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1 Introduction

The existence of additional spacetime dimensions is a fascinating possibility that keeps
attracting attention in theoretical physics. It is suggested by string theory, and would have
dramatic consequences at very small length scales.

For matter fields, there are two ways to avoid conflict with current observations. One
is to assume that the extra dimensions describe a compact space Xn of small size. In-
deed, when spacetime is a direct product M4 ×Xn, several theorems give lower bounds on
the lowest eigenvalue of the Laplace-Beltrami and other operators, guaranteeing that the
Kaluza-Klein (KK) masses are large.1 In particular, if the masses of the spin-two KK fields
are large, the usual 1/r2 behavior of gravity will only be modified at very small distances.
The observed four-dimensional Planck mass m4 is

m4 =
√
mD−2

D Vol(Xn) ,

where mD is the Planck mass of the D-dimensional gravity model.
An alternative is to assume that matter particles are somehow stuck to a four-di-

mensional defect inside the higher-dimensional space. In this situation, their fields are
“localized”: they don’t even depend on the extra dimensions, and there are no KK modes.
There is however an exception: the metric field, which does depend on the extra dimensions

1Here “size” can be understood both as Vol(Xn)1/n or as diam(Xn), the largest distance between any
two points. We will focus on the case where the external spacetime M4 has four spacetime dimensions, but
all our arguments are readily generalized.
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and gives rise to KK modes. If the latter are light, they can modify Newton’s law at
large distances.

However, there is an interesting possible remedy to this problem, a way to “localize”
gravity as well on a defect. This originates from the so-called Randall-Sundrum 2 (RS2)
model [1]. It involves warped products, spacetimes with a metric

ds2 = e2A(ds2M4 + ds2Xn
) , (1.1)

with the warping function A depending on Xn. While in the direct product case A = 0
and Xn with infinite volume would lead to m4 → ∞ and thus a non-dynamical graviton,
this can be avoided with A ̸= 0, where m2

4 = mD−2
D

∫
Xn

√
gne(D−2)A, and it is sufficient

to require that the integral is finite. The spin-two spectrum is given by the eigenvalues
of a weighted Laplacian defined by ∆Aξ = −e−(D−2)A∇m(e(D−2)A∇mξ) [2, 3]. It is often
studied by mapping it to a Schrödinger operator (∆0 + V ), upon rescaling ξ = sψ by an
appropriate function s, related to a power of eA. The massless graviton corresponds to
ξ = ξ0, a constant; the corresponding ψ0 is in L2(Xn), related to the finiteness of m4.
A peak in ψ0 is interpreted intuitively as the graviton propagating preferentially around
a defect of Xn, thus effectively keeping gravity four-dimensional. In the original RS2
model [1], to be reviewed below in section 2.1, one takes D = 5, Xn = R, and A piecewise
linear; M4 is the Minkowski space, and the five-dimensional spacetime is obtained by gluing
two pieces of AdS5. The graviton wave-function ψ0 is peaked near the origin. While the
rest of the KK spectrum is continuous, the contributions of the massive spin-two fields are
suppressed: their rescaled wave-functions ψk, k > 0 are small near the origin of R, which
in turn can be seen from the peculiar shape of V , often called a “volcano” potential.

The RS2 model has analogs with non-zero cosmological constant Λ4: the Karch-
Randall (KR) models [4]. For Λ4 > 0 the continuous part of the spectrum has a mass
gap. For Λ4 < 0, the integral

∫
Xn

√
gne(D−2)A diverges. The lightest spin-two mass field is

not massless, but is still much lighter than the rest of the KK tower. Moreover, the ψk>0
are still concentrated near the origin. These two effects combine to still give localization
for small enough |Λ4|. We will review the RS2 and KR models in section 2, using them to
illustrate some general results that we will find useful later.

The first new result in this paper regards a further version of localization. On a
smooth compact space, the zero mode of the (weighted) Laplace operator is easily seen
to be constant by an integration-by-parts argument. In presence of singularities, this is
not quite so obvious. For example, it was pointed out in [5] that the analogue potential
V is often ∼ ρ−2 near the origin; this can give rise to interesting bound states, depending
on the self-adjoint extension one chooses [6, 7]. The four-dimensional Planck mass would
then read

m2
4 = mD−2

D

∫
Xn

dxn√gne(D−2)A|ξ0|2 . (1.2)

A normalizable ξ0 would then make m4 finite even if e(D−2)A is itself not normalizable.
Unfortunately, in section 3 we will present rigorous mathematical arguments that go

against this possibility. First we consider the definition of weighted Laplacian that is com-
monly considered in the theory of metric measure spaces, a class of possibly non-smooth
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spaces endowed with a reference distance and measure. Whenever it is linear, an assump-
tion satisfied in the most relevant physical situations, this Laplacian arises via integrating
by parts a suitable generalization of the Dirichlet energy (known in this framework as
Cheeger energy), and is automatically self-adjoint on its finiteness domain, leading to the
usual spectral theorems familiar from the smooth case. Thus it is both natural from a
mathematical point of view, and well suited for physics applications. In this context, we
prove (proposition 3.6) that for spaces of interest in gravity compactifications the only
eigenfunctions ξ0 with zero eigenvalue are in fact the constant ones.

From this perspective, there is in a sense no need to select boundary conditions on
the singularities; they are automatically selected by the metric-measure formalism. It is
instructive to compare this with a point of view more similar to that advocated in [5];
namely, removing the singular locus S and working with the space of smooth functions
with compact support on X \ S. In section 3.4 we find that this latter notion yields the
former with Dirichlet boundary conditions on S, and the two are essentially equivalent
(more precisely to obtain the former one needs to take the metric completion of the latter
endowed with the W 1,2 norm), when the singular locus S is a Dp-brane for p = 1, . . . , 7.

Finally, in section 4 we consider models that realize localization in string theory, fo-
cusing on the AdS case. Using theorems we proved in [8], we first show that if the lightest
spin-two m0 ̸= 0 is smaller than the cosmological constant, then the next mass m1 cannot
be arbitrarily large:

m2
1

|Λ4|
<

3528
25

(
1 + (D − 2)(sup|dA|)

2

|Λ4|

)
. (1.3)

The norm of dA is computed with respect to the ds2Xn
metric in (1.1). (Generically one

expects this last term to be small for solutions that are under control in supergravity,
although there can be exceptions.)

More generally, the results in [8] allow us to estimate the masses (and thus the extent
of localization) without actually computing them. We apply this to two classes of models,
which are the non-compact analogues of those we considered in [8]. The first one consists
in any compactification on Riemann surfaces, such as the usual Maldacena-Nuñez solution,
where the internal space is a fibration over a Riemann surface of infinite volume. The
second class is N = 4-supersymmetric, and was worked out in this context by Bachas
and Lavdas [9]. In both cases one can achieve m0 ≪ Λ4, while m1 ∼ O(Λ4). This
means localization is achieved, but only for distances larger than the cosmological L4.
Unfortunately in these models one cannot make m1 even larger, essentially because of (1.3).
We discuss how the aforementioned wave-function concentration mechanism might work
for some modes; this would improve the situation and push the localization length scale
lower. This goes out of the scope of the present work; it would be very interesting to pursue
it further in the future.

2 Effective models of gravity localization

In this section we will mostly review five-dimensional effective models that display gravity
localization in various forms. We will end in section 2.4 with some considerations about
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the analogue Schrödinger potential; this will serve as an introduction to the mathematical
problem we will tackle in section 3.

2.1 Minkowski brane world

We begin with the most famous model of gravity localization, RS2 [1]. It consists of
five-dimensional gravity with a cosmological constant and a four-dimensional defect:

m−3
5 S =

∫
d5x

√
−g5

(
R5 +

12
L2
5

)
− 4λ

∫
d4x

√
−g4 . (2.1)

If the tension of the defect is tuned to λ = 3/L5, a solution of the Einstein equations is

ds25 = e2Ads2Mink4 + dr2 , A = −|r|
L5

. (2.2)

This is a warped product, as defined in the introduction. We recognize two pieces of AdS5,
glued together at r = 0.

As mentioned in the introduction, the (square) Planck mass m2
4 = m3

5
∫
dr e3A in

this case is finite. The spectrum of KK modes is obtained by analyzing the operator
∆A = −e−2A∂r(e4A∂r( · )). Besides the expected µ = 0 eigenvalue, the continuous part
of the spectrum is R>0, with no spectral gap [1].2 While this might appear discouraging
for localization, the formal eigenfunctions associated with the continuous spectrum are
small near r = 0. This effect counteracts enough the absence of a spectral gap that the
gravitational force localizes.

In general, the eigenvalue problem for a weighted Laplacian can be mapped to a
Schrödinger problem as follows:

−e−f∇m
(
ef∇mξ

)
= µξ , ξ = e−f/2ψ ⇔ (∆0 + U)ψ = µψ , U = −e−f/2∆0ef/2 .

(2.3)
To apply this to the spin-two operator and use the same conventions as in [1], we first change
coordinate such that dr = eAdz, and (2.2) becomes conformally flat, e2A(ds2Mink4

+ dz2).
Then taking f = 3A we obtain

U = 15
4L2

5

(
1 + |z|

L5

)−2
− 3
L5
δ(z) . (2.4)

The shape of this effective potential has earned it the moniker of volcano: indeed it has
a peak at the origin, and a negative delta that one can think of as a very thin and deep
“pipe”. The obvious µ = 0 eigenfunction ξ = 1 becomes the single bound state ψ0 = e3A/2,
whose presence is allowed by the delta function. More importantly, the peak of U gives
an intuitive reason for the aforementioned suppression of the generalized eigenfunctions of
the higher modes. Moreover, the presence of a continuous spectrum starting at µ = 0 can
be explained by U → 0 as z → ±∞.

In this case the spectrum is easy to analyze directly. In more complicated geometries
with additional extra dimensions this is not always the case, and it is useful to have

2We refer to section 3.3 for all the necessary terminology about spectral theory.
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estimates for the KK masses, especially the low-lying ones. A general theory is available
that provides bounds for the eigenvalues of a weighted Laplacian in terms of the internal
diameter, weighted volume, or of the so-called Cheeger constants. Informally, the latter
quantify how much the internal space can be divided in pieces with small boundary and big
bulk. When the weighted volume of the internal dimensions VolA(X) :=

∫
dnx

√
ge(D−2)A

(and hence the Planck mass) is finite, the first non-trivial Cheeger constant is

h1 := inf
B

VolA(∂B)
VolA(B) , VolA(B) ⩽ 1

2VolA(X) . (2.5)

Here VolA(∂B) :=
∫

∂B

√
g|∂Be(D−2)A, and VolA(B) :=

∫
B

√
ge(D−2)A. As in the introduc-

tion, here the internal metric ds2Xn
is defined by ds2 = e2A(ds2M4

+ ds2Xn
).

The origin of this bound lies in the variational approach to the eigenvalues; a B is
associated to a trial wavefunction with support over it. In general it is hard to compute
h1 exactly, as it involves minimization over infinitely many choices of B. But for the RS2
model we can consider B = (r0,∞), and with r0 > 0

h1 = inf
r0

e3A(r0)∫∞
r0

dr e2A(r) = inf
r0

2
L5

e−
r0
L5 = 0 . (2.6)

Now [8, theorem 4.2] implies that the infimum of the continuous spectrum is zero.3
The four-dimensional gravitational potential between two matter particles M1, M2 at

r = 0 is obtained from the two-point correlation function of two metric fluctuations δgµν .
Expanding the latter in spin-two KK modes with eigenfunctions ψk(r) and masses mk, one
would obtain in general

V = GM1M2
R

∑
k=0

e−mkRψ2
k(0) (2.7)

where now R is the distance in Mink4. In our case, the m0 = 0 contribution provides the
usual large-distance d = 4 potential. The sum for k > 0 is replaced by an integral over
the continuous spectrum; an explicit analysis of the suppression near the origin gives [1]∫∞
0 dme−mRm/L2

5. This correction behaves as ∼ L−2
5 R−3 at small distances, so it is sup-

pressed for large distances. It is in this sense that gravity localizes in this model.
It is natural to ask whether this model has a realization in string theory. The most

natural analogue is a vacuum solution with two D3-brane stacks, as pointed out in [10, 11].
Indeed near such a stack the metric is asymptotic to the interior of AdS space, as in (2.2) for
r → ±∞. (If one insists that the additional five dimensions should have the same topology
at all values of r, finding models similar to (2.2) becomes harder [12–14].) The holographic
dual of the RS2 model is a CFT with a cut-off coupled to weakly gauged gravity [15, 16].

2.2 de Sitter

With the same action (2.1), if instead of fine tuning the brane tension as λ = 3/L5 we take
λ > 3/L5, we have the solution [4]

ds25 = e2Ads2dS4 + dr2 , eA = eA0 sinh c− |r|
L5

, (2.8)

3That theorem assumes the internal space to have a property called RCD(K < 0, ∞); this can be proven
in a similar fashion as for D8-branes in string theory [8, theorem 4.2].
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for r ∈ (−c, c) and with c defined by λ = 3
L5

coth(c/L5). The integration constant A0 and
the cosmological constant Λ4 of dS4 are redundant; we can fix this ambiguity by imposing
A(r = 0) = 0, and Λ4 = (L5 sinh(c/L5))−2.

