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We present the first full-fledged study of the flavor-exotic isoscalar T −
bb ≡ bbūd̄ tetraquark with spin and 

parity J P = 1+. We report accurate solutions of the four-body problem in a quark model, characterizing 
the structure of the state as a function of the ratio M Q /mq of the heavy to light quark masses. For 
such a standard constituent model, T −

bb lies approximately 150 MeV below the strong decay threshold 
B− B̄∗0

and 105 MeV below the electromagnetic decay threshold B− B̄0γ . We evaluate the lifetime of T −
bb , 

identifying the promising decay modes where the tetraquark might be looked for in future experiments. 
Its total decay width is � ≈ 87 × 10−15 GeV and therefore its lifetime τ ≈ 7.6 ps. The promising 
final states are B∗− D∗+ �− ν̄� and B̄∗0

D∗0 �− ν̄� among the semileptonic decays, and B∗− D∗+ D∗
s
−, 

B̄∗0
D∗0 D∗

s
−, and B∗− D∗+ ρ− among the nonleptonic ones. The semileptonic decay to the isoscalar 

J P = 0+ tetraquark T 0
bc is also relevant but it is not found to be dominant. There is a broad consensus 

about the existence of this tetraquark, and its detection will validate our understanding of the low-energy 
realizations of Quantum Chromodynamics (QCD) in the multiquark sector.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Hadronic physics has been much stimulated during the last two 
decades by the experimental discovery of several new resonances 
in the hidden-charm sector, resonances that are hardly accommo-
dated in the traditional quark-antiquark or three-quark picture [1]. 
These are the so-called XY Z mesons and LHCb pentaquarks, which 
belong to the class of “exotic hadrons”, although they are not fla-
vor exotics. After several years of studies, no definite conclusion 
has been drawn as to whether such non-flavor exotic states corre-
spond to multiquark structures or to hadron-hadron molecules. A 
similar situation was encountered in the light scalar meson sector, 
where a multiquark picture was first introduced [2] as an attempt 
to explain the inverted mass spectrum (inverted in comparison to 
the simple quark-antiquark structure favored by the naive quark 
model) exhibited by the low-lying scalar mesons, some of which 
were later on suggested to be meson-meson molecules [3].
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For years, the sector of flavor-exotic hadrons has been some-
what forgotten, as being less easily accessible than the hidden-
flavor sector. However, already some decades ago, investigations 
on flavor-exotic multiquarks concluded that q̄q̄ four-quark config-
urations become more and more deeply bound when the mass 
ratio M Q /mq increases [4]. There is nowadays a broad theoretical 
consensus about the existence of such unconventional tetraquark 
configurations for which all strong decays are energetically forbid-
den. The most promising candidate is an isoscalar tetraquark with 
double beauty and J P = 1+ quantum numbers, which is stable 
against strong and electromagnetic decays. The same conclusion 
about the stability of this state has been reached in a wide vari-
ety of theoretical approaches [4–14]. A novel lattice QCD calcula-
tion [5] employing a non-relativistic formulation to simulate the 
bottom quark finds unambiguous signals for a strong-interaction-
stable (I) J P = (0)1+ tetraquark, 189(10) MeV below the corre-
sponding two-meson threshold, B̄ B̄∗ . The lattice QCD calculation 
of Ref. [6] come to the identical conclusion obtaining a binding 
energy of 143(34) MeV. With such binding, the tetraquark is sta-
ble also with respect to electromagnetic decays. In Ref. [7], the 
mass of the doubly-charm baryon �++

cc , discovered by the LHCb 
Collaboration [15], is used to calibrate the binding energy of a 
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Q Q diquark. Assuming that the bb diquark binding energy in a 
T −

bb tetraquark is the same as that of the cc diquark in the �++
cc

baryon, the mass of the (0)1+ doubly-bottom tetraquark is esti-
mated to be 215 MeV below the strong decay threshold B̄ B̄∗ . In 
Ref. [8], the heavy-quark-symmetry mass relations linking heavy-
light and doubly-heavy-light mesons and baryons are combined 
with leading-order corrections for finite heavy-quark mass, corre-
sponding to hyperfine spin-dependent terms and kinetic energy 
shift that depends only on the light degrees of freedom. This 
leads to predict that the T −

bb state is stable against strong de-
cays. More specifically, using as input the masses of the doubly-
bottom baryons (not yet experimentally measured) obtained by 
the model calculations of Ref. [7], Ref. [8] finds an axial-vector 
tetraquark bound by 121 MeV. In Ref. [9], the Schrödinger equation 
is solved with a potential extracted from a lattice QCD calcula-
tion for static heavy quarks, in a regime where the pion mass is 
mπ ∼ 340 MeV, and again, evidence is found for a stable isoscalar 
doubly-bottom axial-vector tetraquark. When extrapolated to phys-
ical pion masses it has a binding energy of 90+43

−36 MeV. The ro-
bustness of these predictions is reinforced by detailed few-body 
calculations using phenomenological constituent models based on 
quark-quark Cornell-type interactions [10,11], which predict that 
the isoscalar axial-vector doubly-bottom tetraquark is strong- and 
electromagnetic-interaction stable with a binding energy ranging 
between 144–214 MeV for different realistic quark-quark poten-
tials. Recent studies using a simple color-magnetic model have 
come to similar conclusions [12]. The QCD sum rule analysis of 
Ref. [13] also points to the possibility of a stable doubly-bottom 
isoscalar axial-vector tetraquark. Finally, the recent phenomeno-
logical analysis of Ref. [14] also presents evidence in favor of the 
existence of a stable T −

bb state.
The compelling theoretical evidence for the existence of a T −

bb
tetraquark has led to preliminary studies of its lifetime and weak 
decay modes. In this context, Ref. [16] investigated the amplitudes 
and decay widths of doubly-heavy tetraquarks under the flavor 
SU(3) symmetry, deriving ratios between decay widths of differ-
ent channels. Ref. [17] evaluated the semileptonic decay of the T −

bb

tetraquark to a scalar bcūd̄ tetraquark in the framework of QCD 
sum rules. In spite of the numerous model calculations existing 
in the literature (see Refs. [11,12] for a recent compendium) no 
comprehensive calculation of the spectroscopy, decay modes, and 
lifetime of this state has been obtained so far.

