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1 Introduction

Quantum field theory (QFT) is one of the most elegant and accurate frameworks which
describes nature to a very high accuracy. QFTs admit deformations by operators which
trigger a flow, known as the renormalization group (RG) flow, as we look into the theory
at different scales [1, 2]. The fixed points of the RG-flow trajectory define conformal field
theories (CFT) which are crucial in understanding aspects of condensed matter physics
and string theory. However, it is equally significant to understand the RG flow away from
the fixed points by deforming the QFT with a relevant or irrelevant operator. A relevant
deformation stimulates the flow at lower energies (IR) while an irrelevant deformation
drives the flow at higher energies (UV). Exploring the latter is more difficult as it requires
infinitely many counterterms in computing physical quantities in such a theory. However, a
special kind of irrelevant deformation, known as the TT-deformation, has been introduced



recently in two dimensions [3, 4] and has received wide attention in the past few years as
the theory is solvable.

The TT-deformation is generated by the irrelevant operator det (T}, ), the determinant
of the energy-momentum tensor T}, of the theory, and thus can be considered in any
generic QFT. At the classical level, the Lagrangian of the deformed theory itself looks very
interesting and was obtained in [5, 6]. For example, the Lagrangian of a TT-deformed
free massless boson is equivalent to the Nambu-Goto action for a string in three spacetime
dimensions in the static gauge [5]. Although the deformation makes the theory non-local,
often complicated and non-renormalizable, there are several remarkable features that make
the deformed theory so compelling. One such feature is that the energy spectrum of the
deformed theory can be derived non-perturbatively and in a compact form [3]. However,
the spectrum appears to be sensitive to the sign of the TT-coupling. For one of the
signs, the highly excited states in the spectrum carry complex energies where the deformed
theory becomes non-unitary. For this particular sign of the coupling, a holographic dual
was proposed in [7] and was further investigated in [8]-[13]. For the other sign of the
coupling, the spectrum is real and the deformed theory is unitary. Moreover, at high
energies, the density of states exhibit Hagedorn behaviour like the two dimensional little
string theory (LST). In the context of holography, it was argued that certain single-trace
TT-deformation of two dimensional CFTs corresponds to a two dimensional vacuum of
LST [14], see [15]-[21] for related exciting works in this direction. Another interesting
aspect of the two dimensional TT-deformed theories is the partition function — one can
compute the partition function of the deformed theory on a torus or a cylinder or a disk
and each of them satisfy a linear diffusion-type differential equation [22]. In particular,
TT-deformation of a CFT was considered in [23] and the torus partition function of the
deformed CFT was obtained to be modular invariant despite the fact that the deformed
theory is not conformal. See [24, 25] for further exciting results concerning the partition
functions in the TT-deformed CFTs.

Although the TT-deformation can be defined in any two dimensional QFT, a special
interest has been taken in the study of integrable quantum systems [4, 26]-[29]. Integrable
QFTs contain infinite number of conserved charges. The reason for this interest is that
a TT deformation preserves the integrable structure of the theory [4]. In [4], it was also
argued that the TT-deformation modifies the S-matrix only by a CDD phase factor.

Being an irrelevant deformation, the Lagrangian of the T'T-deformed theory is appar-
ently non-renormalizable as it involves an infinite number of counterterms. However, it
is the integrable structure of the theory that enables one to obtain a renormalized La-
grangian in such a naively non-renormalizable theory. The TT-deformed integrable theory
provides an infinite number of constraints which uniquely fix the all counterterms that
appear in the theory. In [30], the authors considered a TT-deformed free scalar field the-
ory and showed how to derive the renormalized Lagrangian perturbatively by demanding
that it should produce the correct S-matrix. Obtaining a renormalized Lagrangian unam-
biguously allows one to compute all physical quantities of interest. This motivates us to
consider the TT-deformed free massive Dirac fermion in two dimensions and to compute
the renormalized Lagrangian of such a theory perturbatively. As we will see, the renor-



malized Lagrangian exists and is qualitatively very different from the classical Lagrangian.
In particular, while the classical Lagrangian has only one scale, namely the bare coupling
constant, the renormalized Lagrangian to second order reveals three different scales in the
theory.

In this paper, the perturbative renormalization of the TT-deformed free massive Dirac
fermion in two dimensions will be explicitly performed. This will be done using the LSZ
reduction formula to compute the two-to-two S-matrix and introducing counterterms to
cancel divergences. The paper is organized as follows: in section 2 the basics of TT-
deformations as well as some related aspects of integrability will be reviewed. In section 3
the TT-deformed free massive Dirac fermion in two dimensions will be considered. In
section 4 the renormalized Lagrangian to second order in the TT-coupling constant will be
computed. Finally, in section 5 the main results and future directions will be discussed.

2 Integrability and TT-deformations

In this section several aspects of integrability, two-dimensional quantum field theories and
TT-deformations are discussed.

In two dimensional integrable theories the S-matrix of any scattering process factorizes
into two-to-two S-matrices and there is no particle production [31]-[37]. Consider a two-
to-two scattering process of particles with identical mass m in two dimensions. The 2-
momentum of the i particle can be parameterized by its rapidity, 6;,' as,

4 haz
P = <mcos ) . (2.1)

m sinh 6,

Identify p{ = m cosh §; = E;(6;) as the energy of the ith particle and pr = msinh6; = P;(6;)
as the momentum of the i particle.

Two dimensional kinematics of the two-to-two scattering processes have the unique
property that the incoming momenta of the particles equal the outgoing momenta of the
particles. This fact and the Lorentz invariance implies that the S-matrix, denoted by S(8),
will only be a function of the difference of rapidities, 8 = 61 — 5.

In what follows the TT-deformation of an integrable field theory will be considered.
If a TT-deformation is performed on an integrable field theory, the deformed theory is
integrable as well [4]. As we mentioned earlier, there is no particle production in a scattering
process in an integrable theory and hence, unitarity demands

1S(O)> =1. (2.2)
On the other hand, the crossing symmetry of the S-matrix? implies,

S(0) = S(im — 0). (2.3)

'Rapidity or the parameter of velocity is defined as, §; = tanh™*(v;), where v; is the velocity of the i-th
particle and the speed of light is set to ¢ = 1.

Tt is the symmetry of the S-matrix under the interchange of the s and u-channels as will be shown
later.



The solution to (2.2) and (2.3) is simple and given by the CDD factor,

sinh @ — isin o

Sa(6) = (2.4)

sinh @ +isina’
where « is a real parameter related to the coupling constant. The product of S, () over
a, [T, Sa(0), is also a solution to (2.2) and (2.3).

An alternative solution for the CDD factor was recently considered by Smirnov and
Zamolodchikov [4], which admits the following representation

Sa(g) _ eiasinhH ) (25)

The authors considered TT-deformed theories in two dimensions® where the deformation
produces a one-parameter family of Lagrangians obeying the T'T flow equation,

AL(N)

= —4(T )T (2) - 0 (2)8)(2)) , (2.6)

A\ being the TT-coupling constant, 7 = T2

zz)

T» = T2 and 6 = * = T are the
components of the energy momentum tensor of the deformed theory and L(A = 0) is the
Lagrangian of the undeformed theory. It was argued that the deformed theory is integrable
and the S-matrix of this theory can be expressed in a factorizable form, $'(6)5(6), where

S(6) is the CDD factor determined by unitarity and crossing-symmetry of the S-matrix,
S(H) — ei)\m2 sinh 6 ) (27)

The factor $'(6) signifies the presence of mass degeneracies in the spectrum and it sat-
isfies the Yang-Baxter equation [37]. This typically fixes the “flavor” structure of the
S-matrix. Simply, the TT-deformation (2.6) corresponds to multiplying the S-matrix by
the factor (2.7).

However, observe that (2.7) grows exponentially at large imaginary momenta. This
behaviour is inconsistent with the analytic behaviour of S-matrices in a local QFT. Nev-
ertheless, rather than just throwing out these theories, one can try to understand such
theories as QFTs coupled to gravity [38]-[41]. In this paper, however, we will be re-
stricted to the low-energy regime of the T'T-deformed theories. In this regime these are

quantum field theories and can be studied perturbatively in the TT-coupling A around
A=0[8, 30, 42]-[46].

3To be precise, the authors in [4] considered integrable quantum field theories (IQFT) and deformed
them by generic scalars X such that the deformations preserve integrability. Being IQFT, these theories
have an infinite number of conserved currents (Ts41(2),©s—1(2)) and (Ts41(2), Os—1(2)), where the index
s represents the spin of the corresponding fields thus labeling the currents. The scalars X are defined in
terms of these local currents. For example, X; is precisely the composite operator TT considered in our
paper.

4For non-perturbative studies of the TT-deformed theories, see [47, 48].



3 The TT-deformed free massive Dirac fermion

Consider the Euclidean action for the free massive Dirac fermion with mass m,

I() = /d:l,‘ldl’z EO = /d:ﬁldl’g (’MZJ’Y“@FLU) - TINZJQJJ) . (3.1)

Performing a Wick rotation to the Euclidean action 7y = it and xo = =z, yields the
Lorentzian action,

= -— / drydry Lo = i / dtdz (— iy O + m) | (3.2)

where the y*s are the two dimensional gamma matrices satisfying the Clifford algebra,

(=201 (3.3)

and 7, is the two dimensional Minkowski metric. We represent the gamma matrices in
terms of the Pauli matrices: 79 = 0, and v = —ioy,.
The equation of motion for the fermionic fields v and ¢ are given by,

ivFOup —mip =0 and i@,ﬂﬂ’y“ +ma = 0. (3.4)

To solve the Dirac equation (3.4), make the ansatz, ¥(z) = u(k)e**. Plugging the
ansatz into the Dirac equation and using the normalization uf(k)u(k) = 1, one finds the
normalized positive energy plane wave solution,

(k) = VE+ + k! B VIO £ kT (35)
o BT ERNCE |

where, B = k¥ = /(k1)2 + m2.

Similarly, using ¢ (z) = v(k)e?™* one can obtain the negative energy plane wave so-
lution,
(k) (‘VE—Ml) (—\/k0+k1 (3.6)
v = m = *0 — 1 .
VE_+k? K k
where, E_ = k¥ = —/(k1)2 + mZ2.
Hence, the solution to the wave equation for the free massive Dirac fermion is,
dk 1 e o
= | ——— (a(k)u(k)e * + b (k)v(k)e*™ 3.7
v@) = [ 5z (aBuEe ™ + b @u@e) | (3.7)

where af (k) and a(k) are the fermion creation and annihilation operators respectively, while
bf(k) and b(k) are the anti-fermion creation and annihilation operators respectively. The
creation and annihilation operators satisfy the Clifford algebra,

{a(k1),a¥(k2)} = 276(k1 — ks)  and  {b(k1), bl (k2)} = 276(k1 — ka),  (3.8)



while all other anti-commutators vanish. The Dirac adjoint of a spinor v is defined as,
¥ =iy’ i

Consider the TT-deformation of the free massive Dirac fermion in two dimensional
Euclidean spacetime,

I= / d*z L(N) = / dzidrs (v Ouh — mph) + A / dr1dzs Opg (3.9)
where O, is the local TT-operator given by the determinant of the energy-momentum
tensor,

1 v _po 1 2 v
Opg = det(TW) = Ze e THTY) = o (T,0)? = T ] (3.10)

" the two-dimensional Levi-Civita tensor and 7T, ;El))) the energy-momentum tensor of the
finite-\ theory.
The canonical energy-momentum tensor of the undeformed theory is given by,

T,Eg)(c) = X — 0 (Tr X —mapy)) (3.11)
where )
1 - _
Xpw = 501000 = 0mu) (3.12)

The above canonical energy-momentum tensor can be symmetrized using the Belinfante

technique, yielding

T\ = Xy — 6 (Tr X — miph), (3.13)
where
- i/- _
X,uzl = 5 (1#7(#31/)?/) - 3(y¢%)¢)
= < (000 + V000 = Dbyt — ) (3.14)

The TT-deformed Lagrangian of the free massive Dirac fermion can be obtained by solving

the TT flow equation [6],
OL(N)
—n =917 (3.15)
with the initial condition £(A = 0) = Lo.
Solving (3.15) perturbatively in the TT-coupling ), one finds the TT-deformed La-
grangian for the free massive Dirac fermion [6],
T - Ao s s s n
L) = (i7" G — mip) — 5 (X XM = (X192 + 2mipp X,/ — 2m? (90))?)
N = N9
+ 5 mi (X XM — (X,1?), (3.16)

where X',w is given by (3.14). It is noteworthy to mention that the T7T-deformed La-
grangian (3.16) is exact in A, all the higher order terms in A vanish identically due to the
Grassmann nature of the fermion fields.?

5 Although, terms proportional to X* can be present at third order in the TT-coupling A, the authors
of [6] claimed that the O(A\*) term vanishes by using Fierz identities. It is also possible to verify this claim
directly by plugging the expression into MATHEMATICA.



Therefore, the TT-deformed Lorentzian action of the free massive Dirac fermion is,
I= dridze L =1 [ dtd jhyH0 b A (%0 XM — (K1)
—I =~ [ deides £ =i [ dtde | (<iy" 00+ miw) + 5 (XX = (X,0)

- _ 22 - - -
+2mp X = 2m? ()?) = Tmip (Ko X (X#“)2>] .
(3.17)

In what follows two-to-two scattering in the T'T-deformed free massive Dirac fermion theory
will be considered. The S-matrix, S(#), will be computed perturbatively to second order in
the TT-coupling A. Finally the S-matrix will be compared with (2.7) and the renormalized
Lagrangian will be constructed.