This KR model can be analyzed similar to the RS2 in section 2.1 [4]. The squared
Planck mass m2

4 = m3
5
∫ c
−c dre3A is again finite. The coordinate z defined by dr = eAdz

covers all R. The effective potential U(z) again has a peak with a negative delta at the
origin, but now its asymptotics is limz→±∞ U(z) = 9

4Λ4. Because of this, the continuous
spectrum only starts at 9

4Λ4. There is of course again the bound state ψ0 = e3A/2, coming
from the constant eigenfunction ξ0 = 1 of the weighted Laplacian.

2.3 Anti-de Sitter

We will now consider models with Λ4 < 0. Unlike for Λ4 ⩾ 0, here the massless graviton
is absent. The lightest spin-two field can still be much lighter than the rest of the KK
masses, and at a certain intermediate range its potential can still behave as 1/r, as we will
see. We consider here the D = 5 KR model, and we will discuss string theory embeddings
in section 4.

The AdS version of the KR model is again obtained from (2.1), with λ < 3/L5 and
solution [4]

ds25 = e2Ads2AdS4 + dr2 , eA = eA0 cosh c− |r|
L5

, (2.9)

and λ = 3
L5

tanh(c/L5). Again we impose A(r = 0) = 0, with Λ4 = −(L5 cosh(c/L5))−2.
Since now the warping function diverges at infinity, the naive Planck mass m3

5
∫
e3A is

infinite, and so the usual ξ = constant eigenfunction is not in L2 (and as a consequence we
cannot use ψ = e3A/2). The lowest eigenvalue corresponds to a different eigenfunction ξ0,
and the analogue of the Planck mass for this light spin-two field is given now by (1.2).

Nevertheless, a version of localization is still at play in this model. An explicit analysis
reveals that the lowest eigenvalue, while not zero, is much smaller than the higher ones: as
Λ4 → 0, one gets [17, 18]4,5

m2
0 ∼

3
2Λ

2
4L

2
5 , m2

2k>0 ∼ k(k + 3)|Λ4|+
1
2k

3Λ2
4L

2
5 +O(k5|Λ4|3L4

5) . (2.10)

As in previous cases, we can check these results using Cheeger constants hk. In a
situation where m4 is infinite, one considers the smallest of them h0, which is defined
similarly to (2.5) but with a weaker constraint on the volume:

h0 := inf
B

VolA(∂B)
VolA(B) , VolA(B) <∞ . (2.11)

4Analytically, the spectrum is given by the zeros of the function in [17, (2.1)]. While this condition is
still quite complicated to analyze, it can be written as a power series in k2Λ4L2

5 using the expansion of the
hypergeometric function F (a, b; c; z) around z = 1 given e.g. in [19, (15.8.10)].

5It can be checked explicitly that for |Λ4| → 0 the odd eigenvalues become degenerate with the even
ones. However, the odd eigenvalues correspond to odd eigenfunctions that as such vanish at the location of
the brane and do not contribute to the 4d physics.
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(This is automatically zero when VolA(X) is finite, as one sees by taking B = X.) Unlike
in the Minkowski case, taking B to be semi-infinite leads to an infinite VolA(B). A better
result is obtained by considering a symmetric interval (−r, r). In the limit Λ4 → 0, c≫ L5.
Introducing H(r) = 1

2(cosh
2 x+ 1) and changing variable to x = (c− r)/L5, with a rough

approximation we get that the minimization is achieved for r ∼ c, x→ 0:

L−2
5 h0 =

√
−Λ4 inf

x

cosh3 x
H(c/L5)−H(x) ∼

√
−Λ4H(c/L5)−1 ∼ 2(−Λ4)3/2 . (2.12)

Applying [8, theorem 4.2] we obtain (Λ4L
2
5)3 < m2

0L
2
5 <

21
10
√
3(Λ4L

2
5)2, in agreement

with (2.10).6 While of course the explicit result was already available, the present compu-
tation is a valuable warm-up for the ten-dimensional case of the next subsection.

The hierarchy in (2.10) already indicates that a form of localization appears in this
model.7 A four-dimensional observer testing gravity at distances R with |Λ4|−1/2 ≪ R ≪
(|Λ4|L5)−1 would not realize that the graviton has in fact a non-zero mass m0, and would
also not feel the effect of the mk>0. However, the lower end of this length range is still
cosmological, so this in itself would not be very satisfactory. We will now see that actually
gravity remains four-dimensional well below this scale, thanks to the further effect of wave-
function suppression near the origin, similar to that in the RS2 model.

To see this, consider again the gravitational potential. Even in AdS, for R≪ |Λ4|−1/2

we can still use the expression (2.7). In the limit Λ4 → 0, we can approximate the
sum over k as an integral, and use the estimates ψ2

0(0) ∼ 2 + O
(√

|Λ4|L5
)
, ψ2

k(0) ∼

|Λ4|L2
5

(
1
4 + 4

5k
)

[18]. This gives8

V ∼ GM1M2

(
1
R

+
√
|Λ4|L2

5
4R2 + L2

5
R3

(4
5 − 1

8 |Λ4|L2
5

))
. (2.13)

As Λ4 → 0, the R−1 + L2
5R

−3 behavior of the RS2 model is recovered. As in that model,
the R−3 term is negligible for R ≫ L5. The new R−2 term is negligible if R ≫

√
|Λ4|L2

5,
which is eventually weaker in the Λ4 → 0 limit. So this model still displays localization:
gravity would behave in a four-dimensional fashion at macroscopic distances.

2.4 The Schrödinger potential

In the five-dimensional RS2 and KR models we reviewed in this section, the point of view
of the Schrödinger potential in (2.3) was useful in developing intuition about the model’s
properties. However, we will now argue that in higher dimensions it can also be misleading
in some respects.

6To apply [8, theorem 4.2] we also need K, a lower bound on the weighted Ricci curvature. This can be
readily obtained directly from the equations of motion for (2.1) as K = 3Λ4.

7The hierarchy between m0 and mk can also be obtained by estimating the ratio between h0 and the
higher Cheeger constants hk, as we will see in detail in section 4 in a more involved setup where analytic
results for the spectra are not available. For the present case we obtain h0/h1 ∼ |Λ4| for Λ4 → 0, which
agrees with the explicit result.

8The sub-leading
√

|Λ4|L2R−2 can also be estimated by noticing that the masses mk up to k ∼ 1/
√

|Λ4|r
contribute O(1) to the sum in (2.7), and the ones above it very little.
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While on a smooth compact space it is easy to show that the zero mode of the Laplace
operator is necessarily constant, in presence of singularities (and on a non-compact space)
this might not necessarily be obvious. In particular, the point of view of the Schrödinger
potential might suggest otherwise.

As a toy model, consider the radial part of the usual flat space Laplacian in Rd,
∆radξ := −z1−d∂z(zd−1∂zξ). The map (2.3) relates its spectrum to

−∂2zψ + Uψ := Hψ = λψ , U = (d− 1)(d− 3)
4z2 . (2.14)

The potential 1/z2 is of Calogero type, but here we need to assume that z > 0, so we put
an infinite barrier for z ⩽ 0 as in [6]. For d ̸= 2, U ⩾ 0 and one does not expect any
bound states. The local solutions to (2.14) for λ = 0 are ψ = z(d−1)/2 and z(3−d)/2, none
of which are normalizable. (For d = 1 and d = 3, U = 0 and these two local solutions
become constant and linear.) These correspond to ξ = 1 and z2−d. Both are harmonic
outside the origin, but the second is in fact the Green’s function: it solves ∆radξ = δ, up
to an overall constant.

The d = 2 case in (2.14) deserves a separate treatment. The potential is now attractive:

U = − 1
4z2 . (2.15)

It is a priori possible to have bound states, as was discussed for example in [6, 7]. Intrigu-
ingly, the coefficient 1/4 is a ‘critical’ case in this study. The λ = 0 solutions are ψ =

√
z

and
√
z log z; again none of them are normalizable, and map respectively to ξ = 1 and to

the Green’s function log z in R2.9
There is a subtlety, however. Recall that a rigorous definition of the Hamiltonian H

also needs the data of a domain D(H) on which it is self-adjoint. The adjoint is defined
of course by ⟨Hψ1, ψ2⟩ = ⟨ψ1, H†ψ2⟩ and H is called Hermitian if ⟨Hψ1, ψ2⟩ = ⟨ψ1,
Hψ2⟩, self-adjoint if moreover D(H) = D(H†). For a more rigorous introduction we refer
to section 3.3. If one considers for example D(H) as the space of functions with compact
support, usually D(H) ̸= D(H†). It might be possible, however, to extend the domain by
adding functions to it, such that H becomes self-adjoint.

Potentials proportional to 1/z2 admit a one-parameter choice Dλ of self-adjoint exten-
sions, and (2.15) in particular admits a single bound state ψ =

√
zK0

(√
−λz

)
. However,

this corresponds to ξ = K0
(√

−λz
)
, which again behaves as ∼ log z near the origin; thus,

it solves ∆radξ = λξ + δ rather than ∆radξ = λξ.10

A similar discussion is also relevant in string theory near Dp-brane singularities. Writ-
ing the ten-dimensional metric as ds210 = e2A(ds2M4

+ ds2X6
), in Einstein frame we locally

have e2A ∼ H(p−7)/8 and ds2X6
∼ dx2p+1−d+H(dz2+z2ds2S8−p), with H a harmonic function

9See also [20] for an analysis of explicit cohomogeneity one setups where no normalizable zero modes
are found.

10One might think at this point that one can try to define a self-adjoint extension of the Laplacian by
adding the Green’s function to the domain, working on a space where the support of the delta has been
removed. We will analyze this possibility in section 3.4.
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of the transverse coordinates and dx2p+1−d representing the metric parallel to the Dp. We
then have ∆A,radξ ∼ −H−1zp−8∂z(z8−p∂zψ). The local discussion for λ = 0 eigenvalues is
then identical to the one above in flat Rd, with d = 9− p.

A more concrete example was discussed in [5]. Here spacetime is Mink4×X6, with X6
non-compact; an NS5-brane stack fills spacetime and is smeared along an S2 ⊂ X6, so that
its back-reaction is characterized by a harmonic function H of the two remaining directions.
Symmetry reduces the warped Laplacian to an operator in the radial direction ρ of this
transverse R2, −∆A,radξ ∝ 1

H sinh 4ρ∂ρ(sinh 2ρ∂ρξ). Locally around ρ = 0 the situation is
similar to that discussed around (2.15). The one-parameter self-adjoint extension discussed
there might raise hopes that a non-trivial bound state might exist. However, the λ = 0
wave-function is ξ = log tanh ρ; a limit near ρ = 0 shows that again ∆A,radξ = δ rather
than ∆A,radξ = 0.11

In summary, the Schrödinger point of view might suggest that non-trivial self-adjoint
extensions might give rise to non-trivial solutions ψ0. But in practice we have seen that such
solutions always map to ξ0 which are Green’s functions rather than genuine eigenfunctions
of the weighted Laplacian. In the next section we will prove rigorously that this is always
the case: the only zero mode in L2 of the weighted Laplacian is the constant, even on
spaces that are singular and non-compact. We will also comment on the difficulties that
arise by including the Green function in the domain of the weighted Laplacian.

3 Constant harmonic functions

The aim of this section is to rigorously investigate the question introduced in section 2.4.
Namely:12

Let X be a space with a well defined notion of Laplacian ∆ and let f be a global
harmonic function, i.e. let us suppose ∆f = 0 on X. Under which assumptions on the
space can we infer that f is constant?

In particular, we will concentrate on metric-measure structures, which arise naturally
in a vast number of situations and allow to describe relevant physical geometries, even in
presence of singularities. We will find that f is forced to being constant in (R)CD(K,∞)
spaces, as well as in all the other singular spaces arising from the backreaction of Dp-branes
and Op-planes in gravity solution.

To obtain the result, we first define in section 3.1 the Laplacian and study some of its
properties, and then in section 3.2 we prove that ∆f = 0 can only be solved by a constant
f in a certain class of spaces with the L2-Liouville property, which we show to include the
physical spaces we are interested in. More specifically, in section 3.1 we introduce the notion
of Cheeger energy of a function f (denoted by Ch(f)), as a generalization of

∫
X |∇f |2 to

non-smooth spaces. Proposition 3.3 shows that Ch(f) = 0 is equivalent to ∆f = 0; this can
be thought of as the appropriate generalization of the usual integration by parts argument
on compact non-singular spaces. We then use the fact that a space with D-brane and/or

11A more recent analysis [21] shows that indeed without this mode the model does not display localization.
12In this section we will consider a suitable generalization of the weighted Laplacian, appropriate for the

general metric-measure setting; thus, we will no longer stress the weight and we will drop the subscript A.
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O-plane singularities can be decomposed as a smooth weighted Riemannian manifold plus a
singular set S. Owing to smallness (in the sense of Hausdorff codimension) of the singular
set in these physical spaces, using proposition 3.6 we can show that Ch(f) = 0 implies
that f = const. m-a.e. Putting these results together, we obtain that the space satisfies the
L2-Liouville property, that is any zero mode of the weighted Laplacian is constant.

