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Abstract We investigate the behavior of the holographic
entanglement entropy (HEE) in proximity to the quantum
critical points (QCPs) of the metal-insulator transition (MIT)
in the Einstein–Maxwell-dilaton-axions (EMDA) model.
Since both the metallic phase and the insulating phase are
characterized by distinct IR geometries, we used to expect
that the HEE itself characterizes the QCPs. This expectation
is validated for certain cases, however, we make a noteworthy
observation: for a specific scenario where −1 < γ ≤ −1/3,
with γ as a coupling parameter, it is not the HEE itself but
rather the second-order derivative of HEE with respect to
the lattice wave number that effectively characterizes quan-
tum phase transitions (QPTs). This distinction arises due to
the influence of thermal effects. These findings present novel
insights into the interplay between HEE and QPTs in the con-
text of the MIT, and have significant implications for studying
QPTs at finite temperatures.
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1 Introduction

Quantum phase transitions (QPTs) usually involve strongly
correlated electron system which is difficult to quantify [1].
As a non-perturbative method, holography builds a bridge
between the strongly correlated system and the weakly cou-
pled classical gravitational theory in the large N limit [2–5],
which is usually solvable. We can construct a gravitational
dual model by holography to attack these strongly corre-
lated problems and address the associated mechanisms of
QPTs [6–9]. As a prominent example of QPTs, the metal-
insulator transition (MIT) has been implemented in holo-
graphic framework [10–24] and the associated mechanism
has also been addressed that the holographic MIT essentially
can be depicted by geometry [10]. Usually, there are two ways
of implementing holographic MIT [10]. One is the infrared
(IR) instability induced by the lattice operator, the other is
the strength of lattice deformation that induces some kind of
bifurcating solutions.

On the other hand, quantum entanglement has been play-
ing an increasingly prominent role in the fields of condensed
matter theory, quantum information, black hole physics, and
so on. A good measure of quantum entanglement is the entan-
glement entropy (EE). The counterpart of EE in holography,
dubbed as holographic entanglement entropy (HEE), has a
simple geometric description that EE for a subregion on the
dual boundary is proportional to the area of the minimal sur-
face in the bulk geometry [25–29]. It has been shown that
HEE can diagnose QPTs and thermodynamic phase tran-
sitions [20,30–42]. Particularly, it has been found that the
HEE itself, or its derivatives with respect to system parame-
ters exhibits extremal behavior near quantum critical points
(QCPs) [20,36,37].

In this paper, we intend to further understand the rela-
tion between the EE and QPTs. In [11], the authors pro-
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posed a special Einstein–Maxwell-dilaton-axions (EMDA)
model, for which the spatial linear dependent axion fields
couple with a dilaton field.1 What is vitally important is
that the IR geometries of this EMDA model can be ana-
lytically expressed such that at zero temperature limit, the
scaling behavior of the direct current (DC) resistivity and the
low-frequency alternating current (AC) conductivity can be
worked out [11]. This model exhibits rich and meaningful
phase structures which is addressed in [11,12]. Particularly,
a novel holographic quantum phase transition from a normal
metallic phase (∂T σDC < 0) with AdS2 × R2 IR geometry
to a novel metallic one (∂T σDC > 0) with non-AdS2 × R2

IR geometry was found in [12]. The features of their low-
frequency AC conductivity indicate that the normal metallic
phase behaves as a coherent system while the novel metallic
phase exhibits incoherent behavior [45]. Further, it is also
found that the butterfly velocity or its first derivative exhibit-
ing local extreme behaviors [45,46]. In addition, the scal-
ing behavior of the butterfly velocity in the zero-temperature
limit confirm that different phases are controlled by different
IR geometries [45]. Therefore, it is exciting that this EMDA
model is able to address so many important issues in the
holography community and it is also expected to provide a
good platform to attack the aforementioned problem, i.e., the
relation between the EE and QPTs. In principle, we should
carry out our study at very low temperature as addressed in
previous works [20,36,37], however, it is extremely diffi-
cult to study QPTs within the low-temperature regime of the
EMDA model due to the numerical challenges. Thus, here
we focus on examining the MIT at finite temperatures, which
is of particular importance for practical applications since all
real-world systems operate at non-zero temperatures.

