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We present for the first time Next-to-Leading (NLO) QCD renormalization group (RG) evolution
matrices for nonleptonic ΔF ¼ 2 transitions in the Standard Model effective field theory (SMEFT). To this
end we transform first the known two-loop QCD anomalous dimension matrices (ADMs) of the BSM
(Beyond the SM) operators in the so-called Buras Misiak Urban basis into the ones in the common weak
effective theory (WET) basis (the so-called Jenkins Manohar Stoffer basis) for which tree-level and one-loop
matching to the SMEFT are already known. This subsequently allows us to find the two-loop QCD ADMs
for the SMEFT nonleptonic ΔF ¼ 2 operators in the Warsaw basis. Having all these ingredients we
investigate the impact of these NLO QCD effects on the QCD RG evolution of SMEFT Wilson coefficients
for nonleptonic ΔF ¼ 2 transitions from the new physics scale Λ down to the electroweak scale μew. The
main benefit of these new contributions is that they allow one to remove renormalization scheme
dependences present in the one-loop matchings both between the WET and SMEFT and also between
SMEFT and a chosen UV completion. But the Next-to-Leading (NLO) QCD effects, calculated here in the
Naive dimensional regularisation minimal subtraction scheme, turn out to be small, in the ballpark of a few
percent but larger than one-loop Yukawa top effects when only the ΔF ¼ 2 operators are considered. The
more complicated class of nonleptonic ΔF ¼ 1 decays will be presented soon in another publication.
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I. INTRODUCTION

NonleptonicΔF ¼ 2 transitions, represented byK0 − K̄0,
D0 − D̄0, and B0

d;s − B̄0
d;s mixings play very important roles

in the tests of the Standard Model (SM) and of the new
physics (NP) beyond it [1]. To increase the precision of
these tests it is necessary to go beyond the leading order
(LO) analyses both in the weak effective theory (WET)
and also in the Standard Model effective field theory
(SMEFT). To this end it is mandatory to include first in the
renormalization group (RG) analyses in these theories the
one-loop matching contributions, both between these two
theories as well as when passing thresholds at which heavy
particles are integrated out. But this is not the whole story,
a fact which is forgotten in some recent SMEFT analyses
present in the literature. To complete a NLO analysis and
remove various renormalization scheme (RS) dependences
in the one-loop matching also two-loop anomalous dimen-
sions of all operators in the WET and SMEFT have to be
included.

The present status of these efforts in the case of non-
leptonic meson ΔF ¼ 1 decays and ΔF ¼ 2 quark mixing
processes is as follows:

(i) The matchings in question are known by now both at
tree level [2] and one-loop level [3].1

(ii) The one-loop anomalous dimension matrices
(ADMs) relevant for the RG in WET [9,10] and
SMEFT [11–13] are also known.

(iii) The two-loop QCD ADMs relevant for RG evolu-
tions for both ΔF ¼ 1 and ΔF ¼ 2 transitions in
WET are also known [14–16].

The main goal of the present paper is to extend the QCD
RG evolution in the SMEFT for ΔF ¼ 2 transitions beyond
the leading order. In fact, at first sight this is straightforward
because the SUð3Þc symmetry remains unbroken in the
SMEFT, and in the absence of electroweak interactions one
could just use the NLO QCD Beyond the SM (BSM)
analysis of [14] up to the new physics scale Λ in the so-
called Buras Misiak Urban (BMU) operator basis that is
useful for NLO QCD calculations. However, in the presence
of electroweak interactions, the so-called SMEFT Warsaw
basis [17] is more suitable, and it is necessary to perform the
QCD renormalization group analysis within the SMEFT inPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Previous partial results can be found, for example, in [4–8].
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that basis. Therefore we present here for the first time to our
knowledge two-loop ADMs for ΔF ¼ 2 four-quark oper-
ators of the SMEFT. We will demonstrate that they can be
obtained from the two-loop ADMs in the BMU basis [14].
As an intermediate step we will present the ADM relevant
for theWET in the so-called Jenkins Manohar Stoffer (JMS)
basis [2] which for the matching of the WET to the SMEFT
is more useful than the BMU basis.
The main technology presented here can be extended to

nonleptonic ΔF ¼ 1 transitions but due to the large
number of operators involved [14,15] the corresponding
analysis is much more complicated and will be presented
in due time in a separate publication. Moreover, while in
the case of ΔF ¼ 2 operators the transformation of ADMs
from BMU to JMS and SMEFT bases is free from
contributions of Fierz-vanishing evanescent operators
[16], they contribute in the ΔF ¼ 1 case [18], which
complicates the analysis.
Having all these ingredients we investigate numerically