The purpose of this work is to present the first detailed study 
of the flavor-exotic T −

bb tetraquark with J P = 1+ and isospin I = 0, 
reporting accurate solutions of the four-body problem, characteriz-
ing the structure of the state, evaluating its lifetime and identifying 
the promising decay modes where the tetraquark might be looked 
for. A striking result deals with the lifetime, which is found signif-
icantly longer than for single-b hadrons. With two b quarks, one 
expects either cooperating or conflicting interferences. Also, if one 
compares a typical meson decay mode B → D x and its tetraquark 
analog T → B D x, there is a change in the overlap of the final 
D meson and the cq̄ system provided by a spectator q̄ and the c
quark coming from one of the b quarks: the color factor and the 
spatial distribution are modified. There is also an obvious effect of 
the phase-space, which is known to be crucial in weak decays, for 
instance for β-unstable nuclei. While the Dx invariant mass is 5.3 
GeV in B → Dx decay, it is about 4.6 GeV in T → B Dx, depend-
ing which sector of the Dalitz plot is reached. Altogether, it looks 
difficult to attempt a guesstimate of the lifetime before actually 
performing the calculation.

This paper is organized as follows. In Sec. 2, we present the 
masses and wave functions obtained from an accurate four-body 
calculation that makes use of a quark model. The calculation of 
the dominant decay modes and of the lifetime is given in Sec. 3. 
Our conclusions are summarized in Sec. 4.

2. Tetraquark mass and wave function

We have studied the spectroscopy of doubly-heavy tetraquarks 
by two different numerical methods: a hyperspherical harmonic 
formalism and a generalized Gaussian variational (GGV) approach, 
both driving to the same results [10]. For its later application to 
the detailed study of the four-quark structure and weak decays, the 
GGV is more suited. Let us briefly discuss the main characteristics 
of the method. We shall denote the heavy quark coordinates by 
r1 and r2, and those of the light antiquarks by r3 and r4. The 
tetraquark wave function is taken to be a sum over all allowed 
channels with well-defined symmetry properties [18,19]:

ψ(x, y, z) =
6∑

κ=1

χ
csf
κ Rκ (x, y, z), (1)

where x = r1 − r2, y = r3 − r4 and z = (r1 + r2 − r3 − r4)/2 are 
the Jacobi coordinates. χ csf

κ are orthonormalized color-spin-flavor 
vectors and Rκ (x, y, z) is the radial part of the wave function of 
the κth channel. In order to get the appropriate symmetry proper-
ties in configuration space, Rκ (x, y, z) is expressed as the sum of 
four components,

Rκ (x, y, z) =
4∑

n=1

wn
κ Rn

κ (x, y, z), (2)

where wn
κ = ±1. Finally, each Rn

κ (x, y, z) is expanded in terms of 
N generalized Gaussians

Rn
κ (x, y, z) =

N∑
i=1

αi
κ exp

[ − ai
κ x2 − bi

κ y2 − ci
κ z2

− di
κ s1(n) x · y − ei

κ s2(n) x · z − f i
κ s3(n) y · z

]
,

(3)

where si(n) are equal to ±1 to guarantee the symmetry properties 
of the radial function and αi

κ , ai
κ , · · · , f i

κ are the variational param-
eters. The latter are determined by minimizing the intrinsic energy 
of the tetraquark. We follow closely the developments of Refs. [18,
19], where further technical details can be found about the wave 
function and the minimization procedure.

A four-quark state is stable under the strong interaction if its 
mass, MT (from now on, T often abbreviates T Q Q ), lies below all 
allowed two-meson decay thresholds. Thus, one can define the dif-
ference between the mass of the tetraquark and that of the lowest 
two-meson threshold, namely:

�E = MT − (M1 + M2) , (4)

where M1 and M2 are the masses of the mesons constituting 
the threshold. When �E < 0, all fall-apart decays are forbidden 
and, therefore, the state is stable under strong interactions. When 
�E ≥ 0 one has to examine whether it is a resonance or an artifact 
of the discretization of the continuum by the variational method, 
and this requires dedicated techniques such as real [20] or com-
plex scaling [21], which are beyond the scope of this note. We 
therefore concentrate on �E < 0. Another quantity of interest is 
the root-mean-square (r.m.s.) radius of the tetraquark, XT , given 
by [10]:
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Table 1
Relevant meson masses (in MeV) and r.m.s. radii (in fm) predicted by the AL1 
model for the strong, electromagnetic and weak decay thresholds of the J P = 1+
T −

bb tetraquark.

Meson M r.m.s. Meson M r.m.s

J = 0 B̄ 5293 0.145 K 491 0.283
D 1862 0.216 π 138 0.298
Ds 1962 0.213 ηc 3005 0.181

J = 1 B̄∗ 5350 0.153 K ∗ 903 0.389
D∗ 2016 0.248 ρ 770 0.460
D∗

s 2102 0.243 J/� 3101 0.199

XT =
[∑4

i=1 mi〈(ri − R)2〉∑4
i=1 mi

]1/2

, (5)

where R is the center-of-mass coordinate, and mi are the quark 
masses M Q or mq .

Determining whether stability is reached in this model, i.e., 
�E < 0, requires a simultaneous and consistent calculation of the 
meson masses M1 and M2 entering the threshold, and of the 
tetraquark configurations. For this purpose, we have adopted the 
so-called AL1 model by Semay and Silvestre-Brac [22], already used 
in a number of exploratory studies of multiquark systems, for in-
stance in our recent investigation of the hidden-charm pentaquark 
sector c̄cqqq [23] or doubly-heavy baryons and tetraquarks [11]. It 
includes a standard Coulomb-plus-linear central potential, supple-
mented by a smeared version of the chromomagnetic interaction,

V (r) = − 3

16
λ̃i .λ̃ j

[
λ r − κ

r
− � + V S S(r)

mi m j
σ i · σ j

]
,

V S S(r) = 2π κ ′

3π3/2 r3
0

exp

(
− r2

r2
0

)
, r0 = A

(
2mim j

mi + m j

)−B

, (6)

where λ = 0.1653 GeV2, � = 0.8321 GeV, κ = 0.5069, κ ′ =
1.8609, A = 1.6553 GeVB−1, B = 0.2204, mu = md = 0.315 GeV, 
ms = 0.577 GeV, mc = 1.836 GeV and mb = 5.227 GeV. Here, λ̃i .λ̃ j
is a color factor, suitably modified for the quark-antiquark pairs. 
We disregard the small three-body term of this model used in [22]
to fine-tune the baryon masses vs. the meson masses. Note that 
the smearing parameter of the spin-spin term is adapted to the 
masses involved in the quark-quark or quark-antiquark pairs. It 
is worth to emphasize that the parameters of the AL1 potential 
are constrained in a simultaneous fit of 36 well-established meson 
states and 53 baryons, with a remarkable agreement with data, as 
seen in Table 2 of Ref. [22].