4 Renormalization of the TT-deformed free massive Dirac fermion

In section 3, the classical Lagrangian of the TT-deformed free massive Dirac fermion was
stated. In this section the renormalized Lagrangian will be computed to second order.

In order to compute the renormalized Lagrangian similar methods to those found in [30]
will be used. First, the S-matrix will be computed using the classical Lagrangian giving
rise to UV divergences. Next, counterterms will be added to the Lagrangian in order to
cancel the divergences and ensure that the final S-matrix is given by (2.7).

4.1 The S-matrix

Consider the two-to-two scattering of a fermion and anti-fermion in the TT-deformed free
massive Dirac theory,’

fitfo— fs+ fu

where f; represents the incoming fermion with momentum py, f» the incoming anti-fermion
with momentum ps, f3 the outgoing fermion with momentum ps and f4 the outgoing anti-
fermion with momentum py4.

Recall, due to the two dimensional kinematics of two-to-two scattering the momenta
of the incoming particles equal the momenta of the outgoing particles. When considering
fermion anti-fermion scattering the 0*M-order S-matrix is just the identity. Hence, the
momentum of the incoming fermion must equal the momentum of the outgoing fermion
and the momentum of the incoming anti-fermion must equal the momentum of the outgoing
anti-fermion.” In particular,

P1=Dp3 and P2 = P4. (4.1)

50One can also consider the other possible two-to-two scattering, namely, the fermion-fermion scattering.
However, the resulting renormalized Lagrangian would be the same as it does not depend on the particular
scattering process. Because of this fact only the fermion anti-fermion scattering process is considered.

If scattering in a scalar theory is considered [30], one can choose p1 = ps and p2 = ps also. However,
it is easy to see that if one works with fermions, we must have p; = p3 and p2 = p4 to have a non-zero
scattering matrix.



By (2.1) and (4.1) the Mandelstam variables in the (+, —) signature take the form,

s = (p1 + p2)? = 2m?(1 4 coshh),
t=(p1—p3)?=0,
u=(p1 — p4)2 = 2m2(1 —cosh @) = am? — s. (4.2)

Observe that the Mandelstam variables can be related to each other by the transformations,
u=S8|gp—ir—g and t = s|o—ir- (4.3)

Finally due to (4.1), for the two-to-two scattering in an integrable theory the S-matrix,
S(6), is defined as,

out (P3, Pa|P1, P2Yin = (27)25 (1 — p3)d(p2 — pa)2E(p1)2E(p2)S(6) (4.4)

where the zeroth order S-matrix in the TT-coupling is S(?(f) = 1. The S-matrix S(6) is
related to the scattering amplitude A by [30],

A

5(0) = 4m?2sinh @

(4.5)
However, before computing the S-matrix, express the deformed action (3.17) in a simpler
form. By the field redefinitions,

Yo = o+ AGVa(PY) and o P+ AT (), (4.6)

where a = {1, 2} are the spinor indices, one can write the action (3.17) as

I =3 / dtdx [ —iy O + mapep) + (X,WXW (XH~)2)+%2WE¢ (XWX“”—(XJ‘)Q)} :

(4.7)
A Jacobian factor arises in the path integral due to the above field redefinition (4.6),
however it does not produce any non-trivial contribution to the two-to-two S-matrix as
will be shown later. For details of the field redefinition and the Jacobian see appendix A.
Observe that the new action (4.7) no longer contains linear terms of the form )X ps
and (1/_11/1)2, making it simpler to compute the one-loop bubble diagrams by decreasing the
total number of terms. Also, the second order term in the redefined action (4.7) has a
relative sign difference in comparison to the original action (3.17).
The two dimensional Dirac spinors u(p;), w(p;), v(p;) and v(p;) will arise in the compu-
tation of the S-matrix. Using (3.5), (3.6) and the fact that p§ = p' = (mcosh6;, msinh6;)
and pf = pb = (mcosh 6y, msinh6y) the two dimensional Dirac spinors can be written as,

v/cosh 01 + sinh 6, — ul(ps) u(p) = Vi v/cosh @5 + sinh 6, — u(py)
Vcoshf —sinhf; | P3) p2) = Vcoshfy —sinhfy | b4

—+/cosh 07 +sinh 0, —o(ps), v(p) = Vi —+/cosh @y + sinh 0, — o(pa)
Vcosh) —sinh 6, | p3), ViP2) = V/coshfy —sinhfy | P4)-
(4.8)




pl\ /pz

p3/ \p4

Figure 1. Tree-level diagram that contributes to the S-matrix at first order.

The Dirac adjoints ﬂ(pl) = u(p;)T7° and v(p;) = v(p;)T1° can be written as,
=m ( \/cosh 01 — sinh 01+/cosh 01 + sinh 6, ) = u(ps

)

)
vVm ( \/cosh 0y — sinh 05+/cosh 05 + sinh 05 ) u(ps) ,

o(p1) = \/Fn(\/cosh& — sinh 6; — v/cosh 6; +sinh01) v(ps3),
vm ( \/cosh 0y — sinh 0 — \/cosh 05 + sinh 0 ) v(pg) - (4.9)

It is finally time to compute the S-matrix perturbatively up to second order in the T'T-

coupling A using the redefined Lagrangian,
L) = Lo+ Li(N) + La(N), (4.10)
where,
Ly = _ill_}"yuauw + ml/_”/} )
Ao ouw -
L) = 5 (XX = (X))
A2 ~ 9
Lo()\) = ?quﬂ(XWX“” —(X,172). (4.11)
4.1.1 First order S-matrix

At first order in the TT-coupling A, the S-matrix only gets a contribution from the tree-
level diagrams of the form found in figure 1, where the vertex corresponds to the quartic
couplings, X, X" or (X /)%, The total contribution to the tree-level amplitude of a
fermion anti-fermion scatering process is,

AW = i%(0|b(p4)a(p3)T[XWXW — (X,/)?]al (p1)b' (p2)]0). (4.12)

In order to evaluate (4.12) compute the general contribution to the amplitude of four

external fields with arbitrary indices for the fermion anti-fermion scattering process,
1 _
A = (0b(pa)a(ps) T [athytbetba] al (p1)bT (p2) 0)

=1 (p3)0p(Pa)Ve(p2)ud(p1) + Va(p2)up(P1)tc(P3)va(pa) — Va(p2)ve(pa)tc(ps)ua(p1)
—Uq(p3)up(p1)Ve(p2)va(pa) (4.13)



where the four possible Wick contractions were performed, u,, v,, %, and v, are the Dirac
spinors given by (4.8) and (4.9) and a, b, ¢,d = {1,2} are the spinor indices.

The total first order amplitude can be computed by plugging each vertex into (4.13)
and adding the results together. By (3.14), the quartic couplings X W)N( ¥ and ()2' M“)2 can
be expressed as,

-~ 1,- _ _ _ _ _
Ry X1 = =2 (090 0 = 20,0, 00 Py + 80 iy ) (4.14)

(X, =~ (59" 0ut0 92" 0tp — 2" Dy + By D). (4.15)

Using (4.13) the tree-level contribution from each of these terms in (4.14) can be computed
and thus the contribution from X ;wX ¥ to the tree-level amplitude can be determined.
For example, the first term in (4.14), zﬂy(uﬁy)wlﬁ'y(uﬁ”)w contributes as

(1) :
wﬁ(uau)ww’Y(“ ay)w

= 'yabmﬁfj [ﬂa (P3)Ub(p4)?7c(p2)ud(z?1)ip4y)(—i)pT) + 7, (p2)ub(p1)ﬂc(p:s)vd(m)(—i)pw)ipz)

00 (P2) 0y (p) e (P31 (P1)ipa) (=YY = (D3 (1) Bel(p2)va(pa) (=)p1sy v |

= Uu(p1) - Y(uP2v) - v(P2) V(p2) AP u(pr) + B(pa) V(P - u(p1) ulpr) ) o(py)
—5(p2) - Y(uPaw) - v(p2) @lp1) VY u(pr) — A(p1) - Vupr) - ulpr) B(p2) -7y - v(p2)
= —2m*(1+ 3 cosh § + 2 cosh 20) (4.16)

where on the first line the general amplitude, (4.13), was used, a factor of +i appears
whenever a derivative operator acts on ¢ or 1.8 (4.1) was used to get the second equality
and on the final line the mathematical expressions for the Dirac spinors (4.8) and (4.9)
were plugged in.

Similarly, the contributions from the other two terms in (4.14) can be computed. The
computation yields,

(1) _ 4
A%(#au)waw%% = —2m*(1 — cosh @ — 2 cosh 26) (4.17)
AW = —2m*(1 + 3cosh § + 2 cosh 20) . (4.18)

a(;ﬂﬂyu) 1/18(“7])7”1#

Adding together (4.16), (4.17) and (4.18) according to (4.14) gives the contribution of the
quartic coupling X WX m

(1) _ oo i o4 i a i
AXMVX”V B 4 (AT/J’Y(Mau)T/WV(“a”)w 2“41/1“/(“3@1/13(”#”7”)#’ T Aa(uiﬁ%)wa(“wW”)%b)
= 4m*(cosh § + cosh 26). (4.19)

814 appears if the derivative operator acting on (x) gives an outgoing momentum p3 or py, while —i
appears if the derivative operator produces an ingoing momentum p; or p2 upon acting on ¥ (x).

~10 -



One can compute the contributions from the three terms found in (4.15) to evaluate the
contribution from (X lﬂ)2 to the tree level amplitude in a similar manner,

(1) !
A%“%w%‘ﬁm = —4m*(1 4 cosh0)
@ — A
A%”fhwuivw = 4m”(1 + cosh 6)
(1) !
'ABMWW&/MW = —4m*(1 + cosh9). (4.20)

Adding the terms in (4.20) according to (4.15) yields the contribution from the quartic
coupling (X'M“)2,

o _ oo P . 1) i
A(X;f‘)? T4 (Awwawwayw QAwwawauww * Aauwwwauwv"w)
= 4m*(1 + cosh ). (4.21)

Substituting (4.19) and (4.21) into (4.12) gives the total tree-level amplitude,

AV = i3 [“4%»@» - A&“)Q} = 4iAm” sinh® 0. (1:22)

Therefore, by (4.5) the first order S-matrix is,

5<1>(9)—L— ;Am? sinh 6 (4.23)
= dm2sinhg TSR '

This result exactly matches with what one would expect from (2.7) at linear order in the

TT-coupling \.

4.1.2 Second order S-matrix

At second order the S-matrix gets contribution from one-loop diagrams. At one-loop, two
types of diagrams can contribute to the second order amplitude: the first is the tadpole
diagram while the second is the bubble diagram. Both of these diagrams will be computed
in this section.

Contribution from tadpole diagrams

The second order Lagrangian of the TT-deformed free massive Dirac fermion can be writ-
ten as,

. D Y
iLa(N) = i | G (X X = (X,?) (4.24)
where,
- 1- ,- _ _ _ _ _
PR X = =200 (000 0y 10 — 20,0, 00 PPy + B0 iy )
(4.25)

PORLY = 300 (70 07" Ot — 2070 Do+ D™ D) . (4.26)

- 11 -



Since the interaction vertices contain six fields, two internal fields must be contracted
resulting in loops. The sextic couplings give rise to the one-loop tadpole diagrams shown
in figure 2 and contribute to the second order S-matrix. The corresponding amplitude is
given by,

Atad_'A2 " % LY v )2 T T
- 2?<O|b(p4)a(p3)T[mww(XWX — (X, |at ()b (p2)]0) - (4.27)

Just as in the first order case one can evaluate (4.27) by first deriving the general amplitude
of a general sextic coupling,
Af;jwchwd{,ewf = <0|b(p4) ( ) [%wb?ﬁc?ﬁd%lﬂf} aT(pl)bT( )‘0>
(1
= —(n(@)du()) w)wdw g T (Wal@hba (2) A, wcwbw gy~ Wr (@)l DA, wcwbwewd
+(Un(@)bel@)) AT, 5. py ~ (U@ De(@)) A, wawdwcwf (Y "”> wawbwewf
)

)
+<wf(x)i“(x)>“4$)wbw pa T (Vala Ve () Ebl)wbwcwf (s (@)pe(@)) Ebl)wbwcwd
(4.28)

{,C

where all possible Wick contractions of fermionic fields were performed and A(l S oBetba

represents the amplitude from a general quartic coupling 1, ¥pib.0q given by (4.13). The
internal propagators give rise to loops whose values are derived in appendix B,

(Ya(x)(x)) = Noda, (4.29)
(0" pa(2)p(2)) = —(Wa()0"P(x)) = N1y, (4.30)
(0"4pa ()" 4y () = imNyn/"™ 8 (4.31)
where,
m m?
Ny = —Elog <A2> , (4.32)
iA2 m2 m2
Ny . 1+ Flog (AQN , (4.33)

and A is the UV cut-off.

Using the general expression for the amplitude of a sextic coupling, (4.28), one can
compute the contribution of ¥ X Wf( M by evaluating the contributions from each term
of (4.25). The contribution of the first term in (4.25) is explicitly computed in appendix D.1
to be,

tad B o
Alﬂiﬂwv(ual,)ww%“@”)w =0, (4.34)

where (4.29), (4.30) and (4.31) were used to obtain the above result.
Notice that the last term in (4.25) is the complex conjugate of the first term and will

hence give a vanishing contribution to the amplitude as well,

tad .

- 12 —



Figure 2. Tadpole diagram that contributes to the S-matrix at second order.