the impact of the NLO corrections calculated here on the LO
RG evolutions of SMEFT Wilson coefficients for ΔF ¼ 2
transitions from the new physics scale Λ down to the
electroweak scale μew presented by us in [16]. Including
also the effects of top Yukawa couplings at the one-loop
level, taken already into account in the latter paper, we find
that the main benefit from the present analysis is the
removal of QCD renormalization scheme dependences
present currently in the one-loop matchings both between
the WET and SMEFT and also between SMEFT and a
chosen UV completion. But the NLO QCD effects in RG
QCD evolution, calculated here in the Naive dimensional
regularisation minimal subtraction (NDR-MS) scheme [19],
turn out to be small, in the ballpark of a few percent but
larger than one-loop Yukawa top effects when only the
ΔF ¼ 2 operators are considered.
Our paper is organized as follows. In Sec. II we derive

the general relation between QCD RG evolutions in two
different operator bases for the case of ΔF ¼ 2 Wilson
coefficients. Subsequently we also give the corresponding
relations for one-loop and two-loop ADMs. Using these
formulas we summarize in Sec. II B the one-loop and two-
loop ADMs for ΔF ¼ 2 transitions in the BMU, JMS, and
SMEFT bases as well as the matching matrices between
these bases. Subsequently in Sec. IV we analyze numeri-
cally the size of the NLO QCD corrections calculated here
by presenting the RG evolution matrices in the WET and
SMEFT at both LO and NLO in QCD. We summarize
in Sec. V.

II. BASIC FORMULAS FOR NLO QCD RG
EVOLUTION

A. Evolution matrix

The RG evolution matrix for nonleptonic transitions in
the BMU basis for SM and BSM operators is known

including one-loop and two-loop QCD contributions. It is
given as follows:

ÛBMUðμhad; μewÞ ¼
�
1̂þ ĴBMU

αsðμhadÞ
4π

�
Ûð0Þ

BMUðμhad; μewÞ

×

�
1̂ − ĴBMU

αsðμewÞ
4π

�
; ð1Þ

where Ûð0Þ
BMU is the RS-independent LO evolution matrix.

On the other hand, ĴBMU stems from the RS-dependent
two-loop ADMs, which makes them sensitive to the
renormalization scheme considered. This scheme depend-
ence is canceled by one of the matching at μew and by the
one of the hadronic matrix elements at μhad. Explicit general

expressions for Ûð0Þ
i and Ĵi in terms of the coefficients of

the one-loop and two-loop perturbative expansions for the
ADM γ̂ and the QCD β-function can be found including
their derivations in Chap. 5 of [1]. They will be listed in
Sec. III D.
It should be stressed that all two-loop ADMs and the

corresponding values of Ĵi are given in our paper in the
NDR-MS scheme as defined in [19] with evanescent
operators entering two-loop calculations defined by the
so-called Greek method. The details in the context of WET
and SMEFT are discussed in Appendix E of [16].
Our goal is to obtain an analogous expression in the

SMEFT, that is,

ÛSMEFTðμew;ΛÞ ¼
�
1̂þ ĴSMEFT

αsðμewÞ
4π

�
Ûð0Þ

SMEFTðμew;ΛÞ

×

�
1̂ − ĴSMEFT

αsðΛÞ
4π

�
: ð2Þ

To this end we notice that this evolution depends only on

ĴSMEFT and Ûð0Þ
SMEFT without any explicit dependence on

one- and two-loop anomalous dimensions of the SMEFT
operators. This gives us a hint that it should be possible to

obtain ĴSMEFT and Ûð0Þ
SMEFT from the known ĴBMU and

Ûð0Þ
BMU without knowing explicitly one-loop and two-loop

ADMs in the SMEFT. It turns out that this is indeed
possible but as an intermediate step we should first find

ĴJMS and Û
ð0Þ
JMS from ĴBMU and Ûð0Þ

BMU. We will perform this
intermediate step in what follows.
To reach this goal we first present the general formula

that allows one to obtain ĴB and Ûð0Þ
B in a given basis B

from ĴA and Ûð0Þ
A in the basis A for which these two objects,

as in the BMU basis, are already known.
Defining the transformation matrix R̂ between these two

operator bases through

Q⃗B ¼ R̂Q⃗A; C⃗A ¼ R̂TC⃗B; R̂¼ R̂0 þ
αsðμÞ
4π

R̂1; ð3Þ
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one finds then that in the case of ΔF ¼ 2 operators, the absence of Fierz-vanishing operator contributions in the NDR-MS
scheme implies R̂1 ¼ 0̂ [16]. A straightforward calculation results then in the relations we were looking for:

