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Abstract We consider a warm inflationary scenario in
which the two major fluid components of the early Uni-
verse, the scalar field and the radiation fluid, evolve with
distinct four-velocities. This cosmological configuration is
equivalent to a single anisotropic fluid, expanding with a four-
velocity that is a combination of the two fluid four-velocities.
Due to the presence of anisotropies the overall cosmologi-
cal evolution is also anisotropic. We obtain the gravitational
field equations of the non-comoving scalar field—radiation
mixture for a Bianchi Type I geometry. By assuming the
decay of the scalar field, accompanied by a corresponding
radiation generation, we formulate the basic equations of
the warm inflationary model in the presence of two non-
comoving components. By adopting the slow-roll approxi-
mation the theoretical predictions of the warm inflationary
scenario with non-comoving scalar field and radiation fluid
are compared in detail with the observational data obtained
by the Planck satellite in both weak dissipation and strong
dissipation limits, and constraints on the free parameters of
the model are obtained. The functional forms of the scalar
field potentials compatible with the non-comoving nature of
warm inflation are also obtained.
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1 Introduction

The recently released Planck data of the 2.7 full sky sur-
vey [1-7] have shown a number of intriguing features,
whose explanation will certainly require a deep change in
our standard view of the Universe. The current observa-
tions have measured the properties of the Cosmic Microwave
Background Radiation (CMB) to an unprecedented preci-
sion. One of the most substantial results of the nominal
mission is that the best-fit Hubble constant has the value
Hy = 67.4 + 1.2 km s~! Mpc™!, with a dark energy den-
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sity parameter Q25 = 0.686 + 0.020, and a matter density
parameter 257 = 0.307 £ 0.019.

Generally the Planck data confirm the foundations of
the ACDM (ACold Dark Matter) model. According to this
model, the main material composition of the Universe can
be reduced to two components: dark energy and dark matter,
respectively, [8,9]. The observed late-time cosmic accelera-
tion of the Universe [10-13] can be successfully explained
by introducing either a fundamental cosmological constant A
[14], which would represent an intrinsic curvature of space-
time, or a dark energy, a hypothetical fluid component in the
form of a zero-point-energy that pervades the whole Uni-
verse, which would mimic a cosmological constant (at least
during the late stage of the cosmological evolution) [8,9, 15—
19]. Currently one of the main dark energy scenarios is based
on the so-called quintessence [20-24], where dark energy
corresponds to a scalar particle ¢. For other proposals for dark
energy, in which the dynamical equation of state is realized
by a scalar field, one can refer to k-essence [25-27], tachyon
[28,29,175], phantom [30-32], quintom[33-35], chameleon
[36—41], and Chaplygin gas [42,43] models, which have also
been investigated. Modifying gravity at galactic or astrophys-
ical scales, or considering extra-dimensional cosmological
models, can also lead to an explanation of the late accelera-
tion of the Universe [44—51]. Scalar fields or other long range
coherent fields coupled to gravity have also been considered
as potential dark matter candidates [52-55].

The basic paradigm of the present day cosmology about
the very early Universe is represented by the inflationary
theory, initiated in [56]. The basic idea of inflation is the
presence in the early Universe of a scalar field ¢, with a self-
interaction potential V (¢), and with a corresponding energy
density pg, and pressure p|pp;, respectively [57]. The early
inflationary models were based on the assumption that the
scalar field potential reaches a local minimum at ¢ = 0, due
to the supercooling after a phase transition. Subsequently
the Universe enters an exponentially expanding, de Sitter
type phase. However, in this initial theoretical model, the
so-called old inflationary scenario, there is no graceful exit
from the de Sitter accelerating, inflationary phase. Several
inflationary models, with the explicit objective of solving the
graceful exit problem, have been proposed, including the new
and the chaotic inflationary models [58—61]. Note that each of
these theories has its own and specific theoretical problems.
Recent reviews of different aspects of the inflationary and of
cosmology have been presented in [62,63].

During inflation the exponential growth of the scale factor
of the Universe leads to a homogeneous, isotropic but mat-
terless Universe, in which all initial components have dimin-
ished to near zero. Hence, in order to explain the present
composition of the Universe it is necessary for radiation and
the basic elementary particles to be created at the end of
inflation, in a cosmological epoch known as reheating. Dur-
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ing this period matter (mostly in the form of radiation) was
created through the transfer of energy from the inflationary
scalar field to the elementary particles. The reheating model
was initially developed in the framework of the new infla-
tionary scenario [58], and later on extended in [64—66]. The
basic idea of reheating can be formulated as follows. After
the de Sitter type accelerated expansion of the Universe, the
scalar field driving inflation reaches its minimum value. Then
it starts to oscillate around the minimum of the potential, and
subsequently it disintegrates into matter, in the form of a radi-
ation (photon) gas, and of some Standard Model elementary
particles. Due to the interaction of these components, the
early Universe finally reaches a thermal equilibrium state
characterized by a temperature 7 .

One of the approaches extensively used to investigate
reheating is the phenomenological model introduced in [59].
The basic idea of this formalism is the introduction of a par-
ticular decay term in the Klein—-Gordon equation describing
the evolution of the scalar field. This term is also included as
a growth term in the balance equation for the energy den-
sity of the newly created particles. If reasonably chosen,
the loss/gain term can describe the reheating process that
did follow the adiabatic supercooling during the inflation-
ary era. Hence, in this reheating model, an interacting two-
component fluid, representing a mixture between the scalar
field, and ordinary matter, can explain the chemical compo-
sition of the Universe. Hence the entire transition process
between the scalar field and the ordinary matter component
can be described phenomenologically once the functional
form of the friction term, describing the decay of the scalar
inflaton field, is given. The same term also represents the
source term for the newly created matter fluid. For inves-
tigations of the diverse cosmological and physical aspects
of the post-inflationary reheating dynamics see [67—78]. For
detailed reviews on the post inflationary reheating phase see
[79] and [80], respectively.