3.1 Metric measure spaces

We start by introducing a very general class of metric measure structures where a notion of
Laplacian (∆) is defined, see definition 3.1. We then conclude by analyzing its properties,
which we will use in the next section to characterize the solution of the equation ∆f = 0.
Most of the material for the preliminary section is taken from [22], to which we refer for
all the details.

We will deal with metric measure spaces: they are triples (X, d,m) where (X, d) is a
complete and separable metric space, and m is a nonnegative, Borel and σ-finite measure.

We consider the following additional assumption that connects the distance d and the
measure m:

∀K ⊂ X compact ∃ r > 0 : m({x ∈ X : d(x,K) ⩽ r}) <∞ . (3.1)

Notice that (3.1) is satisfied whenever the measure m is finite on bounded sets, and it is
crucial in showing the existence of sufficiently many integrable Lipschitz functions. More
precisely, assuming (3.1), it is possible to prove that the class of bounded, Lipschitz func-
tions f ∈ L2(X,m) with |Df | ∈ L2(X,m) is dense in L2(X,m), where |Df | is the slope of
the function f defined as

|Df |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x) , if x is an accumulation point,

and |Df |(x) := 0 if x is isolated.
A relaxed gradient of a function f ∈ L2(X,m) is a function G ∈ L2(X,m) for which

there exist Lipschitz functions fn ∈ L2(X,m) such that:

• fn → f in L2(X,m) and |Dfn|⇀ G̃ in L2(X,m);13

• G̃ ⩽ G m-a.e. in X.

It is possible to prove that the set of all the relaxed gradients of a function f ∈ L2(X,m)
is a closed and convex subset of L2(X,m). Thus, when non-empty, there exists an element
of minimal L2-norm which is called minimal relaxed gradient and denoted by |Df |∗. It is
minimal also in the m-a.e. sense, meaning that for any relaxed gradient G of f it holds
|Df |∗ ⩽ G m-a.e.

Given a function f ∈ L2(X,m), the Cheeger energy Ch(f) is defined (see [22, 23]) as

Ch(f) := 1
2

∫
X
|Df |2∗ dm ,

13⇀ denotes weak convergence. The expression “m-a.e.” means “almost everywhere with respect to m”.
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with the convention Ch(f) = +∞ if f has no relaxed gradients. As usual, we denote by
D(Ch) the domain of the Cheeger energy, i.e. the set of f ∈ L2(X,m) with Ch(f) <∞. It
is possible to check [22] that

∥f∥W 1,2 :=
(
∥f∥2L2 + 2Ch(f)

)1/2
(3.2)

defines a complete norm on the vector space D(Ch). The corresponding Banach space
is denoted by W 1,2(X, d,m). When (X, d,m) is a smooth weighted Riemannian mani-
fold, i.e. X is a smooth complete manifold with metric g endowed with the geodesic dis-
tance and a weighted volume measure m := efdvolg, then W 1,2(X, d,m) is the standard
Sobolev space (which is a Hilbert space). However in the generality of metric measure
spaces, W 1,2(X, d,m) is a priori a Banach (non-Hilbert) space, for instance this is the
case when (X, d,m) is Rn endowed with a non-Euclidean norm and the n-dimensional
Lebesgue measure.

The Cheeger energy is clearly nonnegative and Ch(c) = 0 for any constant function
c ∈ L2(X,m). Moreover it is a 2-homogenous, convex and lower semicontinuous functional
in L2(X,m). In smooth spaces and for smooth functions, Ch(f) reduces to the classical
Dirichlet energy 1

2
∫
|∇f |2, but we will see below examples where the above definition makes

sense in far more general cases.
In the next proposition we collect some useful properties of the minimal relaxed gra-

dient. We refer to [22] for a proof.

Proposition 3.1. Let f ∈ L2(X,m) be a function admitting relaxed gradients. Then:

1. For any set N ⊂ R of null L1-measure, |Df |∗ = 0 m-a.e. on the set f−1(N).

2. For any g with Ch(g) < ∞ and for any c ∈ R it holds |Df |∗ = |Dg|∗ on the set
{f − g = c}.

3. Suppose ϕ : J ⊂ R → R is Lipschitz, and J is an interval containing the image of
f (with ϕ(0) = 0 if m(X) = ∞). Then ϕ(f) ∈ D(Ch) and |Dϕ(f)|∗ ⩽ |ϕ′(f)||Df |∗
m-a.e.

Now let us suppose (3.1). As a consequence the set D(Ch) is dense in L2(X,m), and
we can invoke the classical theory of gradient flows in Hilbert spaces to infer that for
every f ∈ L2(X,m) there exists a unique locally Lipschitz curve t 7→ Ht(f) from (0,∞) to
L2(X,m) such that 

d
dtHt(f) ∈ −∂−Ch(Ht(f)) for a.e. t ∈ (0,∞),
Ht(f) → f as t→ 0+ .

Here ∂−Ch ⊂ L2(X,m) is the subdifferential of the functional Ch, i.e. given f ∈ L2(X,m)
it holds ℓ ∈ ∂−Ch(f) if∫

X
ℓ(g − f)dm+ Ch(f) ⩽ Ch(g) for all g ∈ L2(X,m).
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We refer to Ht(f) as the heat flow at time t starting from f . Using the uniqueness of
the curve t 7→ Ht(f), one can easily see that the heat flow satisfies the semigroup property
Ht+s = Ht ◦Hs for every t, s > 0.

The heat flow has many regularizing effects. For instance, it is possible to prove that
the right derivative d+

dt Ht(f) exists for any t > 0 and it is equal to the element of minimal
norm of −∂−Ch(Ht(f)). This suggests to introduce the following:

Definition 3.1. We write f ∈ D(∆) if f ∈ L2(X,m) with ∂−Ch(f) ̸= ∅; for f ∈ D(∆)
we denote by ∆f the element of minimal L2-norm in ∂−Ch(f) and we refer to it as the
Laplacian of f .

Notice that we are assuming a natural integrability assumption on functions f in the
domain of the Laplacian D(∆), namely by writing ∆f we are in particular assuming f to
be in L2(X,m). It is easy to check that the metric-measure Laplacian that we have defined
coincides with the weighted Laplacian whenever the underlying metric measure space is a
smooth weighted Riemannian manifold.

An immediate consequence of the 2-homogeneity of the Cheeger energy is that Ht and
∆ are 1-homogeneous, i.e. Ht(cf) = cHt(f) and ∆(cg) = c∆g for every f ∈ L2(X,m),
g ∈ D(Ch) and c ∈ R. However, Ht and ∆ are in general not additive, and thus not linear
operators. Notice also that Ht(c) ≡ c for every t > 0 and every constant c ∈ R (c = 0 if
m(X) = ∞).

Regarding the Laplacian and the heat flow, still without assuming linearity, we have
the following important properties (see [22, proposition 4.15 and theorem 4.16]).

Proposition 3.2. Let (X, d,m) be a metric measure space satisfying (3.1). It holds:

1. For all f ∈ D(∆) and ϕ : J → R Lipschitz, with J a closed interval containing the
image of f (and ϕ(0) = 0 if m(X) = ∞), we have∫

X
ϕ(f)∆f dm =

∫
X
ϕ′(f)|Df |2∗ dm. (3.3)

2. Let f ∈ L2(X,m) and e : R → [0,∞] be a convex and lower semicontinuous function.
Denoting by E : L2(X,m) → [0,∞] the functional defined by E(f) :=

∫
X e(f) dm, if

e′ is locally Lipschitz in R with E(f) <∞, then

E(Htf) +
∫ t

0

∫
X
e′′(Hsf)|DHsf |2∗ dm ds = E(f) for every t > 0 . (3.4)

To summarize, we have given a general definition of a Laplacian in definition 3.1 and
we have shown some of its properties. However, for physical application we often also want
the Laplacian to be a linear operator. This constraint excludes Finslerian structures14

14Recall that a Finsler space is a smooth manifold endowed with a distance induced by the length
functional

∫
dλF (x, ∂λx), with F (x, ∂λx) a norm in the velocity ∂λx, depending smoothly on the base point

x. If for all x, the norm F (x, ·) satisfies the parallelogram identity and thus it comes from a scalar product,
one is back to the classical framework of Riemannian geometry. Hence, this is a natural generalization of
Riemannian geometry, see for example [24] for a quick introduction. Even though Riemannian structures
are more common in physics, the language of Finsler geometry is also useful in some contexts. For example,
geodesics in stationary space-times are described by geodesics of a Finsler structure on appropriately defined
spatial slices [25–27]. See also [28] for a review of more speculative applications to physics.
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and is achieved through the following property: the space (X, d,m) is called infinitesimally
Hilbertian if for any f, g ∈ D(Ch) it holds

2Ch(f) + 2Ch(g) = Ch(f + g) + Ch(f − g). (3.5)

This assumption ensures that the heat flow and the Laplacian are linear. In particular,
Ch becomes a strongly local, symmetric Dirichlet form on L2(X,m), Ht is the associated
Markov semigroup and ∆ its infinitesimal generator [29, 30]. Recall that Dirichlet forms
are particular quadratic forms that provide a way to generalize the Laplacian, a classic
example being E(u) := 1

2
∫

M |∇u|2dvolg on a Riemannian manifold (M, g). See e.g. [31] as
a general reference on this topic.

3.2 L2-Liouville property of metric measure spaces

Having introduced the general setting we are working on and a suitable notion of Laplacian,
we now characterize in proposition 3.3 the spaces where ∆f = 0 implies that f is a constant,
saying that they satisfy the L2-Liouville property. In particular, one of the characterizations
will show that ∆f = 0 is equivalent to Ch(f) = 0. We then take advantage of the expression
of the Cheeger energy outside the singular set to conclude (proposition 3.6 and remark 3.2
below) that spaces with D-brane and O-planes backreactions satisfy this property. In doing
this, it will be clear the advantage of working in our framework. We will also show that the
L2-Liouville property is satisfied in many other relevant classes of metric measure spaces.

Borrowing the terminology from the celebrated Euclidean result about the constancy
of bounded harmonic functions, we start by introducing the following definition.

Definition 3.2. Let (X, d,m) be a metric measure space satisfying (3.1). We say that
(X, d,m) satisfies the L2-Liouville property if for any function f ∈ D(∆) with ∆f = 0
there exists c ∈ R such that f = c m-a.e., i.e. m({x ∈ X : f(x) ̸= c}) = 0.

We remark that we will not assume the infinitesimally Hilbertianity of (X, d,m). On
the one hand this allows higher generality in the spaces (for instance, Finsler manifolds
enter the framework); on the other hand, the treatment is slightly more delicate as ∆ is in
general not linear and the standard spectral theory is not at disposal.

Even if the definition 3.2 makes sense without imposing any condition on the metric
measure space (beside (3.1)), we are essentially interested in situations where the support of
the measure m is a connected subset of X. In this case, our definition should be compared
with the notion of irreducibility of a Dirichlet form. Recall that a Dirichlet form is irre-
ducible if the only invariant sets of the associated semigroup are negligible or co-negligible
(i.e. they are of measure zero or the complement has measure zero), where an invariant set
A ⊂ X is a measurable set such that Ht(1Af) = 1AHtf m-a.e. for every f ∈ L2(X,m) and
t > 0 (see e.g. [31]).

The next proposition is inspired by [32, proposition 2.3]. Characterization (vi) is
probably known to experts, at least for infinitesimally Hilbertian spaces where the Cheeger
energy defines a Dirichlet form, but we remark that we did not find it explicitly stated in
the literature.
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Proposition 3.3. Let (X, d,m) be a metric measure space and assume (3.1). The following
are equivalent:

(i) (X, d,m) satisfies the L2-Liouville property.
(ii) For any f ∈ L2(X,m) with Ch(f) = 0, there exists c ∈ R such that f = c m-a.e.

(iii) If f ∈ L2(X,m) admits minimal relaxed gradient that is equal m-a.e. to the constant
function 0, then there exists c ∈ R such that f = c m-a.e.

(iv) For any f ∈ L2(X,m) there exists c ∈ R such that limt→∞Htf = c in L2(X,m).
(v) If f ∈ L2(X,m) is such that Htf = f m-a.e. for every t > 0, then there exists c ∈ R

such that f = c m-a.e.
(vi) If f ∈ L2(X,m) is such that Ht0f = f m-a.e. for a certain t0 > 0, then there exists

c ∈ R such that f = c m-a.e.

Proof. Notice that a function f ∈ L2(X,m) that satisfies the assumptions in (ii) or (iii) is
in particular in the domain of the Laplacian with

∆f = 0 ⇐⇒ 0 ∈ ∂−Ch(f) ⇐⇒ Ch(f) ⩽ Ch(g) ∀g ∈ L2(X,m)
⇐⇒ Ch(f) = 0 ⇐⇒ |Df |∗ = 0 m-a.e.