ĴB ¼ ðR̂−1
0 ÞTĴAR̂T

0 ; Ûð0Þ
B ðμ1; μ2Þ ¼ ðR̂−1

0 ÞTÛð0Þ
A ðμ1; μ2ÞR̂T

0 : ð4Þ

Let us illustrate these formulas on the two cases of interest.
Example 1
Here

A ¼ BMU; B ¼ JMS; R̂T
0 ≡ M̂0; ð5Þ

and we find

ĴJMS ¼ M̂−1
0 ĴBMUM̂0; Ûð0Þ

JMSðμ1; μ2Þ ¼ M̂−1
0 Ûð0Þ

BMUðμ1; μ2ÞM̂0: ð6Þ

Example 2

Here

A ¼ JMU; B ¼ SMEFT; R̂T
0 ≡ K̂0; ð7Þ

and we find

ĴSMEFT ¼ K̂−1
0 ĴJMSK̂0; Ûð0Þ

SMEFT ¼ K̂−1
0 Ûð0Þ

JMSK̂0; ð8Þ

where we suppressed the scales in the last relation. The
reason is that the SMEFT and WET are valid at different
energy scales. Therefore, to use the second relation in the
equation above in the basic formula (2) one should properly

adjust the scales in Ûð0Þ
JMS. To test it one can use the one-loop

ADMs of [11–13].
In summary, starting with the known RG NLO evolution

in the BSM basis one cannot only find the corresponding
NLO evolution in WET in the JMS basis but also the NLO
evolution in the SMEFT.
This formulation is general but in the case at hand, while

R̂0 ≠ 1̂, the transformation from the JMS to the SMEFT
basis simplifies drastically. With K̂0 ¼ 1̂ one has

ĴSMEFT ¼ ĴJMS; Ûð0Þ
SMEFT ¼ Ûð0Þ

JMS: ð9Þ

This demonstrates the advantage of the JMS basis over the
BMU basis when the matching to the SMEFT is
considered.

B. One-loop and two-loop ADMs in SMEFT

Despite the possibility of finding the NLO RG evolution
matrix in the basis B from the one in the basis A without
knowing anomalous dimensions in basis B, it is useful to
find these anomalous dimensions if one wants to include
subsequently the effects of Yukawa couplings.

The ADM has the following perturbative expansion:

γ̂ðαsÞ ¼
αs
4π

γ̂ð0Þ þ
�
αs
4π

�
2

γ̂ð1Þ þOðα3sÞ: ð10Þ

We find then

γ̂ð0ÞJMS ¼ R̂0γ̂
ð0Þ
BMUR̂

−1
0 ; γ̂ð1ÞJMS ¼ R̂0γ̂

ð1Þ
BMUR̂

−1
0 ð11Þ

and

γ̂ð0ÞSMEFT ¼ γ̂ð0ÞJMS; γ̂ð1ÞSMEFT ¼ γ̂ð1ÞJMS: ð12Þ

Starting then with the ADMs in the BMU basis one can
find the ADMs in the JMS basis and subsequently ADMs
in the SMEFT. However, there is one subtlety to be taken
care of: The anomalous dimension matrix γ̂ used by us and
in the most literature including [1] and in particular in the
BMU basis in [14] governs the RG evolution of the matrix
elements of the operators involved, while the evolution of
the corresponding Wilson coefficients is governed by the
transposed matrix γ̂T . But the authors that introduced the
JMS and SMEFT bases decided to denote by γ̂ the one
which usually would be called γ̂T .
In what follows we will within QCD use the standard

notation so that the RG evolution of operator matrix
elements will be governed by γ̂ and the evolution of
Wilson coefficients by γT. Therefore when listing ADMs
and Ĵ in the JMS and SMEFT bases we will use the
standard notation used also in the BMU basis in [14]. The
resulting QCD RG evolution matrices at LO and NLO
obviously do not depend on this choice. We will also see at
the end of the next section that the LOYukawa effects in the
RG evolution can also be incorporated in the presence of
NLO QCD corrections in a straightforward manner.