The second term in (4.25) gives a non-zero contribution to the amplitude and can be

computed in a similar way,

m2 2

3A2
tad m ll +4(2 - coshf) — log :'32] cosh? g (4.36)

PPy (O YOy — T T A2

Combining (4.34), (4.35) and (4.36) according to (4.25), the total contribution from the
sextic coupling W}Z W)N( s,

1
tad _ = tad _ B . tad B tad B
A xm = 7 ] [Aw«z)wmau)wwa% 2A 500y 00 iy AGb0 w0 Gy
3A2 2 2 0
— - 1+4(2—coshb) % log TQ] cosh? 7 (4.37)

Following the same steps as in (D.1) one can compute the contribution from the other
sextic coupling (X M”)2 by determining the contributions from each term in (4.26),

tad i
Absirrd iy = O
3A2
tad . m A
A?Wif)wauw@y&yw = (1+ cosh6)
tad .
qu'll’auqr/;?/“waud;’yl’dx = 0. (438)

Combining the individual amplitudes according to (4.26) the total contribution from the
sextic coupling Yi(X u")2 is,

1
tad _ | gtad_ B _ tad _ B tad _ B
1;1/}()2#“)2 - 4 [Awwzﬂv“amwv”auw QAT/wa'Y”aud’avw’Y"d’ + A¢wauw'7“¢ar/¢7uw}
3A2
- m2 (1+ cosh ). (4.39)
™

Finally, substituting (4.37) and (4.39) into (4.27) yields the contribution to the amplitude
from the tadpole diagrams,

A2 tad A2mS 0 | A2 mﬂ

tad _ ;7% ad . _ gtad _ 27 e . e
A _ng(AszWXW Aww(xu#)Q)— i cosh 5 3m2+4(2 cosh@)logA2

(4.40)
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~P3

wa wb wc 'L’}d

PIN P LN

p1+p2+ql “1 p1-pa+ql q
1,“7}8 Uj Ujg wh ﬂ;e 'L//f h_}g wh
P, P D1 NP2
(a) s-channel. (b) t-channel. (¢) u-channel.

Figure 3. The s, t and u-channels of a typical bubble diagram that contribute to the S-matrix at
second order.

Converting from amplitude to S-matrix using (4.5) yields the tadpole contribution to the

S-matrix,

Atad )\2m4
tad _ —
§70) = 4m? sinh 0 ‘ 327

0 [ A? m?
coth 3 [3m2 + 4 (2 — cosh ) log /\2] . (4.41)

4.1.3 Contribution from bubble diagrams

The final and most complicated contribution to the S-matrix is the contribution that arises

from the first order term in the Lagrangian squared,

1 . 2 1 /idN\2/ ~ ~ SN 2

51 (L1007 = 55 () (KX = (X1)%) (442)

These interaction vertices give rise to one-loop bubble diagrams of the form figure 3.
From (4.42) there are three different kinds of bubble diagrams:

(a) both vertices contain X, X" interactions,
(b) one vertex contains interaction X,y X”* while the other contains (X /)% and

(c) both vertices contain (X ,/)? interactions.

For the bubble diagram case the amplitudes will be split up into s, ¢ and u-channel con-
tributions to the amplitude, as shown in figure 3. As done in the previous cases, begin
by writing down the general expressions for the amplitude where both vertices x and y
contain arbitrary non-derivative quartic couplings. These expressions will be the building
blocks for the computation of the amplitude from the bubble diagrams.

In order to compute the general contributions of the s, ¢ and u-channels to the ampli-
tude consider the case when the vertex x involves a quartic coupling ¢ () ()Y () q(z)
and vertex y contains another quartic coupling ¥e () (y)1by (y)n(y).

The general contribution of the s-channel (figure 3a) to the amplitude is given by,
Bl iesan = (O1b(pa)alps) T [0 (y) s (1) (9)n () ()io @)ibe()ba() | af (p1)b () 0)

_ d?q /_ _
= —Uc(pz)ud(pl)/#(Ue(pS)Uf(IM)Gha(f+Q)Gbg(Q)_Ue(pfi)vh(pél)Gfa(ﬁ*'Q)Gbg(Q)
1y (p3)0 (2) G (€ + @)Goe (@) + g (93U (04)G 10 (€ +) Gie (4)
d?q

—17a(p2)ub(p1)/W(ﬁe(pfz)vf(p4)th(f+Q)Gdg(Q)—fbe(pg)vh(m)ch(f‘f'Q)Gdg(Q)
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—Ug(p3)vf(Pa)Ghe(§+q)Gae(q) + g (P3)Uh(P4)ch(§+Q)Gde(Q))

+Ua(p2)ud(]91)/(;l;§2(Ue(PS)Uf(P4)th(§+Q)Gbg(Q)—Ue(PS)Uh(sz)ch(f‘f'CI)Gbg(Q)

—1g(p3)vs(Pa) Gre(§+q)Gre(q) +ig(p3)vn (p4)ch(£+q)Gbe(q))

+0c(p2)up(p1) / (;lﬂ) (ue(p:s)vf(m)Gha(§+q)Gdg( ) = Ue(P3)vn(pa)Gra(§+a)Gag(q)
— g (p3)vs (pa)Gha(§+q)Gae(q) +g(ps)vn (p4)Gfa(£+q)Gde(q)) , (4.43)

where €2 = (p1 + p2)? = s and Gu(q) = % is the fermionic propagator in the free

theory.
Next consider the contribution of the ¢-channel (figure 3b) to the amplitude. Since
p1 = p3, the general ¢t-channel contribution to the amplitude is given by,

Bt sgn = (O1b(Da)a(ps) T [De ()5 (0) g () (9) b (2)8 (2 e )ba(r) | af (p1)b (2) 0)
_ d*q

= welps)uan) [ G553

e (p2)vn(P4)G 1a(0)Gog (9) + T (p2)07 (1) Ga (0) Ging ()
d2
(2r)2
e (p2)vn(P4) G 10(0) Gag (9) + T (92)07 (1) Gie(0) Gy () )
d2
(2r)2
—0e(p2)0n(P4) G 1e(a) G () + Be(p2) s (P1) Gel9) Ging ()

(Ug(pz)vh(m)Gfa( )Gre(q) — Vg(p2)vs (P4) Gha()Goe(q)
Fia(pa)us(pr) [ 5

(Ug(pz)vh(m)ch( )Gae(q) — Vg(p2)vy (1) Ghe(q)Gae(a)

ﬂa(p:a)ud(pl)/ (Ug(pQ)Uh(ZM)ch( )Ge(q) — Vg(p2)v5(P4) Ghe(q)Gre(q)

d2
_710(]93)1%(]31)/ (27)? (”g(p2)”h(p4)Gfa( )Gae(q) _59(p2)”f(p4)Gha(q)Gde(q)
—0e(p2)0n(24)G 1 (@) Gty (@) + Be(p2) s (94) G (4) Gy (q) ) - (4.44)

Finally consider the contribution of the u-channel (figure 3c) to the amplitude. The general
u-channel contribution to the amplitude is given by,

B hieran = (Op1)a(s)T [We(y)ios (1), (1) () ba (@) (@)be @) ba() | al (pr)ET (p2)[0) )

= (ud(Pl)Ub(m)ﬂe (p3)Vg(p2) — ua(p1)ve(pa)tiy(p3)Ve(p2) — s (P1)va(pa)tic(p3)vg(p2)

Fanp0)a o)y 025 02)) [ (Gl = 0Gial) = Gna(C~ 0Gela)).
(4.45)

where (? = (p1 — p4:)2 = (p1 —p2)2 = u as py = pq.
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Notice that a general s-channel amplitude (4.43) involves evaluation of the one-loop

integral,
. 42 d’q i(y-(E+q) +m) iy -q+m),
Iébld(f) = /(27:§2Gab(f+Q)ch(Q) _/(2732 (€ +q)2 —m? : 2 —m? !

B / d*q o€ + 0ty + MBap Vg + MYy (§ + @) uded + M Sapded

(2m)? (£ +@)? —m?](¢? — m?)
= L) (mfasdoa + m*Surben) = (Earken () + mIw L (€) + mL (€)60a)
— VL (E) (4.46)
where €% = (p1 + p2)*, Ly = VLY, £y = AL and
L(S)_/ d*q 1 _ m+il
) @22 [(E+9)2—m2](¢2—m?)  4mm?2sinh@’

(s) _ d2q du . T+ 10
LH B / (2m)2 [(§E+q)? —m?] (¢> —m?) ~ 8rm2sinh 6 S

(s) — d2q duqv
b / (2m)2 [(§+q)2 —m?] (¢* —m?)

2

A 0
1+logm+(i7r—9)tanhf Nuw +

5 [14 (im — 0) coth 8] £,&, .

7
T 16mm?2 cosh? g

(4.47)

The above integrals are derived in detail in appendix C.

Similar yet simpler integrals are involved in the evaluation of the general contribution
to the amplitude of ¢-channel (4.44). In the ¢-channel case the integrals are much simpler
as both the internal propagators carry momentum ¢ since p; = p3 and take the form,

d2q
Ii?cd = /WGab(Q)ch(Q)

= —m”Sap0al ) - (m(sabLgi) + ngtb)(scd) — Yhveali) (4.48)
where,
L(t) — / d2q 1 ’ L(t) _ / d2q du ’ L(t) _ / dzq quv '
(2m)2 (¢ — m2)2 H (2m)? (¢% — m2)2 i (2m)? (¢ — m2)2

(4.49)

However, there is no need to explicitly compute L), Lff) and LEB as their values can easily

be obtained from their s-channel counterparts (4.47). In section 4.1, it was shown that
the t-channel corresponds to 8 — i¢w. Thus, one can simply substitute § — im and £ — 0
into (4.47) to obtain the corresponding t-channel loop integrals L(®), L,(f) and L,(fg Hence,

L@

- 4rm?’ ® - 87 m?

: LY=o, LY = — (1 ~log 2 ) My (4.50)
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In the u-channel case (4.45) one must compute the following loop-integral similar to the
s-channel case,

u d?
3@ = [ GriaGanlC — 0Cala)
= ~L(Q) (mfudea + m?Swdea) = ({uslea (€) + mdankii) (€)= mbyy) (¢)dea)
+75b'7é/dL£g/)(Q , (4.51)

where (¥ = (p1 — pa)* = (p1 —p2)* and

() _ d?q 1
- / (2m)% [(€ = ¢)? = m?](¢* — m?) |

w _ [ 4 Gy
LN - / (27-‘-)2 [(C _ q)Q _ m?] (qQ _ m?) ’
(w) _ d2q qudv
1 = [ G (€= a? - m?(@ —md) (4.52)

Similarly to the t-channel case, it was shown in section 4.1 that the u-channel corresponds to
0 — im—6. Hence, naively one can evaluate the u-channel loop-integrals L(*), LELU) and Ll(ff,)
directly from their s-channel counterparts (4.47) by replacing 6 — im —.° However, notice
that in the u-channel loop integrals (4.52) the functional dependence of the integrands on ¢
is of the form ¢ — ¢, while in the s-channel loop integrals (4.47) the corresponding functional
dependence is £ 4+ gq. Therefore, since the functional dependence of the integrands on ( is
¢ — q, an extra minus sign must be included whenever the integrand is odd in ¢,

0
w) ;Y
L z47rm2 sinh 6’
0
Lw_;_ 7
® z87rm2 sinhGC’“
j A? 0 i
L® = — 1 +1log = —fcoth o | gy — ——————— (1 —Ocoth0) CuCy. (453
m 8T + 08 m?2 €0 2 "l 167mm? sinhzg ( coth ) GuG ( )

The derivations of the above integrals are given explicitly in appendix C.
When the vertices have derivative interactions the amplitudes involve more complicated
one-loop integrals,
d’q &
(I,uy",un)abcd(é.) = / (27T)2 H QMGab(‘S + Q)ch(Q) ) (454)
1

=1

which requires the computation of integrals of the form,

2
d2q H:L:—i_l qu‘

Ly opinyn = 972 [(£+ ¢q)? — m?](¢% — m?)

(4.55)

9Replacing 6 by im — 6 is equivalent to replacing &2 by ¢2.

17 -



where n € {0,...,4}. A detailed discussion on the evaluation of these one-loop integrals
can be found in appendix C. At this point one can plug the one-loop integral expressions
and vertices into MATHEMATICA to obtain the contribution to the amplitudes from the
s, t and u-channels.

It is important, however, to mention that in the S-matrix computation for a T7T-
deformed scalar [30], one does not need to calculate amplitudes for all the channels ex-
plicitly to compute the total amplitude. Rather, one can use the following trick: evaluate
the s-channel amplitude explicitly, then consider the appropriate limits to obtain the ¢ and
u-channel amplitudes. However, such a procedure can not be performed when there are
non-trivial polarization vectors that depend on the momenta or rapidities of the external
particles. To compute the total amplitude of the TT-deformed free massive Dirac fermionic
theory one must take into account the external polarization vectors described by the Dirac
SpINors ug, Vg, e and v, which depend on the rapidities 6; of the particles. Thus the naive
substitution § — im or § — iw — @ into the final s-channel amplitude would produce incor-
rect results for the amplitude from the other channels and hence they must be explicitly
computed.