This proves the equivalence between (i), (ii) or (iii).

(ii) =⇒ (iv): since Ch is proper, lower semicontinuous, convex, with dense domain and
2-homogeneous (thus even), and Ht is defined as its gradient flow, we are in position
to apply [33, theorem 5] to infer that the strong limt→∞Htf exists and is a minimum
point of Ch, and thus it is a function f ∈ L2(X,m) such that Ch(f) = 0. Using (ii)
the conclusion follows.

(iv) =⇒ (v): let f ∈ L2(X,m) be such that Htf = f m-a.e. for every t > 0. Thus the
strong limt→∞Htf exists and it is equal to f . By (iv) it follows f = c m-a.e. for
some constant c ∈ R.

(v) =⇒ (ii): let us suppose that (v) holds and let f ∈ L2(X,m) be such that Ch(f) = 0.
Then the curve t 7→ f from (0,∞) to L2(X,m) is Lipschitz continuous and a gradient
flow of the Cheeger energy starting at f . By uniqueness we must have Ht(f) = f

m-a.e. and (ii) follows.

It remains to show that (vi) is equivalent to the previous points. It is obvious that
(vi) implies (v). We now show that (iii) implies (vi). Let t0 > 0 and f ∈ L2(X,m) be such
that Ht0f = f . By applying proposition 3.2 with e(x) = x2 we can infer that

E(Ht0f) + 2
∫ t0

0

∫
X
|DHsf |2∗ dm ds = E(f) ,

and since Ht0f = f we have
∫ t0
0
∫

X |DHsf |2∗ dm ds = 0. Thus for almost every s ∈ [0, t0] it
holds |DHsf |∗ = 0 m-a.e. and using (iii) it must be that Hsf is m-a.e. equal to a constant
c(s) for almost every s ∈ [0, t0]. We can thus consider a sequence of time sn → 0 such
that Hsn(f) = c(sn) → f where the convergence is m-a.e., and thus f ≡ c for a certain
constant c ∈ R.
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We refer to [32] and [34] for some other similar equivalent characterizations, at least in
the context of Dirichlet forms, where the connection with the notion of irreducibility that
we have recalled above is also discussed.

As we will see in the next examples, brought from [22, remark 4.12], there exist spaces
that do not satisfy the L2-Liouville property.

Example 3.1. Consider the interval X := [0, 1] ⊂ R. We endow it with the Euclidean
distance d := | · | and a finite, Borel measure m concentrated on Q∩ (0, 1), i.e. m(X \ {Q∩
(0, 1)}) = 0. It is clear that (X, d,m) is a metric measure space satisfying (3.1).

For any n ∈ N, we consider an open set An with L1(An) ⩽ 1
n and Q ∩ (0, 1) ⊂ An,

where L1 is the 1-dimensional Lebesgue measure. To construct such a set An, one can
simply consider an enumeration of the set Q ∩ (0, 1) =: {ek}k∈N and define

An :=
⋃

k∈N
B

(
ek,

1
n2k

)
,

where B(e, r) is the open ball of center e and radius r. We then define the function
jn : X → R as jn(x) := L1([0, x] ∩ Ac

n), and from its expression we infer that jn is 1-
Lipschitz and jn(x) → x strongly in L2(X,m). We consider now an L-Lipschitz function f
defined on X and we set fn := f ◦ jn. Since jn is 1-Lipschitz we have that fn is L-Lipschitz
and converges strongly to f in L2(X,m). Moreover, for every n ∈ N∫

[0,1]
|Dfn|2 dm = 0 .

This last equality is a consequence of the fact that m is concentrated on Q ∩ (0, 1) and fn

is locally constant on An (thus |Dfn|(x) = 0 for every x ∈ An). It follows, by definition
of the Cheeger energy, that Ch(f) = 0. To construct an example of space without the
L2-Liouville property it is thus sufficient to consider a measure m such that there exists a
Lipschitz function defined on (X, d) which is not equal to a constant m-a.e. For instance,
one can fix an enumeration {ek}k∈N of the set Q ∩ (0, 1) and consider the Borel measure
m concentrated on Q ∩ (0, 1) and such that m({ek}) = 1/2k, with the Lipschitz function
f(x) = x. Notice that in this situation supp(m) = [0, 1], by the density of Q∩(0, 1) in [0, 1].

Example 3.2 (Snowflake construction). Let (X, d) be a complete metric space, and
let α ∈ (0, 1). Set dα := dα and consider the couple (X, dα), which is still a complete
metric space with the same induced topology of (X, d). (When X = [0, 1], d is the usual
Euclidean distance, and α ∈ (0, 1), there is a Lipschitz embedding of (X, dα) into a fractal,
and in particular for α = log 2/ log 3 this fractal is the classic Koch snowflake [35].) It
is easy to show that every dα-absolutely continuous curve is constant and thus, using the
characterization of Sobolev class via test plans, it follows that for every Borel measure
m on (X, d) and every f ∈ L2(X,m) it holds Ch(f) = 0 (see e.g. [36, exercise 2.1.14]).
Thus, if there exists a measure m and functions f ∈ L2(X,m) that are not m-a.e. equal
to a constant, one can use this construction to produce examples of spaces without the
L2-Liouville property. In particular, every complete Riemannian manifold endowed with
the power α ∈ (0, 1) of the geodesic distance and the volume measure does not satisfy the
L2-Liouville property.
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As we will see in the next proposition, the class of spaces satisfying the L2-Liouville
property is sufficiently large to contain all the spaces with a synthetic lower bound on the
Ricci curvature and no upper bound on the dimension, the CD(K,∞) spaces for short.15

Proposition 3.4. Let (X, d,m) be a CD(K,∞) space for some K ∈ R. Then (X, d,m)
satisfies the L2-Liouville property.

Proof. Let f ∈ L2(X,m) with Ch(f) = 0. By proposition 3.3 it is sufficient to show that
there exists c ∈ R such that f = c m-a.e. Let {fn} be a sequence of bounded Lipschitz
functions, fn ∈ L2(X,m), such that fn → f and |Dfn| → |Df |∗ in L2(X,m). The existence
of such a sequence in ensured by [22, lemma 4.3]. By applying the weak local Poincaré
inequality established in [40, theorem 1] to the sequence {fn}, and taking the limit as
n→ ∞, we can infer that for every x ∈ X and r > 0∫

B(x,r)
|f − ⟨f⟩B(x,r)| dm = 0 ,

where ⟨f⟩B(x,r) denotes the mean of the function f in the ball B(x, r). In particular
f(y) = ⟨f⟩B(x,r) for m-a.e. y ∈ B(x, r). Since r is arbitrary, this gives that f is m-a.e.
equals to a constant.

Remark 3.1. The L2-Liouville property for CD(K,∞) spaces seems to be not explicitly
stated in the literature. Notice that in these spaces the support of the measure is a
connected subset of X (actually a length space), by the very definition of the CD(K,∞)
condition. The subclass of CD(K,∞) spaces which are also infinitesimally Hilbertian is
known as the class of RCD(K,∞) spaces. In this case the irreducibility of the Cheeger
energy was explicitly noticed in [41] (where also the more general, but still infinitesimally
Hilbertian, RQCD spaces were considered). The proof we have given here follows a different
strategy from the one applied in [41].

Another class of non-smooth spaces which has been widely studied in recent years is
the one of PI spaces [42]. These are metric measure spaces (X, d,m) which satisfy a local
doubling inequality and a weak Poincaré inequality, but no curvature bound a priori. Also
such spaces satisfy the L2-Liouville property:

Proposition 3.5. Let (X, d,m) be a PI space. Then (X, d,m) satisfies the L2-Liouville
property.

Proof. By definition, a PI space satisfies a weak local Poincaré inequality. Moreover, for
every f ∈ L2(X,m) with Ch(f) = 0, there exists a sequence {fn} of bounded Lipschitz
functions, fn ∈ L2(X,m), such that fn → f and |Dfn| → |Df |∗ in L2(X,m) (see for
instance [43, corollary 5.15]). We thus have all the ingredients to follow verbatim the proof
of proposition 3.4.

15Roughly speaking, these are spaces with certain singularities, on which a generalization of a lower
bound on the Ricci curvature still makes sense. We refer to our earlier [8, 37] for informal discussions of
these spaces, and to [38, 39] for more mathematical details.
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Finally, we can also show that the physical backreaction of D-branes and O-planes
gives rise to a singular but reducible space, thanks to the following:

Proposition 3.6. Let (X, d,m) be a metric measure space with the following properties:

• there exists a closed set S ⊂ X such that (X \ S, d⌞X\S ,m⌞X\S) is isomorphic to an
open subset O of a smooth weighted Riemannian manifold (M, g, eϕdvolg), meaning
that there exists an isometry ψ from (X \ S, d⌞X\S) to (O, dg⌞O) which sends the
measure m⌞X\S to the weighted volume measure eϕdvolg⌞O;

• m(S) = 0;

• X \S is connected by rectifiable curves, i.e. for every x, y ∈ X \S there exists a curve
γ : [0, 1] → X \ S of finite length such that γ(0) = x and γ(1) = y.

Then (X, d,m) satisfies the L2-Liouville property.

Proof. Let f ∈ L2(X,m) with Ch(f) = 0. The result follows if we show that f is constant
m-a.e., thanks to proposition 3.3.

Since by assumption (X\S, d⌞X\S ,m⌞X\S) is isomorphic to an open subset of a smooth
weighted Riemannian manifold, by the expression of the Cheeger energy we infer |∇f | = 0
on X \ S m-a.e., where ∇f is the standard gradient in smooth Riemannian geometry.

Let x, y ∈ X \ S be arbitrary points. Then, by assumption, there exists a curve
γ : [0, 1] → X \ S of finite length such that γ(0) = x and γ(1) = y.

Then, by the fundamental theorem of calculus,

|f(x)− f(y)| =
∣∣∣∣∫ 1

0
∇f(γ(t)) · γ̇(t) dt

∣∣∣∣ = 0 ,

where γ̇ is the velocity of the curve (which is well defined for a.e. t ∈ [0, 1] by the rectifiability
of γ) and · denotes the Riemannian scalar product on X \S which we can think as identified
to an open subset of a smooth weighted Riemannian manifold.

It follows that there exists a constant c ∈ R such that f = c on X \ S. Since by
assumption m(S) = 0, we conclude that f(x) = c for m-a.e. x ∈ X.

Remark 3.2. The assumptions of proposition 3.6 are satisfied in the physically relevant
situation of a smooth weighted manifold outside of a singular set where the metric-measure
structure is asymptotic to localised sources of co-dimension at least 2, such as O-planes or
Dp-branes of co-dimension ⩾ 2. Thus such metric measure spaces satisfy the L2-Liouville
property. Also D8-branes and O8-planes satisfy the L2-Liouville property, but they require
a separate discussion. Recall that, in a neighborhood {|r| < ϵ} of the closed singular set
{r = 0}, the metric is of the form

g = dx29−d + (1− h8|r|)dr2 (3.6)

where, h8 > 0 is a positive constant for D8 (resp. h8 < 0 for O8), and the measure is
given by

m⌞{|r|<ϵ}=
√
1− h8|r| dvolg⌞{|r|<ϵ}
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where dvolg is the Riemannian volume measure associated to g. By applying proposition 3.6
to the smooth part of space, we obtain that if f is an L2 harmonic function, then there
exist two constants c1, c2 such that f |r<0 = c1 and f |r>0 = c2. We claim that it must
hold c1 = c2. Assume by contradiction c1 ̸= c2. Then f would have a jump along the
singular set {r = 0}. However the metric and the measure are bounded (above and below
away from 0) in {|r| < ϵ}; thus such an f would not be an element of W 1,2, yielding a
contradiction (recall that a W 1,2-function cannot jump along a set of co-dimension one S,
provided the ambient metric-measure structure is not too degenerate near S).

3.3 Spectral theory

In this section we review some terminology and basic definitions of spectral theory. The
material is classical and can be found for instance in [44, 45]. For a gentle introduction
see also T. Tao’s blog [46]. In the final part of the section we then notice how the metric
measure Laplacian enters in this framework.

We start with a linear operator on a complex Hilbert space (H, ⟨·, ·⟩). By this we
mean a couple (A,D(A)) where D(A) is a dense subset of H, called the domain of A, and
A : D(A) → H is linear. We remark that we work with unbounded operators, meaning that
D(A) can be strictly contained in H (and this is the typical situation we will encounter).
The operator A is symmetric if ⟨Ax, y⟩ = ⟨x,Ay⟩ for every x, y ∈ D(A), and nonnegative
if ⟨Ax, x⟩ is a nonnegative real number for every x ∈ D(A). We say that A is closed if the
set {(x,Ax) : x ∈ D(A)} is closed as a subset of H ×H.

