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1 Introduction

The Schwinger model — U(1) gauge theory coupled to a Dirac fermion in two spacetime
dimensions — is a famous playground for the exploration of ideas about quark confinement
and chiral symmetry breaking [1–3]. These topics are notoriously difficult to study in non-
abelian gauge theories in four spacetime dimensions, so it is very helpful to be able to
explore them in the calculable setting of the Schwinger model.

Historically, the Schwinger model was introduced as U(1) quantum electrodynamics
with a single unit-charge Dirac fermion.1 Here we will study some generalizations of this
theory with the aim of making a better toy model for 4d gauge theory. Our starting point

1The seminal works from the 1970s, e.g. [2, 3], considered the response of the theory to the introduction
of test charges with irrational charge, so technically these works took the group manifold to be a real line R.
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will be the charge-N Schwinger model, which was studied recently in e.g. refs. [4–10], see
also [11] for an early analysis. This model has the Euclidean action

Sstandard =
∫
d2x

( 1
4e2 f

2
µν + ψ [γµ(∂µ + iNaµ)]ψ

)
+mψψLψR + h.c. . (1.1)

Here aµ is a U(1) gauge field, ψ is a Dirac fermion field with chiral components ψL, ψR,
the integer N is the charge of the fermion, e has unit mass dimension, and Hermitian
conjugation is defined by analytic continuation from Minkowski space. The statement that
aµ is a U(1) gauge field means that the gauge transformation functions α(x) take values in
U(1), meaning that there is 2π periodicity. Physically, one could interpret this periodicity
as arising from gauge transformations of a very heavy unit-charge test fermion field ψt,

ψt → eiαψt,

while the gauge transformations of the other fields are

aµ → aµ − ∂µα,

ψ → eiNαψ.

Gauge invariance also implies that
∫
M2

f ∈ 2πZ where M2 is any closed smooth 2-manifold
and f = da = 1

2fµνdx
µ ∧ dxν is the field strength 2-form.

We also add an explicit topological θ term

Sθ = iθ

2π

∫
M2

da (1.2)

to the action, and assume that mψ ≥ 0. The coefficient θ is 2π periodic. However, we will
mostly focus on the physics at θ = 0, where the theory has a Z2 parity symmetry.

As defined above, the Schwinger model has a ZN 1-form symmetry [12] for any value
of m. This symmetry is generated by a collection of N local topological operators Un(x)
and has the effect of multiplying Wilson loops by ZN phases:

〈Un(x) eiq
∫
C
aµdxµ〉 = exp

(2πinq
N

`(C, x)
)
〈eiq

∫
C
aµdxµ〉 (1.3)

where `(C, x) is the linking number of C and x. The internal global symmetry of the m 6= 0
Schwinger model — which is just the ZN 1-form symmetry — coincides with the global
symmetry of pure 4d SU(N) Yang-Mills theory. The existence of the 1-form ZN symmetry
means that charge confinement is a sharply-defined concept in the Schwinger model when
N > 1. The same is true in 4d SU(N) pure YM theory.2

2In discussions of 4d YM theory it is common to call its ZN 1-form symmetry “center symmetry” [13, 14].
This has some historical justification because the center subgroup of SU(N) is ZN , which happens to be
the same as the 1-form symmetry group so long as all matter fields are in representations of N -ality zero.
We won’t use this language here because the addition of matter reduces the 1-form symmetry to a discrete
subgroup, while the center subgroup of the U(1) gauge group is U(1).
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When mψ = 0, at the classical level the Schwinger model has a U(1) axial symmetry.
As usual, the ABJ anomaly means that the chiral symmetry in the quantum theory is
reduced, and is generated by

ψ(x)→ e2πiγ5/(2N)ψ(x) . (1.4)

The faithfully-acting symmetry is ZN , and acts as ψLψR → e2πi/NψLψR. The existence
of the discrete chiral symmetry means that it is meaningful to discuss spontaneous chiral
symmetry breaking, just as in e.g 4d SU(N) N = 1 super-YM theory. The ZN 0-form
chiral symmetry and the ZN 1-form symmetry have a mixed ’t Hooft anomaly [4]. Indeed,
the internal global symmetries and anomalies of the massless charge-N Schwinger model
coincide with the internal bosonic global symmetries and anomalies of 4d SU(N) N = 1
super-YM theory.

From the perspective of the first paragraph of this introduction, it would be nice if the
dynamics of 4d SU(N) gauge theories and the charge-N Schwinger model looked similar.
Unfortunately, the behavior of the 4d and 2d theories is very different! When mψ = 0,
the good news is that the ZN chiral symmetry is spontaneously broken, just as in 4d
N = 1 SYM. The bad news for the comparison with 4d gauge theory is that the ZN 1-
form symmetry of the Schwinger model with mψ = 0 is spontaneously broken, and the
expectation values of large ‘fundamental’ Wilson loops have a perimeter-law behavior

〈ei
∫
C
a〉 ∼ e−µP (C) , (1.5)

where C is e.g. a circular contour with perimeter P (C), µ is a UV scale (of order the mass
of a heavy test particle), and a = aµdx

µ. Confinement appears (and the 1-form symmetry
is restored) when mψ 6= 0, but the string tension scales as T ∼ mψe for mψ � e. In 4d
N = 1 SYM, in contrast, the 1-form ZN symmetry is not spontaneously broken, and large
Wilson loops obey an area law.

There are three basic ways to understand the behavior of Wilson loops in the Schwinger
model:

(a) Solve the charge-N Schwinger model exactly on R2 using bosonization and compute
the relevant expectation values. This has the virtue of using direct and relatively
elementary arguments.

(b) Relate deconfinement to the existence of a mixed ’t Hooft anomaly between the ZN 1-
form symmetry and the ZN 0-form chiral symmetry. This approach has the advantage
that it uses only basic symmetry principles, and so it generalizes to theories which
are not exactly solvable.

(c) Solve the model on R× S1 with small S1 and extrapolate the phase structure to R2.
Due to the ’t Hooft anomaly, the quantum-mechanical EFT has N degenerate ground
states. One can take any linear combination of them to be a ground state. The two
most interesting choices result in either the chiral condensate being non-zero while
the Polyakov loop has zero expectation value, or vice versa. Only the former choice
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extrapolates nicely to R2. The issue with the other choice is that in the large S1

limit the Polyakov loop disappears as an observable. We should emphasize that in
2d gauge theories, the vanishing of the Polyakov loop expectation value on a cylinder
S1 is not sufficient to conclude that the 1-form symmetry is unbroken on R2.

All of these approaches have been discussed in the literature [4–10].
The fact that charge-q Wilson loops are deconfined for all q ∈ Z in the charge-N

Schwinger model sharply contrasts with the expected behavior in 4d SU(N) gauge theory
with adjoint fermions. The latter theory is expected to confine fundamental test charges
even when the mass of the dynamical fermion goes to zero, at least as it is outside of the
conformal window. Here we discuss a modification of the charge-N Schwinger model which
brings its dynamics much closer to the dynamics of 4d gauge theories. We will mostly focus
on the Schwinger model with even N for reasons that will become clear shortly.

We now explain the basic idea of this paper. First, we recall that at high energies
the standard Schwinger model (1.1) approaches a free-field CFT fixed point, which can be
described as a free massless Dirac fermion. We then note that this CFT contains a unique
exactly marginal operator

Ojj = jµj
µ = ψγµψ ψγ

µψ = −4ψRψLψLψR . (1.6)

This ‘Thirring model’ operator is exactly marginal, ∆jj = 2, and neutral under all sym-
metries of the model. Therefore we are free to add it to the action with a dimensionless
coefficient g ∈ R.3 This yields a generalization of the Schwinger model which we will call
the Schwinger-Thirring (ST) model:

SST = Sstandard + g

∫
d2xOjj (1.7)

Since (1.7) is an interacting theory, in general one might expect a dimensionless parameter
like g to run with the RG scale. However, when mψ = 0 it is known that in fact g remains
an exactly marginal parameter even after we take into account the gauge interaction [15–
18]. This is easiest to see using bosonization, as we review below, but it can also be
deduced directly in the fermionic variables, see appendix B. There is a minimum value of
g, g∗ = −π/2, below which some operator scaling dimensions become negative, and the
theory ceases to be unitary. We will assume that g > g∗. Turning on the perturbation by
Ojj perturbation does not affect the symmetries and anomalies of the massless Schwinger
model. As a result, the massless Schwinger-Thirring model remains in a deconfined phase
with a finite mass gap and spontaneous chiral symmetry breaking for g ∈ (g∗,∞), just like
the original charge N Schwinger model.

We should emphasize that the high energy behavior of SST is not the same as that
of the original Schwinger model, although it is continuously connected to it. Rather than
approaching a free-field CFT fixed point, it approaches an interacting CFT fixed point

3Such an operator can be radiatively generated in various UV modifications of the Schwinger model. For
example, it will be generated if the fermions of are coupled to a massive vector boson. It is also possible
that some discretizations of (1.1) might flow to (1.7) in the continuum limit.
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at high energies. In this UV CFT fixed point the scaling dimensions of operators do not
coincide with their ‘engineering’ dimensions.

The lowest-dimension four-fermion operator which is invariant under parity but not
ZN chiral symmetry is

Oχ = ψLψR(DµψL)(DµψR) . (1.8)

At the free-field fixed point (that is, at high energies and with g = 0), the scaling dimension
of Oχ coincides with its engineering dimension, which is 4. So when g = 0, this operator is
RG irrelevant. But the scaling dimension ∆χ of Oχ depends on g, and we will show that
∆χ decreases monotonically as g is increased. Specifically, bosonization implies that

∆ = 4
1 + 2g/π . (1.9)

The scaling dimension of Oχ diverges as g → g∗ = −π/2 from above, but it becomes
relevant when g > π/2.

As a result, there is a critical value of g (g = π/2) at which Oχ becomes marginal at
the UV fixed point, and as g is increased further, the Oχ operator becomes relevant at the
UV fixed point. At the same time, we note that the operator Oχ is the lowest-dimension
operator with charge 2 under ZN chiral symmetry, and it is invariant under all other
symmetries. In the rest of this paper, we will discuss4 what happens to the low-energy
physics once we add the Oχ operator to the UV action of the ST model as a perturbation:5

S = SST + Λ2−∆χ

∫
d2x (Oχ +O†χ) . (1.10)

The parameter Λ is a new parameter with unit mass dimension. Its power is fixed from the
scaling dimension of Oχ at the UV fixed point. Whether one should think of Λ as an IR or
a UV energy scale depends on ∆χ, and as we have already said ∆χ depends on the marginal
parameter g. If ∆χ > 2, then Λ is a UV scale: the model defined by eq. (1.10) needs a UV
completion at the scale Λ. In this case we will get a physically-interesting model if e� Λ.
If ∆χ < 2, then Λ is an IR mass scale in the same sense as the fermion mass parameter is
an ‘IR scale’ of a free-fermion theory, and there is no a priori constraint on the ratio Λ/e.
Nevertheless, we will see that the model is weakly coupled (in the bosonized duality frame)
when Λ/e� 1, and so that is the regime we will focus on.