Despite its remarkable theoretical success the standard
reheating model is plagued by a number of problems. One
important question is related to the perturbative description
of the decay width of the scalar field, which can describe
the decay only close to the minimum of the potential. Such
a description is not valid during slow-roll inflation. Another
problem is that finite temperature effects can also signifi-
cantly increase the rate at which the scalar field dissipates its
energy to the newly created particles [79,80].

On the other hand it is natural to assume that the scalar field
driving inflation could have been coupled nonminimally to
the other matter components present in the early Universe.
Therefore the scalar field could have dissipated its energy
during the accelerated expansion, thus warming up the Uni-
verse without the need of a reheating phase. This cosmo-
logical interpretation of inflation is called warm inflation,
and it was initially proposed in [81,82]. Hence, according to
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the warm inflationary scenario, dissipative effects and par-
ticle creation processes can create a thermal bath (radiation
fluid) during the accelerated expansion phase. In one of the
first warm inflation models [83] it was suggested that in the
inflationary scenarios the physical parameters could be ran-
domly distributed. This hypothesis led to the development
of distributed-mass models [84—88], developed in relation
to string theory. Warm inflation represents presently a very
active field of study, and it certainly represents an attrac-
tive alternative to the cold inflation/reheating scenarios. The
cosmological evolution in the warm inflationary models has
been investigated in detail in [89—138].

The Planck observational data also indicate the possible
existence of some tension between the fundamental prin-
ciple of the ACDM model and observations. For example,
after combining the Planck data with the WMAP polarization
data, the index of the power spectrum is found to be ny =
0.9603 £ 0.0073 [2,3], at the pivot scale ky = 0.05 Mpc’l.
This value rules out the exact scale-invariance (n;, = 1) at
more than So. Moreover, the joint constraints on the tensor-
to-scalar ratio r and ny are able to significantly restrain infla-
tion models. For example, one should note that inflationary
models with a power-law potential of the form ¢* cannot
provide a legitimate number of e-folds (between 50-60) in
the restricted space of r—n; at around a 20 level. Hence the
precise observations of the Cosmic Microwave Background
Radiation permit the testing of some fundamental predictions
of inflation on primordial fluctuations, such as Gaussianity
and scale independence [1-7].

More interestingly, the search for the background geom-
etry and topology of the Universe reveals that a Bianchi pat-
tern, corresponding to a homogeneous but anisotropic geom-
etry of the Universe may account, in a quite efficient way,
for some large-scale anomalies seen in the Planck data [5].
A Bayesian search for an anisotropic Bianchi VII;, geom-
etry was performed, by using the Planck data in [5]. In a
non-physical setting, with the Bianchi parameters decoupled
from the standard cosmology, the observational data favor a
Bianchi component with a Bayes factor of at least 1.5 units of
log-evidence. On the other hand, in the physically motivated
setting where the Bianchi parameters are fitted simultane-
ously with the standard cosmological parameters, no indica-
tion for a Bianchi VII; cosmology was detected [5].

The statistical isotropy characterizing the large-scale
structure of the Universe is an important prediction of cos-
mology, also supported by the cosmic no-hair conjecture
according to which inflation eliminates classical (or even
quantum) anisotropy. However, several recent observations
of the large-scale structure of the Universe have questioned
the principles of homogeneity and isotropy [139,140]. Some
of the recent observations, not related to the study of the
CMB, and pointing towards possible anisotropies in the Uni-
verse are obtained from the investigations of Type la Super-

novae, of the X-ray background, the distribution of the optical
and infrared galaxies, and the observation of some peculiar
velocities of the galaxy clusters [140] may raise some con-
cerns about the absolute validity of the principle of isotropy.
In [140] the directional behavior of the X-ray luminosity—
temperature relation Lx—7 of galaxy clusters was investi-
gated. The measurement of the luminosity depends on the
considered cosmological model via the luminosity distance
Dy . On the other hand the temperature can be determined
astrophysically without any cosmological assumptions. It
was found that the behavior of the Lx—T relation strongly
depends on the direction of the sky, a result consistent with
previous investigations. Strong anisotropies were detected at
a> 4o level. From the study of a sample of 142,661 quasars,
with the data extending beyond the post-inflationary causality
scales, significant spatially correlated systematic effects that
can emulate cosmological anisotropy were found in [141].
When combined with the recent Planck results, these pow-
erful observational results indicate that the presence of an
intrinsic large-scale anisotropy in the Universe, of cosmo-
logical origin, cannot be ignored a priori.

The intriguing possibility that the geometry of the Uni-
verse may not be of the standard Friedmann—Lemaitre—
Robertson—Walker (FLRW) form was investigated, from dif-
ferent points of view, in [142—153].

In particular, so-called extended FLRW models, repre-
senting a cosmological model with an underlying anisotropic
Bianchi geometry that expands isotropically, and that can be
mapped onto a standard FLRW model with the same expan-
sion history, were investigated in [153]. It was found that
matter and geometrical anisotropies tend to cancel out each
other dynamically, and that, under rather general conditions,
the expansion is asymptotically isotropic.

Hence, it turns out that there is a significant theoretical
and empirical evidence for the existence of the large-scale
cosmological anisotropies. However, the physical origin of
anisotropy is still unknown, with the most favored explana-
tions related to the deviations of the primordial fluctuations
from isotropy [1]. However, up to now there no convincing
physical mechanism that could lead to such deviations has
been proposed.