The meson masses of the threshold in this model are given in 
Table 1, together with the masses of other mesons that will be 
involved in the weak decays discussed in Sec. 3. Also shown is the 
quark-antiquark r.m.s. radius.

One can now study the stability of the J P = 1+ T −
bb isoscalar 

state. In the GGV method, if a state is unbound, one observes a 
slow decrease of its mass toward M1 + M2 as N , the number of 
terms in Eq. (3), increases. It turns out to be useful to also look 
at the content of the variational wave function, which comes very 
close to 100% in a color singlet-singlet channel in the physical ba-
sis [18]. On the other hand, if a variational state converges to a 
bound state as N increases, it includes sizable hidden-color com-
ponents even for low N . We show in Table 2 the results for the 
T Q Q tetraquark for different masses of the heavy quark, M Q . In 
the first line we give the results for the standard mass value of the 
bottom quark used in the AL1 model, for which we get a binding 
energy of 151 MeV. We have scrutinized the structure of the T Q Q
state. For each particular value of M Q we have evaluated the low-
est strong-decay threshold, M1 + M2, the energy of the four-quark 
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Fig. 1. (a) Probability of the 3̄3 and 66̄ components of the T QQ color wave function as a function of M Q /mq . (b) Average distances 〈x2〉1/2, 〈y2〉1/2 and 〈z2〉1/2 as a function 
of M Q /mq .
state, MT QQ , and the corresponding binding energy B = −�E . We 
have calculated the probability of the 3̄3, P [|3̄3〉], and 66̄, P [|66̄〉], 
color components. By using the recoupling techniques derived in 
Ref. [18] we have also evaluated the probability of the 11, P [ | 11〉], 
and 88, P [ | 88〉], color components. Afterwards, we have expanded 
the wave function in terms of physical states evaluating the proba-
bility of the pseudoscalar-vector, P MM∗ , and vector-vector, P M∗M∗ , 
two-meson physical states. Finally we have calculated the average 
distance between the two heavy quarks, 〈x2〉1/2, between the two 
light quarks, 〈y2〉1/2, between a heavy and a light quarks, 〈z2〉1/2, 
and the four-quark r.m.s. radius, XT QQ .

As shown in Table 2 the binding energy of the T Q Q tetraquark 
increases with increasing M Q /mq as predicted in Ref. [4] and re-
cently rediscovered in Refs. [7,8]. Close to �E = 0 the system be-
haves like a simple meson-meson molecule, with a large probabil-
ity in a single meson-meson component, the pseudoscalar-vector 
channel. The T Q Q starts to be bound around the mass of the 
charm quark used by the AL1 model, mc = 1836 MeV [24]. Such 
small binding is due to a cooperative effect between the chromo-
electric and chromomagnetic pieces in the interacting potential. 
Hence, the Tcc tetraquark is unbound when the spin-spin inter-
action is switched off. The λ̃i .λ̃ j contribution of Eq. (6), with a 
pairwise potential due to color-octet exchange, induces mixing be-
tween 3̄3 and 66̄ color states in the Q Q − q̄q̄ basis. The ground 
state of the Q Q ūd̄ with J P = 1+ has its dominant component with 
color 3̄3, and spin {1, 0} in the Q Q − ūd̄ basis. The main admix-
ture consists of 66̄ with spin {0, 1} and a symmetric orbital wave 
function. Thus, for M Q /mq close to the charm sector, the binding 
requires both the color mixing of 3̄3 with 66̄, and the spin-spin 
interaction [11,25]. In the most advanced calculations of Ref. [25], 
it was acknowledged that a pure additive interaction will not bind 
ccq̄q̄, on the sole basis that this tetraquark configuration benefits 
from the strong cc chromoelectric attraction that is absent in the 
Q q̄+ Q q̄ threshold. In the case where q̄q̄ = ūd̄, however, there is in 
addition a favorable chromomagnetic interaction in the tetraquark, 
while the threshold experiences only heavy-light spin-spin interac-
tion, whose strength is suppressed by a factor mq/M Q .

When the ratio M Q /mq increases, the probability of the 66̄
color component diminishes in such a way that the system does 
not behave any more like a simple meson-meson molecule. The 
probability of the 66̄ component in a compact Q Q q̄q̄ tetraquark 
tends to zero for M Q → ∞. Therefore, heavy-light compact bound 
states would be almost a pure 3̄3 singlet color state and not a 
single colorless meson-meson 11 molecule, as shown in Table 2. 
Such compact states with two-body colored components can be 
expanded as the mixture of several physical meson-meson chan-
nels [10,26], and thus they can be also studied as an involved 
coupled-channel problem of physical meson-meson states [27].
We have shown these results in Fig. 1. In the panel (a), we 
see how the probability of the 66̄ color component tends to zero 
for M Q → ∞. On the other hand, we can also see the fail-
ure of treating heavy-light tetraquarks as a single 3̄3 color state 
for charm-light or charm-strange doubly-heavy tetraquarks. In the 
panel (b) of Fig. 1 we show the expectation value of the dif-
ferent Jacobi coordinates over the tetraquark wave function, i.e., 
the average distance between the different constituents of the 
tetraquark [10]. One can see how when the binding increases, i.e. 
M Q /mq augments, the average distance between the two heavy 
quarks, 〈x2〉1/2, diminishes rapidly, while that of the two light 
quarks, 〈y2〉1/2, although diminishing, remains larger. The heavy-
to-light quark distance, 〈z2〉1/2, stays almost constant for any value 
of M Q /mq . It is also worth noting how the tetraquark becomes 
compact in the bottom sector. As can be seen from Tables 1 and 
2, for deep binding, XT QQ /r.m.s.(M1 + M2) = 0.226/0.298 < 1, the 
tetraquark is smaller than the two mesons of the threshold while 
close to �E = 0, XT QQ /r.m.s.(M1 + M2) = 0.530/0.464 > 1, it be-
comes larger, being very likely the break down into two mesons. 
Thus, in the heavy-quark limit, the lowest lying tetraquark con-
figuration resembles the Helium atom [8,28], a factorized system 
with separate dynamics for the compact color 3̄ Q Q kernel and 
for the light quarks bound to the stationary color 3 state, to con-
struct a Q Q q̄q̄ color singlet. As mentioned above, this result is less 
pronounced for other systems like charm-light (ccq̄q̄) or charm-
strange (csq̄q̄) doubly-heavy tetraquarks. On the basis of the results 
shown in Table 2, the schematic evolution of the T Q Q state as a 
function of the ratio M Q /mq , in other words, from deep binding 
to a close-to-threshold meson-meson state, is shown in Fig. 2 [29].