NLO QCD RENORMALIZATION GROUP EVOLUTION FOR … PHYS. REV. D 106, 035003 (2022)

035003-3



III. ONE-LOOP AND TWO-LOOP ADMs IN BMU,
JMS, and SMEFT BASES

A. BMU

We begin with the BMU basis [14] for which the
complete ADMs at NLO in QCD have been calculated
in [14].2 The BMU basis consists in full generality of
ð5þ 3Þ ¼ 8 physical operators belonging to the five
distinct sectors (VLL, SLL, LR, VRR, SRR). However,
SLL and SRR operators, violating hypercharge conserva-
tion are not allowed within the SMEFT at dimension-six
level, and we will not consider them in what follows.
Adopting the WCxf convention [21], the remaining four
operators are (ij ¼ sd; db; sb; cu),3

Qij
VLL ¼ ½d̄iγμPLdj�½d̄iγμPLdj�;

Qij
VRR ¼ ½d̄iγμPRdj�½d̄iγμPRdj�;

Qij
LR;1 ¼ ½d̄iγμPLdj�½d̄iγμPRdj�;

Qij
LR;2 ¼ ½d̄iPLdj�½d̄iPRdj�; ð13Þ

which are built exclusively out of color-singlet currents
½d̄αi � � �dαj �½d̄βi � � � dβj �, where α, β denote color indices. This
feature is very useful for calculations in Dual QCD [22,23],
because their matrix elements in the large-Nc limit can be
obtained directly without using Fierz identities.
The one-loop and two-loop anomalous dimensions are

given as follows:

γ̂ð0ÞBMU¼

0
BBBBB@

6− 6
Nc

0 0 0

0 6− 6
Nc

0 0

0 0 6
Nc

12

0 0 0 −6Ncþ 6
Nc

1
CCCCCA
;

γ̂ð1ÞBMU¼

0
BBBBB@

γ̂ð1ÞVLL 0 0 0

0 γ̂ð1ÞVRR 0 0

0 0 ðγ̂ð1ÞLRÞ11 ðγ̂ð1ÞLRÞ12
0 0 ðγ̂ð1ÞLRÞ21 ðγ̂ð1ÞLRÞ22

1
CCCCCA
: ð14Þ

Here

γ̂ð1ÞVLL ¼ γ̂ð1ÞVRR

¼ −
19

6
Nc −

22

3
þ 39

Nc
−

57

2N2
c
þ 2

3
Nf −

2

3Nc
Nf; ð15Þ

and

ðγ̂ð1ÞLRÞ11 ¼
137

6
þ 15

2N2
c
−

22

3Nc
Nf; ð16Þ

ðγ̂ð1ÞLRÞ12 ¼
200

3
Nc −

6

Nc
−
44

3
Nf; ð17Þ

ðγ̂ð1ÞLRÞ21 ¼
71

4
Nc þ

9

Nc
− 2Nf; ð18Þ

ðγ̂ð1ÞLRÞ22 ¼ −
203

6
N2

c þ
479

6
þ 15

2N2
c
þ 10

3
NcNf −

22

3Nc
Nf:

ð19Þ

Here Nc is the number of colors with Nc ¼ 3 in QCD.
Nf is the number of quark flavors,Nf ¼ 3, 4, 5 in theWET,
and Nf ¼ 6 in the SMEFT. The numerical solutions for
evolution matrices for ij ¼ sd; db; sb are given in [24].

B. JMS

The JMS basis has been introduced to facilitate the
classification of the complete WET operator basis [2] for
the purpose of matching from SMEFT onto WET. The
relevant ΔF ¼ 2 operators are

½QVLL
dd �ijij ¼ Qij

VLL; ½QVRR
dd �ijij ¼ Qij

VRR;

½QV1;LR
dd �ijij ¼ Qij

LR;1;

½QV8;LR
dd �ijij ¼ ½d̄iγμPLTAdj�½d̄iγμPRTAdj�

¼ −
1

2Nc
Qij

LR;1 −Qij
LR;2; ð20Þ

where TA are SUð3Þc color generators of the fundamental
representation.
Using the relations above one finds first

R̂0 ¼ R̂−1
0 ¼

0
BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 − 1
2Nc

−1

1
CCCCA: ð21Þ

Using subsequently (11) and the results in the BMU
basis we find one-loop and two-loop ADMs in the JMS
basis

2In the so-called SUSY basis this calculation has been
performed in [20].