A possible physical mechanism for the generation of the
anisotropies in the Universe was proposed in [154], and it
is based on the idea that the two major fluid components
of the Universe, dark energy and dark matter, flow with
distinct four-velocities. This cosmological configuration is
equivalent to a single anisotropic fluid [155—158], expanding
with a four-velocity representing a combination of the two
fluid four-velocities. Therefore, if there is a slight difference
between the four-velocities of the dark energy and dark mat-
ter, the Universe would acquire some anisotropic character-
istics, and its geometry will deviate from the standard FLRW
one, a conclusion that is supported by a number of present day
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observations. Along the same line of thought in [159] it was
pointed out that there is no a priori reason to impose for the
dark component of the Universe a reference frame comov-
ing with ordinary matter. The consequences of relaxing this
assumption were investigated through the study the cosmol-
ogy of non-comoving fluids. Among the observable effects,
observable modifications in the density-velocity and density-
lensing potential cross-correlation spectra were found. The
corrections from the non-comoving motion of the Universe
components give rise to deviations from statistical isotropy
with a dipolar structure. A two-fluid dark matter model, in
which dark matter is represented as a two-component fluid
thermodynamic system, without interaction between the con-
stituent particles of different species, and with each distinct
component having a different four-velocity, was considered
in [160]. The properties of such a system were further investi-
gated in [161], by assuming that the two dark matter compo-
nents are pressureless, non-comoving fluids. For this particu-
lar choice of the equations of state the dark matter distribution
can be described as a single anisotropic fluid, with vanishing
tangential pressure, and non-zero radial pressure. The inter-
esting possibility that there could exist different rest frames
for dark matter and dark energy has been also studied in [ 162—
165]. The existence of large-scale bulk flows may represent
some evidence for the presence of moving dark energy in the
cosmological era when photons decoupled from matter.

It is the purpose of the present paper to extend the pre-
vious studies of the possibility of the non-comoving motion
of the cosmological components to the very early Universe,
and, more exactly, to the inflationary era. More specifically,
we will consider the warm inflationary scenario, in which the
early Universe is modeled as an interacting two-component
fluid. In the standard warm inflationary scenario the assump-
tion that all constituents of the early Universe move in the
same rest frame, and with the same four-velocity, is a basic
(but not exactly justifiable) hypothesis. However, it allows
one to adopt a frame that is comoving with both the scalar
field and the matter (radiation) constituents, thus allowing
to chose all the components of the four-velocities u" as
ut = (1,0, 0, 0). An important consequence of this assump-
tion is that the global thermodynamic parameters of the infla-
tionary Universe are just the sum of the individual thermody-
namic parameters. Hence in the standard warm inflationary
model the energy density of the early Universe p is given
by p = X', pi, where p;, i = 1,2,...,n are the energy
densities of the individual constituents (generally scalar field
and radiation, respectively).

However, there is no fundamental observational or phys-
ical principle that would require that all matter and energy
constituents in the early Universe must have the same four-
velocity. Hence there is no a priori reason to describe the
dynamics of the inflationary Universe in a single frame,
comoving with the scalar field as well as the matter con-
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stituents. In the following we will investigate the warm infla-
tionary model by assuming that the very early Universe
can be described as a mixture of two interacting perfect
fluids, namely scalar field and radiation, respectively, pos-
sessing different four-velocities. Therefore the two compo-
nents non-comoving early Universe becomes formally equiv-
alent to a single anisotropic fluid, as already pointed out in
[154-158,160,161]. Therefore, if there is a slight difference
between the four-velocities of the scalar field and radiation,
the very early Universe would achieve some anisotropic char-
acteristics, and its geometry and its expansionary evolution
will not be anymore the standard FLRW one.

In our present study we assume that the scalar field and the
radiation have distinct four-velocities. By using a rotation on
the velocity space we can transform the energy—momentum
tensor of the non-comoving two-fluid system to the standard
form of anisotropic fluids. Due to this procedure the thermo-
dynamic parameters (energy densities and pressures of the
scalar field and of the radiation) of the warmly inflating Uni-
verse are represented in terms of a single fluid, described by
an anisotropic energy—momentum tensor. The energy den-
sity of the single cosmological fluid is greater than the sum
of the energy densities of the scalar field and of the radia-
tion, respectively, and it contains a supplementary term due
to the anisotropy induced by the non-comoving motion. For
the very early Universe we assume the simplest case of a
Bianchi Type I geometry, which is a consequence of the non-
comoving expansion of the scalar field and radiation fluid,
respectively. For this system we obtain the anisotropic grav-
itational field equations and the generalized Klein—Gordon
equation for the scalar field.

Once the general formalism is developed, we implement
the idea of the warm inflation by introducing the decay terms
for the scalar field and the radiation. Such a splitting of the
energy conservation equation for the scalar field and radiation
gives the decay equations for the scalar field, and for the radi-
ation creation. As opposed to the standard warm inflationary
scenario, the source terms for scalar field decay and radiation
creation are not equal, with the radiation balance equation
containing an anisotropic term proportional to the Hubble
factor along the z direction. We investigate in detail the slow-
roll approximation of the model, as well as its consistency
with observations, in the two standard limits usually con-
sidered in the literature, the weak dissipation and the strong
dissipation limits, respectively. Then the theoretical predic-
tions of the warm inflationary scenario with non-comoving
scalar field and radiation fluid are compared in detail with
the observational data obtained by the Planck satellite, and
constraints on the free parameters of the model are obtained.
The functional forms of the scalar field potentials, compati-
ble with the non-comoving nature of warm inflation, are also
obtained by considering some distinct choices for the scale
factors.
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The present paper is organized as follows. The reformu-
lation of the energy—momentum tensor of the scalar field—
radiation fluid two-component system to a single effective
anisotropic fluid energy—momentum tensor is presented in
Sect. 2. The warm inflationary model with non-comoving
scalar field and radiation is introduced in Sect. 3, where
the balance equations for the scalar field and radiation
are obtained for a Bianchi Type I geometry. The slow-roll
approximation is considered in Sect. 4. We discuss and con-
clude our results in Sect. 5.