3. Tetraquark lifetime and decay modes

The double beauty T −
bb isoscalar tetraquark with J P = 1+

is stable with respect to strong- and electromagnetic interac-
tions [4–14], and thus it decays weakly. We have studied the 
semileptonic and nonleptonic decays of T −

bb following closely the 
method developed in Ref. [30]. We present here the results for the 
most favorable final states where T −

bb might be looked for. The re-
maining channels and a detailed discussion of the technicalities 
will be presented elsewhere [31].

Among the semileptonic decays one can distinguish between 
processes with final states with a single meson, see panel (a) of 
Fig. 3, or those with two mesons, panel (b) of Fig. 3. The first case, 
T −

bb → B̄0 �− ν̄� , involves a bū → W − → �− ν̄� transition that at 
tree level is described by the operator

−iV ub
G F√ �u(0)γ μ(1 − γ5)�b(0)��(0)γμ(1 − γ5)�ν�

(0) , (7)

2
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Fig. 2. From left to right, schematic evolution of a T QQ state as the heavy-quark mass decreases and, thus, the separation between the heavy quarks increases. The separation 
between the light quarks starts to augment close to threshold and the separation between the heavy and the light quarks remains almost constant. The last scenario, 
M Q /mq ≈ 6 is close to threshold, compatible with a T QQ molecule or two heavy-light mesons.

Fig. 3. Representative diagrams for semileptonic decays of the Tbb tetraquark: (a) Final state with a single meson. (b) Final state with two mesons.
where � f is a quark field of a definite flavor f , G F is the Fermi 
coupling constant and V ub is the Cabibbo-Kobayashi-Maskawa 
(CKM) matrix element. The decay width is given by

� = 1

2mT

∫∫∫
dP B

(2π)32E B

dp�

(2π)32E�

dpν�

(2π)32Eν�

× (2π)4δ(4)(P T − P B − p� − pν�
)

× |V ub|2 G2
F

2
Lαβ(p�, pν�

)Wαβ(P T , P B) , (8)

where the lepton1 and hadron tensors are given by,

Lαβ = 8(pα
� pβ

ν�
+ pβ

� pα
ν�

− gαβ p� · pν�
± iεαβρλ plρ pν�λ) , (9)

Wαβ = 1

2 J T + 1

∑
λ,λ′

hT →B
α (hT →B

β )∗ (10)

hT →B
α = 〈

B, λ′ P B
∣∣�u(0)γα(1 − γ5)�b(0) |T , λ0〉 , (11)

where pi is the four-momentum of the particle i, J T stands for the 
spin of the tetraquark, |M, λ′ P M〉 represents the state of an M me-
son with three momentum P M and spin projection in the meson 
center of mass λ′ , and |T , λ0 〉 is the state of the tetraquark at rest. 
εαβρλ is the fully antisymmetric tensor for which we take the con-
vention ε0123 = +1 and gαα = (1, −1, −1, −1). Equation (8) can 
be further simplified

� = |V ub|2 G2
F

24π3mT

1 The ± signs correspond respectively to decays into �−ν̄� and �+ν� .
×
∫∫

dE BdE� �(mT − E B − E�)�(1 − | cos θ0
� |)

× L̃αβ Wαβ(P T , P̃ B) , (12)

with P̃μ
B = (E B , 0, 0, |P B |) and

cos θ0
� = (mT − E B − E�)

2 − |P B |2 − |p�|2
2|P B | |p�|

. (13)

In (12), since all the dependence on ϕ� appears only in the lepton 
tensor, we have defined

L̃αβ = 1

16π

∫
dϕ� Lαβ . (14)

The matrix element (11) appearing in the hadron tensor can be 
expanded as,

hT →B
ρ

= 4
√

mT E B

∫∫
dpxdpz

×
∑
α1,α2
α3,α4

[
φ̂

(B,λ′)
α2,α4

(
mb

mb + mu
P B + px − 1

2
pz

)]∗

× φ̂
(T ,λ)
α1,α2
α3,α4

(
px,−px − P B , pz

)

× (−1)1/2−s3

2
√

Eu Eb
v̄s3

u

(
− P B − px − 1

2
pz

)
γρ(1 − γ5)

× us1
b

(
px + 1

pz

)
δc1c3 δ f1b δ f3u , (15)
2
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Fig. 4. Representative diagrams for nonleptonic decays of the Tbb tetraquark: (a) Final state with only open flavor mesons. (b) Final state with hidden flavor mesons. The blue 
box represents a four-quark effective vertex containing the contribution of the W boson and radiative corrections as seen in Eq. (21).
where φ̂ is the Fourier transform of the radial wave function, 
obtained in Sec. 2 using the AL1 constituent model, and αi rep-
resents the quantum numbers of spin si , flavor f i and color ci
(αi ≡ (si, f i, ci)) of a quark or an antiquark.