The adjoint of the operator A is the couple (A†, D(A†)) where D(A†) is the set of
vector y ∈ H such that the map x 7→ ⟨Ax, y⟩ is a bounded linear operator on D(A). For
such y, we define A†y has the only element of H such that ⟨Ax, y⟩ = ⟨x,A†y⟩ for every
x ∈ D(A), y ∈ D(A†). Notice that the well posedness of this definition comes from the
density of D(A) in H and from an application of the Riesz representation theorem. One
can easily see that A† is a linear operator and, when A is symmetric, A† is an extension of
A, i.e. D(A) ⊂ D(A†) and A = A† on D(A). In general D(A) can be strictly contained in
D(A†), and we call self-adjoint the symmetric operators A such that D(A) = D(A†). The
subclass of self-adjoint operators is of great importance, as the spectral theorem applies to
those (see [45]).

When working with operators of differential nature, usually the initial domain where
the operator A is defined is “small” (think of a differential operator initially defined only
on smooth functions), leading to a “large” D(A†) and thus to the lack of self-adjointness
of A. One is thus interested in extending A by enlarging the initial domain in order to
obtain a self-adjoint operator (typically one passes from smooth functions to a suitable
Sobolev space). It is possible that an operator admits many self-adjoint extensions, and
we call essentially self-adjoint the important class of operators that admit a unique self-
adjoint extension.

The regular values ρ(A) of an operator A are the values λ ∈ C such that (λId − A)
has a bounded inverse. The spectrum σ(A) is the set of numbers λ that are not regular
values. A non-zero function f ∈ D(A) is an eigenfunction of A of eigenvalue λ if Af = λf .
Notice that for a nonnegative operator A, all the eigenvalues lie in the set [0,∞). The
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set of all eigenvalues constitutes the point spectrum while the discrete spectrum σd(A) is
the set of eigenvalues which are isolated in the point spectrum and with finite dimensional
eigenspace. Finally the essential spectrum is defined as σess(A) := σ(A) \ σd(A).

The definitions that we have introduced in this section are of particular interest for us
since they can be applied to the Laplacian defined in definition 3.1 if the underlying metric
measure space is infinitesimally Hilbertian. In this case ∆ is a densely defined, nonnegative,
self-adjoint operator on its domain D(∆) ⊂ L2. We can thus study it by taking advantage
of the important results of spectral theory.

We have in particular that eigenfunctions of the Laplacian relative to different eigen-
values are orthogonal. For spaces of finite measure, constant functions are eigenfunctions
relative to λ0 = 0, hence any other eigenfunction has null mean value.

We can also make use of the variational characterization of the eigenvalues. More
precisely, given f ∈W 1,2(X, d,m), f ̸≡ 0, we introduce the Rayleigh quotient defined as

R(f) := 2Ch(f)∫
X |f |2 dm . (3.7)

Notice that for any eigenfunction fλ of eigenvalue λ, it holds λ = R(fλ). We can then infer
that the set of eigenvalues below inf σess(∆) is at most countable and, listing the elements
in increasing order λ0 < λ1 ⩽ . . . ⩽ λk ⩽ . . ., the following characterization holds

λk = min
Vk+1

max
f∈Vk+1,f ̸≡0

R(f) , (3.8)

where Vk denotes a k-dimensional subspace of W 1,2(X, d,m).

3.4 The singular set of Dp-branes is polar

The Dp-branes are examples of singular spaces (more precisely they can be modelled by
possibly non-smooth metric measure spaces), which are smooth weighted Riemannian man-
ifolds outside of a singular set S.

As we saw earlier, it is interesting to study the spectrum of the Laplacian on such
spaces. In the previous sections, we recalled the definition of Laplacian for metric measure
spaces (in terms of the Cheeger energy) and how it is linked to standard spectral theory;
a natural way to address the problem is thus to study the spectrum of such Laplacian. An
a-priori different approach would be to restrict the Laplace operator to smooth functions
with compact support outside of the singular set and study its spectral properties. The
goal of this section is to show that these two approaches are equivalent for Dp-branes, p < 8
(see corollary 3.1 for the precise statement).

First, let us define the metric measure spaces we will consider. We refer to our previous
works [8, 37] for discussions and further references.

Definition 3.3 (Asymptotically Dp-brane metric measure spaces). An asymptoti-
cally Dp-brane metric measure space is a smooth Riemannian manifold (X, g) that is glued
(in a smooth way) to a finite number of ends where the metric g is asymptotic to a Dp-brane
singularity in the following sense.
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• Case p = 0, 1, . . . , 6. In the end, as r → 0, the metric is asymptotic to

dx2p+1−d +
(
r0
r

)7−p (
dr2 + r2ds2S8−p

)
(3.9)

with r7−p
0 = gs(2πls)7−p/((7− p)Vol(S8−p)); as usual gs is the string coupling and ls

is the string length.
• Case p = 7. In a neighborhood {r < ϵ} of the closed singular set {r = 0}, as r → 0,

the metric is asymptotic to

dx28−d −
2π
gs

log(r/r0)
(
dr2 + r2ds2S1

)
. (3.10)

In all the above cases, we endow X with a weighted measure, and view it as a metric
measure space (X, d,m) where:

• The distance d between two points x, y ∈ X is given by

d(x, y) := inf
γ∈Γ(x,y)

∫ √
g (γ′(t), γ′(t))dt ,

where Γ(x, y) denotes the set of absolutely continuous curves joining x to y.
• The measure m is a weighted volume measure m := efdvolg, with the function ef

smooth outside the tips of the ends and gives zero mass to the singular set. Near the
singularity, the weight has the following asymptotics:

ef ∼ H
p−7

2 for r → 0 , (3.11)

and, near the singularity,

H ∼

 (r/r0)p−7 0 ⩽ p < 7
−2π

gs
log(r/r0) p = 7

for r → 0 , (3.12)

where r7−p
0 = gs(2πls)7−p/((7− p)Vol(S8−p)) for p < 7.

Before, see (3.2), we recalled the notion of Sobolev space W 1,2(X, d,m) associated to
a metric measure space (X, d,m). Notice that, as we proved in [37, proposition 6.4], this
Sobolev space is Hilbert for asymptotically Dp-brane metric measure spaces.

Let us now recall the notion of polar set in X. The rough idea is that, as sets of
zero m-measure are “invisible” by Lebesgue L2-functions (or, more precisely, two Borel
functions which agree outside of a set of measure zero correspond to the same element in
the Lebesgue space L2(X,m)), polar sets are “invisible” by Sobolev W 1,2-functions (or,
more precisely, two Borel functions which agree outside of a polar set correspond to the
same element in the Sobolev space W 1,2(X, d,m)).

Definition 3.4 (Polar set). Let (X, d,m) be a metric measure space. A Borel subset
E ⊂ X is said to be polar if

inf{∥u∥W 1,2 : u Lipschitz, u = 1 on a neighbourhood of E and 0 ⩽ u ⩽ 1} = 0. (3.13)
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Equivalently, a subset E ⊂ X is polar if it has zero 2-capacity (where the 2-capacity
of E is defined as the left hand side of (3.13)).

Proposition 3.7. Let (X, d,m) be an asymptotically Dp-brane metric measure space in the
sense of definition 3.3. In case p = 6, 7, assume also that, for each end, the Riemannian
factor dx2p+1−d has finite volume. Denote by S the (minimal, under inclusion) closed sin-
gular set such that X \S is isomorphic to an open subset of a smooth weighted Riemannian
manifold.

Then S is polar.

Proof. Case p = 0, . . . , 5. The statement is trivially true, as S = ∅: indeed, the singu-
larity is at infinity and X is a smooth weighted Riemannian manifold.

For the cases p = 6, 7, notice that it is enough the prove that, for each end, the
singular set {r = 0} is polar.

Case p = 6. Consider the coordinates (x,Θ, r) ∈ M7−d × S2 × [0,∞) as in (3.9). After
the change of variable ρ = 2

√
r, in a neighbourhood of {ρ = 0}, the metric is

asymptotic to
dx27−d + r0dρ2 +

r0
4 ρ

2ds2S2 ,

with measure asymptotic to (up to a multiplicative constant)

ρ3volM7−d(dx) volR(dρ) volS2(dΘ) .

For each k > 0, consider the following Lipschitz functions:

ψk(ρ) :=


1 for ρ ⩽ k−1

2− kρ for ρ ∈ [k−1, 2k−1]
0 for ρ ⩾ 2k−1.

(3.14)

Using that the Riemannian factor dx27−d has finite volume, it is a straightforward
computation to check that ∥ψk∥W 1,2 → 0 as k → ∞. Thus, for E = {ρ = 0}, the
infimum in (3.13) is zero and the set {ρ = 0} is polar.

Case p = 7. Consider the coordinates (x,Θ, r) ∈ M8−d × S1 × [0,∞) as in (3.10). After
the change of variable ρ =

∫ r
0
√
log(s)ds, in a neighbourhood of {ρ = 0}, the metric

is asymptotic to
dx28−d +

2π
gs

(
dρ2 + f(ρ)ds2S1

)
,

with measure asymptotic to (up to a multiplicative constant)√
f(ρ) volM8−p(dx) volR(dρ) volS1(dΘ),

where f(·) satisfies
0 ⩽ f(ρ) ⩽ ρ2.
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Let ψk be defined as in (3.14). Using that Riemannian factor dx28−d has finite volume,
it is a straightforward computation to check that

∥ψk∥L2 → 0 , (3.15)
sup

k
∥ψk∥W 1,2 <∞ . (3.16)

Since W 1,2 is a Hilbert space, the norm bound (3.16) implies that we can extract
a subsequence ψk′ which converges weakly in W 1,2 to some ψ ∈ W 1,2. Since ψk′

also converges weakly in L2 to ψ, and we know from (3.15) that ψk′ converges to 0
strongly in L2, we infer that ψ = 0. So far we constructed a sequence (ψk′) ⊂ W 1,2

converging to 0 weakly in W 1,2, where each ψk′ is equal to 1 on a neighbourhood of the
singular set {ρ = 0}. By Mazur’s lemma, we can construct a sequence (ϕj) ⊂ W 1,2

of finite convex combinations of elements in (ψk′) which converges to 0 strongly in
W 1,2. More precisely, there exists a function N : N → N and a sequence of sets of
real numbers

{α(j)k′ ∈ [0, 1] : k′ = j, . . . , N(j)}

with
N(j)∑
k′=j

α(j)k′ = 1 ,

such that the sequence (ϕj)j∈N defined by the convex combination

ϕj =
N(j)∑
k′=j

α(j)k′ψk′

converges strongly to 0 in W 1,2. From its explicit expression, it is clear that ϕj is
equal to 1 on a neighbourhood of the singular set {ρ = 0} (since each ψk′ has this
property). Thus, for E = {ρ = 0}, the infimum in (3.13) is zero and the set {ρ = 0}
is polar.

The following consequence of the fact that S is polar is well known to experts. We
give a self-contained proof for the reader’s convenience.

Proposition 3.8. Let (X, d,m) be an asymptotically Dp-brane metric measure space satis-
fying the assumptions of proposition 3.7 and let S be the singular set of X. Let W 1,2

0,S(X, d,m)
be the closure (in W 1,2 topology) of the set of smooth functions compactly supported in
X \ S. Then W 1,2

0,S(X, d,m) =W 1,2(X, d,m); more precisely, the identity map f 7→ f is an
isomorphism of Hilbert spaces between W 1,2

0,S(X, d,m) and W 1,2(X, d,m).

Proof. It is clear that the inclusion map f 7→ f from W 1,2
0,S(X, d,m) to W 1,2(X, d,m) is

an isometric immersion. Then it is enough to show that, for each f ∈ W 1,2(X, d,m) there
exists a sequence (φk) of smooth functions with compact support in X\S such that φk → f

strongly in W 1,2. We prove the statement by subsequent approximations and conclude by
a diagonal argument.
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Claim 3.1. Let f ∈W 1,2(X, d,m) and consider the sequence of truncations

fn(x) =


f(x) if |f(x)| ⩽ n

n if f(x) ⩾ n

−n if f(x) ⩽ −n .

Then fn → f strongly in W 1,2.

The claim follows directly by dominated convergence theorem.
Since by proposition 3.7 the singular set S is polar, then there exists a sequence of

Lipschitz functions (ψk) with values in [0, 1], equal to 1 on a neighbourhood of S and such
that ∥ψk∥W 1,2 → 0. Up to extracting a subsequence not relabeled, we can also assume
ψk → 0 m-a.e.

Claim 3.2. Let f ∈W 1,2(X, d,m)∩L∞(X,m). Then (1−ψk)f is a W 1,2(X, d,m) function
supported in the regular part X \ S, for each k ∈ N; moreover, the sequence ((1− ψk)f)k

converges to f strongly in W 1,2.

This last claim is equivalent to show that ∥ψkf∥W 1,2 → 0 as k → ∞. Since |ψkf | ⩽ f

and ψkf → 0 a.e., by dominated convergence theorem it follows that ∥ψkf∥L2 → 0. It is
thus sufficient to show that ∥∇(ψkf)∥L2 → 0. We have∫

X
|∇(ψkf)|2dm ⩽ 2

∫
X
|∇ψk|2f2dm+ 2

∫
X
|ψk|2|∇f |2dm .