The organization of the paper is as follows: Sect. 2 pro-
vides a concise introduction to the special EMDA model,
highlighting its key features and presenting the correspond-
ing phase diagrams. In Sect. 3, we work out HEE and study
the relation between HEE and QPTs. Finally, Sect. 4 contains
the conclusions and discussions.

2 Holographic background and phase structure

The EMDA theory we consider takes the action [11,12]

S =
∫

d4x
√−g

[
R + 6 cosh ψ − 3

2
[(∂ψ)2

+4 sinh2 ψ(∂χ)2] − 1

4
coshγ /3(3ψ)F2

]
, (1)

where F is the Maxwell field defined by F = d A, χ is the
axion field, and ψ is the dilaton field coupled with F and χ .

1 For a detailed discussion of simple axion models, please consult the
original paper [43] and the comprehensive review [44].

γ is the coupling parameter, depending on which, the system
exhibits rich phase structures as illustrated in Refs. [11,12].
Before proceeding, we would like to emphasize that the holo-
graphic Q-lattice models [14] are equivalent to the EMDA
model, featuring a precise coupling between the axion kinetic
term and the dilaton. For a detailed discussion, we recom-
mend referring to [11].

We assume the following background ansatz:

ds2 = 1

z2

[
− (1 − z)p(z)U (z)dt2

+ dz2

(1 − z)p(z)U (z)
+ V1(z)dx

2 + V2(z)dy
2
]
,

A = μ(1 − z)a(z)dt,

ψ = z3−�φ(z),

χ = k̂x, (2)

where p(z) = 1 + z + z2 − μ2z3/4. � is the conformal
dimension of the dilaton field ψ . In the theory (1), it is easy
to conclude that � = 2. As Ref. [12], here we focus on the
anisotropic background that the axion field χ only depends
on the x-direction of the dual boundary field theory, for which
k̂ characterizes the lattice wave number. In our convention,
z = 1 and z = 0 denotes the locations of the black hole
horizon and AdS boundary, respectively. The system (1) with
the ansatz (2) can be depicted by four second order ordinary
differential equations (ODEs) for V1, V2, a, φ and one first
order ODE for U . To preserve the asymptotic AdS4 on the
conformal boundary (z = 0), we need impose the following
boundary conditions:

U (0) = 1, V1(0) = 1, V2(0) = 1, a(0) = 1, φ(0) = λ̂,

(3)

where λ̂ is the source of the dilaton field operator in the
dual boundary field theory and depicts the strength of lattice
deformation. Then, we impose the regular boundary condi-
tions at the horizon (z = 1). Further, we have the Hawking
temperature:

T̂ = 12 − μ2

16π
, (4)

where we have set the boundary condition as U (1) = 1. We
focus on the canonical ensemble and set the chemical poten-
tial μ as the scaling unit. Thus, for given parameter γ , this
system is completely described by the three dimensionless
parameters {T, λ, k} ≡ {T̂ /μ, λ̂/μ, k̂/μ}.

When χ = ψ = 0, the background solution (2) reduces to
the Reissner-Nordström anti-de Sitter black hole (RN-AdS
black hole), whose IR geometry is AdS2 × R2. By studying
the perturbations about this IR fixed point, we can obtain the
scaling dimension of the dilaton field operator as

δ
ψ
+ = −1

2
+ 1

6

√
24e−2v10k2 − 3(12γ + 1), (5)
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where v10 can be determined by the IR datas [11,12,45].
When the scaling dimension satisfies δ

ψ
+ ≥ 0, which gives

2e−2v10k2 ≥ 1 + 3γ, (6)

the IR solution is always RG stable. In addition, it is found
that when the lattice wave number k vanishes, i.e., k = 0,
the scaling dimension δ

ψ
+ is minimized. Based on the above

observation, this system can be classified into the following
three cases in terms of the parameter γ [11,12]:

• Case I: −1 < γ ≤ −1/3 In this case, the relation δ
ψ
+ >

0 always holds at k �= 0, which suggests an irrelevant
deformation in IR. That is to say, the IR geometry is RG
stable.