(a) Bubble diagrams with both vertices containing interaction X WX i

First consider the bubble diagrams where both vertices of figure 3 contain quartic couplings
X W)N( ¥ The amplitude due to these kinds of bubble diagrams is given by,

) (O1b(pa)a(ps) T [ K (1) £ (5) Xpa () X7 (@)l ()b (2)]0)

N

Aa

1
2l
DY) @)DV (y) ()00 (@) (2)7 V) (x)
D)0 () W)Y (y) D ()10 ()P ()Y Ve ()
20(9)7(u0n) Y ()0 (W)Y () D (@) Y0000 (@) ()7 PN ()
()10 W) (y)y D (y) (@), 0 ()0 ()N v (x)
—20(y)Y(u00) P () I DY)V YY) O (@) yn ()P ()N (=)
0 ()1 @)D ()P (y) D(@)ypOn (@) @)y OV y(x)
=200, (Y)Y () OH DYV V() (@), 008 ()0 (@) ()

+0 0 () ()b ()Y V() D () 1ay b (2)0 P (2)y M () ]a*(pl)bT (p2)[0).
(4.56)

(;) (O (p1)a ()T [0 0 ) B #06(0) B 00 @) 70 ()
~2¢
(

Denote the contribution to the amplitude from the i*" term in (4.56) by A{(S’) ()}
The total s-channel contribution to the amplitude in the case where both vertices contain
quartic couplings XWX H can be computed by plugging the terms found in (4.56) into
the general s-channel amplitude (4.43). This computation is done for all nine terms found
in (4.56) in appendix D.2.
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Combining the s-channel contributions, (D.3)—(D.11), gives the total s-channel ampli-
tude from the s-channel diagram where both vertices contain quartic couplings X WX' .

AL = 2 (AL 4 ALD 4 AL

2,6
= Am [9600% csch 6 (10 + 2 cosh 6 + cosh 26 + 2 cosh 36 + cosh 46)

384007

A2 A2 A4
41 | 49852 — 2520— — 38400 log m +coshf | —21889 —11040— — 1350—
m?2 A m?2 mi

A2
+ 96000 log T) 424 cosh 20 (—1587 — 655 +32001log T) + cosh 36 < 14647

+38400 log 7;;) + 96006 csch 6 (10 + 2 cosh 6 + cosh 260 + 2 cosh 360 + cosh 49))1 .
(4.57)

An extra multiplicative factor 2 arises from the identical contribution of the diagram with
the two vertices x and y exchanged. The same factor will be included while computing the
t and u-channel amplitudes.

The t-channel contribution to the amplitude when both vertices contain the quartic
coupling X WX' ¥ can be computed in a similar method to the s-channel contribution. The
total t-channel contribution to the amplitude can be computed by plugging the terms found
in (4.56) into the general t-channel amplitude (4.44). This computation is done for all nine
terms found in (4.56) in appendix D.2.

Combining the t-channel contributions, (D.13)—(D.21), gives the total ¢-channel ampli-
tude from the ¢-channel diagram with both vertices containing quartic couplings X WX w

AW = 2 (AL + AL 4+ AL

A2mS A2 A* A? m m
j—— 18— +9— +2cosh 1 — +192log — | — 12 h20 (1+2log— )| .
o [ m2+9m4+ cos 0(3 +33m2+ 9 ogA> 8 cos 9( + ogAﬂ

(4.58)

The total u-channel contribution to the amplitude from the same quartic couplings as
above can be computed in a similar method to the s and t-channel contributions. This is
evaluated by plugging the terms found in (4.56) into the general u-channel amplitude (4.45).
See appendix D.2 for the u-channel contributions of all the individual terms in (4.56).
Combining the u-channel contributions, (D.23)—(D.31), gives the total u-channel ampli-
tude from the u-channel diagram where both vertices contain quartic couplings X W)N( w

AW = 2 (A AL 4o A1)

AZmS 50 A2 A* A2 m
= —igi—cosh® 2 [18011 + TAT0— +675— + 6 cosh § <—3843 ~2620— +3200log A>
0
+ cosh 26 (14647 — 38400 log %) — 9600 (9 coth 7 +41log % +20sinh 29)] . (4.59)
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Finally, adding together the contributions from the s, ¢ and wu-channels to the ampli-
tude, (4.57), (4.58) and (4.59), one finds the total amplitude from the bubble diagrams
where both vertices contain the quartic interaction X WX w

Ao = AL + AD + AW
A2mb

=—-—— |4 1 4 ; 4571
192007 sinh 6 { 8007 (10 + 2 cosh 6 4 cosh 20 + 2 cosh 36 + cosh 46) + i ((3 57

A2 A2
14860 ) sinh 6 — sinh 20 { 6659 + 9360 — + 9600 log > ) + 4800 (89 — 13sinh flog T)
m2 m?2 A A

. A? m
—sinh 30 | 3163 + 7860—; — 14400 log — . (4.60)
m A

(b) Bubble diagrams with one vertex containing interaction X pAX PA while the
other vertex contains (X'u“)2

Consider the bubble diagrams of figure 3 with one vertex containing the quartic coupling
X pA)N( P* and the second vertex containing the quartic coupling (X’ M“)Q. The amplitude due
to these kinds of bubble diagrams is given by,

2
Av=—2; (i) Ob(pa)aeaT [(X,0)

"X (@)X ()|l (p1)b (p2) 0)

2
257 (13) 15O T 5017 0,50) B Obl) T 0000 POV b(e)

—2(y)7* 0, (y) DUV Db (y) P(2)v(p00) 1 ()0 ()Y V) ()
+OUIV 0,0 (y) LW Ot(y) Ot (@) ()0 (2)y N (x)
2070t (y) DY)V YY) P()v(p0ry 1 (2)h(2)y POV ()
+HAP(Y)r "0 (y) DY) (y) D) Y, 00 ()0 (2)y N ()
—20(y)7* 0 (y) DY)V YY) Db (w)vayth(2)0P ()Y V) ()
0, (Y)Y D (y) Dby U(y) (@) 0n (@) d(a)y POV ¢(x)
—20, ()7 (y) QY)Y YY) ()00 ()0 P(x)y V) (w)
0,0 (W)Y b (Y) (W)Y YY) Ot () 1ayo ()0 P (x)yN () }GT(pl)bT(pz)m)- (4.61)

The multiplicative factor of 2 arises from the two identical types of cross-terms: (X H“(y))2
X (@)X () and X (9) X () (X, ().

Denote the contribution to the amplitude from the i*® term in (4.61) by Ai{)(si)’(ti)’(ui)}.
The s-channel contribution to the amplitude can be computed by evaluating the contribu-
tions from each of the above terms in (4.61) and adding them together. The contribution
to the s-channel amplitude from each term found in (4.61) is computed in appendix D.2
by plugging each term into the general s-channel amplitude (4.43).

Combining the s-channel contributions to the amplitude, (D.32)—(D.40), gives the total
s-channel contribution to the amplitude from the diagrams where one vertex contains the
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quartic coupling X pAX' PA while the other vertex contains the quartic coupling (X' u")Q,

AP = 2 (AP AP e A

AZmS .
= 19900nshd [96007r (94 3coshf+3cosh26+cosh30)+i (9600 6(9+3coshd

A2
+3cosh 260+ cosh30)+12sinh 6 (4147 470—; —4800log TX) —2sinh 20 (3347
m

A2 A A?
60 +225 —14400log ¥ ) +12sinh36 ( 15770~ +1600log ) +251sinh46 ) | .
m2 m# A m?2 A

(4.62)

Just as in the computation of the first type of bubble diagram, (4.57), a factor of 2 arises in
the first line of the above expression, (4.62), because the same contribution would be found
if the vertices x and y were exchanged. A similar factor would appear while evaluating the
t and u-channel amplitudes as well.

Similarly, the ¢t-channel contribution to the amplitude can be computed by evaluat-
ing the contributions from each of the terms in (4.61) and adding them together. The
contribution to the ¢-channel amplitude from each term found in (4.61) is computed in
appendix D.2 by plugging each term into the general t-channel amplitude (4.44).

Combining the ¢-channel contributions to the amplitude, (D.41)—(D.49), gives the total
t-channel contribution to the amplitude from the diagram where one vertex contains the
quartic coupling X p,\f( PA while the other vertex contains the quartic coupling (f( M“)z,

AL = 2 (A 4 AP 1y A

A2mS
- 647

mA

A A2 A?
35 16— +2coshf |15+ 175 +96log = || .  (4.63)
m2 m2 A

Finally, the u-channel contribution to the amplitude can be computed by evaluating the
contributions from each of the terms in (4.61) and adding them together. The contribution
to the u-channel amplitude from each term found in (4.61) is computed in appendix D.2
by plugging each term into the general u-channel amplitude (4.45).

Combining the u-channel contributions to the amplitude, (D.50)—(D.58), gives the total
u-channel contribution to the amplitude from the diagram where one vertex contains the
quartic coupling X pAX PA while the other vertex contains the quartic coupling (X u“’)2,

AR = 2 (A0 AL A

A2m® 0 30 0 0 A2 A4
= ~iginar cosh 5 {4800 0 cosh 5 coth 5t cosh 3 <2063 + 3510W - 225@ + 251 cosh 29)
0 A2
+cosh = cosh @ | —7114 + 840 — + 28800 log — ) | (4.64)
2 m2 A

Finally, adding together the contributions from the s, ¢ and u-channels to the ampli-
tude, (4.62), (4.63) and (4.64), one finds the total amplitude from the bubble diagrams
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where one vertex contains the quartic coupling X p,\X PA while the other vertex contains
quartic coupling (X u“)2,
Ap = AP 4 AD 4 AW

)\2m6 A2
= 8007 sinhd l400ﬂ (94 3 cosh 6 + 3 cosh 26 + cosh 30) — i (smh 0 (—2047 + 930@

91 A? A?
+3600log = | +sinh260 | = + 570~ + 2400log | + 2sinh 30 [ —177 + 35—
A 2 m?2 A m?2

+2001log TX) — 3200 9)1 . (4.65)

(c) Bubble diagrams with both vertices containing interactions (X M“)2

Finally consider the bubble diagrams where both vertices of figure 3 contain quartic cou-
plings (X #“)2. The amplitude due to these kinds of bubble diagrams is given by,

A= ;) (Olb(pa)a(ps)T (W) (£,”())°] a' )" (p2)[0)

- <_Z;) %<0lb(p4)a(p3)T (D)0, (y) YWV O (y) ()10, () P(x)y One) ()
0

=20(y)7" 0 (y) V(Y)Y 0 (y) V(@) Ip(x) Inip(x)y (x)
ﬂ/?(y)v"@w(y) DY 0(y) pib(@)yPi(x) Inip(a)y ()
(Y)Y 0, (y) (Y)Y (y) Y 0ptp(x) ()7 Ori(x)
YV 0, (y) 00wy P(y) Y@y d,(x) Oxib(x)y ()
—20(y)7" 0 (y) Dy P(y) Dpb(x)y () Orip(x)y ()
F0 (VDY) Dby () P(@)y",(x) (@) Ori(x)

o

Ly

(x
(z

/\/-\

4o

—20,40 (Y)Y (y) DY)V YY) (@) ,(x) Inib(a)y (x)
FO WV (Y) D (YU (y) dpih(x)7Pd(x) Inib(x)y (x) | al (p1)bT (p2)[0) - (4.66)

Denote the contribution to the amplitude from the i*! term in (4.66) by AL () e
s-channel contribution to the amplitude can be computed by evaluating the contributions
from each of the above terms in (4.66) and adding the results together. The contribution
to the s-channel amplitude from each term found in (4.66) is computed in appendix D.2
by plugging each term into the general s-channel amplitude (4.43).
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Combining the s-channel contributions to the amplitude, (D.59)—(D.67), gives the total
s-channel contribution to the amplitude from the diagrams where both vertices contain
interactions (X M“)Q,

AL = 2 (AL £ AL 4o AL

A2mb
192007 sinh §

48007 (1144 coshf+cosh260)+1 (4800 0 (11+4coshf+cosh26)

A? A? A4
—8sinh @ —5111-|—1785f-+-960010gm +2sinh26 | 4811+120— — 75—
m?2 A m?2 m4

A2
+24001og T) +24sinh 30 (42+52> + 17sinh49>] . (4.67)
m

Just as in the computation of the first and second type of bubble diagrams, (4.57) and (4.62),
a factor of 2 arises in the first line of the above expression, (4.67), because the same
contribution would be found if the vertices x and y were exchanged. A similar factor would
appear while evaluating the ¢t and u-channel amplitudes as well.

Similarly the t-channel contribution to the amplitude can be computed by evaluating
the contributions from each of the terms in (4.66) and adding the results together. The
contribution to the ¢-channel amplitude from each term found in (4.66) is computed in
appendix D.2 by plugging each term into the general ¢-channel amplitude (4.44).

Combining the ¢-channel contributions to the amplitude, (D.68)—(D.76), gives the total
t-channel contribution to the amplitude from the diagram where both vertices contain
interactions (X #“)2,

AW = 2 (AL 4 AL 4o AL

2

2,6 A2 A4 A
32 430~ — = 1 192log ¥ — 2coshf [ 7+ 9° +48log || .
m?2  mt A m2 A

Am
64

= —1

(4.68)

Finally the u-channel contribution to the amplitude can be computed by evaluating the
contributions from each of the terms in (4.66) and adding the results together. The con-
tribution to the u-channel amplitude from each term found in (4.66) is computed in ap-
pendix D.2 by plugging each term into the general u-channel amplitude (4.45).