Since f is bounded and ∥ψk∥W 1,2 → 0, then the first integral in the right hand side converges
to zero as k → ∞. The second integral in the right hand side converges to zero as k → ∞
by dominated convergence theorem, since |ψk|2|∇f |2 ⩽ |∇f |2 ∈ L1(X,m).

Claim 3.3. If ϕ ∈ W 1,2(X, d,m) has support contained in the regular part X \ S, then
there exists a sequence (ϕj) of smooth functions with compact support in X \ S such that
ϕj → ϕ strongly in W 1,2.

This last claim is completely standard and can achieved by using partition of unity
to localise in coordinate charts and then use approximation by convolution in each chart
to obtain smooth functions; finally multiplying by smooth cut-off functions with compact
support in X \ S gives the desired approximation (ϕj).

We can now combine the three claims above to conclude. Let f ∈ W 1,2(X, d,m) and
fix ϵ > 0. We will construct f̃ smooth with compact support in X \ S such that

∥f − f̃∥W 1,2 ⩽ ϵ . (3.17)

By claim 3.1, there exists fn ∈W 1,2(X, d,m) ∩ L∞(X,m) such that

∥f − fn∥W 1,2 ⩽ ϵ/3 . (3.18)

By claim 3.2, there exists ϕk,n = (1− ψk)fn ∈ W 1,2(X, d,m) with compact support in the
regular part X \ S such that

∥fn − ϕk,n∥W 1,2 ⩽ ϵ/3 . (3.19)
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Finally, by claim 3.3, there exists f̃ smooth with compact support in X \ S such that

∥ϕk,n − f̃∥W 1,2 ⩽ ϵ/3 . (3.20)

The combination of (3.18), (3.19), (3.20) gives (3.17) by triangle inequality.

Remark 3.3. It is a general fact (well known to experts) for metric measure spaces that
if S ⊂ X is polar than W 1,2(X, d,m) coincides with the closure in W 1,2-topology of the set
of W 1,2-functions with support contained in X \ S. The proof in the general case can be
obtained along the lines of the proof of proposition 3.8.

As observed above, if (X, d,m) is an asymptotically Dp-brane metric measure space,
then the Sobolev space W 1,2(X, d,m) is a Hilbert space and we are in the framework
described in section 3.3.

Given a closed subset S ⊂ X, the Laplacian with Dirichlet boundary conditions on S
is the analog of the construction performed in section 3.1 for the definition of ∆, replacing
W 1,2(X, d,m) by W 1,2

0,S(X, d,m). We denote this Dirichlet Laplacian by ∆0 and view it as
an operator in its associated domain D(∆0), in the sense specified in section 3.3.

Remark 3.4 (The spectrum of the Dirichlet Laplacian is always contained in
the spectrum of the Laplacian). Let (X, d,m) be a metric measure space such that
W 1,2(X, d,m) is a Hilbert space and let S ⊂ X be a closed subset. In this general situation,
where smooth functions are not necessarily at disposal, one can define W 1,2

0,S(X, d,m) to be
the closure in W 1,2-topology of the set of W 1,2-functions in X with essential support16

contained in X \S. Denote by ∆ the Laplacian of (X, d,m) and let ∆0 be the Laplacian on
X \ S with Dirichlet boundary conditions on S. By the simple fact that W 1,2

0,S(X, d,m) can
be seen as a closed sub-space of W 1,2(X, d,m), it follows that σ(∆0) ⊂ σ(∆); moreover, if
f is an eigenfunction with eigenvalue λ of ∆0 then f is an eigenfunction with eigenvalue
λ of ∆.

In the case of Dp-brane m.m.s., since by proposition 3.8 we know that W 1,2
0,S(X, d,m)

coincides with W 1,2(X, d,m), the Laplacian with Dirichlet boundary conditions on S coin-
cides with the Laplacian of (X, d,m) as defined in definition 3.1. We therefore obtain the
following corollary.

Corollary 3.1. Let (X, d,m) be an asymptotically Dp-brane metric measure space satis-
fying the assumptions of proposition 3.7. Let S be the singular set of X. Let ∆ be the
Laplacian of (X, d,m) and let ∆0 be the Laplacian on X \ S with Dirichlet boundary con-
ditions on S.

Then ∆ and ∆0 have exactly the same spectral properties, i.e. ρ(∆) = ρ(∆0), σd(∆) =
σd(∆0), σess(∆) = σess(∆0).

In particular, in the variational characterization (3.8) of λk, one can assume Vk to
be a k-dimensional subspace of the vector space of smooth functions with compact support
contained in the regular part X \ S.

16Recall that for a measurable function f defined on (X,m) the essential support is the smallest closed
subset E ⊂ X such that f(x) = 0 m-a.e. outside E.
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Remark 3.5. For some singularities we expect we should include also functions with
Neumann boundary conditions; for example one can argue this for a single D6, using duality
with M-theory [47, section 3.3]. However, when the singularity S is polar, the eigenvalue
problems for ∆ with Dirichlet boundary conditions and with Neumann boundary conditions
on S are equivalent (in turn to the eigenvalue problem without boundary conditions. This
is due to the fact that a polar set is “invisible” by W 1,2-functions). Indeed, it is possible to
approximate arbitrarily well functions with Neumann boundary conditions with functions
in W 1,2

0,S(X, d,m), given remark 3.3 and proposition 3.8.

We have found that we can retrieve the metric-measure Laplacian also by working on
the space X \ S without singular locus, at least when the latter is polar. In particular, we
already have a domain on which the Laplacian is self-adjoint: namely the finiteness domain

D(∆) := {f ∈ L2(X,m) : ∆f ∈ L2(X,m)} (3.21)

that we have introduced in definition 3.1, endowed with the norm

∥f∥D(∆) :=
(∫

X
|f |2 + |∆f |2dm

)1/2
.

In a sense there is no need to extend the domain, using the terminology of section 3.3.
We can nevertheless explore alternatives, and a first possibility is inspired by the

discussion of the self-adjoint extension of the Hamiltonian −∂2z − 1/4z2 in section 2.4.17

However, some complications appear from this perspective. For illustrative purposes, let
us assume here that the singular set S reduces to one point x0. Let G ∈ L1

loc(X) be
the Green’s function for the weighted Laplacian on the original space X, centred at x0:
∆G = δx0 . Working on X\{x0}, one might think G becomes harmonic; thus if one manages
to include G in the domain of the Laplacian while keeping it self-adjoint, then G would be
an eigenfunction with zero eigenvalue. This idea however presents some challenges.

First of all, while G satisfies ∆G = 0 in a point-wise sense on X \ {x0}, in the distri-
butional sense G in fact still satisfies ∆G = δx0 . Of course this cannot be seen by testing
against functions in C∞

c (X \{x0}), as they vanish at x0. However for every test function f
continuous on X \ {x0} with bounded support, with ∆f ∈ L∞(X), and admitting a limit
limx→x0 f(x), it would hold

lim
x→x0

f(x) =
∫

X
G∆f dm =

∫
X\{x0}

G∆f dm =
∫

X\{x0}
f∆G dm;

the first equality comes by direct computation as by construction G is the Green function,
the second uses the fact that {x0} has measure zero, and the last uses the assumption that
∆ is self-adjoint with G in its domain.

Even if somehow one managed to impose that G is in the domain of ∆ with ∆G = 0
on X \ {x0}, a second problem would appear. Now

∫
X\{x0}G∆G dm = 0, but on the other

hand
∫

X\{x0} |∇G|
2dm is clearly non-zero (and in fact diverges when {x0} has codimension

17A recent study of the influence of the choice of domain on KK stability is in [48]. It would be interesting
to revisit that model with our methods.
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⩾ 2). This means that integration by parts would no longer be valid on the domain of ∆,
which in turn invalidates the variational approach to the Laplace spectrum, in terms of
Rayleigh quotients (3.7).

A third challenge is that X \ {x0} is not geodesically complete (unless x0 is at infinite
distance). It is a classical result [49, 50] that geodesic completeness of a smooth Riemann
manifold (M, g) is equivalent to the essential self-adjontness of the Laplace Beltrami oper-
ator on C∞

c (M); in turn, essential self-adjontness is a key assumption in spectral theory.

Remark 3.6. In case S has null W 2,2-capacity, we can also argue that the extension
domain for ∆ we have chosen in (3.21) is unique, in the following sense. Let C∞

c (X \S) be
the space of functions with compact support outside the singular set S. Suppose we want
to obtain a Hilbert space H in which C∞

c (X \S) is dense and such that ∆ : H → L2(X) is
a densely defined, self-adjoint operator. Being self-adjoint, ∆ is automatically closed and
this condition forces to endow C∞

c (X \ S) with the norm induced by the quadratic form
Q(f) :=

∫
(f2 + |∆f |2)dm (or an equivalent norm inducing the same topology). H then

coincides with the closure of C∞
c (X \ S) in D(∆), which in turn coincides with D(∆) as

in (3.21) since by assumption S has null W 2,2-capacity. (For more details on W 2,2-capacity
and on sufficient conditions for a set to have null W 2,2 capacity in a metric measure space,
we refer to [51].) Notice this is surely the case for an asymptotically Dp-brane metric
measure space in the sense of definition 3.3, for p = 1, . . . , 5 (as the singular set is at ∞);
for p ≥ 6 we expect this is not true as the singular set has not enough co-dimension. (One
would need co-dimension 4 in a suitable weighted Hausdorff sense; we do not delve in more
details as we do not expect a positive result.)

4 Gravity localization in string theory

So far we have discussed general mechanisms for gravity localization in theories with extra
dimensions. As we have seen, even when the internal warped volume is infinite, there can
still be meaningful localization of gravity on a lower-dimensional subspace, such as in the
KR mechanism reviewed in section 2.3.

In this section we consider realizations in string/M-theory of this mechanism, focusing
on the AdS case. In section 4.1, we review some bounds on the lowest KK masses m0 ̸= 0
and m1, coming from [8]. We will prove a general result on absence of separation of scale for
theories with massive gravitons in AdS when only energy sources that satisfy the Reduced
Energy Condition are turned on in the background (and when there is an upper bound
on the gradients of the warping). Our general theorems also allow to infer localization of
gravity without computing the spectrum.

Localization can happen on a brane such as in [10, 11] or on a broader internal region,
loosely referred to as “thick brane”. In particular, in section 4.2 we construct realizations of
massive gravity in String/M-theory starting from solutions that contain Riemann surfaces,
with or without supersymmetry. In section 4.3 we study instead models with N = 4
supersymmetry in type IIB string theory.

When separation of scales is absent, knowledge of the eigenvalues allows to put a
lower bound on localization of gravity of the scale of the four-dimensional cosmological

– 26 –



J
H
E
P
0
9
(
2
0
2
3
)
1
2
7

constant. Whether localization also holds at smaller scales depends on the behavior of the
eigenfunctions, and we will show how for the models of section 4.3 the situation might
indeed be better.

4.1 General method and a bound on scale separation

Our goal is to find vacuum solutions (namely, spacetimes of the form (1.1)) with infinite
warped volume, so that the massless graviton is not part of the spectrum, and where the
first massive spin 2 field with mass m0 is very light and separated from the rest of the
tower starting with mass m1. This will guarantee localization of gravity at least up to the
scale m1.