3We use the ordering of flavors as in [16] but different papers
use different conventions, which has to be taken into account.
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γ̂ð0ÞJMS ¼

0
BBBB@

6− 6
Nc

0 0 0

0 6− 6
Nc

0 0

0 0 0 −12
0 0 − 6

Nc
CF −6Nc þ 12

Nc

1
CCCCA;

γ̂ð1ÞJMS ¼

0
BBBBB@

ðγ̂ð1ÞJMSÞ11 0 0 0

0 ðγ̂ð1ÞJMSÞ22 0 0

0 0 ðγ̂ð1ÞJMSÞ33 ðγ̂ð1ÞJMSÞ34
0 0 ðγ̂ð1ÞJMSÞ43 ðγ̂ð1ÞJMSÞ44

1
CCCCCA
; ð22Þ

where we have still used the BMU notation for γ̂ so that in
contrast to [9]

μ
d
dμ

C⃗JMS ¼ γ̂TJMSC⃗JMS; ð23Þ

as emphasized above. Here

ðγ̂ð1ÞJMSÞ11 ¼ ðγ̂ð1ÞJMSÞ22
¼ ðNc− 1Þð171− 19N2

c −Ncð63− 4NfÞÞ
6N2

c
; ð24Þ

ðγ̂ð1ÞJMSÞ33 ¼
21

2

�
−1þ 1

N2
c

�
; ð25Þ

ðγ̂ð1ÞJMSÞ34 ¼
6

Nc
−
200Nc

3
þ 44Nf

3
; ð26Þ

ðγ̂ð1ÞJMSÞ43 ¼
ðN2

c − 1Þð9 − 208N2
c þ 22NcNfÞ

6N3
c

; ð27Þ

ðγ̂ð1ÞJMSÞ44 ¼
27þ 679N2

c − 203N4
c − 88NcNf þ 20N3

cNf

6N2
c

;

ð28Þ

and CF ¼ ðN2
c − 1Þ=ð2NcÞ. We have checked that the

obtained γ̂ð0ÞJMS agrees after transposition with the results
in [9].

C. SMEFT

1. Operators

In the SMEFT there are five operators that can contribute
to ΔF ¼ 2 processes at the dimension-six level

Oð1Þ
qq ¼ ðq̄pγμqrÞðq̄sγμqtÞ; Oð3Þ

qq ¼ ðq̄pγμτIqrÞðq̄sγμτIqtÞ;
Odd ¼ ðd̄pγμdrÞðd̄sγμdtÞ; Oð1Þ

qd ¼ ðq̄pγμqrÞðd̄sγμdtÞ;
Oð8Þ

qd ¼ ðq̄pγμTAqrÞðd̄sγμTAdtÞ: ð29Þ

The relevant SMEFT Wilson coefficients are

B ¼ fCð1Þqq þ Cð3Þqq ; Caa; Cð1Þqa ; Cð8Þqa g; ð30Þ

in the down (a ¼ d) and up (a ¼ u) sectors, respectively
[4]. At tree level for Bs;d − B̄s;d and K0 − K̄0 mixing one
finds the following matching conditions at μew in the
down-basis:

½CV;LL
dd �ijij¼−½Cð1Þqq �ijij− ½Cð3Þqq �ijij; ½CV;RR

dd �ijij¼−½Cdd�ijij;
½CV1;LR

dd �ijij¼−½Cð1Þqd �ijij; ½CV8;LR
dd �ijij¼−½Cð8Þqd �ijij; ð31Þ

and for D0 − D̄0 mixing in the up-basis:

½CV;LL
uu �ijij¼−½Ĉð1Þqq �ijij− ½Ĉð3Þqq �ijij; ½CV;RR

uu �ijij¼−½Ĉuu�ijij;
½CV1;LR

uu �ijij¼−½Ĉð1Þqu �ijij; ½CV8;RR
uu �ijij¼−½Ĉð8Þqu �ijij; ð32Þ

where we have neglected contributions from modified
Z-coupling operators. Note that we use the Hamiltonian
for WET to define Wilson coefficients contrary to [2,3],
who use the Lagrangian, and in consequence minus signs
are present in the matching conditions.

2. QCD anomalous dimensions

The ADMs in this case are, as given in (12), the same as
for the JMS basis. Inspecting the RG evolution for ½Ĉð1Þqq �ijij
and ½Ĉð3Þqq �ijij one finds that the sum for dd or uu indices
from these two Wilson coefficients evolves without being
affected by other operators and only this sum matches on
the VLL operator in the JMS basis. While this can be
verified explicitly by using the RG equations (35) and (36)
in [16], the inclusion of flavor diagonal gluon exchanges at
the two-loop level cannot change this property.