Combining the u-channel contributions to the amplitude, (D.77)—(D.85), gives the total
u-channel contribution to the amplitude from the diagram where both vertices contain
interactions (X #“)2,

A = 2 (AL 4 AL g AL

A?m® 0 A? At m A2
—i h? - 2179~ 2370 —; + 75— — 14400log — +2coshf | 119+60—;
224007Tcos 2[ 79 370m2—|—75m4 00 ogA+ cosh@ 9—1—60m2

—17cosh26—2400 6 coth g} . (4.69)

~93 -



Finally, adding together the contributions from the s, ¢ and wu-channels to the ampli-
tude, (4.67), (4.68) and (4.69), one finds the total amplitude from the bubble diagrams
where both vertices contain interactions (X ”“)2,

Ao = A + AL +AM
AZmS

s A? m
= ~ 3100~ suhd |:6007T (11 +4cosh 6 + cosh 20) — i (smh 0 (—7586 + 1800W + 9600 log A>

A2 A2
_3sinhfcosh 20 (101 +20° ) +sinh 20 (2222 1 8702 4 4s0010g ™ ) — 4800 6| .
m2 2 m2 A

(4.70)

Total contribution from the bubble diagrams to the amplitude

The total contribution to the amplitude from the bubble diagrams is the sum of (4.60),
(4.65) and (4.70),

APUPIE = A, 4 Ay + Ao

2

AZmS 0 A
— 2220 sinh3 4 — i48(;g7r cosh? 7 [27683 + 9240 — 38400 log %

A? m
—2cosh 6 | 10447 + 5940— — 240001og — | | - (4.71)
m A

Total second order S-matrix

Adding the tadpole contribution (4.40) and the bubble contribution (4.71) to the amplitude
gives the total second order amplitude,

.A(2) _ Atad+Abubble

A2mb 0 A2 m
= —2X?mSsinh36 — i h? = |2 12840— — 19200 log —
A’m” sinh” 0 Z48007r cos 5 7683 4+ 128 Om2 9200 ogA

A? m
—2cosh 6 | 10447 + 5940—; — 192001og — | | - (4.72)
m A

Therefore, by (4.5) the second order S-matrix is,

A2
2 _
st )(9> " 4m2sinh 6

_ L agmeg XMt 6 927683 + 1284OA—2 — 19200 1og

T3 384007 2 m2 &
A2 m

—2cosh 6 ( 10447 + 5940 — — 192001og = | | . (4.73)

m A

It is interesting to note that at second order, the real part of the amplitude comes only
from the s-channel, while the ¢t and u-channels give purely imaginary contributions to the
amplitude.
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4.2 Renormalized Lagrangian

Now that the S-matrix has been computed the TT-deformed theory can be renormalized
by demanding that the S-matrix has the form (2.7).
Discarding the imaginary finite pieces of second order S-matrix (4.73) yields,'°

1 A2 0 A? A?
SP(0) = —=\2m*sinh20 — i~ coth = |12840— — 19200 log — — 2 cosh § | 5940 —
2 2 m?2 m2

384007 A
— 19200 log T)]

1
= —§A2m4smh29—z‘ coth 3 | o 5~ log ¢

320 m? 2 A
(4.74)

s

A2m 0 [10799 cosh® A2 1—2coshé m]

Observe how the first term in (4.74) is exactly the expected second order S-matrix in an
integrable field theory, but (4.74) also contains an extra divergent imaginary part. The
S-matrix was computed using the classical (bare) Lagrangian (3.16), so counterterms must
be added to the classical Lagrangian in order to get rid of the divergent imaginary part of
S@2) (0). In this process the Lagrangian will be perturbatively renormalized up to second
order in the TT-coupling M.

It is important to mention that the integrable structure of the T'T-deformed free mas-
sive Dirac fermion theory is what enables the theory to be renormalized perturbatively.
In general, the scattering amplitude of a quantum field theory may contain logarithms of
functions of Mandelstam variables, which involves 6.!'' However, local counterterms can
never cancel a term involving # and can only cancel terms involving powers of cosh? (g) 12
Due to the integrable structure of the theory, our final amplitude does not contain terms
involving 6 although individual contributions to the amplitude have terms involving 6. This
is expected because the S-matrix of an integrable theory can not have branch cuts and can
only have poles.

Discarding the imaginary finite pieces of the second order amplitude (4.72) yields,

8AZmS 0 [107 —99cosh® A2 1 —2coshé m

2 — _ox\2mSsinh® 6 — i w2’ an loo ™

A A*m”sinh® 0 — 4 —cosh” 5 390 3 5 g
8A\ZmS | (103 A2 3. m 0 99 A?
= —2)\%mCsinh® 6 — i —— — Zlog— -+ [ ———
s H_— 60m2 2 8N ) O T\ T ie0m2

m 40
+210gX cosh 3| (4.75)

10The imaginary finite pieces are not essential as one can change them by rescaling the cut-off, their
choices are just equivalent to using different regularization schemes.

'1(C.14) is an expression for the logarithm of a function of Mandelstam variables which appear while
computing the one-loop momentum integrals in the scattering amplitude. When expressed in terms of
rapidity, it yields terms involving 6.

12 A polynomial in Mandelstam variable s corresponds to a polynomial in cosh? (g), when expressed in

terms of the rapidity.
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Let the renormalized Lagrangian be,

- Ao .
Lren(A) = _Z¢7 au¢ + m¢¢ +5 (X/WX“V (X;LM)2> + ?miﬁi/) (X,uVX'LW - (X“N)Q)

+aN (X )7 + BN X XM 4+ O(N?), (4.76)
where o and 8 are divergent coefficients which must be tuned to exactly cancel the imagi-

nary divergent contributions to the second order S-matrix (4.74).
The term aA?(X !ﬂ)2 contributes to the amplitude as,

0
At — (0 X2)4m*(1 + cosh 0) = 8ia*m? cosh? 3" (4.77)
While the term SA2X WX' ¥ contributes to the amplitude as,
count 2 cov2, 4 2 0 4 9
AZM = (ipA )4m*(cosh @ + cosh 26) = —8ifA*m* ( 3 cosh 3 4 cosh 3] (4.78)

Adding (4.77) and (4.78), gives the total contribution from the counterterms to the am-
plitude,

0 0
AU = AW AP = 8iX*m (o — 33) cosh® 3+ 32i32?m* cosh? 3 (4.79)

The condition that the sum amplitude of the counterterms, (4.79), must exactly cancel the
imaginary part of (4.75) gives the conditions,

6 2
40y gy~ M (L103A° 3, m
m* (a—3p) = - <160m2 2logA , (4.80)
8mb 99 A2 m
28m* = —— 2log — | . 4.81
328m - ( 160 m —5 +2log A> (4.81)
Solving (4.80) and (4.81) for « and 3 gives,
23

— 7 A2 4.

R DY (4.82)
m2 99 A2

- 21 4.

b 47r< 160m2 OgA> (4.83)

Substituting the above values of a and 8 into the renormalized Lagrangian (4.76) yields,

A v em2) L A (e w2
Lien(N) = =iy O+ mipnp + 5 (Ko X = (X)) + T (X, X = (X,1)?)

+23A2 0 o m2< 99 A2

w2 4 7
12871')\ (X”) +

@ 2 v g 3
T60m —5 +2log A) A X W XH +0(N). (4.84)
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However, the above renormalized Lagrangian is written in terms of the redefined fields.
The renormalized Lagrangian can be written in terms of the original fields as,

Lren(N) = —itpy"0,1b + mapp + g (XWXW — (X2 2mypyp X ) — QmQ(W)?)
A2 ~
_?m@bw (X/.LZIXMV - (Xu'u)2>

23A2 m? ( 99 A

w2z MR g 2X,, XM 3, (4.
s K)o e T OgA>)‘ " +O(X). (485

Finally, the renormalized Lagrangian of the TT-deformed free massive Dirac fermion in
two dimensional Euclidean spacetime is given by,

_ Y L _ _
Leen(N) = 07 Do — miptp — 5 (2mapyp X,/ = 2m2(p)?) = £ K, X 4 2 (X )2

\]

X i (R X — (R,092) + O 4
+?m¢¢( puv _( p))+ ( )7 (86)

where the renormalized couplings are given by,
N2m? [ 99 A? m
— A SRS P
g o (160 mz T8

23\ A2
64m '

h =X\

(4.87)

It is important to notice the major qualitative difference between the renormalized La-
grangian (4.86) and the classical Lagrangian (3.16). The classical Lagrangian (3.16) has
only one scale, A, which appears to be the coupling for all the quartic terms. However, the
renormalized Lagrangian contains three different couplings, A, g and h. In the renormalized
Lagrangian, the two quartic terms ¢) X /' and (1/_11#)2 share the old classical coupling A,
where as the other two quartic terms X Wf( # and (X ”“)2 have very different couplings g
and h, respectively, given by (4.87).

5 Discussion

In this paper the TT-deformed free massive Dirac fermion in two dimensions was studied.
First, the Lagrangian of the deformed theory was stated and massaged into an easier form
for amplitude calculations using a field redefinition. The two-to-two S-matrix of the fermion
anti-fermion scattering process was computed to second order in the TT-coupling A. At first
order, the S-matrix exactly matches the expected result for an integrable field theory (2.7).
However, at second order the S-matrix matches the expected result up to some divergent
imaginary second order terms. Counterterms were added to the Lagrangian to cancel these
divergent pieces and ensure that the final second order S-matrix agrees with the expected
result (2.7), in the process the renormalized Lagrangian was obtained. Amazingly, integra-
bility allows the naively non-renormalizable theory to be renormalized perturbatively. The
renormalized Lagrangian was qualitatively very different from the classical Lagrangian as
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there are three different coupling constants (A, g and h) in the renormalized Lagrangian,
while in the classical case there is only one coupling constant (). Thus, the quantum
integrability here leads to a more complicated renormalized Lagrangian than the classical
one. This is not what always happens in an integrable theory, for example, the integrable
sinh-Gordon model gives rise to a renormalized Lagrangian which has the same functional
form as the classical one [30]. Further, the existence of the renormalized Lagrangian means
that all quantities of the theory may now be computed using the standard QFT techniques.
For example, one can compute the correlation functions of local fields perturbatively using
the renormalized Lagrangian.

In this paper, renormalization was performed by computing the two-to-two S-matrix
for the fermion anti-fermion scattering: fi 4+ fo — f3 + f4, and adding counterterms to
cancel the divergences. However, one may consider the other possible two-to-two scattering
process in this theory, namely, the fermion-fermion scattering: fi + fo — f3 + fi. If
this process had been chosen the same renormalized Lagrangian would be expected. The
calculation of the S-matrix would involve an almost identical computation to what was
done here except that only one plane wave solution to the Dirac equation, u(k), would be
present in the expressions.

The form of the renormalized Lagrangian is already exciting at second order in the T7-
coupling. It would be interesting to see how the renormalized Lagrangian looks at higher
orders, because of the simple structure of the S-matrix the renormalized Lagrangian may
have a simple and compact form. Similar to [30], the second order real contribution to the
S-matrix came from the s-channel only. It would be useful to understand why this occurs
and whether this is a general property of the TT-deformed integrable theories.
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A Field redefinitions

The Lagrangian of the TT-deformed free massive Dirac fermion in two dimensional Eu-
clidean spacetime is given by (see (3.16)),

A (X X1 — (X192 + 2mip X J* = 2m? (P)?)

£O) = (100, — mi) - 5

Ao -
+ i (X X = (X,?) (A1)
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One can perform the following field redefinitions to the Lagrangian,

Ya = P + XL (P'Y)

Ya = Yy + AP )y (A.2)
where a = {1,2} is the spinor index and ‘«’ is assumed to be a real constant with dimen-

sion 1.
Under the field redefinitions the following terms transform as,

Py = By'y
PO = B P 9,4 + aA(1 + ad'y') @'y 0, (")
Oy = B 9"y + aA(1 + aX'y') A9, (0'y) (A.3)
where
B =14 20"y + N2 (') (A.4)
y (3.14) and (A.3), X, and X#“ transform as,
)N(H,,:BXI’W and XM“:BX;“, (A.5)
where P, )
X//u/ = 5 <¢,7(uay)¢, - 3(M¢/%)1/}/) . (AG)

Writing the original Lagrangian (A.1) in terms of these redefined fields, one obtains the
following redefined Lagrangian,

L'(AN) = L5(A) + L1(A) + L5(N) (A7)
where,
Lo(A) = (0" 0u — mip/ ) + 2009 [ X, 1 = ma' 9] + 2N ()2 [ X, — ma )]
L4 = gm = K} K] = X [, — ] 4 20\20 (X, )2 - X, K]
Lh(A) = 3m¢’w'(ff;yf<’w —(X,"?) (A-8)

Notice that since 1/ and ¢/ are Grassmann variables in two dimensions, (¢/¢’)® and
(1/_1’1//)2)2;“ vanish and hence the term proportional to (¢/'¢')3 and (1&’1&’)2)2;“ drop out
from (A.8). In order to simplify the computation of the S-matrix contributions from the
bubble diagrams it is useful to get rid of the linear terms 1'¢)’ X;L“ and (¢/¢')? from the
new redefined Lagrangian (A.7). This can be done by choosing o = . Substituting oo = %
into the new redefined Lagrangian (A.8) gives,

~ A2 Sy =1
L' = (140, — mi'y') — (X’ X — (X, 1)) = Gmd ! (X, X0 — (X))
(A.9)
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A Jacobian factor arises in the path-integral measure due to the field redefinitions and may

contribute to the S-matrix. The field redefinition (A.2), with o = 7, can be expressed in

terms of the spinor components as,

Y1 = i+ ATl

Y2 = v+ AUy

b1 = 0+ AU,

Gz = b+ AT (A.10)
The Jacobian matrix, M, can be constructed as,

O oY1 oY1 O
oYy oYy, oY, oY
Mo by Oy O

M= |%% 9 ov ou (A.11)

oYy 0P OY1r Oy

Oy Yy oYy oYy

Oy s Op2 O
oYy oYy, oY, oY

yielding the following Jacobian factor,
- YN m2 (7
(det M) ™' =1 — Amgplyy) = e Amd/ ¥/ =N (7w (A.12)

where the properties of Grassmann variables have been used.
Hence, the path integral measure transforms as

[ derdaz (—Amzz?’zp'—v%z(&'w’ﬁ)w

Dy Dy =Dy DY’ e (A.13)

with A being the cut-off. Therefore the path integral transforms as,

— [ dz1des {z’(,\)+,\m¢/w'A2+A2 m? (@E@z}')?A?}

/ D D e~ J dwrde2 L) / DY’ DY e

i [ dtda [—E’(A)—/\m@w/@—v%2(151/1)2/\2}

- /Dz; Dy e , (A14)

where in the last line the variables ¢’ and 1)’ were replaced by the old variables ) and 1,
and a Wick-rotation was performed.