As we illustrated with the five-dimensional models studied in section 2.3, we can obtain
this hierarchy by appropriately tuning the Cheeger constants. Recall that the first two
generalized Cheeger constants are given respectively by

h0 := inf
B0

VolA(∂B0)
VolA(B0)

, (4.1a)

and
h1 := inf

B0,B1
max

{VolA(∂B0)
VolA(B0)

,
VolA(∂B1)
VolA(B1)

}
, (4.1b)

where the infimum is taken with respect to all possible (disjoint) sets B0, B1 of finite volume
and the subscript A refers to the fact that volumes are weighted with ef = e(D−2)A. Using
the results in [8, theorem 4.2, 4.8] and [37, theorem 6.7, 6.8], we find that these constants
control the first two eigenvalues of ∆f as

1
4h

2
0 ⩽ m2

0 < max
{21
20

√
−Kh0,

22
20h

2
0

}
, (4.2)

and
C · h21 ⩽ m2

1 < max
{
−3528

25 K,
3696
25

√
−Kh1,

3872
25 h21

}
, (4.3)

where K ≤ 0 is a lower bound on the
(
Ricci∞f

)
mn

:= Rmn − ∇m∇nf and C > 0 is a
universal constant. The bounds (4.2), (4.3) are valid also in presence of some singularities:
the lower bounds in the infinitesimally Hilbertian class of section 3.1, which includes all the
physical spaces where the closure of the singular set has measure zero; the upper bounds in
the smaller RCD class (recall footnote 15 and discussion below), that includes D-branes [8,
section 3]. Using [8, theorem 4.4] we can also directly relate the first two eigenvalues to
each other, without any reference to the Cheeger constants:

m2
1 < max

{
−3528

25 K,
704
5 m2

0

}
. (4.4)

We are interested in a limit in which m0 ≪ 1 with m1 remaining finite, so that
m1/m0 ≫ 1 and the rest of the tower is separated from the almost massless graviton
responsible for localizing gravity. From (4.2), (4.3) we see that this is achieved in a limit
in which h0 → 0 while h1 stays finite. The estimate (4.4) implies that in this limit

m2
1 < −3528

25 K . (4.5)
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A general result on K was proven in [52]. On any reduction of any higher-dimensional
gravitational theory that at low-energies reduces to Einstein gravity plus some matter
content (encoded in a stress-energy tensor TMN ), the equations of motion impose

(Ricci∞f )mn = Λ4gmn − (D − 2)∂mA∂nA+ 1
2κ

2
(
Tmn − 1

d
T (d)

)
, (4.6)

where m, n are internal directions, and T (d) denotes the trace of TMN along the d-
dimensional vacuum. When

(
Tmn − 1

dT
(d)
)
⩾ 0, a condition named Reduced Energy Con-

dition (REC) in [52], it is then possible to express the lower bound K on Ricci∞f uniquely
in terms of Λ4 and |dA|. In particular, the REC has been shown to hold for a variety
of matter content, including scalar fields, p-form fluxes, higher dimensional cosmological
constants, localized sources with positive tension and general scalar potentials. Further
specializing to Λ4 < 0, we thus have

K = −
(
|Λ4|+ (D − 2)(sup|dA|)2

)
. (4.7)

We stress that this is true for any higher dimensional gravitational theory when only sources
that satisfy the REC are turned on. In particular, this holds true for string theory solutions
without O-planes nor quantum effects. In such situations we have the following

Proposition 4.1. In any AdS vacuum solution with infinite warped volume that satisfies
the Reduced Energy Condition and that admits a very light spin 2 field of mass m0 ≪ |Λ4|
in its spin 2 Kaluza-Klein tower, the second element of the tower is bounded by

m2
1

|Λ4|
<

3528
25

(
1 + (D − 2)(sup|dA|)

2

|Λ4|

)
. (4.8)

Summarizing, when |dA| is bounded, proposition 4.1 proves a bound on separation of
scales, defined in this case as the hierarchy between m1 and |Λ4|. In particular, separation
of scales is forbidden in compact spaces when sup|dA| is not allowed to grow much higher
than |Λ4|. This condition is natural as seen from the fact that the solution has to be in the
supergravity approximation. Indeed, generically, a very large |dA| is expected to result in
a very large (in absolute value) D-dimensional curvature.

Remark 4.1. We have specialized proposition 4.1 to AdS, but a similar statement also
holds for dS vacuum solutions. Indeed, while for compact internal spaces it is known
that the REC implies a negative cosmological constant [53–55], for more general warped
products this is not true.18 Allowing for Λ4 > 0, (4.7) changes by |Λ4| → −Λ4 and simple
modification of proposition 4.1 is obtained by removing the “1” in (4.8). However, since
now K can change sign, it is possible to obtain stronger results for this case by using the
theorems formulated for K ⩾ 0. More generally, allowing also for REC-violating sources,
K will have extra negative contributions from those. Terms with different signs can then
compensate each other and we leave the exploration of these richer scenarios to future work.

18Simple examples with infinite warped volume can be obtained by regarding any AdSn compactification
as a non-compact foliation of dSn−1. For more elaborated constructions in 10/11 dimensional supergravities
see [56].
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From the point of view of gravity localization, we have obtained that looking at the
eigenvalues alone can guarantee localization at most up to the scale of the synthetic Ricci
lower bound K = −

(
|Λ4|+ (D − 2)(sup|dA|)2

)
. Whether actual localization can be pushed

to higher energy scales depends on the relative concentration of eigenfunctions, as in sec-
tion 2.3, and it is not readily visible from the eigenvalues alone.

In the next two subsections, we will evaluate these bounds on two different classes of
String/M-theory AdS vacua showing how gravity is localized in such UV complete examples.

We conclude with a brief discussion of the continuous spectrum. Since we are con-
sidering noncompact “internal” spaces Xn, the spectrum is not guaranteed to be discrete.
Some general methods to analyze this issue were presented in [57, 58]. For our purposes, we
should make sure that the continuous spectrum is either absent, or starts at a large value.

Already when the weighted volume (and hence m4) is finite, Dp-branes with p ≤ 5 are
at infinite distance; so in their presence discreteness is not guaranteed. We presented a
first rough analysis in [8, section 4.2.2]: near the sources, the ratios in (4.1) get arbitrarily
small for p < 5, tend to r−1

0 for p = 5, and get large for p > 5. This suggests that for p < 5
the continuum is present and starts at zero, for p = 5 it starts at r−1

0 ∼ l−1
s g

−1/2
s , and for

p > 5 it is absent. A more sophisticated analysis can be carried out using [57, theorem 3.1].
This gives a characterization of spaces where the ordinary Laplace-Beltrami operator has a
discrete spectrum, in terms of a certain “isocapacitary” function µXn(s) : [0,∞) → [0,∞).
We expect this theorem to still hold in the weighted case. We checked that its hypotheses
fail near a Dp-brane, p ⩽ 5, and hold for p > 5.

In the models we are going to see, the weighted volume is infinite, and the analysis
above is not enough: in other words, branes are not the only source of non-compactness.
We will return to the issue in each case separately.

4.2 Riemann surfaces

Examples of infinite-volume vacuum solutions that localize gravity in lower dimensions can
be readily constructed starting from any compactification that includes a Riemann surface
Σg, when the background fields are constant along Σg. Known four-dimensional examples
include the AdS4 solutions in type IIB string theory, that can be found by combining [59,
60], as spelled out in [61, section 5.2]; and examples in massive type IIA [60, 62].19 examples
in other dimensions include the AdS5 constructions [55, 63] in M-theory and [64] in type
IIA, or the AdS3 vacua in type IIB of [65, 66].

In general, we are considering solutions where the internal unwarped metric is a fibra-
tion over a Riemann surface:

ds2n = L2
n

(
ds2Σg

+ gij(dyi +Ai)(dyj +Aj)
)
, (4.9)

where ds2Σg
is the metric on a negatively-curved Riemann surface of genus g with Ricci

scalar −2, and Ai, i = 1, . . . n− 2 are a collection of one-forms on Σg. The weight function
19These massive type IIA examples include the presence of O8-planes, which are outside of the RCD

class but included in the class of infinitesimally Hilbertian spaces introduced in section 3.1. Thus, for these
examples, only a subset of the eigenvalue bounds is currently known to hold. We refer the reader to [37,
section 6.3] for more details.
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Figure 1. An infinite-area Riemann surface (g = 1, nf = 2), with a single small eigenvalue. h0 is
small as can be seen by taking as B0 the union of the two pair of pants; h1 is not small since two
of the three ends of the Bi are not small.

ef and the metric gij are constant along Σg; Ln is a constant that in these models is often
of order ∼ 1/|Λ4|.

While the spin 2 fields are given by eigenfunctions of the weighted Laplacian ∆f , a
subset of modes that are non-constant only along Σg has masses dictated by the spectrum
of the standard Laplacian on the Riemann surface. We can thus ask whether this portion of
the spectrum can include a very light mode, specifically when the volume of Σg is infinite so
that no massless graviton is allowed, as we proved in section 3. The answer is affirmative,
and there is considerable freedom in tuning the geometry to achieve a hierarchy between
the first mode and the rest of the tower. This phenomenon can be directly understood
from the general bounds in terms of the Cheeger constants by using the equations (4.2)
and (4.3). To see this, we specialize those general inequalities to the spectrum of the pure
Laplacian on Σg by setting A = f = 0 and K = −1. In this case, there is a natural choice
for how to construct the Bi, by using the pieces provided by the pair of pants decomposition
of Σg. Specifically, an infinite-area negatively-curved Σg, with finite Euler characteristic
and no cusps, can always be decomposed in a compact core plus nf funnels and then cut
in 2g− 2+nf pair of paints.20 Importantly, each of these pieces can have ends of arbitrary
geodesic length. Thanks to this freedom, we can obtain arbitrarily small Vol(∂B)

Vol(B) for each of
the pair of pants in the decomposition, thus realizing arbitrarily small hi for i < 2g−2+nf .
In particular, we are free to tune h0 to be very small while keeping h1 fixed, thus realizing
the mechanism described in section 4.1. An example with g = 1, nf = 2, with a single
light mode, is given in figure 1.

So far, we have discussed the part of the spectrum coming from modes only varying
along Σg. While this is enough to ensure that a very light m0 is part of the spectrum, we
would like to ensure that m1 does not get small, regardless of its origin. If the geometry
doesn’t have other small “necks”, so that h1 computed in the whole geometry is not small,
then this is guaranteed by the first inequality in (4.3). It is easy to check this explicitly case
by case for each example: the fiber metric gij is that of a distorted sphere of cohomogeneity
one, independent of Σg. For the original AdS5 example of [55], this check was performed
in [8, section 6].

As we noted in our general discussion in section 4.1, when Xn is non-compact the
spectrum is not guaranteed to be discrete. For the models of this section, it is indeed

20We refer the reader to [8, section 6.3] and references therein for more details on infinite area Riemann
surfaces and their spectra.
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known that infinite-area negatively-curved hyperbolic surfaces have a continuous spectrum
that in our normalization starts at 1/4L2

n.
While this shows that gravity in these models is localized up to a length scale ∼ 1/m1,

as in the KR model the true scale at which gravity looks four-dimensional might be even
smaller if the eigenfunctions are sufficiently localized. The reason this might work is the
following. We expect the matter modes λ of which a four-dimensional observer is made to
be concentrated on the compact core of Σ. The expression (2.7) would now be replaced by
(GM1M2/R)

∑∞
k=0 e−mkR⟨λ, ψk⟩2, where ⟨λ, ψ⟩ :=

∫
M6

√
g6e8Aλψ. Unfortunately finding λ

would require obtaining the rest of the KK tower; the relevant differential operators O on
M6 have not been worked out for this class of solutions. Qualitatively, one would expect λ
to be concentrated near the bulb just as ψ0 is, and hence ⟨λ, ψk>0⟩ := ϵ to be small, since
⟨ψk>0, ψ0⟩ = 0. For two such particles,

V ∼ GM1M2

( 1
R

+ ϵL4
R2

)
; (4.10)

thus for such modes we would find localization at a lower scale, R > ϵL4. It would be
interesting to check explicitly this conjectural mechanism.

An alternative to this mechanism would be to include localized sources on Σg, such as
the so-called punctures. Now four-dimensional matter might be localized on such punctures,
and the eigenfunctions corresponding to m1 and the higher modes might be suppressed
away from the sources where the matter is localized. It would be interesting to explore this
further.

Finally, we notice that one might try to avoid the need to study the eigenfunctions
to have localization up to shorter distances by trying to push directly m1 to much larger
scales. However proposition 4.1 forbids this if sup |dA| is of order 1. This is the case for
the examples of solutions we mentioned above, and we expect it to be true in general for
this class of solutions since the warping does not depend on Σg.

4.3 Examples with N = 4 supersymmetry

There exists a class of models that shares many similarities with the AdS version of the
KR model of section 2.3. It is holographically dual to domain walls in N = 4 super-Yang-
Mills [67]. Its potential use for gravity localization was explored in [2, 9, 68]. One expects
many similar realizations in string theory of such domain walls, and more generally of
conformal defects within a CFT.

We refer the reader to the papers above for a detailed introduction to these solutions;
our notation is based on our earlier [8, section 5]. The geometry is again a warped product

ds2 = e2A(ds2AdS4 + ds2M6) . (4.11)

The internal space is a fibration over Rx with coordinate x, whose generic fibers are topo-
logically S5. The latter has the metric of a “join”, with an S2 × S2 fibred over an interval
y ∈ Iy = [0, π/2], each S2 shrinking at one of its endpoints. The solution is completely
determined by two harmonic functions H1, H2 on the strip Rx×Iy. Morally the coordinate
x will play the role of r in the five-dimensional KR model. It is possible to include arbitrary
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Figure 2. A cartoon of the internal space with two throats, similar to the KR model.

numbers of NS5- and D5-branes along an AdS4 × S2, respectively at y = 0 and π/2. The
overall topology of M6 was initially taken to be R×S5, but appropriate choices for H1, H2
were later found to make the S5 shrink at x→ −∞, leading to topology M6 ∼= R6 [69, 70];
or at both x → ±∞, leading to M6 ∼= S6 [69]. A further possibility is to identify R
periodically, leading to M6 ∼= S1 × S5 [71].

The simplest case, which includes no branes at all, was considered in [2]. Here the warp-
ing function is flat in a region {x ∈ (−δϕ/2,+δϕ/2)}, and grows exponentially for larger
|x|. (As its name suggests, δϕ is related to the difference between the limits limx→±∞ ϕ(x).)
In particular it does not have the peak near the origin that we saw in the KR model. A
numerical analysis reveals that all the masses in the KK tower go to zero simultaneously
as δϕ → ∞, thus showing no sign of localization. We will see soon how to reproduce this
in terms of Cheeger constants.