To get a feeling for the physics of the four-fermion deformed model (1.10) let us first
suppose that ∆χ > 2. This would be the case if e.g. we set g = 0. Then chiral symmetry
is explicitly broken at the UV scale Λ. For even N it is broken to a Z2 subgroup, while
for odd N it is broken completely. One might therefore expect that the model becomes

4An inspirational brief discussion of a very similar deformation was given in ref. [8]. However, the form
of the deformation in the fermionic variables given in ref. [8] is the same as our Oχ without derivatives,
which vanishes identically due to fermi statistics. The form of the deformation in the bosonic variables in
ref. [8] coincides with our bosonized expressions, but the consequences of the technical irrelevance of this
operator were not highlighted.

5Just as in Footnote 3, there are a variety of UV modification of (1.1) that can flow to (1.10), such as
an appropriate coupling of ψL and ψR to a massive scalar field.
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Oχ irrelevant Oχ relevant

Deconfinement Confinement

Oχ

gc =
π
2g = −π

2
Ojj

Figure 1. Behaviour of the massless Schwinger model in the presence of two four-fermion operators
Ojj and Oχ for N -even. Ojj is a marginal deformation. When g > gc, Oχ becomes relevant and the
massless theory becomes confining. The behaviour of the four-fermion-deformed Schwinger model
is similar in this respect to four-fermion-deformed QCD(adj)2.

confining for odd N . However, this is not quite correct. At long distances `� 1/e� 1/Λ,
the deformation by Oχ is irrelevant in the RG sense, and at distances large compared
to 1/Λ there can be an emergent ZN chiral symmetry.6 Indeed, in this case the string
tension induced by the Λ perturbation is proportional to e.g. e4/Λ2 when g = 0, and so
unit test charges separated by a distance L satisfying 1/e � L � Λ2/e3 will not feel a
linear potential. In this sense the ST model with a deformation by Oχ with ∆χ > 2 is
no more confining than U(1) QED in three spacetime dimensions, interpreted as a lattice
gauge theory on a square Euclidean lattice with a Wilson action. In that model, at finite
lattice spacing a there are finite-action monopole instantons which induce a finite string
tension [13]. But the monopole-instanton action diverges in the continuum limit a→ 0, so
the string tension also goes to zero in the continuum limit.7

We will show that when g ≥ π/2, our deformed Schwinger model (1.10) confines
fundamental (that is, q = ±1) test charges when N > 2. When N is even the ZN 1-
form symmetry is spontaneously broken to ZN/2, so test charges with q = N/2 mod N are
deconfined, while others are confined. Also, when N is even, the model has a Z2 chiral
symmetry, the fermion mass term is forbidden, and one can think of (1.10) as a variant of
the massless charge-N Schwinger model with confinement for N > 2. When N is odd and

6When the Oχ operator is irrelevant, we expect it to behave similarly to the Wilson term in the Wilson
fermion action in 4d lattice gauge theory. In 4d, the Wilson term is an irrelevant dimension 5 operator,
schematically ψDµDµψ, which breaks chiral symmetry as well as the degeneracy between the 16 ‘doubler’
fermion modes. If the bare mass term is set to zero, then a lattice-scale mass term is induced by RG flow,
and there is no emergent chiral symmetry in the infrared: the Wilson term is dangerously irrelevant. But
one can get an emergent chiral symmetry in the infrared by tuning the bare quark mass term. We expect
the same to be true for the Oχ operator when N is odd, but leave a detailed exploration of this feature of
the model to future work.

7Recently it was understood that there are other lattice actions which flow to U(1) QED in three
spacetime dimensions without any finite-action monopole-instantons even at finite lattice spacing [19], see
also e.g. [20].
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larger than 1, chiral symmetry is completely broken, and the ZN 1-form symmetry is not
spontaneously broken at all. The mass term can be generated by fluctuations. We will show
how these features arise using bosonization on R2, as well as by an analysis on R×S1 when
S1 is small. These analyses have complementary strengths, and combining them yields some
interesting insights into the nature of the confinement mechanism in this model.

The behavior of the four-fermion-deformed charge-N Schwinger model is much closer
to the expected behavior of QCD-like 4d gauge theories. The four-fermion-deformed
Schwinger model is also a nice toy model for the behavior of 2d SU(N) adjoint QCD.
Adjoint QCD in 2d has only a Z2 chiral symmetry when the quark mass is set to zero,
and is also known to have two interesting four-fermion deformations [21] consistent with
chiral symmetry. When these deformations are tuned to zero, 2d adjoint QCD deconfines
on R2 due to a mixed ’t Hooft anomaly between its ZN 1-form symmetry and an exotic
non-invertible symmetry [8]. However, once the four-fermion deformations are turned on,
at generic points in its parameter space 2d adjoint QCD confines [21].

2 Confinement from elementary considerations

2.1 Confinement in the standard charge N Schwinger model

As discussed in the introduction, the massless charge-N Schwinger model has a Z(1)
N 1-form

symmetry and Z(0)
N 0-form chiral symmetry. It is often asserted that when the fermions are

massless, the theory does not confine integer test charges, while with massive fermions, it
does confine integer test charges. The common argument for this involves considering the
topological θ parameter of U(1) gauge theory, which enters the Euclidean action through

Sθ = iθ

2π

∫
M2

da . (2.1)

Coleman observed that changing θ by 2π corresponds to inserting a particle of charge ±1
at x = ±∞. This means that the k-string tension can be written as

Tk(θ) = E(θ + 2πk)− E(θ) , (2.2)

where E(θ) is the vacuum energy density as a function of θ.
Of course, when mψ = 0, there is no θ dependence in vacuum energy, because a chiral

rotation can remove the θ term from the action. This immediately implies that the massless
theory does not confine integer test charges. Once a mass term for fermions is added, the
θ term can no longer be removed by chiral rotations: a transformation that would remove
the topological term from the action reintroduces it in the mass term as mψψLψR →
mψe

iθ/NψLψR. As a result, when mψ 6= 0, the degeneracy between the N chirally broken
vacua is lifted. When mψ is small, the θ dependence of the vacuum energy density emerges
as Ek(θ) = −mψ〈ψLψR〉+ c.c where the chiral condensate is given by (see e.g. [22]):

〈ψLψR〉 = mγ e
γ

4π ei
θ+2πk
N , k = 1, . . . , N (2.3)
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and mγ = Ne/
√
π is the mass gap in the theory.8 The string tension for a charge-k probe

in the presence of the theta angle can be written as

Tk(θ) = −mψµ
Ne

2π3/2

[
cos

(
θ + 2πk
N

)
− cos

(
θ

N

)]
+O(m2

ψ) . (2.4)

For θ = 0, this expression can be simplified into

Tk(θ = 0) = mψµ
Ne

π3/2 sin2
(
πk

N

)
+O(m2

ψ) . (2.5)

In these formulas µ is a renormalization scale, which of course would cancel in appropri-
ate ratios of dimensionful physical quantities. Clearly, there is a finite tension, and hence
confinement, for charges k 6= 0 (mod N), and charges that are multiples of N are screened:

mass deformation : 〈Wk(C)〉 =
{
e−TkA(C), k 6= 0 (mod N)
e−MP (C), k = 0 (mod N)

. (2.6)

where A(C) is the area of the disk-like region enclosed by the curve C, P (C) is the perimeter
of C, M is a non-universal mass scale, and we have assumed that A(C) is large compared
to the microscopic scales of the theory, while at the same time it is small compared to the
size of the spacetime manifold.

2.2 Confinement in the four-fermion deformed charge-N Schwinger model

The discussion above may lead one to think that it is necessary to have massive fermions
to achieve confinement in the Schwinger model. However, this is not true. All we need
is for the vacuum energy density to have non-trivial θ-dependence. In fact, even when
the fermions are exactly massless and a chiral symmetry protects a mass term from being
generated, the gauge interactions in the Schwinger model may lead to confinement of
fundamental test charges. For this to be the case, what we need is a deformation which
is chirally charged, so that with its inclusion, the θ term cannot be removed, while at the
same time the deformation preserves a non-trivial subgroup of the chiral symmetry so that
the mass term is still forbidden. Finally, we want the deformation operator to be marginal
or relevant, so that its effects survive at long distances. We will defer a discussion of this
last point to the next section, and focus on the first point here.

Consider the chirally-charged four-fermion operator in eq. (1.8). The ABJ anomaly
reduces U(1)A down to Z2N , but the Z2 part of this transformation is part of the gauge
redundancy. Therefore the faithful symmetry is only ZN , as explained earlier, and the
four-fermion deformation breaks the anomaly-free faithfully-acting ZN chiral symmetry
down to Z2 for N even and breaks it completely for N odd. Therefore, for N even, a
mass term cannot be generated when the deformation is turned on. However, if N is odd,
a mass term can be generated non-perturbatively. A heuristic argument for this goes as
follows. Pure U(1) gauge theory on a torus has instantons with integer topological charge
1

2π
∫
T 2 f ∈ Z. If we add a massless charge N Dirac fermion, a charge 1 instanton has 2N

8We use the same symbol e for the base of the natural logarithm and the gauge coupling, and hope that
readers can distinguish them from context.
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String tension in mass deformed theory String tension in 4-fermi deformed theory

Tk

Tk

N -ality k N -ality kN
2

N
2

a) b) 

Figure 2. String tensions in the charge-N Schwinger model for even N as a function of N -ality in
a) the mass-deformed theory and b) the theory deformed by the two four-fermion operators. The
first case exhibits a single hump structure, and the string tension is maximal at k = N

2 , and there
is generically a two-fold degeneracy of tensions. In the second case, the string tension vanishes at
k = N

2 , there is a double-hump structure, and the spectrum of string tensions is generically 4-fold
degenerate.

zero modes. When N is odd we can soak up its fermion zero modes N−1
2 times by using

the four-fermion operators and generate a fermion mass term from a sum over a dilute gas
of instantons. However, this picture is only heuristic because when T 2 is large compared to
the gauge coupling e, instantons are not localized, so a dilute instanton gas sum does not
make sense. In section 5 we will discuss a regime where a semiclassical calculation involving
finite-action field configuration does make sense, and make these remarks more precise.