For the second class of semileptonic decays represented dia-
grammatically in panel (b) of Fig. 3, with a b → c transition at the 
quark level, the operator is given by

−iV cb
G F√

2
�c(0)γ μ(1 − γ5)�b(0)��(0)γμ(1 − γ5)�ν�

(0) , (16)

and the decay width can be expressed as

� = |V cb|2 G2
F

27π5mT

∫∫∫∫
|P B |dE Bd cos θD |P D |dE D

× 1

| P̃ B + P D |dE� �(1 − | cos θ0
� |)

× �(mT − E B − E D − E�) L̃αβ Wαβ(P T , P̂ B , P̂ D) , (17)

where P̂ B = R′ P̃ B and P̂ D = R′ P D , where R′ is a rotation that, 
for a fixed P D , takes P̃ B + P D → (0, 0, | P̃ B + P D |). In this case,

cos θ0
� = (mT − E B − E D − E�)

2 − | P̃ B + P D |2 − |p�|2
2| P̃ B + P D | |p�|

. (18)

The matrix element appearing in the hadron tensor

hT →M1 M2
ρ =〈
M1, λ

′′ P 1
∣∣ 〈M2, λ

′ P 2
∣∣�c(0)γρ(1 − γ5)�b(0) |T , λ0 〉 , (19)

here written for a T → B D transition (for other cases, the changes 
are obvious), can be expressed as,

hT →B D
ρ = 4 (2π)3/2

√
2mT E B E D

∑
α2,α3
α4,α5

∫∫
dpxdpz

×
[
φ̂

(D,λ′′)
α5,α3

(
− mu

mc + mu
P D − P B − px − 1

2
pz

)]∗

×
[
φ̂

(B,λ′)
α2,α4

(
mb

mb + mu
P B + px − 1

2
pz

)]∗

×
∑
α1

φ̂
(T ,λ)
α1,α2
α3,α4

(
px,−px − P B , pz

)

× 1

2
√

Ec Eb
ūs5

c

(
P D + P B + px + 1

2
pz

)
γρ(1 − γ5)

×us1
b

(
px + 1

pz

)
δc1c5δ f1b δ f5c . (20)
2

Obviously B could also be a B∗ and D a D∗ . If we have a b → u
quark transition, one has to change V cb → V ub and the meson in 
the final state (apart from B(B∗)) would be a nonstrange meson 
with uū or ud̄ composition.

We evaluate now the width of the nonleptonic decays T −
bb →

B− M1 M2 or B̄0 M ′
1 M ′

2 represented diagrammatically in Fig. 4. 
These decay modes involve a transition b → c, u at the quark level 
and they are governed, neglecting penguin operators, by the effec-
tive Hamiltonian [32–34]

Heff = G F√
2

{
V cb

[
c1(μ) Q cb

1 + c2(μ) Q cb
2

]
+V ub

[
c1(μ) Q ub

1 + c2(μ) Q ub
2

]
+ h.c.

}
, (21)

where c1, c2 are scale–dependent Wilson coefficients, and Q ib
1 , Q ib

2 , 
i = u, c, are local four-quark operators of the current-current type 
given by

Q ib
1 = �i(0)γμ(1 − γ5)�b(0)

×
[

V ∗
ud �d(0)γ μ(1 − γ5)�u(0) + V ∗

us �s(0)γ μ(1 − γ5)�u(0)

+ V ∗
cd �d(0)γ μ(1 − γ5)�c(0) + V ∗

cs �s(0)γ μ(1 − γ5)�c(0)

]
,

(22)

Q ib
2 = �d(0)γμ(1 − γ5)�b(0)

×
[

V ∗
ud �i(0)γ μ(1 − γ5)�u(0) + V ∗

cd �i(0)γ μ(1 − γ5)�c(0)

]

+ �s(0)γμ(1 − γ5)�b(0)

×
[

V ∗
us �i(0)γ μ(1 − γ5)�u(0) + V ∗

cs �i(0)γ μ(1 − γ5)�c(0)

]
,

(23)

where the different V jk are CKM matrix elements.
We work in the factorization approximation which amounts to 

evaluate the hadron matrix elements of the effective Hamiltonian 
as a product of two quark-current matrix elements: one is the ma-
trix element for the Tbb → BM1 transition, and the other accounts 
for the transition from vacuum to the other final meson M2, see 
Fig. 4. The latter coupling is governed by the corresponding me-
son decay constant. When writing the factorization amplitude, the 
relevant coefficients of the effective Hamiltonian (21) are the com-
binations,
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Table 3
Meson decay constants, in GeV, used in this work.

fπ− fπ0 fρ−,ρ0 f D+ f D∗+ f D+
s

f D∗
s
+

0.1307 [35] 0.130 [35] 0.210 [33] 0.2226 [36] 0.245 [37] 0.294 [35] 0.272 [37]
a1(μ) = c1(μ) + 1

NC
c2(μ) a2(μ) = c2(μ) + 1

NC
c1(μ) , (24)

with NC = 3 the number of colors. The energy scale μ appropriate 
in this case is μ � mb and the values for a1 and a2 that we use 
are [33]:

a1 = 1.14 a2 = −0.20 . (25)

Note that the W -exchange diagrams, that play an important role 
in the decay of charm, are suppressed in the decay of b since they 
are proportional to a2. The total decay width is given as

� = 1

2mT

∫∫∫
dP B

(2π)32E B

dP 1

(2π)32E1

dP 2

(2π)32E2

×(2π)4δ(4)(P T − P B − P1 − P2)

× G2
F

2

1

2 J T + 1

∑
λT ,λB
λ1,λ2

|MλT λBλ1λ2(P T , P B , P1, P2)|2 . (26)

Using invariance arguments as in the semileptonic decay case one 
finds,

� = G2
F

27π3mT

∫∫
dE BdE1

×�(1 − | cos θ0
1 |)�(mT − E B − E1 − M2)

× 1

2 J T + 1

∑
λT ,λB
λ1,λ2

∣∣∣MλT λBλ1λ2(P T , P̃ B , P̂1, P̂2)

∣∣∣2
, (27)

where

cos θ0
1 = (mT − E B − E1)

2 − M2
2 − |P B |2 − |P 1|2

2 |P B | |P 1| , (28)

and M involves the product of a hadron matrix element such as 
Eq. (19) and meson decay constants that are taken from experi-
ment or lattice data. For instance, for a T −

bb → B−D+D− decay, 
one has that

M = V cb V ∗
cd a1 hT →B− D+

α i f D− Pα
D− . (29)

In particular, for the decays presented in Table 6, we have used the 
meson decay constants listed in Table 3.