2 Anisotropic fluid description of the non-comoving
scalar-field-radiation cosmological models

We assume that the early Universe consisted of a mixture
of two basic fluid components: a scalar field ¢, with energy
density and pressure py and py, and four-velocity ug ,respec-
tively, and radiation, characterized by the thermodynamical
parameters praq and prad, respectively, and four-velocity ul, ;.
The dynamical evolution of the system can then be obtained
from the variational principle,

2
S = / [@R + leﬁV“fﬁ —-U(¢p) + Lrad:| J—gd'x,
16 2
(D

where Mp; = G~1/2 is the Planck mass, U (¢) is the self-
interaction potential of the scalar field, and L,gq is the radia-
tion Lagrangian. The Lagrangian density of the scalar field is
Ly =(1/2)V,¢VH*¢ —U(¢). By V,, we denote the covari-
ant derivative with respect to the metric.

2.1 Four-velocities and energy—momentum tensors

Now by varying the total action with respect to the metric and
the scalar field ¢, we obtain the energy—momentum tensor of
the systemas 7"" = T(‘;‘)) + T(’;avd), where T(’;‘)) = VHpVVp—
Lygh".

We would like now to reformulate the energy—momentum
of the scalar field in a form similar to that of the energy—
momentum tensor of a perfect fluid. For this we need to
introduce a quantity u’(‘ ) having properties similar to the
four-velocity of the perfect fluid, that is, satisfying the con-
ditions glwu’(‘ ¢)u‘(’¢) = 1, and the vector is timelike. Such a
vector can be constructed as [166,167]

V9
RN

For such a construction to be physically acceptable, that is,
for ué‘ ) to be real and timelike, the scalar field must satisfy

@)

the conditions that V*¢ is real, and V,¢V'¢ > 0. Then
we can associate to the scalar field an effective energy den-
sity py and pressure pgy, given by py = T(’;‘;u((p)uu((p)v,
and pg = (1/3)IT, where I, = —T(p)ophhY, Where
hy, = “?@”((b)u — &y, is the projection operator. Then, by
using these definitions, one can easily obtain

1 1
po=3VudV'd+UW@), ps=5VupV'$—U@$). 3)

The energy—momentum tensor of the scalar field can then
be written in a form similar to the perfect fluid case,

w ©
Tigy = (Po + po) w(gtt(y) = Pos™"- )

The thermodynamical and physical properties of the mix-
ture of scalar field and radiation cosmological fluid can be
obtained from the total energy—momentum tensor 7" of the
Universe, given by the sum of each individual components
as

_ v wv o w

T =T + Tioa = (po + o) gy — Ppg™”
+ (Prad + Prad) ul(l;ad)ul()md) — Praag8™". (&)
The four-velocities of the scalar field and of the radia-

tion fluid are normalized according to u‘(L pU@) n = 1 and

”gad)”(rad) n = 1, respectively. As for the radiation fluid we
will adopt the standard equation of state for the photon gas,
Prad = (1/3) praq-

The total energy—momentum of the mixture of the scalar
field and radiation must satisfy the conservation equation
vV, TH =0, which gives

VuT"" = (Vupg + Vyupy) ”l(tp)”]()d))

+ (g + Po) Vutt(gyu(y)

+(Po + Po) () Vuuiy)

~Vupss"’ + VT = 0. ©)
After multiplication of the above equation by u4),, and by
taking into account the mathematical identity u(g), V,,u?" =

0, the energy conservation equation of the mixture of two flu-
ids takes the form

. v
Py +3Hy (pp + Pg) + eV Ty = O, ™

where we have denoted (.:.) = u(g)V*(...), while Hy =
(1 /S)Vuu(‘j’)“. Alternatively, by using the radiation fluid
quantities the energy conservation equation can be formu-
lated as

Prad + 3Hrad (Orad + Prad) + U(radyv V. T(l;‘)) =0, 8)

where in the case of radiation (.:.) = U(radyy V*(...), while
Hiq = (1/3)Vuu(rad)“. Equations (7) and (8) give the evo-
lution of the energy densities of the scalar field and radiation
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fluid, indicating the possibility of the energy transfer from
one component to the other. In order for the two fluids to
expand at the same rate the condition Hy = H,q must be
satisfied, giving the condition V,u®* = v, ,u®dr This
equation has the obvious solution u®#* = ;D1 But if we
interpret it mathematically as a partial differential equation
for either u®" or u®* then more general solutions with
u@r = @1 (4, @V ) are also possible, and their exis-
tence is ensured by the condition of the existence and unicity
of the solutions of first order partial differential equations.
In standard cosmology it is usually assumed that the two
cosmological fluids are comoving, which implies

u&)zuﬁad)zu“, w=20,1,2,3. 9
This condition allows one to choose for the study of the
cosmological dynamics a comoving frame, in which all the
components of the four velocity of all cosmic constituents
can be reformulated as u* = (1,0, 0, 0). In the case when
u@)) = u’(‘md) = w’, the energy—momentum tensor of the
scalar field plus radiation system takes the simple form

— (pg + Praa) 8"
(10)

T = (,0¢ + Pp + Prad + prad) whw

In this case the scalar field—radiation fluid system reduces
to an isotropic effective single fluid system. Hence, if the
scalar field and the photon gas have the same four-velocity,
the thermodynamic parameters of the scalar field—radiation
two-fluid system are obtained a simple addition of the
enthalpies and the pressures of the individual components.
For such a physical system one can always introduce a
comoving frame, in which the components of the four-
velocity are w* = (1,0, 0, 0), with the components of the
total energy—momentum tensor of the two fluids given by
Ty = (pp+ praa) 8 and T} = —(pg + praa) &}, i =
1, 2, 3, no summation over i.