If we do a chiral rotation to remove the topological term (1.2) in the action, we rein-
troduce θ in the chirally-charged four-fermion operator as Oχ 7→ e2iθ/NOχ. Therefore, even
in the absence of massless fermions, the vacuum energy density depends on θ. Following
the same steps as in the undeformed theory, we find that the string tension for a charge k
probe is

Tk ∼ −Λ2−∆χ

[
cos

(2(θ + 2πk)
N

)
− cos

(2θ
N

)]
+O(Λ2(2−∆χ)) , (2.7)

where ∆χ is the scaling dimension of Oχ. If ∆χ > 2, Λ is a UV scale, and Tk vanishes for
all k as we take Λ/e� 1. If ∆χ < 2, then Λ is an IR scale. The expression above assumes
that Λ/e� 1 when ∆χ < 2. For θ = 0, this expression can be simplified into

Tk ∼ Λ2−∆χ sin2
(2πk
N

)
+O(Λ2(2−∆χ)) . (2.8)

Note that for N even, the string tension vanishes for charges k = 0, N/2 (mod N), and is
non-vanishing otherwise. For N odd, string tensions except for k = 0 (mod N) are non-
zero. The basic fate of confinement is illustrated by the sketch in figure 1. An interesting
feature in both cases is the double-hump structure of the tensions as a function of k. For
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example, for odd N , the minimal tension is not T1 = TN−1, but T(N−1)/2 = T(N+1)/2. This
is illustrated in figure 2 .

To summarize, in our version of the massless Schwinger model defined by (1.10) with
g > π/2, large Wilson loops have the following behavior:

〈Wk(C)〉 =
{
e−TkA(C), k 6= 0, N/2 (mod N)
e−MP (C), k = 0, N/2 (mod N)

. (2.9)

The probe charges k = 0, N/2 (mod N) are screened and the other probe charges are
confined. The main distinction relative to the standard massive Schwinger model is the
fact that k = N/2 probe charge is confined in the massive model, and is screened in the
four-fermion deformed model. In the semi-classical domain, we will see the microscopic
difference between these two versions of confinement.

3 Bosonization

It is famously useful to treat the Schwinger model using bosonization, and in this section
we describe the bosonized form of the model. This will allow us to understand the interplay
of the two four-fermion deformations of the model, and will be very useful both for the
analysis of the dynamics on R2, as well as to understand some subtleties that arise in our
analysis of the physics on R× S1.

Bosonization amounts to a ‘change of variables’ in the path integral from the fermion
field ψ to a scalar field ϕ. The scalar is circle-valued, ϕ(x) ≡ ϕ(x) + 2π, so e.g. dϕ and eikϕ

with integer k are good local operators, but ϕ itself is not. To write down the bosonized
theory, consider a free massless fermion with gauged fermion parity. It has two U(1) global
symmetries, the vector-like symmetry U(1)V and the axial symmetry U(1)A, with conserved
current 1-forms jV , jA respectively. The bosonic action corresponding to the free-fermion
theory is

Sϕ,free =
∫
M2

1
8π ‖dϕ‖

2 (3.1)

where ‖C‖2 ≡ C ∧ ?C for any differential form C. The conserved currents of the bosonic
and fermionic theories are related via

jV ↔ −
1

2π ? dϕ , jA ↔
i

4πdϕ . (3.2)

Chiral symmetry acts on ϕ via eiϕ → e2πi/Neiϕ. The bosonic operator corresponding to
the fermion bilinears is

ψL(x)ψR(x)↔ −µe
γ

2π eiϕ(x) (3.3)

and µ is the renormalization scale. This scale appears on the bosonic side of the mapping
because the two-point function of ϕ calculated from the action (3.1) has logarithmic UV/IR
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sensitivity, 〈ϕ(x)ϕ(0)〉−〈ϕ(0)2〉 ∼ log(xµ). When the renormalization scale is changed from
µ to µ′, exponentials of ϕ transform as [23]

eikϕ →
∣∣∣∣µ′µ
∣∣∣∣k

2

eikϕ (3.4)

where on the left the renormalization scale of eikϕ is µ while on the right it is µ′.
We will also need relations between the four-fermion operators Ojj , Oχ and bosonized

quantities. First, note that

|jV |2 = ψγµψψγ
µψ ↔ 1

4π2 |dϕ|
2 . (3.5)

This relation follows from the bosonic substitution (3.2) for the current (jV )µ = ψγµψ . It
implies that the bosonic dual of the Schwinger-Thirring model with action (1.7) is

Sbosonized ST =
∫
M2

[ 1
2e2 ‖da‖

2 + 1
2R

2 ‖dϕ‖2 −mµ cos(ϕ)− iN

2π dϕ ∧ a
]
, (3.6)

where m = eγmψ/2π, and

R2 = 1
4π

(
1 + 2g

π

)
. (3.7)

The parameter R gives the ‘radius’ of the canonically-normalized scalar ϕ̃ associated to ϕ,
so that the periodicity of ϕ̃ is 2πR. When g = 0, R = 1/

√
4π, so the periodicity of ϕ̃ is π1/2.

Note when m = 0, the action (3.6) is quadratic in the fields, and so it is a free field the-
ory in the bosonic duality frame for any R (that is, any g). This makes it clear that g does
not run in the ST model: it is an exactly marginal parameter. The energy is bounded from
below so long as g > −π/2. When g 6= 0, the renormalization scale-change relation becomes

eikϕ →
∣∣∣∣µ′µ
∣∣∣∣k

2/4πR2

eikϕ (3.8)

Equation (3.8) implies that the scaling dimension of eikϕ is

∆k ≡ ∆[eikϕ] = k2

1 + 2g/π , (3.9)

so that the bosonization rule for e.g. the fermion bilinear becomes

ψL(x)ψR(x)↔ −µ
∆1eγ

2π eiϕ(x) . (3.10)

We can also state the bosonization rule for the operator

Oχ = ψLψR(DµψL)(DµψR) , (3.11)

which is a scalar operator with chiral charge 2 and scaling dimension 4 at g = 0. The only
such operator in the bosonic description is e2iϕ, so we conclude that

Oχ +O†χ ←→ cµ∆2 cos(2ϕ) (3.12)
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where c is an O(1) numerical constant.9 This means that

Λ2−∆2

∫
d2x (Oχ +O†χ) ←→ cµ∆2 Λ2−∆2

∫
d2x cos(2ϕ) . (3.13)

Since we will be working with the bosonized form of the theory from here onward, we will
absorb c into the normalization of Λ, so it will not appear in our formulas. The bosonized
action of the Schwinger model deformed by Ojj and Oχ with mψ = 0 is thus

S =
∫
M2

[1
2R

2 ‖dϕ‖2 + µ∆2Λ2−∆2 cos(2ϕ) + 1
2e2 ‖da‖

2 − i

2πNdϕ ∧ a
]

(3.14)

In what follows we will often integrate the axion-like gauge field coupling of ϕ by parts and
drop the total derivative that appears in the process. Appendix A contains a discussion of
some interesting global subtleties of axion interaction terms in 2d abelian gauge theories.
Handling these subtleties is important in some of our calculations on R× S1.

The action in (3.14) depends on the renormalization scale µ. When ∆2 > 2, the Oχ
deformation is irrelevant, and we should assume that Λ� mγ ≡ eN

2πR to get a well-defined
theory without needing to specify a detailed UV completion. Then the scale relevant to the
low-energy physics will be ∼ mγ , see (4.3). When ∆2 < 2, the Oχ deformation is relevant,
and Λ could be larger or smaller than mγ . We will focus on the situation where Λ � mγ

when ∆2 < 2. Given this assumption, it will be useful to shift the renormalization scale to
mγ in (3.14) for any value of ∆2 > 0. Using (3.8), this gives the form of the action we will
use from here onward:

S =
∫
M2

[1
2R

2 ‖dϕ‖2 +m∆2
γ Λ2−∆2 cos(2ϕ) + 1

2e2 ‖da‖
2 − i

2πNdϕ ∧ a
]
. (3.15)

As we already mentioned in the introduction, when m = 0, and we do not turn on the
Oχ deformation, the model has ZN 1-form and 0-form symmetries. These two symmetries
have a mixed ’t Hooft anomaly. One simple way to see this is to analyze the theory on R×
S1 [4]. Another way is to write explicit expressions for the topological operators that gener-
ate these symmetries [10]. To do this it is helpful to rewrite the action in first-order form as

S1st order =
∫
M2

[ 1
2R2

wwwb(1)
www2

+ ib(1) ∧ dϕ+m∆2
γ Λ2−∆2 cos(2ϕ)

+e2

2

wwwb(0)
www2

+ ib(0) ∧ da− i

2πNdϕ ∧ a
]
. (3.16)

The chiral symmetry is associated with the existence of topological line operators of the
form

Vk(C) = exp
[2πik
N

∫
C

(
b(1) + N

2πa
)]

. (3.17)

9Our argument for eq. (3.12) is based on matching symmetries and scaling dimensions. We are not aware
of a complete and explicit discussion of bosonization for this chirality-violating four-fermion operator in the
literature for the operator Oχ, although see section 5.6 of ref. [24] for some interesting related discussion in
a condensed-matter context.
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The 1-form symmetry is generated by local topological operators Un(x). They take form

Un(x) = exp
[2πin
N

(
b(0) + N

2πϕ
)]

. (3.18)

The key thing to take from these expressions is that Un(x) is charged under the ZN chiral
symmetry, while Vk(C) is charged under the ZN 1-form symmetry. This means that there
is the ’t Hooft anomaly between the two ZN global symmetries.

The expectation values of U1(x) take the form

〈U1(x)〉 = e2πik/N , (3.19)

see e.g. [10] for an extensive discussion. The choice of k labels the N universes of the
model. Domain walls between universes have infinite tension, and can be thought of as
Wilson lines. The form of eq. (3.18) implies that chiral symmetry relates different values
of k. The different universes have identical vacuum energy densities, which implies that
chiral symmetry is spontaneously broken on R2. But the fact that domain walls between
the chiral vacua can be thought of as Wilson lines implies that the 1-form symmetry is
also spontaneously broken. To summarize, when m = 0 and we do not turn on the Oχ
perturbation, the theory does not confine test charges with q ∈ N.

Another instructive perspective [8] on deconfinement in the massless non-deformed
Schwinger model is offered by the fact that given a charge-1 Wilson loop W (C) on a
contour C, we can always insert V1(C ′), where C ′ is a contour lying e.g. inside C, and has
an opposite orientation to C. On the one hand, the operator V1(C ′) is topological, so C ′

can be shrunk to arbitrarily small size, and V1(C ′ → 0)→ 1, so that

〈W (C)〉 = 〈V1(C ′)W (C)〉 . (3.20)

But on the other hand, the operator Vk(C ′) looks like the world-line of a particle with
charge k. If we take C ′ = C to be the curve C traversed in the opposite direction, then

〈V1(C ′ = C)W (C)〉 =
〈

exp
[
−2πi
N

∫
C
b(1)

]〉
(3.21)

and the expectation value on the right has a perimeter-law expectation value because b(1)

is not electrically charged. This argument leads to us to conclude that W (C) itself must
have a perimeter-law expectation value.