For the sake of completeness we have also evaluated the de-
cay of the J P = 1+ T −

bb isoscalar tetraquark into the J P = 0+
T 0

bc isoscalar tetraquark, decay depicted in Fig. 5. The mass of 
the J P = 0+ bcūd̄ isoscalar state has been estimated in Ref. [7]
where the authors obtain a central value 11 MeV below the B̄ D
threshold, although it is cautioned that the precision of the cal-
culation is not sufficient to determine whether the tetraquark is 
actually above or below this threshold. A systematic study of ex-
otic Q Q ′q̄q̄ four-quark states containing distinguishable heavy fla-
vors, b and c, has been recently performed with the AL1 model 
in Ref. [38]. The J P = 0+ isoscalar state was found to be strong 
and electromagnetic-interaction stable with a binding energy of 
around 23 MeV. Other independent calculations made in differ-
ent frameworks arrive to similar conclusions. Among them, it is 
important to emphasize the lattice QCD results of Ref. [39] where 
Fig. 5. Representative diagram for the semileptonic decay of the Tbb J P = 1+
tetraquark to the Tbc J P = 0+ tetraquark.

Table 4
Decay widths, in units of 10−15 GeV, for pro-
cesses described by Fig. 3(a).

Final state � [10−15 GeV]
B̄∗0

e− ν̄e 0.0365 ± 0.0004
B̄0 e− ν̄e 0.0394 ± 0.0006

B̄∗0
μ− ν̄μ 0.0355 ± 0.0004

B̄0 μ− ν̄μ 0.0396 ± 0.0006

B̄∗0
τ− ν̄τ 0.0355 ± 0.0004

B̄0 τ− ν̄τ 0.0396 ± 0.0006

it is found evidence for the existence of a strong-interaction-stable 
(I) J P = (0)1+ bcūd̄ four-quark state with a mass in the range of 15 
to 61 MeV below the D B̄∗ threshold. The decay width in this case 
is given by (12), changing the final B meson by the T 0

bc tetraquark 
and V ub by V cb , while the corresponding hadronic matrix element 
is

hT →Tbc
ρ = 2

√
2mT ETbc

∑
α2,α3
α4,α5

∫∫∫
dpxdp ydpz

×
[
φ̂

(Tbc,λ
′)

α2,α5
α3,α4

(
−px − mb − mc

2(mb + mc)
pz − mb

mb + mc
P Tbc , p y,

pz + 2mu

mb + mc + 2mu
P Tbc

)]∗

×
∑
α1

φ̂
(T ,λ)
α1,α2
α3,α4

(
px, p y, pz

) 1

2
√

Ec Eb
ūs5

c

(
P Tbc + px + 1

2
pz

)

×γρ(1 − γ5)us1
b

(
px + 1

2
pz

)
δc1c5δ f1b δ f5c . (30)

Let us now comment on the results. Some aspects could have 
been anticipated, and are verified. For instance, for the T → B(∗)

semileptonic decays depicted in Fig. 3(a), and due to the large 
phase space available in all cases, the differences among the 
widths into the three lepton families are very small. The corre-
sponding results2 are shown in Table 4. We also note that the 
overlap in the hadron tensor between the T and the B(B∗) wave 
function slightly favors the pseudoscalar mesons. Anyhow, decays 
with a single meson in the final state are suppressed by at least 

2 The errors quoted correspond to the uncertainties of the Monte Carlo numerical 
integration.
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Table 5
Largest decay widths, in units of 10−15 GeV, for the processes described by Fig. 3(b). 
Here � = e, μ.

Final state � [10−15 GeV] Final state � [10−15 GeV]
B∗− D∗+ �− ν̄� 9.02 ± 0.07 B∗− D∗+ τ− ν̄τ 1.55 ± 0.01

B̄∗0
D∗0 �− ν̄� B̄∗0

D∗0 τ− ν̄τ

B∗− D+ �− ν̄� 3.59 ± 0.03 B∗− D+ τ− ν̄τ 0.727 ± 0.005

B̄∗0
D0 �− ν̄� B̄∗0

D0 τ− ν̄τ

B− D∗+ �− ν̄� 4.63 ± 0.05 B− D∗+ τ− ν̄τ 0.86 ± 0.007
B̄0 D∗0 �− ν̄� B̄0 D∗0 τ− ν̄τ

B− D+ l− ν̄l 1.92 ± 0.02 B− D+ τ− ν̄τ 0.409 ± 0.003
B̄0 D0 �− ν̄� B̄0 D0 τ− ν̄τ

Table 6
Largest decay widths, in units of 10−15 GeV, for the processes described by Fig. 4.

Final state � [10−15 GeV] Final state � [10−15 GeV]
B∗− D∗+ D−

s 4.00 ± 0.06 B− D∗+ D∗
s
− 3.15 ± 0.05

B̄∗0
D∗0 D−

s B̄0 D∗0 D∗
s
−

B∗− D∗+ D∗
s
− 6.50 ± 0.09 B− D+ D∗

s
− 1.20 ± 0.02

B̄∗0
D∗0 D∗

s
− B̄0 D0 D∗

s
−

B∗− D+ D−
s 2.57 ± 0.04 B∗− D∗+ ρ− 3.57 ± 0.09

B̄∗0
D0 D−

s B∗− D∗+ π− 1.28 ± 0.03
B∗− D+ D∗

s
− 2.32 ± 0.03 B∗− D+ ρ− 1.70 ± 0.04

B̄∗0
D0 D∗

s
− B∗− D+ π− 0.70 ± 0.02

B− D∗+ D−
s 2.78 ± 0.05 B− D∗+ ρ− 2.01 ± 0.05

B̄0 D∗0 D−
s B− D∗+ π− 0.77 ± 0.03

two orders of magnitude as compared to the semileptonic decays 
with two final mesons, and the leading non-leptonic modes that 
are discussed below.