Observe that the second term in the exponential in (A.14) does not contribute to the
two-to-two scattering amplitude while the third term yields a contribution proportional to
A2, at second order in A\. However, this polynomial divergence is of no physical consequence
as the third term can be removed from the Lagrangian by adding a counter term once and
for all and one can forget about it. Therefore, the Jacobian factor in the path integral
measure does not yield any non-trivial contribution to the amplitude and can be ignored.
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Hence, the Lorentzian action in terms of the redefined fields can be written as,
I=— [dridzs L'(N) =i [ dtd Rate) b A (K X — (X 1)
—I=— [ drydey L'(N) =i | dtdx (—zwfy M¢+m1/11/})+§( v —( u))
/\2 7. % UV v M1)2
+ 5 mi (K X = (X12) ] - (A.15)

B Propagators and some useful formula

In this section the values of all the propagators that arise in the computation of the am-
plitude from the tadpole diagrams will be derived. In two dimensions, the propagator of
the free massive Dirac fermion is given by,

_ 20 i(~ - m . 2 .
(wal)bow)) = | (;’732 ;;r_qn; | (iggaab(q)e—zq(m-y), (B.1)

where,

’L(’}/ -q+ m)ab
= B.2
Gab(Q) qg m2 - ic ( )

The value of the propagator needed in the computation of the tadpole diagrams can be
computed as,

_ / d*q i(y-q+m)a
(2m)2 g% — m? + ie

d?q Yab - q mbap
— 3 . B.3
Z/(27r)2 [qQ—m2+ie+q2—m2—|—ie (B.3)

(ala)do() )

By Lorentz symmetry the first term in (B.3) vanishes, thus

(valaiu(a)) = imi [

21)2 ¢2 — m? +ie
A g2 1
. . 4
— imd(— /
imdap(—i) o (2m)%q% —m? +ie

m A2 4+ m? m m?
= Elog <mQ> ab & —Elog (AQ dab = No Oab (B.4)

where Nog = — 1~ log (%;), in the second equality a Wick rotation to Euclidean signature
was performed!® and the integral was regulated by a hard cutoff A (A > m).

From (B.1) the values of propagators with derivatives can be derived. When there is
a derivative acting on v one finds,

05 (@)0(9)) = o (Galao(e)) = —i [ L LA uise) (5
Oox,, (27)2 ¢2 — m?2 + ie

B0 =iq%, ¢* = —¢% and d*q — id®*qz.
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Hence,

_ B d?q [ ¢"(Yab- Q) mdapq"
<6“¢a($)¢b($)> - / (271')2 {qQ —m2 4+ e q2 —m?2 4+ i€:| '

By Lorentz symmetry the second term vanishes yielding,

. [ P ")y 1 d*q ¢
(Puntapinla)) = [ s il = 50wl [ s e (B)

As before, perform the integral (B.7) using a Wick rotation,

- iA? m? m? y y
<3M¢a($)¢b($)> =35, |1t azlos (Agﬂ Yab = N1Vap » (B.8)
where N1 = % [1 + ’X—;log (’X—;)]
Similarly when a derivative acts of v,
(a(@)0"Py(w) ) = — (0" Pa(@) () ) = —N1dap. (B.9)

If one derivative acts on v and a second on 1 one finds,

7, 8 a 7y d2 ) a v _—iq(x—
@%NM%M»Z%ﬁ%@MWM»ﬂ/@égj;T;W”q(w

(B.10)

Implementing Lorentz symmetry and performing a Wick rotation yields,

_ mA2 m2 m2 .
<8M¢a($)aywb($)> = — 3 (1 + F log <A2>> n“”dab — ZlenMV(Sab' (Bll)

C One-loop integrals

In this section the values of the one-loop integrals that arise in the computation of the
amplitude from the bubble diagrams will be derived.
Begin with the simplest integral,

/ d?q 1 ,/d2qE 1 o (1)
@m2 (-2 ') @m)2 (g} + 02?2 4ma?’ '

where a Wick rotation was performed and the integral was converted to polar coordinates.
Next evaluate the following divergent integral which will be used in the computation

R R S B Y (0]
(2m)2 (2 —a?)2 27 Jo QE(q%—I—aQ)Q_ZlW A2 + a2 & o? '

where a Wick rotation was performed, the integral was converted to polar coordinates and
the integral was regulated by a hard cut-off A (A% > o?).

of future integrals,
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The following divergent integrals can be evaluated using the Lorentz symmetry

and (C.2),
/ d2q Wl d2q e i A2 . A2 4 o2
@2 (@ —a22 2 ) @2 (@—a22 s |A21+a2 B\ a2
(C.3)
g quagoan _ 1 ?q ()
i A2(A2 +202) 9 A? + o?
=—Cump | —5—->—0a"1 , 4
167 " | To(A2 fa2) | C BT a2 (C.4)
where,
C;uzp)\ = NuwNpA T NupTux + MuANvp- (05)
Lastly,

d*q 4.9,9,9)459 1
/ (2’7‘1’)2 lzq; f ag)gw = 79 [n,ul/ (77/))\7]50.1 + MpsMw + 77pw77>\5) + (V A P) + (V A )\)

8
?q  (¢%)?
(2m)? (¢% — a?)?

A (A2 - 302 — St 2 2
( AZ >+305410g<A +CX>

—|—(1/<—>5)+(1/<—>w)]/

1
967F;u/p)\6w

Y

4(A% + a?) 2 a?

(C.6)
where,

Fuvprsw = M (MpaTisw + Npstaw + Mpwne) + (v < p) + (v & A) + (v 4 6) + (v ¢ w).
(C.7)

In the case where there is an odd number of momenta in the numerator, the integral
vanishes as it is an odd function of the integration variable,

d? g,

where n = {0,2,4}.
The values of the above integrals, (C.1)—(C.8), will be used to derive useful results for
evaluating the one-loop integrals that appear in section 4.1.3.

s-channel one-loop integrals

First, evaluate the one-loop integrals that appear while evaluating the s-channel ampli-
tudes. Evaluate the following finite integral,

d?q 1

2m)? [(€+ q)* — m?](¢* — m?)

() L@ = / ( (C.9)

— 33 —



where £* = (p1 + p2)*. By introducing Feynman parametrization (C.9) can be written as,

2 1 1
29 = [ 5% [ do -
_/ (2m)? /0 -(1 —z)((€+q)2 —m?) + z(¢® — m2)}2

:/()1d:n/(;i72r§2 L

g+ —2)* + Sa(l—2) —m?]

:/Old:v/(;l:; L

- 2
_kQ +&x(1 —x) — m2]

il 1
B ﬂ/o & (m2 - 2a(1 - ) (€10

where in the third line the momentum was shifted ¢ — k& = ¢ + (1 — x) and in the fourth
line (C.1) was used to evaluate the k integral. Evaluating the z-integral yields,

. 1 — 4m2 1
L¥)(&) = : log & . (C.11)
am? am?
2mE2, /1 — g;’ 1—254+1

52
It is useful to express the integral (C.11) in terms of the rapidity difference 6. Recall that

the Mandelstam variables s = (p; + p2)? = €2, t = 0 and u = 4m? — s can be written in
terms of f as,

0
s = 2m>(1 + cosh ) = 4m? cosh? B

0
u = 4m? — s = —4m? sinh? 3 (C.12)
Hence,
4m? 4m?2 0
1—%: 1—%: %:tamh5 (C.13)
14 1 Vs —1 tanh ¢ — 1
= log 4522 = log< u/s ) = log< - 2 ) = log (—6 9) =im—0
1_%4_1 —u/s+1 tanh 5 + 1
(C.14)

where we used that s is really s + ¢, in an attempt to pick the correct sheet.
Plugging everything into L(*)(0) gives,

L) = _#ﬁm' (C.15)
.. s d?
(i) L) = / (2752 (e ;1:;2] CErSR (C.16)
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Introduce the Feynman parameter x as before. Performing the g-integral and then the
z-integral gives,

m2

L) = e (VT & ! (C.17)
4rg2,\ /1 422 JI-4+1

Using (C.13) and (C.14) in (C.17) one obtains the final expression for L,(f)(ﬁ),

m + 6

)Py — e  TTW
L7(0) 5”87r7n251nhe'

(C.18)

In a similar manner, using the Feynman parametrization one can derive the following

integrals,
(i) L)) = / d’q gy
- (2m)2 [(€ + q)* — m?] (¢* — m?)
i 2 Am2 1= —4?52 -
=-——|l+log—5+4/1——log = Ny

8 13 _ 4?5 +1
~ 1-—2m 1—4m2_q
VA 52 52

+ 1+ log &80 (C.19)
e ( s 1) "

By (C.13), (C.14) and (C.19),

2

. i A , 0 .
L;(w) (0) = & [1 + log p + (i — 6) tanh 2] N + [1+ (im —6) coth 6] £,.€,

167m2 cosh? g

(C.20)

) 1) (o) = [ La 9o
@) 120 = | Gy Teram el

4m?2
i A2 4m2 1-— €2 -1
= — [1 + log W +4/1 log ( (n/wfp + nupfu + npu&/)

167 52 1_42’27,2 +1
2 4m?2
i |3 1-3% =g —1
— = 1 P C.21
47'(‘52 [2+ 1_4722 08 ( 1_4722_’_1 é-u,g fp ( )
3 3
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By (C.13), «114)and((121%

s A2 0
L;(w)p(e) = 16 [1+10g+(m ¢)tanh - } (Nuvp+Mwp€p+npué)

i E—k(iﬂ—é) (cothe—m)} £.6.6, (C.22)

167m?2 cosh? %

_ [ dq 4udvdpdr
) 12 = [ s e

4m?2
i A2 e ([5 m2 m2 A2 m2 3/2 1— &2 -1
\/ 52
2 1 4m?2
i 7 2m* 1 m 4m? Vo e
XCuvr+ g 18+3gzs(1a2> Sl Byl B LR
1*572+1
i |11 m?
FNp€uén +1uxEu€p +Mup€uéx+1murEpéu +77p)\'£ugu} = | T =
4r€ 6 I3
2 4 4m?2
1-47 272 -1
1 Eububobr, (C.23)

0g
1— 4m?2 1— 4m?2
€2 V &2

where C),, is given in (C.5). By (C.13), (C.14) and (C.23),

i [A% 2 6 (5 2 3 A2 0
L(a 0) = I R, 2V [ 9 _ . 30
s (0) Tom [ 5 T3m cosh” 2 3 coh’Z +(1 Syl log — + (im —0) tanh 5

2

i 7 1 1,. 0 1 1, A?
><CW,J>\—|—8—7T |:——|——(17T—0)tanh2 (1—) —310ng:| [Mur€pén

18 6COSth 3 4costh
i 11 1
Fup€ox + & €p +00p€uéx +MnEp€p +MpxEuéu] + m 6 m
+ (i —0) cothg— .2 + ! Eu&u&pén. (C‘24)
2 sinh6 4sinh6?costh
d’q 4uqv9p9r9s
7 _ v dp
(vi) Wmé /(ZW)Q [(€+q)2 —m2](q2 —m?2)
i [N L5 2m® 1 m? A?
- | = 55t = |1-6—4 |log—
or | 2 +¢£ (36 3 e +t1 ( 652 .
1 m2\ % -t -1 il o1 mr o1, A2
(142 ) log| Ye——— Dyuwors—g= |~ 3+ — 7108
12( §2> -y M T8 |32 4
2 2 \/Z_
i(l 2§2> 1—42;‘ log 752 Buuos
1-4+1
i |25 sm? 1-5%+5Zr -l
_ -~ log f §u£ €>\£5 (025)
> 5 u&vép )
47T£ 12 2 g 1_42;2 1— 4'm2_|_1
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where,

Duup)\é = Cuup)\&s + Cup)\ég,u + sz\(iugll + C)xéuugp + C5,uup£>\ ; (026)
B;wp)\é = nuufpfx\gﬁ + 77up€l/§)f6 + nuAfufpfé + nuégufpf)\ + 771/p§u§)f6
+”7V>\£,u£p£(5 + Uuéfugpg)\ + 77p>\£,ufu§6 + npégugufk + 77x\5§p§1/£p . (0'27)

By (C.13), (C.14) and (C.25),

A2 0( 5 1 1 3 A2
—|—4m 2cosh? = S + 1-—— |log—
(36 GCosh2 U ( 2cosh? % ) & m?