If we turn on the Oχ deformation, so that Λ 6= 0, the exact chiral symmetry is reduced
to Z2. (The approxiate low-energy chiral symmetry can be larger.) There is now only one
topological line operator, VN/2(C). Correspondingly, the ’t Hooft anomaly is between the
surviving Z2 chiral symmetry and the Z2 subgroup of center symmetry generated by

UN/2(x) = exp
[
iπ b(0) + iN

2 ϕ

]
. (3.22)

This means that test charges with q = N/2 should be deconfined. The fate of confinement
for test charges in other representations depends on whether Oχ is relevant, and will be
discussed below.
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4 Dynamics on R2

In the following sections we examine the dynamics of the charge-N Schwinger model with
four-fermion deformations. We first discuss the physics on R2, where our analysis will
be under analytic control so long as the coefficient of the Z2-invariant chiral symmetry-
breaking four-fermion deformation is small enough.

First, suppose m = 0, and turn off the Oχ deformation. Let us view R2 as the infinite-
volume limit of some closed manifold M2, such as a torus, and drop the boundary term in
eq. (3.15). The gauge field a enters the action as f = da, so instead of integrating over
a we can integrate over f as long as we ensure that the fluxes of f on M2 are properly
quantized. We integrate out b(0), b(1) in eq. (3.15) to get an action in terms of ϕ and a,
and then note that the partition function can be written as

Z =
∫
DϕDf

∑
ν∈Z

δ

(
ν − 1

2π

∫
M2

f

)
e−SSchwinger

=
∫
DϕDf

∑
k∈Z

exp
(
ik

∫
M2

f

)
e−SSchwinger

=
∑
k∈Z
Dϕe−

∫
M2
Lk
, (4.1)

where

Lk = 1
2R

2 ‖dϕ‖2 + 1
2

(
eN

2π

)2wwwwϕ− 2πk
N

wwww2
= 1

2

[
‖dϕ̃‖2 +m2

γ

wwwwϕ̃− 2πk R
N

wwww2]
. (4.2)

In the second equality above we switched to the canonically normalized field ϕ̃, ϕ = ϕ̃/R,
and defined

mγ = eN

2πR , (4.3)

which reduces to mγ = eN/
√
π when g = 0. The sum over k in eq. (4.1) ensures that the

path integral is invariant under ϕ→ ϕ+2π. Finally, we take the limitM2 → R2 in eq. (4.1).
The periodicity of ϕ̃ is 2πR. In the limit g →∞ with eN fixed, the mass gap vanishes,

and the long distance local physics is that of an R-valued massless scalar. We can think
of k as a universe label (mod N), and the universes are all degenerate. So as long as the
Oχ operator is turned off, the ZN 1-form symmetry is spontaneously broken for any g, as
is the ZN 0-form chiral symmetry.

Now consider turning on the deformation by Oχ, while keeping m = 0. Consulting
eq. (3.16) we get

Lk = 1
2R

2 ‖dϕ‖2 + 1
2

(
eN

2π

)2wwwwϕ− 2πk
N

wwww2
−m∆2

γ Λ2−∆2 cos(2ϕ) (4.4)

When R2 = 1/4π (the g = 0 point), the dimensionless factor in the coefficient of cos(2ϕ)
is
(
eN
Λ

)2
, so as we take Λ � eN the cos(2ϕ) term becomes less and less important. This

is consistent with the expectation that cos(2ϕ) is irrelevant at g = 0. On the other hand,
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if R2 > 1/2π (corresponding to g > π/2), the cos(2ϕ) term becomes large when Λ� eN ,
which is consistent with the expectation that cos(2ϕ) becomes relevant when g > π/2.

When ∆2 > 2 the Oχ perturbation is not all that interesting. The scale Λ is a short-
distance scale, past which the theory needs a UV completion. We we get an emergent ZN
chiral symmetry at long distances as we take the UV scale Λ to infinity. The considerations
in section 2.2 imply that there is a non-vanishing string tension for mγ/Λ 6= 0, but it goes
to zero as Λ becomes large. In this sense the theory is no more (and no less) confining than
compact U(1) QED in 2+1 dimensions on a Euclidean lattice with the Wilson gauge action.

For us the more interesting case is R2 > 1/(2π), where Oχ is relevant, and Λ should
be interpreted as an infrared scale, which we assume is small compared to mγ .10 If N is
even, then the chiral symmetry is Z2 at long distances. We would like to determine the
realization of this symmetry, as well as the realization of the ZN 1-form symmetry. To do
this it is important to understand when our Lagrangian is weakly coupled. The squared
mass of the particles created by ϕ in the kth universe (that is, the coefficient of 1

2 ϕ̃
2) is

m2
eff = m2

γ

1 +
(

Λ
mγ

)2−∆2 4
R2 cos

(4πk
n

)
+ · · ·

 . (4.5)

while the coefficient of e.g. the quartic interaction λ
4! ϕ̃

4 is

λ = m2
γ

− 16
R4

(
Λ
mγ

)2−∆2

cos
(4πk
N

)
+ · · ·

 . (4.6)

where the · · · represents terms that are higher-order in the small parameter
(

Λ
mγ

)2−∆2 .
The theory is weakly-coupled if e.g. the parameter |λ/m2

eff | � 1, and∣∣∣∣∣ λ

m2
eff

∣∣∣∣∣ =
16
(

Λ
mγ

)2−∆2 cos
(

4πk
n

)
R4
[
1 + 4

R2

(
Λ
mγ

)2−∆2cos
(

4πk
n

) ] ' 16
R4

(
Λ
mγ

)2−∆2

cos
(4πk

n

)
. (4.7)

This illustrates the fact that the massless four-Fermi-deformed Schwinger model is weakly
coupled when

(
Λ
mγ

)2−∆2 � 1, just as the conventional massive Schwinger model is weakly
coupled when mψ/e� 1.

When the model is weakly-coupled we can read off the vacuum structure and the
confining string tensions by considering the vacuum energy densities of the universes in the
Lagrangian. Indeed, this was already discussed in section 2, where we had already tacitly
assumed that there is a duality frame where the theory is weakly coupled.

5 Dynamics on R× S1

We now discuss the calculation of the string tension both in the mass-perturbed theory as
well as the massless theory with four-fermion perturbations on R × S1 with small S1, as

10If R2 = 1/(2π), then Oχ is marginal if the gauge interaction is turned off and m = 0. This means
that Oχ enters the action with a dimensionless coefficient which we can call λ. It may be interesting to
understand whether and how this parameter runs with the renormalization scale.
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well as on T 2. The results below match the expectations established in our analysis of the
physics on R2. The benefit of working out the physics on a small circle is that it allows us
to establish a semiclassical picture of the confinement mechanism. In particular, we will
show below that confinement is induced by the proliferation of fractional instantons with
topological charge Q = ±1/N and action S1 = 1/(4R2mγL). These instantons all carry
fermion zero modes when the theory has a ZN chiral symmetry. So when the complete
chiral symmetry is present, the model does not confine q = ±1 test charges. When chiral
symmetry is explicitly broken, either by a mass term or by the Oχ deformation, some or all
of the fermion zero modes get lifted, and then confinement sets in. For earlier discussions
of instantons in various versions of the Schwinger model see e.g. refs. [7, 22, 25–31].

Our analysis below has several unusual features. The first one is already hinted at
above: we will see that the massless Schwinger model on a cylinder has instanton solutions
with topological charge |Q| = `/N and actions S = `2S1, which carry 2` fermion zero
modes when the model has ZN symmetry. Remarkably, there are also exact solutions of
the equations of motion with zero topological charge that carry exact fermion zero modes.
These Q = 0 solutions are obtained simply by adding together solutions with non-zero
topological charge. The fact that one can obtain exact solutions this way comes from the
fact that in the bosonized duality frame, the equations of motion satisfied by the instantons
are linear in the fields. The fact that instantons with |Q| ≥ 0 carry fermion zero modes
implies that they do not contribute at all to the partition function of the massless Schwinger
model with ZN symmetry. Of course, as soon as we consider correlation functions of
operators that involve the fermions, or add chiral-symmetry breaking deformations to the
action, the story changes and the instantons do contribute.

5.1 Fractional instantons

We begin our analysis on R × S1 with the massless charge-N Schwinger model with ZN
chiral symmetry. We denote the coordinate of S1 by x, and denote the coordinate of R
by τ . When the circumference of S1, L, is small enough compared to 1/e, we can use an
EFT on R — that is, quantum mechanics — to describe the long-distance dynamics. To
describe this EFT we need to understand the potential for the gauge field holonomy Ωx

on S1. If we choose periodic boundary conditions for the charge N fermion,11 and take
Coulomb gauge such that Ωx = ei

∫
dxax ≡ eih(τ), where h ∼ h + 2π, the 1-loop holonomy

potential is given by

V (h) = 2
πL2

∞∑
n=1

1
n2 cos(Nnh) = min

n

N2

2πL2

(
h− 2π

N

(
n+ 1

2

))2
− π

6L2 . (5.1)

The fundamental domain h ∈ [0, 2π) contains N harmonic minima located at

hn = 2π
N

(
n+ 1

2

)
, n = 0, 1, . . . N − 1 . (5.2)

11Physically, the boundary condition on the fundamental fermion does not matter in the Schwinger model,
because it is part of gauge redundancy. Any boundary condition ψ(x1, x2 + L2) = eiαψ(x1, x2) will yield
the same physical result.
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If we take eq. (5.1) as a quantum effective potential in the 1d EFT description of the
system valid for small L, then naively this EFT will support N distinct instanton solutions
interpolating between consecutive minima:

Fn+1 : |n〉B → |n+ 1〉B , n = 0, 1, . . . N − 1, N ≡ 0 . (5.3)

To understand these instantons, we first recall that the topological charge of U(1)
gauge theory is defined as

Q = 1
2π

∫
M2

f = 1
4π

∫
d2x εµνfµν . (5.4)

In pure U(1) gauge theory Q is an integer, and on e.g. T 2 = S1
β×S1

L we can write instanton
solutions as e.g. aτ = 0, ax = 2πQτ

Lβ . The action of a charge Q instanton is

S = 1
4e2 2Lβ

(
2π2Q

Lβ

)2

= 2πQ2

e2Lβ
. (5.5)

These Q ∈ Z instantons are of course also present in U(1) gauge theory with matter.
However, note that in a Q ∈ Z instanton,

∫
S1
L
a evolves from 0 to 2πQ as τ goes from 0

to β. This means that Q ∈ Z instantons cannot represent tunneling events between the
nearest-neighbor vacua of (5.1).