More general models with NS5- and D5-branes are much more promising [2, 9, 68]. A
cartoon is shown in figure 2: the space has a central “bulb” of volume V and two tubes
of length ℓ ending with two non-compact regions where the S5 grows exponentially. This
is similar to the AdS KR model: the central peak is replaced by the bulb, and the tubes
serve to suppress higher-dimensional KK modes.

A simple version of this model was considered in [68, appendix E], which we slightly
generalize here. The harmonic functions read

H1 = 2l2sRe
[
−ia sinh z − (N/4) log tanh

( iπ
4 − z

2

)]
,

H2 = 2l2sRe
[
â cosh z − (N̂/4) log tanh

(
z

2

)]
,

(4.12)

with z = x + iy. We take a, â ≪ N , N̂ . There are N D5-branes and N̂ NS5-branes
at x = 0. In the x → ±∞ regions the metric is asymptotically AdS5 × S5, where both
factors have curvature length L5 given by (L5/ls)4 = 4πn ∼ 8(aN̂ + âN); n is the F5
flux quantum at x → +∞. The weighted volume of the bulb (the integral of e8A on it) is
V ∼ v(NN̂)2l8s/L2

4, where v ∼ .05 is a numerical factor and as usual Λ4 = −3/L2
4.21 The

21In the original papers, L4 is set to ls by using invariance of (4.11) under A → A + A0, L4 → eA0 L4,
ds2

M6 → e−2A0 ds2
M6 . Here we have restored it as an independent variable, but it is important to keep in

mind that it is an ambiguous reference quantity; all physically meaningful quantities are measured with
respect to it. For example, a product mL4 is unambiguous.
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tubes are in the regions
(
δx− 1

2ℓ, δx+ 1
2ℓ
)

and
(
−δx− 1

2ℓ,−δx+ 1
2ℓ
)
, where

δx = 1
4 log NN̂

aâ
, ℓ = 1

2

∣∣∣∣∣log aN̂âN
∣∣∣∣∣ . (4.13)

As usual in these models (for example the Janus case mentioned earlier), 1
2 log

aN̂
âN also

happens to be equal to the difference δϕ between the values of the dilaton at its two ends.
A variant of this model with a single tube22 can be thought of as a version of the KR

model where the brane at the center is in fact a spacetime boundary. The models in [72]
have a larger number of tubes, and don’t have a direct analogue in five dimensions.

Before we discuss the mass spectrum in these models, let us comment on the presence of
a continuous part of the spectrum. As we anticipated in the general discussion in section 4.1,
the presence of D5s and NS5s implies that a continuous spectrum does exist. However,
the hypotheses in [57, theorem 3.1] fail near the sources, but not for large distances.23

This suggests that the continuum starts at r−1
0 ∼ l−1

s g
−1/2
s , but not below. This is also

supported by a numerical analysis. We will return to this later in this section.
The lightest spin-two mass m0 was evaluated numerically in [68, appendix E] in the

a = â, N = N̂ case, where it was found m0L4 ∼ O(a/N). It can be estimated more
generally and precisely with the methods of [9, 73], which give

m2
0L

2
4 ∼

273π3L8
5

V L2
4

J(ℓ) = 2113π5
v

n2

N2N̂2
J(ℓ) , (4.14)

where J(ℓ) = (ℓ coth3 ℓ− coth2 ℓ)−1 is of order one at ℓ = 0, and O(ℓ)−1 as ℓ→ ∞.
The larger masses m2

k>0 were not estimated in [9], but we can again do so using the
Cheeger constants. As a warm-up we evaluate h0. We take B0 of the form (−x0, x0). (4.1a)
gives the estimate

h0 ∼ inf
x>δx−ℓ/2

1√
2L4

g(x− δx)3/2

4π5

v

(
NN̂

n

)2
+
∫ x
−ℓ/2 dx′g(x′ − δx)

, g(x) := 1 + cosh 2x
cosh ℓ , (4.15)

of the same form as in [8, (5.22)] for a similar (but compact) model in the same class.
Recall that there is a tube of length ℓ and centered at δx. The requirement x > δx − ℓ/2
is so that we stay away from the central bulb, where the back-reaction of the central NS5-
and D5-branes is important; here the quantity to minimize is large and more complicated,
although in principle computable exactly from (4.12). The function g(x) is flat in the region
(−ℓ/2, ℓ/2), and grows exponentially for x > ℓ; at x → ∞, M6 becomes non-compact. In
finding the infimum in (4.15), one wants to make x grow almost all the way to δx + ℓ/2,
because the numerator stays almost constant while the denominator grows like C + x. For

22This can be obtained for example from the models considered in [8, section 5.4] by taking the limit NR,
N̂R → ∞, keeping N̂R/NR constant.

23The function µ(s) : [0, ∞) → [0, ∞) is the infimum of a certain quantity over sets of measure ⩾ s;
s/µ(s) should go to zero as s goes to both 0 and ∞. For the spaces in this subsection, the limit fails as
s → 0 because of sets supported near the branes. For s → ∞ we are checking a property that regards very
large sets, involving the x → ±∞ regions; this condition is satisfied, as can be shown using [57, (3.7)].
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x > δx + ℓ/2, the numerator grows faster than the denominator. Recalling L5 ∼ n1/4,
V1 ∼ (NN̂)2, we get

h0 ∼
1√
2L4

(
4π5
v

N2N̂2

n2
+ ℓ

)−1

. (4.16)

A more precise estimate can be obtained as in [8] using Lambert functions. Unfortunately,
as also remarked there, the general upper bounds in (4.2) are not useful for non-compact
models of this type, but the lower bound m0 ⩾ h0/2 does apply, and is indeed compati-
ble with it.

We can now try to give a similar estimate for the second-lightest mass m1, by us-
ing (4.3). To do so, we need to estimate h1 from (4.1b) and we take B0 = (−δx+ ℓ/2, x0),
B1 = (x0, x1). It is again strongly favored to take both x0, x1 in the tube region (−ℓ/2 +
δx, ℓ/2 + δx). We have

VolA(∂B0)
VolA(B0)

∼ 2
8π5

v

(
NN̂

n

)2
+ x0 − δx+ 3

2ℓ
,

VolA(∂B1)
VolA(B1)

∼ 1
x1 − x0

. (4.17)

The largest of these two is always VolA(∂B1)/VolA(B1). So we need to take the infimum
of this, which is obtained by making x1 − x0 = ℓ, or in other words by making B1 extend
as long as the tube. So we conclude h1 ∼ 1

ℓ .
We would like now to use the lower bound in (4.3). Unfortunately, this comes from

theorem [37, theorem 6.8], which needs a hypothesis on the growth of the volumes of balls
that fails in the asymptotic regions x→ ±∞. (An earlier version [8, theorem 4.9] requires
a lower Ricci bound that also fails in our case.) To overcome this difficulty, we notice
that for large |x| the metric behaves as ∼ e−2x(ds2AdS4

+dx2+ds2S5), and the normalizable
eigenfunctions decay exponentially as ψ(x, y) ∼ e(−2−

√
4+m2)|x|fm(y), with ∆S5fm = m2fm.

We can thus approximate very well the full problem with the Neumann problem obtained
by cutting off the geometry to a region Mx̄ :=M6 ∩ [−x̄, x̄] for a large enough x̄. We have
also checked numerically that above a certain threshold the spectrum is insensitive to the
cutoff x̄.

Working in Mx̄ gives us that as anticipated the spectrum is discrete, at least below the
D5 threshold l−1

s g
−1/2
s . Moreover, the cut off model now satisfies the hypotheses in [37,

theorem 6.8]. But there is a last subtlety for us to tackle: the Neumann eigenvalues
on the cut off model include two additional light modes, which are spurious in that the
corresponding eigenfunctions go to zero when the cutoff is removed. To see these spurious
eigenvalues m̄0, m̄1, let us see how our previous discussion of the Cheeger constants is
modified by the cutoff. (We denote quantities relative to the cut off model by a bar.)
First, h̄0 is realized by taking B̄0 = Mx̄. Since ∂B̄0 ⊂ ∂Mx̄, VolA(∂B̄0) = 0 and h̄0 = 0,
which by (4.1a) implies m̄0 = 0. Next, h̄1 is realized by taking B̄0 = (−x̄,−δx− ℓ/2) and
B̄1 = (δx + ℓ/2, x̄), namely the regions beyond the two tubes in figure 2. When x̄ gets
large, VolA(∂B̄i) remain fixed while VolA(B̄i) diverges; in agreement with (4.3), m̄1 → 0.
The next two eigenvalues are not spurious and survive in the non-compact limit x̄→ 0; the
collections of Bi are obtained by taking those we discussed around (4.16) and (4.17), and
adding to them the B̄0, B̄1 we just saw. In particular, the m1 for the non-compact model

– 34 –



J
H
E
P
0
9
(
2
0
2
3
)
1
2
7

is the limit of m̄3 for the cutoff model; these are related to h1 and h̄3 respectively. We can
now use [37, theorem 6.8] for k = 3 to obtain

m2
1L

2
4 >

c

ℓ2
(4.18)

for a certain universal constant c.
When ℓ is large, there is no separation between m1 and m0. This is similar to what

was found in the aforementioned pure Janus model in [2]. In that case, the bulb is absent,
and the tubes join to form a single one. The computation of the Cheeger constants is
even clearer than in the earlier case: h0 is realized as VolA(∂B)/VolA(B) for a B that
fills the entire tube; h1 by considering B0, B1 that each take half the tube. So h0 ∼ 1/ℓ,
h1 ∼ 1/2ℓ. (A generalization to a higher number of Bi exists, and gives hk ∼ 1/(k + 1)δϕ
for similar reasons.)

However, the tube can also be made short: looking at (4.13), this happens for example
when a = â, N = N̂ (or more generally when they are almost equal). Now h1 is no longer
small. We expect it to be O(1), and m1 ∼ 1/L4. But m0 can be made small by taking

n≪ NN̂ = N2. (4.19)

So in this regime, to which we restrict our attention from now on, we do have a hierarchy:
m0
m1

∼ n

N2 ≪ 1 . (4.20)

This indicates that we can have gravity localization in the two-throat model.
Similar to our discussion of the KR model, by itself this hierarchy only implies that

gravity behaves in a four-dimensional way for scales L4 ≪ R ≪ (N2/n)L4. To see if
this persists below the cosmological scale, we need information about the wave-functions
themselves. In the RS model, the suppression of ψk>0 on the brane was responsible for
the absence of a R−2 term in the potential, as discussed below (2.7); in the KR model, it
makes it negligible, so that localization persists up to R ∼ L5, well below L4.

Our mathematical theorems do not put constraints on the ψk, but we will try to
proceed anyway. In this class of backgrounds, there are two types of modes to consider:

• For matter modes localized on the NS5-branes, numerically we find ψk(x = 0, y =
0)2 ∼ N−4 for the first few k > 0. However, we find the same behavior with N also
for k = 0, in contrast to the KR case, for which we observed above (2.13) that higher
eigenfunctions ψk>0 are suppressed at the origin relative to ψ0. Now (2.7) gives, with
a similar logic to that in footnote 8:

V ∼ GM1M2

( 1
R

+ L4
R2

)
. (4.21)

Thus for these modes localization only really works up to the cosmological scale,
R > L4.24 The result is similar for D5-branes.

24Actually for R > L4 (4.21) will change, with a large contribution from the gravitational potential of
AdS itself. The overall leading behavior will still appear four-dimensional.
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• Further four-dimensional matter particles originate from closed-string modes whose
KK wave-function λ is concentrated on the bulb, which we expect to provide the N =
4 superpartners of the lowest spin-two mode. For such modes, the same discussion
leading to (4.10) would apply.

• Finally, other possibilities might arise by extending this class of backgrounds with
the inclusion of branes that support four-dimensional matter and are localized at
an internal locus where the higher eigenfunctions are suppressed compared to ψ0.
This would require to recompute the supergravity solution, as their backreaction can
be severe.

In summary, both for the KR and for the present model the lowest mass m0 is very
small, and the next m1 ∼ 1/L4. However, for the KR model the suppression of the higher
eigenfunctions ψk>0 on the brane pushes the KK length scale to L5. In contrast, the models
in this section don’t seem to display this suppression, at least for the modes localized on
the D5-branes and NS5-branes, so the KK length scale is L4; for some closed-string modes
it might be possible to make this somewhat lower.

One might also wonder if it is possible to push directly m1 to a higher value than
1/L4. In this particular case, the bound of proposition 4.1 becomes vacuous since in the
asymptotic AdS5×S5 regions |dA| is not bounded. We can again consider the cutoff model,
where the asymptotic region is removed, and apply the bound of proposition 4.1 to the cut
off space. In this case, however, the cutoff cannot be removed, as it controls both the value
of K and the precision of the approximation.
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