) [ 1 1 cosh@

i
167

+112(i7r—0)tanh3§>} Dyvprs— = (im— H)tanhg

st| 3 4005h2 8(:05h2g
1 2 7 25
——log— | Buvprs — 6) th—
4 0gm2 HpAd 167rm2(;osh2g [12 8cosh29 (= (CO 2 251nh9
+E)”>] 5/L§u§p§>\§5- (028)
8sinhfcosh” 5
d?q 4190997959
vii) L = pivip d
03) £l = [ e gt

4m?2
i | A 122 4 am?\? 1 4m? 1= -1
S -2 (e 1=
967r[ M TRIT) ’5 Iz 3 e %8 /7 i

+§4 i_1m72+§m74 lo A72 = T
&2 €275 152 5l

i€2 |A? 13 44m? 8m?
F;Lup)\éw"_g[

4m?2
m2 m4) Am?2 1— €2 —1 1 2 A2
3— 14 +8 1— IOg (3 20)10g Huup)\éw
10( £2 &4 £2 1_4222+ 10 £2 m2
4m?2
il 89+37mQ_2m4_1(1_3mQ+m4) P
8t | 300 30&2 5¢4 5 & & 1_42212_|_1
1 A? ) 137 13m? m* 1 m?  m*
——log—= | M, — =t —F+—(1-6—+9—
5Ogm2] “”A““+4wg2[60 3 e’ 1_4m;< g
3
4m?2
m6 1— €2 —1
—2— Jlog | “—=—| | &6.6,6068 (C.29)
f 4m?2
]._ 52 +].

where,

H,uup)\éw = ,uzzp)\fégw + Cuup(sg)\fw + C,prf)\f& + CyuA5§p§w + C,Lw)\wgpfé + C,u,p)\égugw
+ Cup/\wgufé + Cup)\éf,ufw + Cup/\wgugd + Cupéwgug)\ + C;M(Swgugp + C)\pziwfzzgu
+ Oupéwfug)\ + C,uy&ufpg)\ + Cz//\c?wgufp ) (030)
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Muup)\&u = gufufpf)\néw + fufvfp&ﬁ)w + §M§V§p§w77)\6 + fufug)\é‘énpw + g,uguf/\&unpé
+ g,ufpfkgénzxw + fuipﬁxfwms + &/ﬁpﬁxﬁamw + fzxgpg)\gwnué + §u€p€5§wm

+ EuéaEs8wnvp + ExEpEs8wvp + Ev€pSo€umun + §u€r€s€umpn + Evéa&sSwup
(C.31)

and F),,pns0 is given in (C.7). By (C.13), (C.14) and (C.29),

i | AY AZm? 0 0 (1 1 3 A?
L(s) 9) — R h2 2 4 4m? h4* - log ——
’“”’A‘s‘”( ) 967 | 4 + 5 o8 2 +admcos 2\5 2cosh? g + 8 cosh? g 8 m?2
8 4 . .40 I 0 im?cosh® & | 13 11
- h* = (14+=(imr—0)tanh = || Fuopr + ——m= | — — ————
+ 5m sin 5 + 2(z7r ) tan 5 v pAsw T Y 9% 15(;osh2g

+ 1 + A* + L ( 9) 3 7 + 1 tanh 0
— (im— — anh —
10 cosh* g 4m2 cosh? g 10 2 cosh? g 2 cosh? g 2

RN AR
10 coshzg gm2

2
—llogA——%(iw—H)tanhg (1— 5 + ! >] My prsw
m

s w
300 12Ocosh2g 4OCOSh4g

i

8

Hp,l/p)\éw +

2 4 cosh? g 16 cosh* %

et lm ot (1
16mm2 cosh® £ | 60 12cosh® ¢ ' 16cosh? . FeT
b e EnEuEpirtst (C.32)
16cosh* 2 32cosh® 2 [RSAFESNS SRR ‘

The above integrals (C.9)—(C.29) can be used to evaluate the one-loop integrals needed
in the computation of the s-channel amplitudes in section 4.1.3. When no derivatives are
present the loop integral looks like,

s d?
1©) = [ GyaGan(€ +0)Cea(@
_ / d2q i(’y- E+q + m)ab i('y g+ m)cd
) @) (42 -m? g2 —m?
- */ d*q Yy vea(€ + @)y + mapviydy + My (€ + @)pdea + M 0apde
(2m)? (£ +@)? —m?](¢? — m?)

== (’YgﬂgdfuL&S) 6) + ng’y('de,(ﬁ) &) + méawdel(j) (&) + my" £.6.aL) (€)
1l L) (6)0ca + m20u0.a L) (€)

= L) (mfdea + mP0urdea) = (L )+ mOwe] (€) + mL (€)60a)
7L (E) (C.33)

where ¢, =&, and LE;)) = ’y(’;bLEf) with L), Ll(f) and Lff,,) are given by (C.15), (C.18)
and (C.20), respectively.
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When it involves derivatives, a similar procedure can be performed to evaluate the
one-loop integrals in the s-channel case,

2
1059 = [ Grtz0.Glé +0)Gualo)

_/ dq i(r-(E+a)+m),i(v-g+m),
) @2 eriom? g—m?

= — (0 p0ea + M2 0a0ea) L (€) = (£a 1t + MOabrta + mV0ea ) L) (€)
VoL (€) (C.34)

2
(qu)fzz)cd(g) = /(Zﬂ_?QQMQVGab(g_‘_q)GCd(Q)

:/ d?q i(y-(E+q)+m) i(y-q+m),,

2 N (R EE TR
- (mzabécd T m25ab50d> LENE) ~ (sf ab Yo + MO Voy + m7§b5cd) L), (€)
_75b7?dLSu)p,\(f) (C.35)

s d?
(I,uup)gb)cd(f) = /Q#QMQVQpGab(f‘FQ)ch(Q)

/ d?q i(y-(E+g)+m),ily-a+m),
(27r)2quql/qf> (E+q)2—m2 2 —m2

= - (mfab‘scd + m25ab5cd) L) (©) - (ﬁ o Vet + MBab Vo + m')’ci\b(scd) qu)px (3]
—VQngdLLSV)pAJ(f ) (C.36)
s d*q
(Iuyp)\)gb)cd(f) = / WQMQVQpQ)\Gab(f +q)Gealq)

e i (64 ) +m), i(y-a+m),,
— /WQuQVQpQ)\ <£+q)2_m2 q2_m2

= - (mzabécd + m25ab5cd) Lgpx (&) - (fab%fd +mbayyog + m72b5cd) Lftsu)p)\é(g )

o teaLympns (€) (C.37)
where Lffl,) &), L,(E,)p(g), Lfl}p/\(f), LLSV)IDM (&) and qu)pmw (&) are respectively given by (C.20),

(C.22), (C.24), (C.28) and (C.32).

t-channel one-loop integrals

Next, evaluate the one-loop integrals that appear while evaluating the ¢-channel amplitudes.
These integrals are much simpler as t=(p; — p3)?>=0,

dQ
Iu(z?cd :/ (271_?2 Gab(Q)ch(Q) = _m26ab60dL(t) - m(éabLSj) + Ll(;;)) 6cd) - ’ng’YZdL,(B

d2q v v v
(I;/,)((ztb)cd :/ W 'm Gab(Q)ch(q) = 7m25ab66dL;(f) - m(éabrycd + 'Yab(SCd)L;(fy) - rYab’YgdL;(Lty)p
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d?q
(qu),(;b)cd :/ @n)? uqv Gan(q)Gea(q) = —m25ab5chff3 —mn(8apVoy + 72 0cd) LLBP - Vab%dL,(fy)p,\

d*q
(I#VP)((ztb)cd:/ W quqv9p Gab(Q)ch(Q):_m 5ab§ dL;(szp _m(éab7cd+’7ab56d) /_LZpA

- VabVCdL,Su)pxa

d?q
(qupx)i?cd /WQMqVQpQ/\Gab(Q)GCd(q):_m 5ab5chWp,\ (5ab%d+%b5cd) ;Jm

— VoYL b (C.38)
where
L = / m2)2 - 47rin2
Lo = / m2)2 =0
Ly) = / (57252( Qq_”qy2 ;= — (1 —log A2> v
> —m?) 8T
L), = / e =0
LS’ZP’\ - / (3727(;2 (ng_yz;q;i? gzri (AQ 2log A2> (oA + NupTu + MuaTlvp)
L;(LgpA(S _ / d?q ququp?i/;()lé —0
Hse = | i S <A4 +6log A2> Fivprs (C:39)

and F,, o\ is given by (C.7). The above integrals have been derived from the correspond-
ing s-channel integrals (C.15), (C.18), (C.20), (C.22), (C.24), (C.28 and (C.32)) by taking
the limit 8§ — im and setting £ — 0.

u-channel one-loop integrals

Finally, evaluate the one-loop integrals that appear while evaluating the u-channel ampli-
tudes. When there are no derivatives the one-loop integral can be written as,

2 2. iy (€ — ) il am
1,0 = [ 40,6u(¢ - )6t = [ oty 0D R 00T Py

2m)? (2m)2 (¢ —q)? —m? ¢ —m?
B / d*q Vi vea(C = @)udy + mIar Yty + 18 (€ — @) pbed + MPSapdea
(2m)? (€ —q)? = m?](¢* —m?)
= —LM(C) (mgab(scd + m25ab5cd) - (gabLSZZ)(C) + m5abL£Z)(C) — mLSZ)(C)fScd)
el (€) (C.40)
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where ¢, = (p1 — pa)p = (P1 — P2) > {ap = VoG and

u B d%q 1
299 = | e e e
0o [ d%q q
1O = | G e e
d? »
1O = | e gt (c4)

Comparing the above integrals with their s-channel counterparts (C.9), (C.16 and (C.19))
one sees that the structure of the integrals are identical apart from the fact that the u-
channel integrands depends on ( — ¢ while the s-channel integrands depend on £ + q.

Since the u-channel corresponds to § — im — 6, the above integrals can be derived
directly from the results of their s-channel counterparts (C.15), (C.18 and (C.20)) by
replacing # — im — @. Notice that replacing 6 by im — @ is equivalent to replacing &2
by ¢2. However, since the functional dependence of the integrands on ¢ is ( — ¢, an extra
minus sign must be included whenever the integrand is odd in g. Thus,

0
(u) S
L(6) “4rm?sinh 6
0
(u) S S
Ly (9) Z87Tm2 Sinh@cﬂ
L (9) = 1 h +1ogA—2 _ fcoth Ny — o (1 —60coth) (. (C.42)
m 8 m?2 21" 167m?2 sinh? % .

In a similar manner, one can derive the one-loop integrals in the u-channel case when there
are derivatives,

2
105400 = [ Gtz 9:CunlC = )Gunla)

= — (M yyea + m*Sapdea) LE(C) = (Laprt + mBarvta +my0ea ) LG (C)
—’ng’chdL,(Luu)p(C) (C.43)

2
1)5(0) = [ G 540.Gon(C —0)Gaala

= - (mgab(scd + m25abécd) L/(JIL/) (C) - (gab’}/cpd + m(sab'%pd + mrygbécd> LEZL)ID(C)

AR NS (C.44)

u d?
(pr)((zbid(é) =/(2732(1#(11/%(;@((—q)ch(q)

= - (mgabécd + m25ab56d) L;(g/)p(g) - (gab’}é\d + méab’yg\d + m72b50d> LLTZ)pA (C)

—%/L\bVSdL;(zi)p,\a(C) (C.45)
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u d?
(Lupn) () = / #%%%%Gab(c —q)Gea(q)

- - (mgabacd + m25ab50d) L;(;f/)p)\(g) (gabﬁycd + m(gabf)/cd + myabécd) l(LV)p)\(S<C>

oL s 50(C), (C.46)
where,
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Liin(0) = / 2m? (C= a7 = m?| (@ =)

j A2 0
16 <1 + 10g — —fcoth ~ > (MurCo +MwpCu +Mpuy)
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@ g~ [_2q 000 9o
1m0 = [ e

—m?] (¢~ )

(3 =26 coth@ — csch 6) €. Cyp (C.47)
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1 gy = [ 24 4u4v4p97 05
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J’_
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(C.49)
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Covpx and Fy,pzs., are given by (C.5) and (C.7) respectively and D;Wp)\é, B;/Lup)\ﬁ’ H//Ll/p)\&u
and ML

voasw are given by (C.26), (C.27), (C.30) and (C.31) with ¢, instead of ,.

D Computational details of the second order S-matrix

In this section the details of the second order S-matrix calculation will be presented. As
discussed in 4.1.2, the S-matrix at second order gets contribution from tadpole diagrams
as well as bubble diagrams.

D.1 Details of the contributions from the tadpole diagrams

The expression for the amplitude from a general sextic coupling was given in (4.28). Using
this one can compute the contribution to the tadpole amplitude from each term in the
second order Lagrangian (4.24).

The contribution to the amplitude due to the coupling P X W)N( M can be evaluated by
computing the contributions from each term of (4.25). The first term in (4.25) contributes,

Atad_ _
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where Ny and Nj are given by (4.32) and (4.33), respectively. (4.8) and (4.9) were used
to obtain the final result. The contribution to the tadpole amplitude from the rest of the
terms can be computed in a similar way and the results were given in section 4.1.2.

D.2 Details of the contributions from the bubble diagrams

In this subsection the contribution to the amplitude from each term found in (4.42) will
be evaluated in detail. As mentioned before, these interaction vertices give rise to three
different kinds of one-loop bubble diagrams.

(a) Both vertices contain interaction X,,, X"V

Begin with the case where both vertices of a bubble diagram contain interactions of the

form X Wf( #_ The total s-channel amplitude can be computed by plugging each term

of (4.56) into the general s-channel amplitude (4.43) and adding the results together.
The contribution to the amplitude from the first term in (4.56), @(y)'y(uay)i/}(y)zﬁ(y)

AP (y) X (), 000 ()P (2)7 POV (x), is given by,

Al — %(ig>2%<0|b(p4)a(p3)T[1/3(y)mayw(y)&(y)v(”a”)w(y)

X ()00 (@)D () 00V ()| af ()b (p2) 0}

A2 ( (
= o8 e W Vgh Yab(ped X

[ — Ve(p2)ua(p1) / (;ljgz (ﬂe (23)vf (P4)Ghal§ + @) Gog(q)ipa) (—1) (€ + Q)V)(—i)QA)(—@')Pi\)

—10 (930 (1) G 1€ + @) Giog (@)(=) (€ + @)uip (=i)ar) (—)p?
— 11y (p3) 0 (1) Gra (€ + @) Gie (9)ipan) (=) (€ + 0)" (—1)ax) (—i)py
ity (p3)0n (P)G 0 (€ + 4) Goe (@) (=) (€ + @)uyiv (=) ary (—i)p?)