What we need are instantons with fractional topological charge, with Q = `/N , with
` ∈ Z. When ` = 1, these fractional instantons are precisely the tunneling solutions of
eq. (5.2). In the absence of fermion zero modes, these fractional instantons can only directly
contribute to the partition function if one gauges the ZN 1-form symmetry. But when the
ZN 1-form symmetry is global, the topological charge of admissible field configurations
that contribute to the partition function must be an integer, and the partition function
only receives contributions from ‘composite’ instantons with Q ∈ Z built from the field
configurations with the fractional charges Q = `/N . For a general discussion of how
fractional-charge instantons contribute to gauge-theory path integrals see ref. [32].

However, the effective potential in eq. (5.1) has cusps, so we have to be careful when
using it to study tunneling solutions. Equation (5.1) should be understood as the 1-loop
vacuum free energy density in a constant holonomy background, extracted by taking a
large-volume limit. This is to be distinguished from the 1-loop effective potential in the
small-L quantum mechanical theory describing the dynamics of the holonomy. Indeed, the
fact that the energy density has cusps indicates that the effective 1d EFT fails to capture
important physics — in this case, the existence of fermion zero modes. This follows from
the standard ABJ anomaly which is responsible for the chiral symmetry being ZN rather
than U(1). This anomaly implies that field configurations with topological charge Q have
2N fermion zero modes.

To better understand the tunneling solutions and their zero modes, we can analyze
the small-L limit using bosonization, following ref. [7]. We work on T 2 = S1

β × S1
L, with

L � 1/e � β, and take the coordinates on the torus to be (τ, x) ∼ (τ + β, x + L). Our
goal is to understand the effective action for Ωx = ei

∫
dx ax , which is derived in detail in

appendix A. Just as above, we take Coulomb gauge such that Ωx ≡ eih(τ), where h ∼ h+2π.
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The interesting contribution to the physics comes from the sum over the scalar winding
number

∮
S1
β
dϕ ∈ 2πZ. The small-L path integral capturing the dynamics of the holonomy

becomes

Z ∼
∫
Dh exp

[
−
∫
dτ

1
2e2L

(
dh

dτ

)2]∑
n∈Z

exp
[
−
∫
dτ

m2
γ

2e2L

(
h− 2πn

N

)2
]
. (5.6)

There are two things to notice about the above expression. First, if we take h = constant
and take the large-volume limit β → ∞, the above effective potential reduces to the
vacuum free energy density in eq. (5.1), up to an h-independent shift. Second, and more
importantly, the effective potential for the holonomy consists of N distinct branches. Each
of the N minima, located at h = 2πn/N , lie in distinct branches of the effective potential.

An immediate consequence of the discussion above is that tunneling configurations
h(τ) between minima of the effective potential simply do not exist. In the fermionic duality
frame, this statement maps to the fact that instantons carry robust fermion zero modes, and
so they cannot contribute to the partition function. To allow tunneling events between min-
ima, we must insert an operator charged under chiral symmetry. This is the bosonic analog
of ‘soaking up’ the fermion zero modes. The necessary operator is simply ei`ϕ, which carries
charge ` under the ZN chiral symmetry. The fermionic-variable image of ei`ϕ can be thought
of as either a point-split version of

(
ψLψR

)`
, or its local operator analogue with derivatives.

Repeating the derivation of the holonomy effective potential in the presence of the
insertion ei`ϕ(τ0,x0), one finds (see appendix A.2)

Z̃ ∼
∫
Dh exp

[
−
∫
dτ

1
2e2L

(
dh

dτ

)2]∑
n∈Z

exp
[
−
∫
dτ

m2
γ

2e2L

(
h− 2π(n+`Θ(τ−τ0))

N

)2]
.

(5.7)
The equation of motion for h in the presence of the insertion becomes

d2h

dτ2 = m2
γ

(
h− 2π

N
(n+ `Θ(τ − τ0))

)
, (5.8)

in the nth branch. This equation has finite-action solutions interpolating between h =
2πn/N and 2π(n+ `)/N which are illustrated in figure 3 and take the form

hn,`(τ ; τ0) = 2πn
N

+


2π`
N

cosh(mγ(τ0−β))
sinh(mγβ) sinh(mγτ) τ ≤ τ0

2π`
N

[
1 + cosh(mγτ0)

sinh(mγβ) sinh(mγ(τ − β))
]

τ > τ0
. (5.9)

The topological charge and action of such an instanton in the β →∞ limit are

Q = `

N
, S` = `2

4R2mγL
. (5.10)

The h equation of motion (5.8) with a finite number of insertions of eiϕ is linear, so
sums of solutions are also solutions. For example,

hn;Q=0 = hn,`(τ ; τ0) + hn+1,−`(τ + τ ′; τ0 + τ ′) + 2π`
N

(5.11)
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Figure 3. In the bosonized description, tunneling events connecting different branches of the
holonomy effective potential are only possible in the presence of insertions carrying chiral charge.
In the presence of the insertion ei`ϕ(τ0,x0), a tunneling configuration in the nth branch starts at
h = 2πn/N and travels up the potential until it meets the (n + `)th branch at time τ0. At this
point, the insertion of the chirally-charged operator rearranges the branches and the tunneling
configuration descends down to 2π(n + `)/NL. In the above figure, we took N = 4 and the cases
` = 1, 2 are indicated. The height that the instanton has to traverse scales as `2, as does the
instanton action (5.10).

is an exact solution of the h equation of motion with an insertion of ei`ϕ(τ0,x0) and
e−i`ϕ(τ0+τ ′,x0) with Q = 0 and an action S = `2

2R2mγL
when β is large. This solution

has two unusual features. First, it is already quite peculiar to have an exact real solution
of the equations of motion with Q = 0. Note that eq. (5.11) is not a saddle point at infinity
(see e.g. [33]), since τ ′ is finite. The other unusual feature is that this Q = 0 solution has
exact fermion zero modes, which are localized at τ = τ0 and τ0 + τ ′. This means that
despite having vanishing topological charge it does not contribute to the partition function
of the massless charge-N Schwinger model with ZN chiral symmetry.

5.1.1 Fermion zero modes and confinement

Let us pass back to the fermionic description of the Schwinger model. The fermion zero
modes of the fractional instantons discussed above play a crucial role in determing the
dynamics of the charge-N Schwinger model with a ZN chiral symmetry. The holonomy
effective potential has N degenerate minima, so that the theory has an N -fold degenerate
vacuum on a cylinder at the classical level. Normally one might expect this degeneracy
to be lifted due to tunneling events connecting the classical vacua. However, our analysis
above shows that tunneling events between these minima are forbidden, and the N -fold
degeneracy of vacua persists when quantum effects are taken into account. This is due
to the mixed ’t Hooft anomaly between center-symmetry and chiral symmetry, and in
practice, the absence of tunneling is enforced via the fermionic zero mode structure of the
fractional instanton events.

– 19 –



J
H
E
P
0
1
(
2
0
2
3
)
0
8
7

−π/L

−3π/L

−5π/L

π/L
0

L R

|Ω0iF |Ω1iF |Ω2iF

Figure 4. The fermionic vacua |Ωn〉F of the theory corresponding to harmonic bosonic ground
state |n〉B where hn = 2π

N

(
n+ 1

2
)
, and ∆h = 2π

N . The change in the bosonic background sources is
∆Q5 = 2.

In the fermionic description, the harmonic perturbative vacua are not only described
via the bosonic states |n〉B, but also via degenerate fermionic states, which change between
adjacent harmonic minima. The state |n〉 associated with the n-th vaccum is a vector in
the tensor product of states in bosonic and fermionic Hilbert spaces:

|n〉 ≡ |n〉B ⊗ |Ωn〉F (5.12)

We can take |Ω0〉F to be all L- and R-handed negative energy levels filled up as shown
in figure 4. |Ω1〉F differs from it by ∆Q5 = 2 where all L states are shifted up by one
unit and all R states are shifted down by one unit, i.e. a R-handed state is removed and a
L-handed state is created. This is due to the ABJ anomaly and the consequent zero mode
structure of fractional instantons. The usual instantons in the theory have 2N fermion zero
modes. However, the fractional instantons interpolating between consecutive vacua (5.3)
have topological charge Q = 1/N , leading to ∆Q5 = 2.12 As a result, the degenerate
fermionic state |Ωn〉F can be written as:

|Ωn〉F =
∞∏

k=−n
|k〉L ⊗

−n−1∏
k=−∞

|k〉R (5.13)

as shown in figure 4.
The amplitudes of the fractional instantons are of the form

Fj ∼ e−S1eiθ/NψLψR, j = 1, . . . , N . (5.14)

The fermion fields in the prefactor of the instanton amplitude represent the fermionic zero
modes. In the bosonized description, these zero modes are represented by the need to insert

12A Hilbert hotel analogy is useful. One can think of both L and R as Hilbert hotels. Both are infinite,
and can always make a vacancy by moving all visitors to the next room. Or when a visitor is pushed out,
the hotel still remains full.
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the operator eiϕ at a spacetime point x to enable a Q = 1/N tunneling event centered at
x. Thanks to the fermionic zero modes, the Q = 1/N instantons do not lift the degeneracy
between the N -vacua, since the transition amplitude

〈n+ 1|e−βH |n〉 = 0 (5.15)

remains zero. Hence, as stated earlier, charge-N QED with massless fermions and no four-
fermion deformations has N exactly degenerate bosonic vacua on R1 × S1. This can be
viewed as a consequence of the mixed ’t Hooft anomaly between the ZN chiral symmetry
and the ZN 1-form symmetry, see e.g. appendix D of [34] for a simple example of this sort
of phenomenon.

5.2 Mass perturbation

It has long been known that adding a mass term mψψψ induces confinement. Of course,
it also lifts the degeneracies between the N ground states of the mψ = 0 theory. Indeed,
when S1 is small, and 0 < m� e, the nearest-neighbor matrix elements become non-zero,
because the mass term can be used to “soak up” the fermion zero modes,

〈n± 1|e−β(H+∆Hmass)|n〉 = µmLβK1 e
−S1±i θN (5.16)

where K1 = 1
2 , and we have set g = 0 for simplicity. More generally the powers of the

parameters in the prefactor in the tunneling amplitude depend on the scaling dimension
of ψψ, which depends on g. Indeed, in the bosonized description of the model, we can
formally expand the

exp
[∫

d2xµm
(
eiϕ(x) + e−iϕ(x)

)]
(5.17)

term in the exponentiated Euclidean action in powers ofm, and then note that this produces
a sum of powers of e±iϕ(x) summed over the insertion points x. These insertions induce
tunneling events from ϕ = 2πn/N to ϕ = 2π(n±1)/N . Then the analysis in the preceding
section implies that the ` = ±1 events contribute to the path integral with the weights
given in (5.16).