• Case II: −1/3 < γ ≤ −1/12 When γ in the region of
−1/3 < γ ≤ −1/12, δ

ψ
+ < 0 at k = 0, which indicates

the IR solution to be RG unstable. Further, if the lattice
wave number is turned on, i.e., k �= 0, the IR solution
can be also RG unstable when the relation (6) is violated
as the case of k = 0. Therefore, when reducing k or
increasing λ, one has a RG unstable IR solution, which
drives a MIT [11].

• Case III: γ > −1/12 When γ > −1/12, δ
ψ
+ becomes

complex at k = 0. It means that the BF bound is violated
resulting in a dynamical instability, which induces a novel
black hole with scalar hair. Depending on the parameter
γ , this novel black hole has different ground states at zero
temperature that it is insulating for −1/12 < γ < 3, and
metallic for γ > 3, which can be determined by the DC
and AC conductivities over the IR fixed point [11].

To distinguish between metallic and insulating phases, we
employ a commonly accepted operational definition, as elu-
cidated in several holographic references [10,11,13,14,16–
20,22,36,37,47–53]. Specifically, we can determine whether
the system is in a metallic or insulating phase based on the
sign of ∂T σxx . A negative value indicates a metallic phase,
while a positive value indicates an insulating phase. There-
fore, in terms of the temperature behaviors of DC conductiv-
ity at extremely low temperatures, we can numerically work
out the phase diagram over λ and k (Fig. 1). Though the IR
geometry is RG stable for Case I, we still observe a MIT
emerging (the upper left plot in Fig. 1). It can be attributed to
the existence of bifurcating solutions as argued in [10]. We
would like to point out that thanks to the AdS2×R2 IR geom-
etry at zero temperature, when the strength of the lattice λ is
small, the phase is metallic even for small k. Different from
the Case I, the MIT always exists for any λ in Case II (the
upper right plot in Fig. 1). It is because there is a transition
from the AdS2 × R2 IR fixed point to a non-AdS2 × R2 IR
fixed point when enhancing λ or reducing k, which induces a
RG relevant lattice deformation. This mechanism is just the
one of the original Q-lattice models studied in [14]. While for

Case III, since the system has different ground states depend-
ing on the parameter γ , it exhibits completely different phase
structures (see the bottom plots in Fig. 1). For γ = 1/2, the
system exhibits an insulating ground state, and correspond-
ingly there is a MIT when reducing k. The phase diagram is
very similar to that of Case II (the bottom left plot in Fig. 1).
For γ = 9/2, the system has a metallic ground state. The
IR fixed point of this metallic phase is a non-AdS2 × R2

geometry, and thus we call it as a novel metallic phase. The
phase transition happens from the novel metallic phase to
the normal metallic phase with AdS2 × R2 geometry when
we increases k at fixed λ to exceed some critical values (see
the right plot in Fig. 1). For more detailed discussions on the
phase structures, please refer to [12].

3 Holographic entanglement entropy near QCP

The HEE can be computed using the so-called Ryu–
Takayanagi (RT) formula [25–27]2:

SA = Area(γA)

4GN
, (7)

where GN is the bulk Newton constant and γA is the minimal
surface extending from the boundary subregion A into the
bulk. Without loss of generality, we investigate simply an
infinite strip subsystem in the dual boundary, which can be
formally characterized as A := {0 < x < l,−∞ < y <

∞}. We may explicitly write out the HEE and the associated
width of the strip for the EMD-axions model investigated
here:

Ŝ = 2
∫ z∗

0

[
z2∗

√
V 1(z)V 2(z)

z2
√
G(z)

√
z4∗V 1(z)V 2(z) − z4V 1(z∗)V 2(z∗)

− 1

z2

]
dz

− 2

z∗
, (8)

l̂ = 2
∫ z∗

0

[
z2√V 1(z∗)V 2(z∗)√

G(z)V 1(z)
√
z4∗V 1(z)V 2(z) − z4V 1(z∗)V 2(z∗)

]
dz,

(9)

where G(z) = (1 − z)p(z)U (z). Here, a counterterm −1/z2

has been inserted to cancel out the vacuum contribution. z∗
indicates turning point of the minimal surface along the z-
direction. In what follows, we will primarily focus on the
scaling-invariant HEE and width, denoted by S ≡ Ŝ/μ and
l ≡ l̂μ, respectively. In this section, we will study the char-
acteristics of HEE near QCPs over this EMDA model.

