2+ (P, -q1)’

—4
q*wy
/
x [2’“1 (M/2+M62> _qz_Q'P—2<q2+q~P)%
q
=2(my —my) (my —m2)]}, (B7)
! " ’opr
Dy N.(M +M) 2h1/th5
A;# ()((]2): 573 dx2d2plA7A()
167 2NN/
/
2 ’
X2q” +py-qL
+ o —xpm)] -2 —=—+ =
X2q4-wy,
X [pj_ . P/J,_ + (x1m2 +X2m,1) (x1m2 _ x2m/l/)]} . (B8)

@ Springer

References

1. K.K. Sharma, R.C. Verma, Int. J. Mod. Phys. A 14, 937 (1999).
arXiv:hep-ph/9801202
2. R.C. Verma, A.N. Kamal, A. Czarnecki, Phys. Lett. B 252, 690
(1990)
3. Y.M. Wang, H. Zou, Z.T. Wei, X.Q. Li, C.D. Lu, Eur. Phys. J. C
54, 107 (2008). arXiv:0707.1138 [hep-ph]
4. Y.M. Wang, H. Zou, Z.T. Wei, X.Q. Li, C.D. Lu, Eur. Phys. J. C
55, 607 (2008). arXiv:0802.2762 [hep-ph]
5. J. Sun, Y. Yang, J. Huang, L. Chen, Q. Chang, Adv. High Energy
Phys. 2016, 5071671 (2016). arXiv:1511.03420 [hep-ph]
6. J. Sun, Y. Yang, J. Gao, Q. Chang, J. Huang, G. Lu, Phys. Rev. D
94, 034029 (2016). arXiv:1709.05080 [hep-ph]
7. S. Okubo, Phys. Lett. 5, 165 (1963)
8. G.Zweig, CERN-TH-401, 412 (1964)
9. J. lizuka, Prog. Theor. Phys. Suppl. 37, 21 (1966)
0. M.A. Sanchis-Lozano, Z. Phys. C 62, 271 (1994)
1. M. Ablikim et al. [BES], Phys. Lett. B 663, 297 (2008).
arXiv:0707.3005 [hep-ex]
12. M. Ablikim et al. [BESIII], Phys. Rev. D 89, 071101 (2014).
arXiv:1402.4025 [hep-ex]
13. M. Ablikim et al. [BESIII], Phys. Rev. D 90, 112014 (2014).
arXiv:1410.8426 [hep-ex]
14. M. Ablikim et al. [BESII],
arXiv:2104.06628 [hep-ex]
15. M. Ablikim et al. [BESIII]. arXiv:2307.02165 [hep-ex]
16. R. Dhir, R. Verma, A. Sharma, Adv. High Energy Phys 2013,
706543 (2013). arXiv:0903.1201 [hep-ph]
17. Y.L. Shen, Y.M. Wang, Phys. Rev. D 78, 074012 (2008)
18. Y.M. Wang, H. Zou, Z.T. Wei, X.Q. Li, C.D. Lu, Eur. Phys. J. C
55, 607 (2008). arXiv:0802.2762 [hep-ph]
19. T. Wang, Y. Jiang, H. Yuan, K. Chai, G.L. Wang, J. Phys. G 44,
045004 (2017). arXiv:1604.03298 [hep-ph]
20. Y.M. Wang, H. Zou, Z.T. Wei, X.Q. Li, C.D. Lu, Eur. Phys. J. C
54, 107 (2008). arXiv:0707.1138 [hep-ph]
21. J. Sun, L. Chen, Q. Chang, J. Huang, Y. Yang, Int. J. Mod. Phys.
A 30, 1550094 (2015). arXiv:1603.00130 [hep-ph]
22. Y. Yang, J. Sun, J. Gao, Q. Chang, J. Huang, G. Lu, Int. J. Mod.
Phys. A 31, 1650161 (2016). arXiv:1709.10220 [hep-ph]
23. M.A. Ivanov, C.T. Tran, Phys. Rev. D 92, 074030 (2015).
arXiv:1701.07377 [hep-ph]
24. H.Y. Cheng, C.K. Chua, C.W. Hwang, Phys. Rev. D 69, 074025
(2004). arXiv:hep-ph/0310359
25. H.Y. Cheng, C.K. Chua, Phys. Rev. D 69, 094007 (2004).
arXiv:hep-ph/0401141. [erratum: Phys. Rev. D 81, 059901 (2010)]
26. C.W. Hwang, Z.T. Wei, J. Phys. G 34, 687 (2007).
arXiv:hep-ph/0609036
27. C.D. Lu, W. Wang, Z.T. Wei, Phys. Rev. D 76, 014013 (2007).
arXiv:hep-ph/0701265
28. W. Wang, Y.L. Shen, C.D. Lu, Eur. Phys. J. C 51, 841 (2007).
arXiv:0704.2493 [hep-ph]
29. Z.Q.Zhang,Z.J. Sun, Y.C. Zhao, Y.Y. Yang, Z.Y. Zhang, Eur. Phys.
J. C 83, 477 (2023). arXiv:2301.11107 [hep-ph]
30. W.Jaus, Phys. Rev. D 60, 054026 (1999)
31. Y. Sakaki, M. Tanaka, A. Tayduganov, R. Watanabe, Phys. Rev. D
88, 094012 (2013). arXiv:1309.0301 [hep-ph]
32. G.Buchalla, A. Buras, M. Lautenbacher, Rev. Mod. Phys. 68, 1125
(1996). arXiv:hep-ph/9512380
33. R.L. Workman et al. [Particle Data Group], Review of particle
physics. PTEP 2022, 083C01 (2022)
34. D. Becirevi¢, G. Duplanci¢, B. Klajn, B. Meli¢, Nucl. Phys. B 883,
306 (2014). arXiv:1312.2858 [hep-ph]
35. T.W. Chiu, T.H. Hsieh, J.Y. Lee, P.H. Liu, H.J. Chang, Phys. Lett.
B 624, 31 (2005). arXiv:hep-ph/0506266