To see the effect of the breaking of degeneracy of the vacua on confinement, let us
consider the partition function Z(β) of the system in Born-Oppenheimer approximation.
To calculate it, we need to sum over all periodic paths, a(β) = a(0). These paths are
described by maps S1 → S1, and are classified by the winding number W ∈ π1(S1) = Z,
which is the integer valued topological charge. On the other hand, the physical system
possess topological configurations with fractional topological charge Q = ±1/N . They are
seeded by the e±iϕ(x) operators that come from the expansion of the mass term. If n (n)
denotes the number of fractional instantons and anti-instantons, the configurations that
contribute to Z(β) must satisfy

n− n = WN, W ∈ Z. (5.18)

This condition is enforced by the constraint on the winding number. It is also enforced by
the fact that when we expand the mass term in powers ofm to produce a sum over insertions
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of e±iϕ, the path integral measure is invariant under ZN chiral symmetry. Equation (5.18)
allows configurations with integer topological charge but fractional action to contribute,
e.g., W = 1

N −
1
N = 0, S = 2S1 where S1 ∼ 1/N . As a result, the partition function can be

expressed as:

Z(β, θ) = N
∑
W∈Z

∞∑
n=0

∞∑
n=0

1
n!

1
n!
(
βLµmK1e

−S1+iθ/N
)n (

βLµmK1e
−S1−iθ/N

)n
δn−n−WN,0

=
N−1∑
k=0

∞∑
n=0

∞∑
n=0

1
n!

1
n!
(
βLµmK1e

−S1+i θ+2πk
N

)n (
βLµmK1e

−S1−i θ+2πk
N

)n
=

N−1∑
k=0

e2βK1e−S1 cos θ+2πk
N =

N−1∑
k=0

e−βEk(θ) . (5.19)

Here we have assumed the dilute-instanton-gas limit, where S1 � 1. To pass to the
second line we converted the sum over winding number W ∈ Z into a sum over lat-
tice momenta k that form eigenstates of ZN translation symmetry by using the identity
N
∑
W∈Z δn−n−WN =

∑N−1
k=0 ei2πk(n−n)/N . This can be used to do the sum over n and (n),

and yields the energy eigenvalues of the N branches of the vacuum energy in the small mψ

limit:

Ek(θ) = −µmLe−S1 cos
(
θ + 2πk
N

)
. (5.20)

The corresponding eigenstates of the Hamiltonian are given by

|θ, k〉 =
∑
n∈Z

ei
θ+2πk
N

n|n〉 . (5.21)

The ground state energy in a given range of theta is found by minimizing over the branches,
and is given by Egr(θ) = MinkEk(θ). In the −π/N < θ < π/N range, the ground state is
the k = 0 branch.

We can now compute the string tension. Computing the two-point function of charge-k
Polyakov loops at a large separation τ in the vacuum for −π < θ < π which correspond to
|θ, k′ = 0〉, we obtain

〈θ, 0|P−k(τ)P k(0)|θ, 0〉 ∼ exp [−τ(Ek(θ)− E0(θ))] . (5.22)

In the semi-classical regime, we obtain

Tk(θ) = −µme−π/mγL
{

cos
(
θ + 2πk
N

)
− cos

(
θ

N

)}
. (5.23)

Note that in the semi-classical domain, as on R2, the string tension vanishes for massless
fermions. The benefit of working on R×S1 is that we can see the mechanism of confinement
in the massive charge-N Schwinger model: it is induced by fractional instantons with
Q = 1/N , provided that their fermion zero modes are lifted.
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5.3 Oχ perturbation

We now discuss the other perturbation that can lift the vacuum degeneracies of the charge-
N Schwinger model: the perturbation by the operator Oχ. When N is even, this operator
breaks the ZN chiral symmetry to Z2. In the fermionic description, this is a four-fermion
operator. This operator can be relevant or irrelevant depending on the coefficient of the
only chirally-invariant perturbation Ojj of the model. Of course, the deformation by Oχ is
most interesting when it is relevant.

When Oχ is added to the action and N is even, then

〈n± 1|e−β(H+∆Hχ)|n〉 = 0 , (5.24)

〈n± 2|e−β(H+∆Hχ)|n〉 = βLK2Λ2−∆χµ∆χ e−S2±2i θ
N . (5.25)

where K2 is a dimensionless constant. To see this we can formally expand the
exp

[∫
d2xΛ2−∆χOχ

]
term in the exponentiated Euclidean action in powers of Λ, and then

note that this produces a sum over insertions of e±i`ϕ(x) with ` ∈ 2Z, which induce tun-
neling events localized at the points x. The absence of insertions with ` = ±1 mod N
implies (5.24), while the presence of insertions with ` = ±2 implies (5.25).

If N is odd, then after adding the Oχ deformation to the action, the matrix elements
we discussed above become

〈n± 1|e−β(H+∆Hχ)|n〉 =
(
βLK2Λ2−∆χµ∆χ e−S2∓2i θ

N

)(N−1)/2
, (5.26)

〈n± 2|e−β(H+∆Hχ)|n〉 = βLK2Λ2−∆χµ∆χ e−S2±2i θ
N . (5.27)

The reason the matrix element (5.26) is non-zero is that if one starts in vacuum n, then
tunneling to the next-to-nearest-neighbor on the ‘right’ (N − 1)/2 times puts one in the
vacuum with label n− 1, due to the fact that the label n has a periodicity of N .

We can summarize this by observing that for even N , there is no tunneling to nearest
neighbor vacua at all. The holonomy effective potential vacua split into two sets that never
mix with each other under time evolution. This is a consequence of the mixed ’t Hooft
anomaly between the Z2 subgroup of the ZN 1-form symmetry and the unbroken Z2 sub-
group of the 0-form chiral symmetry. However, for odd N , the amplitude to move to nearest
neighbor minima is non-zero: it occurs at order N−1

2 in semiclassics, and is suppressed by
e−

N−1
2 S2 . Of course, the disparity between even and odd N disappears at large N .
Next we consider the behavior of the string tension. In the Born-Oppenheimer ap-

proximation, the tunneling Hamiltonian can be written as

HBO = −
N∑
n=1

K2Λ2−∆χµ∆χe−S2+2i θ
N |n+ 2〉〈n|+ h.c. (5.28)

For even N , this Hamiltonian decompose to two decoupled Hamiltonians, one with a sum
over n ∈ 0, 2, . . . , N − 2 and the other with a sum over n ∈ 1, 3, . . . , N − 1. These sets
of states remain unmixed at any non-perturbative order. For odd N , there is no such
decomposition.
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Figure 5. (Top) In the semi-classical domain of massive Schwinger model, confinement is generated
by fractional instantons where zero modes are soaked up by mass term. (Middle) In massless
Schwinger model with four-fermion deformations, it is not possible to lift the zero modes of a
fractional instanton, but just flip its chirality. (Bottom) But it is possible to lift up the zero modes
of a fractional instanton with topological charge Q = 2/N . These configurations causes confinement
for external probe charges.

The energy spectrum can be obtained by diagonalizing HBO and is given by

Ek(θ) = −K2Λ2−∆χµ∆χ e−S2 cos
(2(θ + 2πk)

N

)
. (5.29)

Therefore, using the correlator (5.22), we can deduce that the string tensions are:

Tk = −K2Λ2−∆χµ∆χ e−S2

[
cos

(2(θ + 2πk)
N

)
− cos

(2θ
N

)]
+O(c2) . (5.30)

This result also extrapolates to the result we obtained on R2 in the decompactification
limit. As discussed in the previous section, for −π < θ < π, it leads to confinement for all
external charges for which k 6= 0, N/2 (mod N) and screening for k = 0, N/2 (mod N).

6 Conclusions

At first glance the charge-N Schwinger model is an attractive solvable toy model for ques-
tions about quark confinement and chiral symmetry breaking: it has a 1-form ZN chiral
symmetry as well as a (discrete) chiral symmetry, just as 4d gauge theories with massless
vector-like fermions. But it has long been known that the dynamics of this 2d model is
radically different from 4d gauge theories: it does not confine fundamental-representation
test charges in the chiral (vanishing charged fermion mass) limit. Indeed, by now it is
common wisdom that 2d gauge theories with massless fermions do not confine, with both
abelian examples like the charge-N Schwinger model and non-abelian examples such as 2d
SU(N) QCD with one Majorana fermion (see e.g. [8, 35–45]), among others [46].

In view of the very sharp difference of this behavior of 2d gauge theories with massless
fermions from naive expectations based on more familiar 4d examples, it is important to
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understand what drives these differences in a precise way. A natural but naive guess based
on the paragraph above is that this behavior is driven by masslessness of the fermions, along
with peculiarities of confinement in 2d. This is not quite correct. Instead, the crucial issue13

is the presence (or absence) of appropriate mixed ’t Hooft anomalies involving the 1-form
symmetry. When appropriate ’t Hooft anomalies are present the 2d gauge theories lie in de-
confined phases on R2, while when appropriate ’t Hooft anomalies are absent, they confine.

Our discussion in this paper gives a sharp illustration of this point in the context of
the charge-N Schwinger model. We have analyzed a modified version of the Schwinger
model with dynamics that are closer to those of 4d gauge theories. The standard massless
Schwinger model has a mixed ’t Hooft anomaly between the ZN 1-form symmetry and the
ZN chiral symmetry, which leads to deconfinement. Our modification involves turning on
deformations of the action by two four-fermion operators Ojj and Oχ. The Ojj operator
is neutral under all of the symmetries of the model, while Oχ has charge 2 under chiral
symmetry. The basic idea is that when it is relevant, the Oχ deformation reduces the chiral
symmetry. However, since Oχ has chiral charge 2, it can preserve a Z2 chiral symmetry,
and the charged fermions do not get a mass term.14 At the same time, the ’t Hooft anomaly
structure is altered, and so the theory should confine.