We firstly explore the behavior of HEE for Case I. We
would like to emphasize that the MIT in this scenario can-
not be induced by the IR geometry instability because the IR
geometry is RG stable [11,12]. A possible mechanism is that

2 The RT formula is reformulated as the Hubeny–Rangamani–
Takayanagi (HRT) formula for covariant cases [28,29].
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Fig. 1 The phase diagram over the {λ, k} with different γ . The blue line is the critical line of the phase transition

the MIT is driven by the strength of the lattice deformation,
which results in the bifurcating solutions [10]. Without loss
of generality, we choose γ = −2/3 and an extreme low tem-
perature T = 10−6. Figure 2 illustrates the HEE itself and
its first-order derivative with respect to k, i.e., ∂k SHEE as a
function of k. In this scenario, neither the HEE nor its first-
order derivative displays extremal or singular behavior near
QCPs. In contrast, HEE goes up and its first-order deriva-
tive goes down monotonically with k, even when the system
changes from the insulating phase to the metallic one. We
observe, however, that when transitioning from the insulat-
ing phase to the metallic one, ∂k SHEE exhibits a significant
reduction of orders of magnitude (right plot in Fig. 2). Based
on this observation, it is expected that the QCPs can be cap-
tured by the local extreme of the second-order derivative of
HEE, i.e., ∂2

k SHEE . So, we further show ∂2
k SHEE as a func-

tion of k in Fig. 3. The left plot of this figure reveals that the
local minimum of ∂2

k SHEE is located relatively close to the
QCPs, validating our inference. Also, we use the symbol �k
to represent the difference between the location of the QCPs
and the local minimum of ∂2

k SHEE , as illustrated in the inset
of the left plot in Fig. 3. We find that �k goes down mono-
tonically as temperature drops. It indicates that in this case
the QPT may be captured by the local extreme of ∂2

k SHEE

in the limit of zero temperature. Additionally, we also show
∂2
k SHEE as a function of k for various l at T = 10−3. Notice

that at low temperature and large l, the numerical calculation
becomes more difficult and time consuming. As a result, we
fix T = 10−3 in the right plot of Fig. 3. Nevertheless, we still
observe that when l increases, the local minimum of ∂2

k SHEE

approaches the QCPs. The inset in this plot further corrobo-
rates this observation. It implies that in both limits of large l
and zero temperature, the diagnosis of QCPs using the local
minimum of ∂2

k SHEE becomes evident.
For Case II, the MIT happens due to the IR geometry

instability. This mechanism is identical to that of the standard
Q-lattice model investigated in [14]. The left plot in Fig. 4
shows SHEE as a function of k at extremal low temperature
T = 10−6. Here we have fixed γ = −1/6 and l = 20. We
observe that HEE itself displays a local maximum, which
is different from Case I. Similarly to Case I, we use �k to
show the difference between the position of QCPs and the
local maximum of SHEE , as seen in the inset of the left
plot of Fig. 4. We discover that �k falls monotonically as
the temperature drops. Therefore, we conclude that in Case
II, the HEE itself is capable of diagnosing the QPT at the
limit of zero temperature. This conclusion is compatible with
the standard Q-lattice model [36]. We also show how SHEE
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Fig. 2 The HEE SHEE and its
first-order derivative with
respect to k as a function of k
for γ = −2/3 at T = 10−6. The
blue dashed line is the position
of the QCP. Here we have set
λ = 2 and l = 12

changes as a function of k for different l at T = 10−3 in the
right plot of Fig. 4 and �k as a function of l in the inset of
this plot. We observe that as l goes up, the local maximum of
SHEE gets closer and closer to the QCP. It means that in both
limits of large l and zero temperature, the diagnosis of the
QCP using the local maximum of SHEE becomes evident.