—Vq(p2)us(p1) / (;l;)lz (ﬂe(p?))vf (P4)Ge(€ + @) Gag(Q)ipany (=) (€ + @) (—i)piry (—i) g

~ e (p3)vn (p1)Gre(€ + ) Gag(a)(—1) (€ + @)uyip}) (—i)p1ry (—i)g™
—iig(p3) v (P4) Ghe (€ + Q)G ae(Q)ipany (=) (€ + @)V (—i)p1ry (i) gV

11y (30 (p1) G o (€ + 0) G (@) (=) (€ + @opip’) (~D)pany(—)a™ )

d2q _ . . v) . A
@n? (ue (P3)v(P4)Ghe(& + @) Grg(q)ipany (—i) (€ + @) (=) qr) (—i)p]

— e (p3)vn (P4) G e (€ + 4)Gig (a) (—0) (€ + q)uyip (—i)any (—i)p)

g (p3) 05 (P1) Ghe (€ + @) Goe ()ipany (=) (€ + @) (=) qry (—i)p))

saulp2)ualn) [

1y ()0 (1) G o (€ + ) G () (=) (§ + 0)uyips (—i)ary (—)p) )
d?q

+0c(p2)un(p1) / W(ae(p3)vf(p4)(;ha(§ + @)Gag(@)ipan) (—i) (€ + @) (—=i)piry (—i) g™
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~ e (p3)n (p2)G 1a(€ + @) Gag () (—1) (€ + @)yip}) (—1)pray (—i)g™

—iig(p3) vy (P4) Gha (€ + @) Gae(@)ipan) (—i) (€ + @) (—i)pray (—i) g™

+1ig(p3)vn(pa)Gra (€ + @) Gae(q)(—1)(€ + Q)u)ipZ)(i)pu)(i)q”)] , (D.2)

where £# = (p1 + p2)*. The above expression, (D.2), involves the one-loop integrals
(IN)ELSb)cd(é) and (Iﬂy)gz)cd(f) whose values are given by (C.34) and (C.35), respectively. Plug-
ging the values of the integrals and Dirac spinors, (4.8) and (4.9), into (D.2) one finds the
s-channel contribution from the first term in (4.56) to be,

A2mb [3
(s1) — _
Ad 7687 [

A2
57 csch 0 (87 + 24 cosh 6 + 17 cosh 26 + 12 cosh 360 + 4 cosh 40) + i (95 - 6@

A2
—241og % + 6 coshf (1 +251og %) — 6 cosh 260 (3 + QW —12log TZ) —2cosh 30 (5

—12log TZ) + 20 csch 6 (87 + 24 cosh 6 + 17 cosh 20 4 12 cosh 360 + 4 cosh 40))} .

(D.3)

The contributions to the s-channel amplitude from the eight additional terms in (4.56) can
be obtained in a similar manner. Their values are given by,

A = 5 (i5) 1500l T [-20500,0 )51 0 b(0)
(@O0 )0 D) (@) al (p1)B (2)10))

)\2 6
= m {677 csch 0 (2944 cosh 6+ 3 cosh 20 4 8 cosh 30 4 4 cosh 40)

15367

A2 A2 A2
+i (98— 6= +coshf [ —47— 42— +228log — | +2cosh 20 [ —46— 21—
m2 m2 A m?2

+961og 7:) +cosh 36 (—37+9610g %) +66 cschf (29+4 cosh§ + 3 cosh 26
+8c0sh39+4cosh49)>} , (D.4)

A = 51 (13) 10T [5)005)5 00 )

X0 (@) (2) 0P (2)7 ()| ! (p1)b (p2) 0) )

)\2 6
= _15;61 [37rcsch9(87—1—24cosh0—|—17cosh29—i—12005h39—|—4(:osh40)—|—i(70—24010g21
T
A? m m
+2coshf | =74+ 15— +48log — | +cosh 26 (—82+14410g—)+4cosh39 -5
m? A A
+12log %) +30csch0(87—|—24cosh9+17cosh20+12cosh39+4cosh49))] , (D.5)
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Alss) = 21'(@;) 1—16(0\1)(}94)(1( 3)T { 20 (Y)Y 00y ¥ (1) 0P (y) 7 (y)
<D (@) 0 (@i () OV ()| al (p)b ()0} = AL, (D6)
2
Al = 21'(@;) 1—16<O\b(p4)a(p3)T [wwmaww(y)a“w?(yw”)w(y)

xP(2)7(,00 % (2) 0P P(x)yV () | al (p1)b (p2)[0) )

)\2 6
= —% {6007rcsch9(15—7cosh20+4cosh39+4cosh49)

2

A A2 At
+i | 4252 —120— —96001og m +cosh@ ( 1111 —5640— —1350— +108001og m
m2 A m?2 m4 A

2

A
—8cosh20 (986+615m2 ~1200log 2

m
i ) +cosh36 (—3247+96001og X)

+ 6006 csch 6 (15 — 7cosh29+4cosh39+4cosh49)>} , (D.7)

Alse) — 21'<z;\) L 0lb(pa)alps) T [ 20 ()Y (.00 ()W (y)v" ¥ (y)

X0, (@) (@)D () ()] af )b () 0 = AL, (D)

1

o0 = LAY L A 0 ap(y)y”)
A = 2 (13) 50T [20 06000 S )

@O @) al )b ) 0) = AL, (D.9)
2
A2 = 5 (i3) 55 OBaalpa)T (2050000 500
KO Y@@ ol b )0 = A2, (D.10)
2
A = 2 (13) 50T [200 6000 S )

X0 (@) (@) (@) V()| af (p)b (p2)|0)) = ALY (D.11)

Next, the t-channel amplitude in the case where both vertices contain interactions of the
form X WX H will be computed. By the general t-channel amplitude (4.44) the contribution

from the first term in (4.56), ¥(y)v(,0,)% (W) (Y)Y P(y) x W (@)v(,00 (@) ()7 POV (),
to the amplitude is given by,

AL = 2 (i) 2 O pa)ales) T[54, 00) 0) D 0 0(0)

X0 (@) ()7 20V () ot (01 )b (2) [0)

:_)‘727 ,y(u7 ,y(p %
128 ef(uTgh Yab(p'led

2
lﬂc(ps)ud(pl)/ (;iﬁ) (vg(m)vh(m)Gfa( )Gbe(Q)(—i)qV)ipZ)(—i)tb\)(—i)Pi\)
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—I—ua(p3)ub(p1)/W(Ug(pz)vh(m) £e(@)Gae(q)(—1)qyyipy’ (—)p1ry (—i)q
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A
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~aps)an) [ s (Fop2)on (p2)Crel)Goe ) ()i () (=0
09 (p2)07 (1) Gne(0) G (@)ipaw) (=)0 (=) gy (—i)p7)

— e (p2)0n(p2) G 1e(0) Gog (4) (=)0 (—1)any (—i)py)
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) [ ot (utp2)on (201 ()G (o) i) (i (-
—0(p2) 05 (P4) Gha(9) Gae (9)ipan) (=) (—i)p1ry (—i)g
A)

A)
— 52 (p2)0n(P4) G 1a(0) Gty (9) (=) D) (—)p1ry (—i)g

+ve(p2)vf(p4)Gha(q)Gdg(q)ip4y)(—i)qV)(—i)pu)(—i)qA))] : (D.12)

The above expression, (D.12), involves the one-loop integral (Iw,)gb)cd given by (C.38).
Plugging the value of this integral and Dirac spinors into (D.12) one finds the ¢-channel

contribution from the first term in (4.56) to be,

256 m2 A A
(D.13)
The contributions to the t-channel amplitude from the eight additional terms in (4.56) can

2,.,6 A2 A2
A;tl):_i/\m [1+2+6logrg—cosh9<4+5 +2810gm)+4cosh29 <1+2logm)} )
m

be obtained in a similar manner. Their values are given by,
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m

A
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(D.14)
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2
A = 55 (13) 50baT [-206007000 005 00)
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—32cosh 26 (1+210g7:)} ,

A = 5 (i3) 15 OBalpT 20002600 LIS 000
X0 (@) 1Y (@)0 (@) (@) | ol ()b (p2) 0O = AL,

2
A = 2 (13) 35 0BT 00007 0050 010)
X (@), 00 (@) )y PO (@) | af (p)b (p2) 0} = AL,
2
AP = 55 (13) 50T [-20 500 005 00)
Xt(@) 1,00 (@) 0P ()7 (@) | af (p)b (p2) 0} = AL,

A = 5 (15) 15 0T 005070050 010)

><%@(x)mw(fv)a(”lﬁ(x)v”w(x)} al(p)bf (p2)|0)® = A,

A
~+26log T) +4cosh26 (1+210g T)

ik

(D.15)

(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

Lastly, the amplitude due to the same quartic interaction will be computed in the wu-
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channel case. By the general u-channel amplitude (4.45), the contribution from the first

term in (4.56), ¥ (¥)Y(.00) ¥ (W) (Y)Y 10 Y (y) X P (2)y(,00 ¥ () ()7 POV1p(x), to the am-
plitude is given by,

2
A = 2 (i) 50t [F000 )N "0 u(0)

XD (@) 00 (@) (@) PV ()| ol (p1)b (p2)[0) )
)\2
= — TR Ve g Tab(s Ve %

[ (p1) v (pa) e (pa)y (p2)ipan) (i) —ta(p1)vo (pa)iig (o) (p2)ipar) (—)p7

—ub(P1)vd(P4)ﬂe(p3)?7g(P2)(—i)pu)ipi) +up(p1)va(pa)tig(p3)ve (P2)(—i)P1A)iP2)}
d?q
</

where (* = (p1 — pa)* = (p1 — p2)*. The above expression, (D.22), involves the one-
loop integrals (fu)f;iid(C) and (IW)ELZid(C) whose values are given by (C.43) and (C.44),
respectively. Plugging the values of the integrals and Dirac spinors into (D.22) one finds

Ghe(C— )G 1a(0) (=) a0y (1) (C— @) = Gha (€ — @) Gpe(q) (=) auy (—1) ( — q)”)] ,

(D.22)

the u-channel contribution from the first term in (4.56) to be,

A2mb 0 A2 m 9
() = b2 Y (1 - 4coshf) |32 + 101og 2l g
Ay 21287r cos 2( cosh 0) ?)m2 + 10log A + 360 cot 5 + 40 sinh 0
_cosh9(3—810g7;>] . (D.23)

The contributions to the u-channel amplitude from the eight additional terms in (4.56) can
be obtained in a similar manner. Their values are given by,

A = 2 (13) S50t T [~20000 061 0 u(0)
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b) One vertex contains X AXP)‘ while the other contains (X )2
P Iz

Next consider the bubble diagrams where one vertex contains X p)\X PA while the other

vertex contains (X, /).

Begin by considering the s-channel contributions to the ampli-
tude. By the general s-channel amplitude (4.43), the contributions from all nine terms

in (4.61) are,
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where the computational method that was employed was exactly the same as when Agfl)
was computed in (D.2).

The contribution to the amplitude from the t-channel can be computed using the gen-
eral t-channel amplitude, (4.44). The nine terms in (4.61) contribute to the amplitude as,
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where the computational method that was employed was exactly the same as was used to
evaluate A in (D.12).
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The contribution to the amplitude from the w-channel can be computed using the

general u-channel amplitude, (4.45). The contributions from the nine terms in (4.61), to

the amplitude, are given by,
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A2 0 0 A2 A*
—iﬁ {259 coth 5 (143 cosh 642 cosh 26) + cosh® <—79 270 T
m A? m
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where the computational method that was employed was exactly the same as when A, (1)

was computed in (D.22).
(c) Both vertices contain interactions (X M“)2

Finally consider the bubble diagrams where both vertices contain quartic couplings (X #“)2.
Begin by considering the s-channel contribution to the amplitude. By the general s-channel
amplitude (4.43), the contributions from all nine terms in (4.66) are,

A = 5 (13) 5 OBt T [F07#0,000) D" 0,00

()7 () @)y Or(x)] al (p1)bT (p2)|0))

)\2m6 A2 m
Ty [37r (114 4 cosh 6 + cosh 20) + <smh0 (34 — 12@ —48log A)
m
+2sinh 20 <4+3log K) +360 (11 + 4 cosh 6 + cosh 20))} , (D.59)
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where the employed computational method was exactly the same as when Aéfl) was com-
puted in (D.2).
The contribution to the amplitude from the ¢-channel can be computed using the gen-

eral t-channel amplitude (4.44). The nine terms in (4.66) yield the following contributions

to the amplitude,

Al =

Alte) =

Al =

2
21,(—2;) %6<0!b(p4)a(p3)T [P 0u(y) D) 0 (y)

X (@)1 01 (x) D(@)y rto(w)] af (p1)bT (p2)|0)
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! 64r
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where the employed computational method was exactly the same as was used in evaluating
A i (D.12).

The contribution to the amplitude from the w-channel can be computed using the
general u-channel amplitude (4.45). The contributions to the amplitude from the nine
terms in (4.66) are given by,

(u1) A\? 1 T () ()
A = 5 (i3 ) G OBealp) T [50)170,0(0) Dy 20
xD(w) Byt (x) D)y Ot ()] af (p)bf (p2)]0)

_)\2777,6 9 0 A2 m 6
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where the employed computational method was exactly the same as was used in evaluating
A in (D.22).
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