For semileptonic decays involving two mesons in the final state, 
described by panel (b) of Fig. 3, the processes involving a b → c
vertex are favored compared to those involving a b → u vertex, 
due to the larger CKM matrix element |V cb| ∼ 0.041 compared to 
|V ub| ∼ 0.0035 [35]. In Table 5 we show the most favorable chan-
nels, the filter being a width larger than 109 s−1 = 0.66 × 10−15

GeV, for the semileptonic decays with two mesons and a light � =
e, μ lepton in the final state. Though much smaller, we also give 
the widths for the corresponding channels with a final τ since they 
could be interesting in the context of studies of lepton-flavor uni-
versality violation. Due to spin recoupling coefficients, the largest 
decay widths appear for vector mesons in the final state. In short, 
the largest preferred semileptonic decay are B(∗) D(∗) � ̄ν� with the 
various combinations of spins for the mesons, and � = e, μ.

Table 6 displays now the most important nonleptonic decay 
modes. All of them contain a b → c vertex and an a1 factor, and 
the dominant ones have a D(∗)

(s) meson in the final state. Once again 
vector mesons are favored in the final state. As a consequence 
of the factorization approximation, processes with Ds or a light 
meson final states arising from vacuum have decay widths compa-
rable to the corresponding semileptonic decay. This is due to the 
large value of the Cabibbo allowed CKM matrix elements |V cs| ∼
|V ud| ∼ 0.97 [35] and the fact that the hadronic matrix elements 
are proportional to a2

1 in those cases. Decay channels not shown 
in Tables 5 and 6 are suppressed by at least one order of magni-
tude. For instance, final states with J/� or ηc mesons, are sup-
pressed by more than one order of magnitude since their widths 
are proportional to |V cd|2a2

2. According to our study, the promis-
ing final states among the nonleptonic decays are B̄∗− D∗+ D∗

s
− , 

B̄∗0 D∗0 D∗
s
− , and B̄∗− D∗+ ρ− .

Finally, in Table 7 we show the results for the semileptonic de-
cay corresponding to Fig. 5 with a J P = 0+ Tbc isoscalar tetraquark 
in the final state. In our calculation, the total semileptonic decay 
width with a final J P = 0+ Tbc isoscalar tetraquark turns out to be 
Table 7
Decay widths, in units of 10−15 GeV, for the 
processes described by Fig. 5.

Final state � [10−15 GeV]
Tbc e− νe 3.06 ± 0.03
Tbc μ− νμ 3.02 ± 0.02
Tbc τ− ντ 1.40 ± 0.01

7.5 × 10−15 GeV, in clear disagreement with the result of Ref. [17]
obtained using a QCD three-point sum rule approach.

The total decay width of the T −
bb tetraquark, as calculated in 

this work, is of the order of � ≈ 87 × 10−15 GeV, which means a 
lifetime τ ≈ 7.6 ps. This lifetime is one order of magnitude larger 
than the simplest guess-by-analogy estimation of 0.3 ps of Ref. [7].

4. Summary and outlook

We have presented the first comprehensive study of the flavor-
exotic J P = 1+ T −

bb isoscalar tetraquark. It includes an accurate 
solution of the four-body problem within a quark model, which 
characterizes the structure of the state, and an estimate of the 
lifetime and of the rates for the leading semileptonic and non-
leptonic decay modes which are the most promising final states 
where the tetraquark should be looked for. We have shown how 
pairwise interactions based on color-octet exchange induce mixing 
between the 3̄3 and 66̄ states in the Q Q − q̄q̄ basis, enhancing 
the 3̄3 components for larger values of M Q due to the attractive 
chromoelectric interaction of the Q Q pair that it is absent in the 
Q q̄ threshold. This result is only valid in the bottom sector. In the 
charm sector, the binding mechanism is different: the 3̄3 and 66̄
components have a similar probability and are mixed by the chro-
momagnetic interaction. We have shown how the structure of the 
T Q Q state evolves from a molecular-like system to a compact-like 
structure when moving from the charm to the bottom sector.

For the first time, the lifetime of the T −
bb tetraquark has been 

calculated in a quark model beyond simple guess-by-analogy es-
timations. The total decay width of the T −

bb found in this work is 
� ≈ 87 × 10−15 GeV, corresponding to a lifetime τ ≈ 7.6 ps. The 
promising final states are B̄∗− D∗+ l− ν̄� and B̄∗0 D∗0 �− ν̄� among 
the semileptonic decays, and B̄∗− D∗+ D∗

s
− , B̄∗0 D∗0 D∗

s
− , and 

B∗− D∗+ ρ− among the nonleptonic ones. The T 0
bc�

−ν� semilep-
tonic decay is also relevant but in our calculation is not dominant.

Our study complements recent estimates for the production 
cross sections of Tbb tetraquarks based on Monte Carlo event gen-
erators pointing towards an excellent discovery potential in ongo-
ing and forthcoming proton-proton collisions at the LHC [40]. The 
possible formation of this state in relativistic heavy-ion collisions 
at the LHC has also been recently discussed in detail within the 
quark coalescence model using realistic model wave functions with 
good prospects [41].

The spectroscopy of exotic states with hidden heavy flavor has 
revealed how interesting the interaction of heavy hadrons is, with 
presumably a long-range part of Yukawa type, and a short-range 
part mediated by quark-quark and quark-antiquark forces. A new 
sector with stable flavor-exotic states, such as the Tbb , remains to 
be investigated. An experimental effort towards the detection of 
this compact tetraquark states is now timely. Its existence is es-
sential to validate our understanding of low-energy QCD in the 
multiquark sector.

Note added

A long lifetime for the T −
bb tetraquark can ease its detection 

through the method of “displaced vertex” proposed in [42]. We 
thank A. Ali for calling our attention on this article.



E. Hernández et al. / Physics Letters B 800 (2020) 135073 9
Acknowledgements

This work has been funded by Ministerio de Economía, In-
dustria y Competitividad and EU FEDER under Contracts No. 
FPA2016-77177 and FIS2017-84038-C2-1-P, and by the EU STRONG-
2020 project under the program H2020-INFRAIA-2018-1, grant 
agreement no. 824093.

References

[1] H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Phys. Rep. 639 (2016) 1;
R.A. Briceño, et al., Chin. Phys. C 40 (2016) 042001;
J.-M. Richard, Few-Body Syst. 57 (2016) 1185;
R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93 (2017) 143;
A. Ali, J.S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97 (2017) 123;
A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rep. 668 (2017) 1.

[2] R.L. Jaffe, Phys. Rev. D 15 (1977) 267;
R.L. Jaffe, Phys. Rev. D 15 (1977) 281.