Now we come to Case III, where the MIT happens because
a novel black hole with scalar hair develops when we change
λ or k. This novel black hole exhibits different ground states
at zero temperature depending on the parameter γ . Figure 5
shows the HEE behaviors at γ = 1/2 and γ = 9/2, where
the ground state is insulating and metallic, respectively. We
find that the HEE almost exhibits the same behaviors as Case
II. That is to say, the HEE itself is capable of diagnosing the
QPT at the limit of zero temperature.

4 Conclusion and discussion

This paper builds upon previous investigations into the rela-
tionship between HEE and QPTs. In our series of studies, we
have made several key observations:

1. In [36], we study the HEE behavior of holographic Q-
lattice model. In this model, the metallic phase displays
an AdS2 ×R

2 IR geometry at zero temperature, resulting

in a non-vanishing ground state entropy density, whereas
the insulating phase showcases a hyperscaling violation
IR geometry at zero temperature with a vanishing ground
state entropy density. Our findings reveal that the HEE
exhibits local extremes in the vicinity of the QCPs of the
MIT at extremely low temperature. This is expected due
to the noticeable differences in the IR geometry between
the metallic phase and the insulating phase.

2. In Gubser–Rocha model with Q-lattices [37], both the
metallic and insulating phases manifest hyperscaling vio-
lation IR geometry at zero temperature, leading to a van-
ishing ground state entropy density. In this case, the dif-
ference between the IR fixed points for metallic phase and
insulating phase are less significant, as a result, diagnos-
ing the QCPs solely using the HEE itself becomes chal-
lenging in this scenario. However, our findings reveal that
it is the first-order derivative of the HEE with respect to
the system parameter that effectively diagnoses the QCPs
in the MIT. Our study provides compelling evidence that
HEE can still effectively detect QPTs in these circum-
stances, suggesting its potential for broader and more
realistic applications in quantum many-body systems.

3. In our study, presented in [20], we further examine a
holographic axion model incorporating a non-minimal
coupling between the matter field and the gravity theory.
We discover that this model also displays a MIT. For both

Fig. 3 ∂2
k SHEE as a function of k. In left plot we have fixed l = 12

at extremal low temperature T = 10−6, while in right plot we fix the
temperature T = 10−3 with different l. The blue dashed line is position

of QCPs. The red dashed line (left plot) or the red points (right plot)
denote the local minimum of ∂2

k SHEE . The insets in the left and right
plots display �k as a function of T and l, respectively
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Fig. 4 SHEE as a function of k. In left plot we have fixed l = 20
at extremal low temperature T = 10−5, while in right plot we fix the
temperature T = 10−3 with different l. The blue dashed line is position

of QCPs. The red dashed line (left plot) or the red points (right plot)
denote the local maxima of SHEE . The insets in the left and right plots
display �k as a function of T and l, respectively

Fig. 5 SHEE as a function of k for Case III. In left plot we have fixed
l = 30 for γ = 1/2 and l = 10 for γ = 9/2 at T = 10−3, while in
right plot we fix the temperature T = 10−3 with various l. The blue

dashed line is position of the QCP. The red dashed line (left plot) or the
red points (right plot) denote the local maxima of SHEE . The insets in
the left and right plots display �k as a function of T and l, respectively

the metallic and insulating phases of this model, the IR
geometry manifests as AdS2 at zero temperature, result-
ing in an identical non-vanishing ground state entropy
density. We found that in this model, the second order
derivative of HEE with respect to the axionic charge can
effectively characterize the QPT. It is because the non-
minimal coupling between the matter field and the gravity
theory can modify the prescription of HEE, meaning that
the matter field can influence HEE, thereby reflecting the

QCPs, despite the geometry itself being no difference
from AdS2 × R

2.