However, in the present study of warm inflation we will
abandon this condition, by assuming that, during at least
some intervals of the cosmological expansion, the scalar field
and the radiation components of the warm inflationary Uni-
verse may have had different four-velocities, so that
uf;) #ué‘rad), nw=20,1,2,3. (11

In such a situation it is not possible to introduce a comov-
ing frame, so that the thermodynamical quantities are con-
structed as the sum of the thermodynamical parameters
of each component of the mixture. In our analysis of the
warm inflationary scenarios in non-comoving frames we will
assume that the energy density and the pressure of the scalar
field satisfy the condition py + py > 0, thatis, the scalar field
cannot be interpreted as a simple cosmological constant.

@ Springer

2.2 Single anisotropic fluid representation of two-fluid
systems

The investigation of warm inflationary cosmological mod-
els in which the total matter content is described by an
energy—momentum tensor having the representation given
by Eq. (5) can be essentially simplified if we transform it
into the standard form of the energy—momentum tensor of
perfect anisotropic fluids. This can be achieved by means of
the four-velocity transformations

Uigy = Ugy Uiraa)

respectively, with the transformation matrix given by [155—

158]
PradtPrad ;
———=S1nuo
vV potpe
_ | _Pstpy
Prad+Prad Sin &

L
“p)
*/L
(rad) cos o
ut
(lf)) , (13)
(rad)

or, equivalently,

— u(rad), (12)

cos o

4 _ Prad H
*I,L =
( @ ) cos a 3 v sin
ut 3V .
(tad) g sina cos o

(¢) (14)
1, (rad)

This transformation represents a rotation of the four-
vector velocities in the ( Uiy U dd)> velocity space. Explic-
itly, the transformations (14) take the form

[4 Prad
w KL rad
U(g) = Uy = U cOSa+ S—V,quvﬂfﬁ (rag) SN, (15)
3V
w W W Ut
Uirad) 7 M(rad) = T4/ 3 Py @ sin

+u(rad) cosa , (16)

respectively.
The transformations in the velocity space given by
Eq. (13) leave the quadratic form (pp + pg) u’(‘@u‘(’(ﬁ) +

(Prad + Prad) u’(‘md)u‘(’rad) invariant. Thus,

o
T (il ) = T (55 i) - an

As a next step in our analysis we choose ufg) and u?r’;d)
so that one becomes timelike, while the other one is space-
like. Moreover, we also assume that the two new four-vector
velocities satisfy the orthogonality condition

U gy U (cad) . = O- (18)



Eur. Phys. J. C (2021) 81:165

Page 7 of 24 165

By using Egs. (15) and (16) and the orthogonality condi-
tion as given by Eq. (18), we obtain for the rotation angle the
expression

\/(p¢> + P¢) (rad + Prad)
Py + Py —
VH(Vu8919) pra/3
=2 VbV — /3 OO 4

If the angle « has a different form, and it is not given
by Eq. (19), we cannot find a transformed spacelike u ),

tan 2o = 2

W' U(rad
Prad — Prad (@ ad) p

and a timelike uz(r’;d) scalar field and radiation fluid veloc-
ity, respectively. Note that, if py + py = 0, a case which
corresponds to the cosmological constant, the rotation angle
is « = 0. Consequently, the rotation in the velocity space
reduces to the identical transformation. Hence in the pres-
ence of a cosmological constant, since py + py = 0, the term
(,0¢ + p¢) “Zp)”‘()(p) in the energy—momentum tensor of the
scalar field is identically equal to zero, (pp + pg) Uy U (y) =
0. Therefore the four-velocity of the cosmological constant
does not appear in the above introduced formalism. Hence
the effective energy—momentum tensor of cosmological sys-
tem consisting of a pure cosmological constant plus radiation
fluid can be equivalently described by the energy—momentum
tensor of a single isotropic fluid.

Next, we introduce the new set of quantities (V*,
x™, e, W, IT) defined according to

* o

u
R R (20)
kO *
VE@H () o _“(rad)”(rad) a
e =TMV,Vy = (pp + Po) uig)uis) o — (Pp + Prad) ,
(2D
v = TMUX/,LXV = (P¢ + prad)
— (Prad + Prad) u?&d)u?rad) a’ (22)
and
I1= Po + Prad» (23)

respectively, where from a physical point of view ¢ can be
interpreted as the energy density and W as the radial pressure
of an anisotropic Universe. Then, by adopting this interpre-
tation, it turns out that the energy—momentum tensor of the
non-comoving scalar field and radiation fluids can be written
as
W=(+IMVIV' —Tg"" + (W - x"x", (24
where VAV, =1 = —x"x, and x*V,, = 0 [155-158].
The energy—-momentum tensor of the two-fluid warm
inflationary cosmological model, in which the components

have different four-velocities, given by Eq. (24), is the stan-
dard form of the energy—momentum tensor for anisotropic
fluids [158].