Let us review this in a little bit more detail. The mass operator has chiral charge 1.
When N is even, and the story is simplest, the effect of these deformations is to break the
chiral symmetry from ZN to Z2 when N is even. Provided the coefficient of Ojj is positive
and large enough, the Oχ operator is relevant, and so the chiral symmetry remains Z2 deep
in the infared. This symmetry is enough to forbid the fermion mass term, so the deformed
theory must be viewed as a variant of the massless Schwinger model. We analyzed the
behavior of this theory on R2 and R × S1, and showed that it confines fundamental test
charges when N is even and is larger than 2. Test charges with charge q = N/2 remain
deconfined to a residual mixed ’t Hooft anomaly between the Z2 subgroup of the 1-form
symmetry and the unbroken chiral symmetry. When N is odd, the Oχ perturbation breaks
chiral symmetry completely. Depending on whether it is relevant or irrelevant, it may or
may not be possible to get an emergent chiral symmetry in the infrared, see Footnote 6.
When there is an emergent chiral symmetry in the infrared, the odd N model remains
deconfined even with Oχ. Of course, when the Oχ operator is relevant and N is odd, test
charges of all representations with non-zero N -ality are confined.

Our results on relevance versus irrelevance of the operator Oχ follow from standard
properties of the abelian bosonization dictionary. We reached our results on confinement
in three basic ways. First, they essentially follow from the totalitarian principle of QFT
combined with symmetry arguments: in the absence of an ’t Hooft anomaly forcing decon-
finement, and without fine-tuning of relative vaccuum energies of universes in this model
(which could be done using deformations by local topological operators without breaking
any additional symmetries), nothing forbids an area law for large Wilson loops, so one-
form symmetries should not be spontaneously broken in 1 + 1d QFTs. Second, we took

13At least in the absence of deformations of the action by local topological operators — such deformations
make the story more complicated, see ref. [10] for an extensive discussion.

14This assumes that we use a regulator that preserves Z2 chiral symmetry.
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advantage of bosonization to explicitly analyze the behavior of the theory on R2. For suit-
able values of deformation parameters bosonization allows one to systematically calculate
observables like string tensions in abelian 2d gauge theories, which would normally require
an intractable strong-coupling analysis in more complicated theories. We then examined
the behavior of theory on R × S1 for small S1 (compared to e.g. 1/(eN)). This has the
advantage that one can use either the bosonized or fermionic duality frames, and allowed us
to explore the confinement mechanism in some detail. Confinement is driven by instantons
with fractional topological charge, with a number of interesting parallels to confinement in
4d gauge theories on R3 × S1. The instanton physics in this model also has some unusual
features: for example, there are finite-action configurations with zero topological charge
with robust fermion zero modes.

Much of this has interesting parallels to SU(N) QCD with one adjoint Majorana
fermion in 2d, see [21, 40]. It was pointed out in ref. [21] that 2d adjoint QCD also
has two four-fermion deformations which preserve all of the standard symmetries of the
model. In contrast to the 2d Schwinger model, the four-fermion deformations of 2d adjoint
QCD are both classically marginal. Adjoint QCD in 2d can also be deformed by adding
local topological operators to the action without breaking any standard symmetries [10].
At generic points in the parameter space of the model, there’s no way to forbid an area law
for large Wilson loops (the ’t Hooft anomalies are not rich enough to do this in general),
and so the model should confine at generic points in this parameter space. Note that this is
a statement about the theory with the fermion mass term set to zero, where it is protected
by symmetries from radiative corrections. Nevertheless, there is a corner in this parameter
space where the model does deconfine, as explained in ref. [8]. In this corner of the param-
eter space, there is an extra unconventional symmetry which is generated by non-invertible
topological line operators. These non-invertible lines are charged under the 1-form symme-
try, which means that they participate in a mixed ’t Hooft anomaly. This can be used to
show that the area law term cannot arise in expectation values of large ’t Hooft loops. How-
ever, just as in the charge-N Schwinger model, the existence of chiral-symmetry-preserving
deformations that drive the theory to confine means that keeping the charged fermion mass
term set to zero is not by itself enough to drive deconfinement in 2d gauge theories.
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A Bosonization and holonomy effective potential

In this appendix we use bosonization to compute the exact effective potential for the gauge
field holonomy in the massless Schwinger model. This amounts to solving the theory on a
torus. We emphasize certain aspects of the global structure of the bosonized theory that are
particularly important in obtaining the correct result for the holonomy effective potential.
A closely related discussion of axion-like couplings for abelian gauge fields appears in
ref. [47].

We work on T 2 = S1
L × S1

β , with coordinates (τ, x) ∼ (τ + β, x + L). The gauge field
satisfies the periodicity conditions

a(τ + β, x) = a(τ, x) + dhτ (τ, x) , a(τ, x+ L) = a(τ, x) + dhx(τ, x), (A.1)

where hτ , hx are transition functions subject to the consistency condition

dhτ (τ, x+ L) + dhx(τ, x) = dhτ (τ, x) + dhx(τ + β, x) . (A.2)

In a U(1) gauge theory, we demand that the transition functions satisfy the cocycle condi-
tion

hτ (τ, x+ L)− hτ (τ, x)− hx(τ + β, x) + hx(τ, x) = 2πQ, (A.3)

where Q ∈ Z. The integer Q is in fact the topological charge on the torus,

1
2π

∫
T 2
da = 2πQ . (A.4)

In the path integral we sum over transition functions satisfying the cocycle condition for
fixed Q, and sum over Q. Gauge transformations act as a → a + dλ where λ(τ, x) is
an arbitrary real-valued function.15 The transition functions themselves transform under
gauge transformations (redundancies) as

hτ (τ, x)→ hτ (τ, x) + λ(τ + β, x)− λ(τ, x) + 2πmτ , (A.5)

hx(τ, x)→ hx(τ, x) + λ(τ, x+ L)− λ(τ, x) + 2πmx , (A.6)

which leaves the cocycle condition and the integer Q invariant.
The compact scalar ϕ can wind around the two cycles of the torus

ϕ(τ + β, x) = ϕ(τ, x) + 2πnτ , ϕ(τ, x+ L) = ϕ(τ, x) + 2πnx . (A.7)

Naively, the bosonization rules suggest that the coupling between ϕ and a to be

iN

2π

∫ τ?+β

τ?
dτ

∫ x?+L

x?
dx aµ(τ, x)εµν∂νϕ(τ, x) . (A.8)

15We are used to requiring that gauge transformations are single-valued on the torus mod 2π. In the
current presentation, this is an unnecessary assumption. If we add charge-1 matter, for instance, it obeys
φ(τ +β, x) = eihτ (τ,x)φ(τ, x), φ(τ, x+L) = eihx(τ,x)φ(τ, x). These boundary conditions are gauge-invariant
with respect to (A.5), even for gauge functions which are not single-valued on the torus.
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Here we have chosen an arbitrary basepoint (τ?, x?) of the torus. The above integral suffers
from two problems: it is not gauge invariant mod 2πi, and it depends explicitly on the
choice of reference point.16 Following refs. [47, 49], we remedy these issues by including
correction terms involving the transition functions and topological charge:

“ i

2π

∫
a ∧ dϕ” = i

2π

∫ τ?+β

τ?
dτ

∫ x?+L

x?
dx aµε

µν∂νϕ

− i

2π

∫ x?+L

x?
dxhτ (τ?, x)∂xϕ(τ?, x) + i

2π

∫ τ?+β

τ?
dτ hx(τ, x?)∂τϕ(τ, x?)

+ iQϕ(τ?, x?) . (A.9)

One can readily verify that the above result is manifestly gauge invariant, and (by repeated
use of the cocycle condition) that it is independent of the choice of τ?, x?. We may also
integrate by parts to find a consistent expression for the typical ‘BF’ form of the topological
coupling,

“ i

2π

∫
ϕ ∧ da” = i

2π

∫ τ?+β

τ?
dτ

∫ x?+L

x?
dxϕ(∂τax − ∂xaτ )

+ inτ

[
hx(τ?, x?)−

∫ x?+β

x?
dx ax(τ?, x)

]

− inx

[
hτ (τ?, x?)−

∫ τ?+β

τ?
dτ aτ (τ, x?)

]
. (A.10)

The quantities in brackets in the above correction terms are the (gauge-invariant)
holonomies of the gauge field around the two non-contractible cycles.

A.1 Dimensional reduction

Taking inspiration from ref. [7] we now consider the dimensional reduction of the theory
on a circle, taking eL� 1. We start with the usual expression for the bosonized action,

L != 1
2e2 |da|

2 + R2

2 |dϕ|
2 + iN

2π a ∧ dϕ , (A.11)

and consider the correction terms at the end. We take Coulomb gauge ∂xax = 0. This
implies that the transition functions satisfy ∂2

xhτ = 0 and ∂xhx = 0. We have further gauge
freedom with gauge functions satisfying ∂2

xλ = 0, which we can use to set hx = 0, while
the cocycle condition fixes

hτ (τ, x) = 2πQx
L

+ g(τ) (A.12)

for some arbitrary real-valued function g(τ). Hence, the boundary conditions on the gauge
field are

aτ (τ + β, x) = aτ (τ, x) + ∂τg(τ), ax(τ + β) = ax(τ) + 2πQ
L

, (A.13)

16The fact that directly using the bosonization rules gives rise to gauge non-invariant terms in the
Schwinger model on compact spacetimes was noticed in ref. [48].
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and aτ , ax are periodic in the x direction. Varying aτ , we find the Gauss law

∂2
xaτ = iNe2

2π ∂xϕ . (A.14)

If we integrate both sides over x, we find that ϕ cannot wind around S1
L. This sets nx = 0

in eq. (A.7), so that without loss of generality we can make the decomposition

ϕ(τ, x) =
∑
`∈Z

ϕ`(τ)e2πi`(x−x?)/L,

aτ (τ, x) =
∑
`∈Z

aτ,`(τ)e2πi`(x−x?)/L, (A.15)

and the Gauss law gives the relation aτ,`(τ) = Ne2L
4π2` ϕ`(τ) (for the nonzero modes). Plugging

in the Kaluza-Klein decomposition and integrating over x gives the naive form of the
effective action on S1

β ,

S
!= L

∫ τ?+β

τ?
dτ

{
1

2e2 (∂τax)2 + R2

2 (∂τϕ0)2 − iN

2π ax∂τϕ0

+R2∑
`>0

[
∂τϕ`∂τϕ−` +

((2π`
L

)2
+ N2e2

4π2R2

)
ϕ`ϕ−`

]}
(A.16)

The correction terms from eq. (A.9) give

iNQϕ(τ?, x?)−
iN

2π

∫ x?+L

x?
dx

[2πQx
L

+ g(τ?)
]
∂xϕ(τ?, x)

= iNQϕ(τ?, x?)−
iN

2π 2πQ [ϕ(τ?, x?)− ϕ0(τ?)] = iNQϕ0(τ?). (A.17)

Therefore, ignoring the non-zero modes of ϕ, which decouple exactly, we are left with

S = iNQϕ0(τ?) + L

∫ τ?+β

τ?
dτ

[
1

2e2 (∂τax)2 + R2

2 (∂τϕ0)2 − iN

2π ax∂τϕ0

]
. (A.18)

The additional term involving the topological charge, which descended from the construc-
tion on T 2, matches the same term used in ref. [50] to properly define the Lagrangian
describing the above quantum mechanical theory of N degenerate states.