[3] J.D. Weinstein, N. Isgur, Phys. Rev. D 41 (1990) 2236.
[4] J.-P. Ader, J.-M. Richard, P. Taxil, Phys. Rev. D 25 (1982) 2370.
[5] A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. 118 (2017) 

142001.
[6] P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D 99 (2019) 034507.
[7] M. Karliner, J.L. Rosner, Phys. Rev. Lett. 119 (2017) 202001.
[8] E.J. Eichten, C. Quigg, Phys. Rev. Lett. 119 (2017) 202002.
[9] P. Bicudo, K. Cichy, A. Peters, M. Wagner, Phys. Rev. D 93 (2016) 034501.

[10] J. Vijande, A. Valcarce, N. Barnea, Phys. Rev. D 79 (2009) 074010.
[11] J.-M. Richard, A. Valcarce, J. Vijande, Phys. Rev. C 97 (2018) 035211.
[12] S.-Q. Luo, K. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu, Eur. Phys. J. C 77 (2017) 709.
[13] M.-L. Du, W. Chen, X.-L. Chen, S.-L. Zhu, Phys. Rev. D 87 (2013) 014003.
[14] A. Czarnecki, B. Leng, M.B. Voloshin, Phys. Lett. B 778 (2018) 233.
[15] R. Aaij, et al., LHCb Collaboration, Phys. Rev. Lett. 119 (2017) 112001.
[16] Y. Xing, R. Zhu, Phys. Rev. D 98 (2018) 053005.
[17] S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, Phys. Rev. D 99 (2019) 033002.
[18] J. Vijande, A. Valcarce, Phys. Rev. C 80 (2009) 035204.
[19] J. Vijande, A. Valcarce, Symmetry 1 (2009) 155.
[20] E. Hiyama, A. Hosaka, M. Oka, J.M. Richard, Phys. Rev. C 98 (2018) 045208.
[21] M. Oka, S. Maeda, Y.R. Liu, Int. J. Mod. Phys. Conf. Ser. 49 (2019) 196004.
[22] C. Semay, B. Silvestre-Brac, Z. Phys. C 61 (1994) 271.
[23] J.-M. Richard, A. Valcarce, J. Vijande, Phys. Lett. B 774 (2017) 710.
[24] D. Janc, M. Rosina, Few-Body Syst. 35 (2004) 175.
[25] J.L. Ballot, J.-M. Richard, Phys. Lett. B 123 (1983) 449;

S. Zouzou, B. Silvestre-Brac, C. Gignoux, J.-M. Richard, Z. Phys. C 30 (1986) 457;
D.M. Brink, F. Stancu, Phys. Rev. D 49 (1994) 4665.

[26] M. Harvey, Nucl. Phys. 352 (1981) 301.
[27] Y. Ikeda, B. Charron, S. Aoki, T. Doi, T. Hatsuda, T. Inoue, N. Ishii, K. Murano, 

H. Nemura, K. Sasaki, Phys. Lett. B 729 (2014) 85.
[28] H.J. Lipkin, Phys. Lett. B 172 (1986) 242.
[29] C. Quigg, in: 53rd Rencontres de Moriond QCD High Energy Interactions Con-

ference, La Thuile, Italy, 2018, arXiv:1804 .04929 [hep -ph].
[30] E. Hernández, J. Nieves, J.M. Verde-Velasco, Phys. Rev. D 74 (2006) 074008.
[31] E. Hernández, J. Vijande, A. Valcarce, to be published.
[32] D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 68 (2003) 094020.
[33] M.A. Ivanov, J.G. Körner, P. Santorelli, Phys. Rev. D 73 (2006) 054024.
[34] P. Colangelo, F. De Fazio, Phys. Rev. D 61 (2000) 034012.
[35] M. Tanabashi, et al., Phys. Rev. D 98 (2018) 030001.
[36] M. Artuso, et al., CLEO Collaboration, Phys. Rev. Lett. 95 (2005) 251801.
[37] D. Becirevic, Ph. Boucaud, J.P. Leroy, V. Lubicz, G. Martinelli, F. Mescia, F. Ra-

puano, Phys. Rev. D 60 (1999) 074501.
[38] T.F. Caramés, J. Vijande, A. Valcarce, Phys. Rev. D 99 (2019) 014006.
[39] A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. D 99 (2019) 054505.
[40] A. Ali, Q. Qin, W. Wang, Phys. Lett. B 785 (2018) 605.
[41] J. Hong, S. Cho, T. Song, S.-H. Lee, Phys. Rev. C 98 (2018) 014913;

S. Cho, et al., ExHIC Collaboration, Phys. Rev. C 84 (2011) 064910;
C.E. Fontoura, G. Krein, J. Vijande, A. Valcarce, Phys. Rev. D 99 (2019) 094037.

[42] T. Gershon, A. Poluektov, JHEP 1901 (2019) 019.

http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4368653136s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4368653136s2
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4368653136s3
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4368653136s4
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4368653136s5
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4368653136s6
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4A61663736s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4A61663736s2
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib5765693930s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4164653832s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4672613137s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4672613137s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4A756E3139s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4B61723137s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4569633137s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4269633136s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib56696A3039s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib5269633138s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4C756F3137s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4475633133s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib437A613138s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4161693137s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib58696E3138s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4167613139s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib5669613039s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib56696E3039s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4869793138s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4F6B613139s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib53656D3934s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib5269633137s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4A616E3034s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib42616C3833s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib42616C3833s2
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib42616C3833s3
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4861723831s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib496B653134s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib496B653134s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4C69703836s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib5175693138s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib5175693138s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4865723036s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4562653033s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4976613036s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib436F6C3030s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib5064673138s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4172743035s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4265633939s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4265633939s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4361723139s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4672613139s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib416C693138s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib486F6E3138s1
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib486F6E3138s2
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib486F6E3138s3
http://refhub.elsevier.com/S0370-2693(19)30795-6/bib4765723138s1

	Spectroscopy, lifetime and decay modes of the T-bb tetraquark
	1 Introduction
	2 Tetraquark mass and wave function
	3 Tetraquark lifetime and decay modes
	4 Summary and outlook
	Note added
	Acknowledgements
	References