3. Top Yukawa anomalous dimension

In this subsection we report the LO ADM resulting from
top Yukawa interactions. It reads for a given sector with
flavor indices ij ¼ sd; db; sb; cu in the down-basis [4]:

γ̂ð0Þyt ¼ y2t
16π2

0
BBBB@

rij 0 0 0

0 0 0 0

0 0 1
2
rij 0

0 0 0 1
2
rij

1
CCCCA; ð33Þ
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with the combination rij ¼ jVtij2 þ jVtjj2. In the up-basis
the ADM is zero and the corresponding mixing effects only
come into play when considering back-rotation [25] at the
electroweak scale.
Indeed, this anomalous dimension matrix can be extracted

from formulas (30)–(33) in [16]. It is the coefficient of

L ¼ 1

ð4πÞ2 ln
�
μew
Λ

�
; ð34Þ

in the solution of RG equations retaining only the first
leading logarithm and neglecting the μ-dependence of yt.
Defining

½Cð1þ3Þ
qq �ijij ≡ ½Cð1Þqq �ijij þ ½Cð3Þqq �ijij; ð35Þ

these equations read in the down-basis

½Cð1þ3Þ
qq �ijijðμewÞ ¼ ½Cð1þ3Þ

qq �ijij þ y2t
h
λikt ½Cð1þ3Þ

qq �kjij
þ λkjt ½Cð1þ3Þ

qq �ikij
i
L; ð36Þ

½Cð1Þqd �ijijðμewÞ ¼ ½Cð1Þqd �ijijþ y2t

�
λikt
2
½Cð1Þqd �kjijþ

λkjt
2
½Cð1Þqd �ikij

�
L;

ð37Þ

½Cð8Þqd �ijijðμewÞ ¼ ½Cð8Þqd �ijij þ y2t

�
λikt
2
½Cð8Þqd �kjij þ

λkjt
2
½Cð8Þqd �ikij

�
L;

ð38Þ

where a summation over k is implied and where we only
considered the ΔF ¼ 2 operators in (29). We have sup-
pressed the argument of the NP scale Λ in the Wilson
coefficients and SM parameters on the right-hand side
(RHS) to simplify the notation. The μ dependence of yt
will be included in the next subsection.

D. Explicit expression for the evolution matrix

1. Pure QCD

We can now find the NLO QCD evolution matrix in any
of the bases considered by us using the general formulas
that we recall here in the case of SMEFT for completeness.
Simplifying the notation by dropping the subscript SMEFT
we have

Ûðμew;ΛÞ ¼
�
1þ Ĵ

αsðμewÞ
4π

�
Ûð0Þðμew;ΛÞ

�
1 − Ĵ

αsðΛÞ
4π

�
:

ð39Þ

Here Ûð0Þðμew;ΛÞ denotes the usual LO RG evolution
matrix that is explicitly given as follows:

Ûð0Þðμew;ΛÞ ¼ V̂

��
αsðΛÞ
αsðμewÞ

�γ⃗ð0Þ
2β0

�
D
V̂−1; ð40Þ

where V̂ diagonalizes γ̂ð0ÞT ,

γ̂ð0ÞD ¼ V̂−1γ̂ð0ÞTV̂; ð41Þ

and γ⃗ð0Þ is the vector containing the diagonal elements of

the diagonal matrix γ̂ð0ÞD .
The NLO matrix Ĵ is given by

Ĵ ¼ V̂ Ĥ V̂−1 ð42Þ

with

ðHÞij ¼ δijðγð0ÞÞi
β1
2β20

−
Gij

2β0 þ ðγð0ÞÞi − ðγð0ÞÞj
; ð43Þ

where

Ĝ ¼ V̂−1γ̂ð1ÞTV̂; ð44Þ

with the two-loop matrix γ̂ð1Þ found using (11) and β1 ¼
34
3
N2

c − 10
3
NcNf − 2CFNf [26].

Setting Nc ¼ 3 and Nf ¼ 6 we find

Ĵð6ÞSMEFT ¼ Ĵð6ÞJMS ¼

0
BBBB@

1.37 0 0 0

0 1.37 0 0

0 0 1.47 2.75

0 0 16.60 6.92

1
CCCCA;

Ĵð6ÞBMU ¼

0
BBBB@

1.37 0 0 0

0 1.37 0 0

0 0 −1.30 −1.38
0 0 −16.60 9.69

1
CCCCA: ð45Þ

The corresponding matrices for Nf ¼ 4 and Nf ¼ 5 can
be found in Appendix.