The energy density ¢ and the radial pressure W of the
scalar field and radiation fluid filled Universe are given by

pd) — P¢ + Prad — prad) + = 2

2
X p¢ + P¢ + Prad + prad)

Pr———

+4 ,0¢ + p¢) (Prad + Prad)

1/2
X |: (¢,)M(rad)u — 1:| } (25)

1 1

v = _E(pd) — P¢ + Prad _Prad) + 5

X{ (,0¢ + Py + Prad + Prad)2

+4 (,0¢ + P¢) (prad + Prad)

) 1/2
x [(uég,)u(rad) w) - 1} } , 26)

respectively [155-158]. Explicitly, the energy density and the
radial pressure of the non-comoving scalar field—radiation
fluid system can be obtained:

ad | 4 \?
e=U(¢p) + :03d + z{ <VM¢VM¢ + gprad)

16 2 1/2
+?Pradvu¢vu¢ |:<ul(l¢)u(rad) H) - 1:| } ) (27)

=-U(¢) -

2
/J a1 4
= z{ (qubvl"qb + gprad)

16 2 12
+?pmdvu¢w‘¢[(u’(t,,)u@adm) —1” . (28)

The energy density of the anisotropic effective fluid,
describing the scalar field and radiation non-comoving mix-
ture, given by Eq. (25), depends explicitly on the expressions
of the four-velocities of the two fluids. Therefore, the energy
density of the rotated fluids also depends on the kinetic energy
of the scalar field and of the radiation fluid, and this func-
tional dependence implies that the energy in the rotated four-
velocity space is different from the sum of the rest mass ener-
gies of the scalar field and of radiation, respectively. When
”Zﬁ) = uﬁad), then u&)”(rad) u = 1, and the corresponding
expressions of the effective energy and pressure of the fluid
reduce to the sum of the energy densities of the scalar field
and of the radiation fluid, respectively, so that & = pp + Orad,
W = py + prag. Moreover, in this case one can adopt a
comoving frame to describe the cosmological dynamics.

@ Springer
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Since the two cosmological fluids, the scalar field and
radiation, have different four-velocities, we can write

b
uzﬁ)u(rad) nw= 1+ 57 (29)

where in the general case b is an arbitrary function of the
energy densities and pressures of the scalar field and of
the radiation, respectively. The exact expression of b =
b (,o¢, P Prad prad) can be obtained from Eq. (19), which
gives first

1 + +
u'&)u(rad) L= |: Pp TPy  [Prad Prad:| tan 2.
2 Prad + Prad Py + Po

(30)

Then the functional form of b can be determined immediately
as

h— Py + Do [ Prad + Prad tan 2o — 2. 31)
Prad + Prad Py + D¢

In terms of b, Egs. (25) and (26) can be reformulated as

1

B (ptb — P¢ + Prad — prad)
1

+

(IO¢ + Pp + Prad + prad)

2
X|: ( > (10(15 + P¢) (prad + Prad) :|1/2
(

2
Py + Py + Prad + Prad)

(32)
and
1
v = ) (qu — P¢ + Prad — prad)
1
+§ (,0¢ + P¢ + Prad + prad)
1/2
b + +
y |:1 1 4b <1 n _) (;0¢ P¢) (Prad prad)21| -
(p¢ + Py + Prad + prad)
(33)
Explicitly, we obtain
1 4
e= U@+ 22 ¢ 3 (ww + gpmd)
16b b V..o VEpp,,
x |1+ — (1 —> pOVEPPd (3
3 4) (Vi Vi + % praa)

@ Springer

and
Prad 1 4
U =-U(p) — ;a §<vu¢v“¢+§pmd)
6b b V, oVH
o LA
3 4 (Vi VEG + 2 praq)

(35)

By assuming that the physical parameters of the scalar
field and of the radiation fluid satisfy the condition

4b (1 i é) ((:04) + P¢>) (prad + prad)2 <1 (36)

Py + Py + Prad + prad)

or

b (1 + é) VulVTPn o 3
2 9
4 (VupVid + ona)” 10

37

after series expanding the square root in Eqs. (32) and (26 ),
and keeping only the first order of approximation, it follows
that the energy density, the radial and the tangential pressures
of the Universe filled with a scalar field and a radiation fluid
can be obtained:

€= pp + prad + F (qu’ ,Orad)

1
= Evu(bvu(ﬁ +U(@) + prad + F (;qua ;Orad) ) (38)
v = P¢ + Prad + F (10(]57 Prad)
1
= EV/L¢VM¢ —U(@) + praa + F (;0¢7 prad) ) (39
IT= P¢ + Prad> (40)

where we have denoted

F (pg, praa) = 2b <1 + ll) (06 + Pg) (Prad + Praa)

4 (p(f) + Py + Prad + prad)
8 (1 N g) V9V $praa
3 4 (VM¢VM¢ + 4prad/3) .

(41)

By assuming that py + pg >> prad + Prad, We obtain for
F the expression

8b b
F (dea prad) ~ 3 <1 + 4_1) Prad- (42)

In the limit /4 >> 1, we obtain

2
F (qus prad) ~ gbzpradv (43)
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while in the opposite limit, b/4 << 1, F (p¢, ,orad) can be
approximated by

8b

F (qus prad) ~ ?Prad~ (44)

As one can easily see from Eq. (38), the total energy den-
sity of the non-comoving scalar field and radiation fluid filled
Universe is different from the sum of the energy densities
of the two fluids. Moreover, a coupling between the energy
densities of the scalar field and of the radiation is naturally
generated in this scenario.

3 Warm inflation with non-comoving scalar field and
radiation

In the present section, we consider the cosmological applica-
tions of the non-comoving scalar field—radiation fluid phys-
ical system. More exactly, we will investigate this model in
the framework of the warm inflationary scenario, in which it
is assumed that the very early Universe consisted of a scalar
field that decayed into a radiation fluid. We will assume that
the four-velocity of the scalar field was not exactly equal with
the four-velocity of the photon gas. Therefore, in such a situ-
ation, one cannot introduce a comoving frame to describe the
global evolution. Moreover, the non-comoving two-fluid sys-
tem becomes anisotropic, and the total energy and pressure of
the system contains an interaction term between the energy
densities and pressures of the scalar field and the radiation
fluid.

As a first step in our analysis of this warm inflationario
scenario, we write down the gravitational field equations
corresponding to the anisotropic evolution of the Universe
filled with interacting scalar field and radiation fluid. We ana-
lyze then the general properties of the model, and we show
that the non-comoving nature of the cosmological dynam-
ics induces some specific anisotropic effects in the evolution
of both expansion and shear parameters. We also consider
specific non-comoving warm inflationary models, and the
general solution of the field equations, describing the scalar
field—radiation fluid mixture is obtained.