In comparison to our previous work, the IR geometry of
the EMDA model is AdS2 ×R

2 in the metallic phase, while
it displays hyperscaling violation features in the insulating
phase. Notably, the characteristics of the IR geometry of
the EMDA model studied here shares similarities with the
original holographic Q-lattice model [14]. Therefore, it is
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expected that HEE itself can diagnose the QCPs, similar to
the finding in [37]. In cases II and III, we have confirmed that
HEE characterizes the QCPs, as expected. However, for Case
I, it is the second order derivative of HEE with respect to the
lattice wave number that characterizes the QPT, but not the
HEE itself. This distinction can be attributed to the influence
of thermal effects. In Case I, at low temperatures, finding the
solutions of the minimum surfaces and their resultant HEE
becomes numerically challenging, so our study was limited
to higher temperature. At higher temperature, the signatures
of the QCPs are potentially buried by thermal effects, mak-
ing it difficult to diagnose them. Nonetheless, we show that
even at finite temperature, HEE can still reflect the QCPs,
albeit through their second order derivatives, rather than HEE
itself. This finding is of particular significance as it pertains
to real-world systems, which are inherently finite tempera-
ture. By leveraging this approach, we can gain deeper insights
into the underlying physics governing the QPT in quantum
many-body system.

Finally, we would like to offer some insights regarding
the use of EE as a diagnostic tool for identifying QCPs,
although this remains a subject of speculation. Following the
pioneering work by [54], numerous studies, such as [55–58],
have aimed to demonstrate that entanglement-related mea-
sures or their derivatives, can be employed in QCP diagnosis.
It has been observed that entanglement measures can serve
as indicators of phase transitions. Sometimes, the entangle-
ment measures themselves are sufficient to diagnose these
transitions, while in other cases, it is necessary to consider
their derivatives. This distinction arises from the fact that any
entanglement measure can be expressed as certain functional
of the set of first derivatives of the ground state energy [59].
Therefore, in order to unveil the underlying phase transitions,
it becomes crucial to analyze the derivatives of these entan-
glement measures. Holographic duality offers new insights
into the connection between entanglement and QPTs. In
cases where two IR fixed points exhibit significant differ-
ences, such as one having zero ground state entropy while
the other does not, the entanglement itself can distinguish
between the two phases [36]. However, when the differences
between two different IR fixed points are relatively less sig-
nificant, it may be necessary to consider derivatives to reveal
the phase transitions [20,37]. This situation is reminiscent
of similar cases in condensed matter theory. Furthermore,
it is important to note that QPTs are typically described at
zero temperature in principle. However, both realistic sys-
tems and holographic dualities impose limitations, confining
us to the finite temperature regime. In this scenario, the entan-
glement measures alone may not be sufficient to distinguish
between the two phases due to the significant thermal fluctu-
ations present. These fluctuations can overshadow the quan-
tum entanglement, rendering it as subleading terms. Never-
theless, the derivatives of the entanglement measures can still

exhibit strong signals near the critical points, enabling them
to effectively reveal the occurrence of phase transitions.

Our investigation of the EMDA model has yielded valu-
able insights into the connection between HEE and the MIT
at finite temperature, and has opened up several exciting
future avenues for research. One such direction would be
to assess other models including QPTs at relatively higher
temperature and examine whether taking higher derivatives
of HEE could expose the QCPs even further. This poten-
tially opens up an new area of research into QPTs at finite
temperature. Moreover, this work provides a useful tool to
identify QCPs in cases where locating them is a challenge.
Analysis of second-order or even higher order derivatives
can provide a signal to detect phase transitions at numeri-
cally accessible regions, making it easier to locate the critical
points before digging deeper into the more time-consuming
low-temperature details. This approach offers the potential
to extend our understanding of phase transitions across more
general models, opening up new avenues of QPTs research in
the holographic framework and even in the quantum many-
body system.

It is intriguing to delve deeper into the behaviors of various
information measures, such as holographic mutual informa-
tion, the holographic entanglement of purification, and the
c-function, in the vicinity of holographic QCPs. One notable
example is the holographic mutual information and the holo-
graphic entanglement of purification, which have been shown
to be effective probes for studying thermal phase transitions
[41]. In addition, the study in [60] has revealed that the c-
function can serve as a novel and accurate probe for detecting
the location of topological QCPs.
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