JHEP 06, 157 (2021).


http://arxiv.org/abs/hep-ph/9801202
http://arxiv.org/abs/0707.1138
http://arxiv.org/abs/0802.2762
http://arxiv.org/abs/1511.03420
http://arxiv.org/abs/1709.05080
http://arxiv.org/abs/0707.3005
http://arxiv.org/abs/1402.4025
http://arxiv.org/abs/1410.8426
http://arxiv.org/abs/2104.06628
http://arxiv.org/abs/2307.02165
http://arxiv.org/abs/0903.1201
http://arxiv.org/abs/0802.2762
http://arxiv.org/abs/1604.03298
http://arxiv.org/abs/0707.1138
http://arxiv.org/abs/1603.00130
http://arxiv.org/abs/1709.10220
http://arxiv.org/abs/1701.07377
http://arxiv.org/abs/hep-ph/0310359
http://arxiv.org/abs/hep-ph/0401141
http://arxiv.org/abs/hep-ph/0609036
http://arxiv.org/abs/hep-ph/0701265
http://arxiv.org/abs/0704.2493
http://arxiv.org/abs/2301.11107
http://arxiv.org/abs/1309.0301
http://arxiv.org/abs/hep-ph/9512380
http://arxiv.org/abs/1312.2858
http://arxiv.org/abs/hep-ph/0506266

Eur. Phys. J. C (2024) 84:65

Page 17 of 17 65

36.

37.

38.

M. Wingate, C.T.H. Davies, A. Gray, G.P. Lepage, J. Shigemitsu,
Phys. Rev. Lett. 92, 162001 (2004). arXiv:hep-ph/0311130

D. Becirevi¢, G. Duplancié, B. Klajn, B. Meli¢, F. Sanfilippo, Nucl.
Phys. B 883, 306 (2014)

D.M. Asner et al. [CLEO Collaboration], Phys. Rev. Lett. 92,
142001 (2004). arXiv:hep-ex/0312058

39.

40.

Z.Z. Song, C. Meng, K.T. Chao, Eur. Phys. J. C 36, 365 (2004).
arXiv:hep-ph/0209257

Z.J.Sun,S.Y. Wang, Z.Q. Zhang, Y.Y. Yang, Z.Y. Zhang, Eur. Phys.
J. C 83, 945 (2023). arXiv:2308.03114 [hep-ph]

@ Springer


http://arxiv.org/abs/hep-ph/0311130
http://arxiv.org/abs/hep-ex/0312058
http://arxiv.org/abs/hep-ph/0209257
http://arxiv.org/abs/2308.03114

	Semileptonic and nonleptonic weak decays of ψ(1S,2S) and ηc(1S,2S) to D(s) in the covariant light-front approach
	Abstract 
	1 Introduction
	2 Formalism
	2.1 The form factors
	2.2 Helicity amplitudes and observables
	2.3 Hadronic matrix elements

	3 Numerical results and discussions
	3.1 Transition form factors
	3.2 Semileptonic decays
	3.3 Physical observables
	3.4 Nonleptonic decays

	4 Summary
	Acknowledgements
	Appendix A: Some specific rules under the p-intergration
	Appendix B: Expressions of ηc(ψ) rightarrowD(s) form factors
	References