3.1 Brief review of the warm inflationary scenario

The warm inflationary model [81,82] is an interesting and
elegant theoretical alternative to the cold inflation and reheat-
ing scenarios. Similarly to standard inflationary theories, in
warm inflation the Universe also experiences an accelerated,
de Sitter type, very early expansionary stage, which is trig-
gered by the presence of the scalar field, representing the
dominant cosmological component. But, as opposed to the
cold inflation scenario, besides a scalar field, a matter com-
ponent of the cosmological fluid, usually assumed to exist

in the form of radiation, is also present. The matter compo-
nent is generated by the scalar field all along the acceler-
ating expansion phase. During the cosmological evolution,
these two components interact dynamically. The cosmolog-
ical evolution is still described by the standard Friedmann
equations,

1

3H2 = W (p¢ + prad) s (45)
P
. 1 (., 4
2H=_M_%, ¢ +§)0rad , (46)

where by M p we have denoted the Planck mass. The energy
density and the pressure of the scalar field are given, as usual,
by py = $>/2+U(¢) and py = ¢*/2 — U (), respectively,
where U (¢) is the scalar field self-interaction potential. Due
to the decay of the scalar field, which is essentially a dissipa-
tive process, energy is transferred from the field to radiation,
and this process is described by the following energy balance
equations:

pg +3H (pg + py) = —T¢7, (47)
Prad + 3H (prad + Prad) = F‘i‘527 (48)

where I is the dissipation coefficient. By using the explicit
expressions of the energy density and pressure of the scalar
field, Eq. (47) can be reformulated as the generalized Klein—
Gordon equation for the scalar field,

d+3H(1+Q)p+U'(p) =0, (49)

where we have denoted Q = I'/3H. By assuming that the
cosmological expansion is quasi-de Sitter, that the scalar field
energy density is much bigger than the energy density of the
radiation, py >> prad, and that the potential term of the
scalar field energy density dominates the kinetic one, so that
py ~ U(g), Egs. (45), (48), and (49) can be approximated
by

) 1 U@
3H W U@, ¢ A1 0) (50)
4 Lo
Prad = CyT N —¢7, (5D

4H

where C,, = 72g,/30 is the Stefan-Boltzmann constant,
while g, denotes the number of degrees of freedom of the
photon field. To obtain Eq. (51) we also used the approxima-
tions praq < Hprad, and prad < T2, respectively.

As an indicator of the accelerating, inflationary type
behavior, we introduce the deceleration parameter ¢, defined
as

g=S_ . (52)

Negative values of ¢ indicate accelerating expansion, while
positive values of the deceleration parameter correspond
to decelerating cosmological dynamics. With the use of
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Egs. (45) and (46) we immediately obtain for the deceler-
ation parameter of the standard warm inflation theory the
expression

1 3 + pr
o= L1y 3Pt pna) | 53)
2 P + Prad

Comparable information as the one contained in the decel-
eration parameter g can be obtained from the quantity ey =
d1In H/dN, where N is the number of e-folds. Note that e
is related to the parameter €, which provides a useful descrip-
tion of the validity and properties of the slow-roll approxi-
mation in inflationary scenarios.

3.2 Gravitational field equations of the two non-comoving
fluid cosmological model

For the scalar field-radiation two-fluid energy—momentum
tensor, with components given by Eq. (24), the Einstein grav-
itational field equations can be written as [157]

1
RuwVIVY =2 (e +21T+ W), (54)
R V*h) =0, (55)

1 1
R/Avhghx = E |:8 — 3 (21—1 + \IJ)1| /’1(7)L

1
+ (W —1I) (XJXA - gha)») ; (56)

where h*Y = gl — V# V"V The conservation of the energy—
momentum tensor V,, T} = 0 yields the equation

E4 (e + TV, VF — (W —TI) "V, =0, (57)
(e + ) VA + "'V, 1T + (¥ — IT) x*
+ (W =T (Vox"x" + x,h"*) = 0, (58)

where the overdot and the prime are defined according to
()=VHV, (),and () = x"V, (), respectively.

3.2.1 Field equations for a Bianchi Type I geometry

In the following, we make the simplifying assumption that
on a large scale the very early Universe was homogeneous,
and therefore all the cosmological quantities (four-velocities,
energy densities, pressures, etc.) were functions of the cos-
mological time ¢ only. The assumption of homogeneity of
the early Universe permits the introduction of a frame that
is “comoving” with the auxiliary quantities V and x. In

the Cartesian coordinate system with X0 = t, xl = x,

x* =y, and x> = z, we may rescale the components of
the four-velocities V# and x* as V! = V2 = V3 = 0,
VOV = 1,and x* = x' = x> =0, x*x3 = —1, respec-
tively [155,157,158]. Therefore, in the frame comoving with
VH# and x*, the components of the energy—momentum ten-

sor of the non-comoving scalar field and radiation fluids take

@ Springer

the form
=e T'=TF=-M, T§=-Y, (59)

corresponding to an anisotropic fluid, where ¢ is the total
energy density of the mixture of fluids, [T = Py = Py is the
pressure along the x and y directions, while ¥ = P, is the
total cosmological pressure along the z direction. Since the
non-comoving two-fluid scalar field—photon gas cosmolog-
ical mixture represents an anisotropic fluid, on a cosmolog-
ical scale the spacetime geometry must also be anisotropic.
The components of the energy—momentum tensor, given by
Eqgs. (59), show that along the z-direction the total pressure
W is generally different as compared with the pressure IT
exerted on the x — y plane.