2. Including top Yukawa effects

Until now we succeeded to find the NLO QCD RG
evolution in the SMEFT but also the evolution due to the
top Yukawa has to be taken into account. But the two-loop
ADM for ΔF ¼ 2 operators including top Yukawa cou-
plings is not known at present. Therefore, we can only
combine the known LO evolution due to Yukawa couplings
with the NLO QCD evolution just found. The full evolution
is then given by
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½Ûðμew;ΛÞ�QCDþyt
¼

�
1̂þ Ĵ

αsðμewÞ
4π

�
½Ûð0Þðμew;ΛÞ�QCDþyt

×

�
1̂ − Ĵ

αsðΛÞ
4π

�
; ð46Þ

where the label QCDþ yt indicates that besides QCD also
Yukawa contributions have been taken into account. Note
that Ĵ contains only QCD contributions. As NLO correc-
tions due to top Yukawa effects are unknown, it is legitimate
to proceed in this manner.
There are two routes to find the LO evolution matrix in

this formula. If one is interested only in the numerical
result, one can simply replace the LO QCD evolution
matrix in (39) by the one present in the usual computer
codes like WILSON [27] or DsixTools [28,29] for LO RG
evolution in the SMEFT.
However, as demonstrated in [30] a very accurate

analytic formula for the RG evolution including scale
dependence of yt can be found. To this end we note that

½Ûð0Þðμew;ΛÞ�QCDþyt
¼ ½Ûð0Þðμew;ΛÞ�QCD½Ûð0Þðμew;ΛÞ�yt

ð47Þ

with the QCD evolution matrix given in (40). To find the
second matrix one can simply follow the case C in
Appendix E of [1] that is a particular case of the general
formulas in [30]. We find

½Ûð0Þðμew;ΛÞ�yt ¼ exp

�
1

8π

γ̂t

γð0Þm − β0

�
½αsðΛÞ�

γ
ð0Þ
m
β0

−1

− ½αsðμewÞ�
γ
ð0Þ
m
β0

−1
��

; ð48Þ

where the diagonal matrix γ̂t,

γ̂t ¼ b̂y2t ðμ0Þ½αsðμ0Þ�−
γ
ð0Þ
m
β0 ; γð0Þm ¼ 8; ð49Þ

with the diagonal matrix b̂ ¼ diagð1; 0; 1=2; 1=2Þ deduced
from (33) and an arbitrary scale μ0, which we choose to be
160 GeV in our numerical analysis.

IV. NUMERICAL ANALYSIS

To illustrate the importance of NLO QCD corrections
within the SMEFT with respect to the LO ones and top
quark Yukawa effects as well as LO and NLO QCD effects
within the WET, we derive in the following numerical
expressions for the evolution matrices in the WET and
SMEFT. The results in this section have been obtained
using the analytic expressions derived in the previous
section.

A. WET

Setting μhad ¼ 1.3 GeV and μew ¼ 160 GeV and using
the threshold scale μ5 ¼ 4.2 GeV between Nf ¼ 5 and
Nf ¼ 4 we find

½Ûð0Þ
JMS�QCD ¼

0
BBBB@

0.76 0 0 0

0 0.76 0 0

0 0 1.10 0.31

0 0 1.38 2.71

1
CCCCA;

½ÛJMS�QCD ¼

0
BBBB@

0.76 0 0 0

0 0.76 0 0

0 0 1.24 0.57

0 0 2.02 3.59

1
CCCCA: ð50Þ

Here Ûð0Þ
JMS and ÛJMS are LO and NLO evolution

matrices in the JMS basis, respectively. We observe that
in the LR sector the NLO effects are large, and it is
mandatory to include them in any phenomenological
analysis.

B. SMEFT

Here we study the evolution between μew ¼ 160 GeV
and Λ ¼ 10 TeV for various cases in the Nf ¼ 6 flavor
theory.

1. Pure QCD evolution

½Ûð0Þ
SMEFT�QCD ¼

0
BBBB@

0.89 0 0 0

0 0.89 0 0

0 0 1.02 0.10

0 0 0.43 1.52

1
CCCCA;

½ÛSMEFT�QCD ¼

0
BBBB@

0.89 0 0 0

0 0.89 0 0

0 0 1.02 0.12

0 0 0.46 1.57

1
CCCCA: ð51Þ

As expected, due to a much slower running of αs and its
smaller value than in WET, QCD effects are significantly
smaller, and this applies in particular to NLO QCD effects.

2. Pure Yukawa evolution

When only the Yukawa running in the SMEFT at one
loop is considered, the resulting evolution matrix reads
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½Ûð0Þ
SMEFT�yt ¼

0
BBBB@

0.98 0 0 0

0 1.00 0 0

0 0 0.99 0

0 0 0 0.99

1
CCCCA; ð52Þ

where we have used ytðμ ¼ 160 GeVÞ ¼ 0.94.