A.2 Holonomy potential

We are now in a position to derive the holonomy effective potential. Recall that in our
chosen gauge, the holonomy around S1

L is

e−ihx(τ,x?)e
i
∫ x?+L
x?

dx ax(τ,x) = eiLax(τ) ≡ eia(τ). (A.19)

For convenience, we drop the subscript on ϕ0, choose τ? = 0, and replace nτ → P . The
boundary conditions obeyed by the fields are

a(τ + β) = a(τ) + 2πQ, ϕ(τ + β) = ϕ(τ) + 2πP, (A.20)
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with the values of Q,P summed over in the path integral. For completeness, we derive
the holonomy effective potential in the presence of an insertion ei`ϕ(τ0). In order to get a
non-vanishing result we have to modify the boundary conditions to

a(τ + β) = a(τ) + 2π
(
Q+ `

N

)
. (A.21)

The action in that case is

S =
∫ β

0
dτ

[
1

2e2L
ȧ2 + LR2

2 ϕ̇2 − iN

2π a ϕ̇
]

+ iN

(
Q+ `

N

)
ϕ(0)− i` ϕ(τ0). (A.22)

Note that we had to modify the correction term to account for the new boundary conditions.
We perform a mode decomposition consistent with the boundary conditions,

ϕ(τ) = 2πP
β

τ +
∑
k∈Z

ϕk e
i 2πk
β
τ

a(τ) =
2π
(
Q+ `

N

)
β

τ +
∑
k∈Z

ak e
i 2πk
β
τ
. (A.23)

The various terms in the action become, after completing the square,

S = 2π2

e2Lβ

(
Q+ `

N

)2
+
∑
k 6=0

2π2k2

e2Lβ
|ak|2 + 2π2LR2

β
P 2

− iNπ
(
Q+ `

N

)
P − iNP

(
a0 + 2π`

N

τ0
β

)
+ iNQϕ0

+
∑
k 6=0

βN2

8π2LR2

∣∣∣∣∣ak + i` ω−k

kN

∣∣∣∣∣
2

− 2π2LR2

β

∑
k 6=0

k2
∣∣∣∣∣ϕk − βN

4π2LR2
(ak + i` ω−k

kN )
k

∣∣∣∣∣
2

. (A.24)

where we defined ω = e2πiτ0/β and we have used the fact that a(t) is real so a−k = a∗k.
Integrating over ϕ0 sets Q = 0, and integrating over ϕk for k 6= 0 gives an overall holonomy-
independent constant. Poisson resummation on P gives

∑
P∈Z

e
− 2π2LR2

β
P 2−iNP (a0+π`

N
+ 2π`

N

τ0
β

) =

√
β

2πLR2

∑
n∈Z

e
− βN2

8π2LR2
(
a0− 2π`

N
( 1

2−
τ0
β

)− 2πn
N

)2

. (A.25)

Dropping the overall multiplicative factor, we have

Seff,n = β
2π2

e2Lβ2

(
`

N

)2
+ β

∑
k 6=0

1
2e2L

(2πk
β

)2
|ak|2 (A.26)

+ β
N2

8π2LR2

(
a0 −

2π`
N

(1
2 −

τ0
β

)
− 2πn

N

)2
+ β

∑
k 6=0

N2

8π2LR2

∣∣∣∣∣ak + i` ω−k

kN

∣∣∣∣∣
2

.

Noting that the Heaviside step function Θ can be written as

Θ(τ − τ0) = 1
2 + τ − τ0

β
− i

2π
∑
k 6=0

1
k
e2πik(τ−τ0)/β , (A.27)

the above expression is equivalent to (using mγ = eN
2πR)

Seff,n =
∫ β

0
dτ

[
1

2e2L
ȧ2 +

m2
γ

2e2L

(
a− 2πn

N
− 2π`

N
Θ(τ − τ0)

)2]
, (A.28)

where the function a satisfies a(β) = a(0) + 2π`
N . This gives eq. (5.7) in the main text.
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x x+ + …jµ jµ
Ojj

xµ jν µ jνx

jj a b a b

Figure 6. Corrections to polarization due to Ojj .

B Scaling dimensions

In this appendix we calculate the scaling dimensions of operators as functions of the
marginal parameter g, which is the coefficient of Ojj operator, by summing some sim-
ple classes of diagrams in the fermionic presentation of our model. This reproduces the
results from our analysis using bosonization in the main text. The fact that just summing
these simple classes of diagrams already reproduces the exact results from bosonization
means that all of the Feynman diagrams that we did not consider conspire to cancel, but
showing this explicitly is a non-trivial project which did not manage to finish. Given the
well-established nature of the bosonization approach, we do not pursue this more ambitious
project here. Before coming to the calculations, we note that we will use Minkowski nota-
tion in this appendix, apart from using Euclidean rotations to evaluate the final momentum
integrals.

Let us first consider the normalization in the relation (3.2) for bozonization of the
current jµ = ψγµψ. So called Bjorken limit is very instrumental in this respect. For
two operators, A and B, the limit q0 →∞ in

∫
d2x eiqxT{A(x)B(0)} gives the equal-time

commutator of A and B,

lim
q0→∞

q0

∫
d2x eiqxT{A(x)B(0)} = i

∫
d2x eiqx [A(x), B(0)] δ(x0) . (B.1)

When operators A and B are components of the vector current jµ = ψγµψ, the leading
contribution to this correlation function ( a polarization operator) is given by the diagram
a in figure 6:

− iΠµν(q) =
∫
d2x eiqx〈T{jµ(x)jν(0)}〉 = i

πq2 (qµqν − gµνq2) . (B.2)

In q0 →∞ limit, this defines the c-number part of [j0(x), j1(0)]δ(x0) commutator,∫
d2xeiqx[j0(x), j1(0)]δ(x0) = q1

π
, (B.3)

and fixes the coefficient in bozonization of the current jµ,

jµ =⇒ − 1
2π εµν∂

νφ . (B.4)

Of course, the same result (B.2) for the polarization operator arises from the bosonic form
of the current when the kinetic term of the φ field is (1/8π)∂µφ∂µφ.

Switching on the Ojj operator leads to appearance of the second and higher loops
for the correlator (B.2). In the first order in g it is given by the two-loop diagram b in
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+ + …

Ojj Ojj Ojj

+

OjjOjj Ojj

Figure 7. Iterations of the operator Ojj .

figure 6. This is a product, (−2g)ΠµγΠγ
ν = (−2g/π)Πµν , of two one-loop polarization

operators resulting in the factor (−2g/π). Accounting for higher loops gives a geometrical
progression so we come to overall factor 1/(1+2g/π), consistent with bosonic considerations
where the kinetic term becomes (R2/2) ∂µφ∂µφ with R2 = (1 + 2g/π)/4π .

This phenomenon of finite renormalization of the current also shows up for the oper-
ator Ojj . Iterations of this operator are illustrated by diagrams in figure 7 . The same
geometrical progression appears what could be interpreted as the effective substitution for
the coupling g,

g =⇒ g

1 + 2g/π . (B.5)

A word of caution should be added here. The above consideration of loop corrections for
the operator Ojj refers to the pairing of bilinear operators jµ = ψγµψ in the loop. However,
the loop corrections for Ojj also include other bilinears, namely, ψLψR, ψLψL, ψRψR paired
with corresponding Hermitian conjugated ones. The individual loops are logarithmicaly
divergent, so it could lead to breaking of the marginal nature of the operator Ojj . Inter-
estingly enough there is a cancellation between channels with fermion charge 0, like ψLψR,
and double fermion charge, like ψLψL. Altogether, the marginality of Ojj is preserved.17

Let us consider now bosonization of the operator ψL(x)ψR(x) . Its scaling dimension
is clearly equal to 1 for free fermions. Bosonization relates this operator to eiφ(x) . To see
that this bosonic operator has the same scaling dimension one can calculate the tadpole
graphs. To this end let us start with one tadpole loop.

eiφ =
∞∑
n=0

1
n! (iφ)n ; (iφ)n =⇒ n!

2(n− 2)!(iφ)n−2〈 (iφ)(iφ) 〉 ;

eiφ =⇒ eiφ
1
2〈 (iφ)(iφ) 〉 . (B.6)

Here 〈 (iφ)(x)(iφ)(x) 〉 is the propagator of the field iφ from the point x to the same point.
In Euclidean momentum space

〈 (iφ)(x)(iφ)(x) 〉 = −
∫

d2k

(2π)2
4π
k2 = −2

∫ µ2

µ1

dk

k
= 2 log µ1

µ2
, (B.7)

where µ1 and µ2 are lower and upper cut-off in the momentum integration. Proceeding in
the same fashion with next tadpoles we get exponentiation of the log,

eiφ =⇒ eiφe〈 (iφ)(iφ) 〉/2 = µ1
µ2

eiφ . (B.8)

Now let us switch on the operator Ojj . On bosonic side it is just a change of the
kinetic term coefficient and the corresponding change of 〈 (iφ)(x)(iφ)(x) 〉 by the factor

17We are thankful to A.Tsvelik for explaining this phenomenon to us.
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1/(1 + 2g/π). This immediately shows that the scaling dimension instead of 1 becomes

∆ eiφ = 1
1 + 2g/π . (B.9)

On the fermion side one have to consider the loop diagram generated by the initial operator
ψL(x)ψR(x) and the operator Ojj . In the first order in g

ψL(0)ψR(0) i
∫
d2x (−g)Ojj(x) = 4ig ψL(0)ψR(0)

∫
d2xψR(x)ψL(x)ψL(x)ψR(x)

=⇒ −4ig
∫
d2x 〈ψL(x)ψL(0)〉 〈ψR(x)ψR(0)〉ψL(x)ψR(x) . (B.10)

Here 〈ψL(x)ψL(0)〉 and 〈ψR(x)ψR(0)〉 denote fermionic propagators. In momentum space
we come to

4ig
∫

d2p

(2π)2
1
pR

1
pL

ψLψR = −2g
π

log µ1
µ2

ψLψR (B.11)

Accounting for higher loops leads to two effects. First, it leads to the exponentiation of
the one loop result, and second, it leads to the substitution (B.5) for the coupling g .
Altogether, we get for the scaling dimension,

∆ψLψR
= 1− 2g

1 + 2g/π = 1
1 + 2g/π , (B.12)

where 1 comes from canonical dimension. This coincides with (B.9).
Derivation of (1.9) for the scaling dimension of the operator Oχ on both bosonic and

fermionic sides is similar the one given above for the ψLψR operator.

Open Access. This article is distributed under the terms of the Creative Commons
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