3. QCD+Yukawa evolution

In this subsection we consider the combination of QCD
and Yukawa running effects at LO and NLO. The corre-
sponding evolution matrices read

½Ûð0Þ
SMEFT�QCDþyt

¼

0
BBBB@

0.87 0 0 0

0 0.89 0 0

0 0 1.01 0.10

0 0 0.43 1.51

1
CCCCA;

½ÛSMEFT�QCDþyt
¼

0
BBBB@

0.88 0 0 0

0 0.89 0 0

0 0 1.01 0.11

0 0 0.44 1.54

1
CCCCA; ð53Þ

where for both matrices we have used Eq. (46), setting Ĵ to
zero in the LO case, and keeping Ĵ in the computation
of ÛSMEFT.
We observe that when only ΔF ¼ 2 operators are

considered, the impact of top-Yukawa effects is very small.
It is significantly larger when ΔF ¼ 1 operators are also
included in the analysis. A detailed discussion of these
effects has been presented in [16].

V. CONCLUSIONS

The main results of our paper are as follows:
(i) General formulas for the relation of QCD RG

evolution matrices at LO and NLO for ΔF ¼ 2
Wilson coefficients between two different operator
bases, given in Eq. (4).

(ii) The relation of QCD one-loop and two-loop anoma-
lous dimension matrices between BMU and JMS
bases reported in (11) and JMS and SMEFT bases
in Eq. (12).

(iii) The two-loop QCD ADMs for ΔF ¼ 2 operators in
the JMS WET basis and in the SMEFT Warsaw
basis. They are given in Eqs. (22)–(28) and (12).

(iv) Master formulas for QCD RG evolution matrices for
the Wilson coefficients of ΔF ¼ 2 operators in the
SMEFT Warsaw basis at the NLO were derived.
They are given in Eq. (39).

(v) Generalization of these formulas to include top
Yukawa effects at the one-loop level.

These findings allow for a general and scheme-indepen-
dent QCD analysis of nonleptonic ΔF ¼ 2 processes in
the SMEFT and WET at NLO. In a given UV completion
in which the Wilson coefficients have been calculated at a
NP scale Λ, our master formulas allow us to calculate
them at the μew scale. The inclusion of NLO QCD
corrections in the RG evolution in the WET from the
hadronic scale μhad to the electroweak scale μew allows a
correct matching of Wilson coefficients to the matrix
elements calculated by lattice QCD (LQCD) or other
nonperturbative methods sensitive to renormalization
scheme dependences. The use of the JMS basis, on the
other hand, allows one to generalize this formula to the
SMEFT, because in this basis the tree-level matching of
SMEFT onto WET [2] and the one-loop matching [3,4]
are known.
The main messages from the numerical analysis in

Sec. IV are as follows:
(i) The NLO QCD corrections to the ΔF ¼ 2 RG

evolution matrices within WET are substantial.
(ii) The NLO QCD corrections to the ΔF ¼ 2 RG

evolution matrices within SMEFT are small, in
the ballpark of a few percent.

(iii) Even smaller are top-Yukawa effects if only ΔF ¼ 2
operators are included in the analysis.

The small NLOQCD corrections to theΔF ¼ 2matrices
within the SMEFT could be considered at first sight
disappointing. However, it should be realized that they
have been calculated in the NDR scheme but could be
larger in a different RS. This also does not preclude
significant one-loop matching contributions, which in
principle could be larger than the QCD effects found here.
However, to combine these one-loop matching conditions
with the NLO effects calculated here they have to be
calculated in the NDR scheme. Only then can RS inde-
pendent results be obtained.
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APPENDIX: Ĵ
ðNf Þ
JMS AND Ĵ

ðNf Þ
BMU

For convenience we report in this appendix the Ĵ matrices for Nf ¼ 5, 4 flavors in the JMS and BMU bases, obtained
from Eq. (42),

Ĵð5ÞJMS ¼

0
BBBB@

1.63 0 0 0

0 1.63 0 0

0 0 1.67 2.44

0 0 17.04 5.12

1
CCCCA; Ĵð4ÞJMS ¼

0
BBBB@

1.79 0 0 0

0 1.79 0 0

0 0 2.43 2.10

0 0 21.15 3.18

1
CCCCA; ðA1Þ

Ĵð5ÞBMU ¼

0
BBBB@

1.63 0 0 0

0 1.63 0 0

0 0 −1.17 −1.39
0 0 −17.04 7.96

1
CCCCA; Ĵð4ÞBMU ¼

0
BBBB@

1.79 0 0 0

0 1.79 0 0

0 0 −1.10 −1.39
0 0 −21.15 6.71

1
CCCCA: ðA2Þ
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