In a homogeneous Universe containing a scalar field—
radiation fluid mixture, the simplest geometry displaying this
symmetry of the energy—momentum tensor is the spatially
flat Bianchi Type I geometry, with the line element written
as

ds? = dr® — a()dx? — a3(1)dy? — a3(1)dz?, (60)

where a; (t) (i = 1,2, 3) are the directional scale factors. In
the following we introduce the notations
&
H = —,
aj

V =aiaras, i=1,2,3, (61)

and

3
1 1%
H= (?:1 Hl-) =3 (62)

An important observational parameter, the expansion param-
eter 0, is given by 6 = 3H.

In the Bianchi Type I geometry, with line element given
by Eq. (60), the gravitational field equations for the non-
comoving scalar field—photon gas mixture take the form

. 1
3H+H12+H22+H32=—§(8+\If—|—21'[), (63)
Ld (VH-)—I( m, i=12 (64)
th l _2 3 ) = k) )

and
Ld (VH)—I( w) (65)
va YT '

From the conservation of the total energy—momentum tensor
of the scalar field—radiation fluid system, we obtain the evo-
lution equation of the energy density of the warm inflationary
model, given by

E+3(+T)H— (¥ —T)H; =0. (66)
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By adding Egs. (64) and (65) we immediately obtain

: 21 _1/(¥
H+3H" = —¢

2e=3 2+n>, ©7)

or, equivalently,
.. 1 3
V+ H+§\Il—§e vV =0. (68)

3.3 Warm inflation with non-comoving cosmological fluids

By using the approximate expression (38) for the total
energy density of the non-comoving scalar field and radi-
ation, we obtain the conservation equation in the cosmolog-
ically expanding anisotropic scalar field—radiation mixture:

,(5¢ + prad +3H (p¢ + Py + Prad + Prad + 2F)
+F — FH3 = 0. (69)

We assume now, similarly to the standard warm infla-
tionary scenario, that the scalar field decays into radiation.
Accordingly, we can reformulate Eq. (69) so that it describes
the energy transfer from scalar field to radiation as two sep-
arate balance equations,

bo +3H (py + py) = —2F — 12FH = —T, (70)

Prad + 3H (0rad + Prad) = F +6FH + FHz = Tpq, (71)

where I'y and I'ryq are the scalar field and radiation decay
and creation rates, respectively. In order to build specific
cosmological models we need to estimate the expression of
F ( P prad). In the following we will assume that the param-
eter b, described according to Eq. (29), the difference in the
four-velocities of the radiation fluid and the scalar field is
large, that is, » > 1. Consequently, at least at the initial
stages of the cosmological expansion, the differences in the
four-velocities of the two components of the fluid mixture
were also large.

By assuming that py + pg > Prad + Prad, from Eq. (31)
we obtain for b the expression

3 ¢
b~|—2%b%\/j tan 2a. (72)
4 /Prad

We would like to point out that the magnitude of b is deter-

mined by the ratio ¢/./prad = \/2 [pp — U(@)]/praa, and
the condition can also be satisfied for small values of «, espe-
cially by taking into account the fact that at the beginning of
the warm inflationary era the energy density of the radiation
is small. Thus within the framework of these approximations
we obtain first for F' the expression

2 1.
~ gb%omd = §¢2 tan” 2a. (73)

Now, by assuming that the angle « is small, we will approx-
imate tan 2« & 2w, thus obtaining

F ~ 2022, (74)

where generally « is a function of the thermodynamic param-
eters of the scalar field and of the radiation fluid, ¢ =
o (Pp. Py, Prad Prad). Then, under these assumptions and
simplifications the energy balance equations (70) and (71)
take the form

G314 o i+ V@D _o s
3H (1 + 8a2) 1+8a2
l.)rad +4Hprag = 4052({’2 <g + 9)
a ¢
+126%$*H + 20> ¢ H;. (76)

In order to obtain the full picture of the cosmological evo-
lution we need to also solve the gravitational Einstein equa-
tions. For the considered form of the anisotropic energy—
momentum tensor from Eq. (64) it follows that we can assume
aj(t) = ay(t) without any loss of generality. The gravita-
tional field equations (63)—(67) describing the non-comoving
evolution of the scalar field—radiation fluid mixture take the
form

3
3H+ ) HY = ~[(1+207)¢” + pa = U@L (T7)

k=1
I d (VH;) = 2<152+U(¢)+1 i =1,2 (78)
vV dr i) =«u 3/OradJ = 1,2
L4 vy — U@ + 2 (79)
vV ds 3) = 3;0rad~

The expansion parameter 6 = 3H of the scalar field—
radiation fluid filled Universe is obtained:

a  as
6=2—+—. (80)
a as

The shear scalar o of the anisotropic Universe is given by

G_L<éﬁ_éﬂ> 81)
NN VA

With the use of Eqgs. (80) and (81) it is possible to deter-
mine the directional Hubble parameters H; and H3 in terms
of observable cosmological parameters as

H 0 —1 H 0 —I——2
=5 g, 3=7
'3 A 33

respectively. In terms of the observable quantities, the
anisotropic cosmological pressure differences can be obtai-
ned:

o, (82)

v — 11 = /30 + fo. (83)
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The volume evolution equation (68) can be written as

V-3 (U(d)) + prad + §a2q§2> vV =0. (84)

4 The slow-roll approximation

In the present section we are going to investigate the warm
inflationary scenario introduced in the previous section by
assuming both the quasi-stability and the slow-roll condi-
tions. Besides these two well-known assumptions, it is usual
to study the warm inflationary models in two important limits,
namely the weak and the strong dissipative regimes, respec-
tively. Here first we obtain the general forms of the relevant
equations describing the warm inflationary regime. Then we
will discuss in detail the asymptotic regimes of the inflation-
ary behavior in the presence of non-comoving motions of
radiation and scalar field.

4.1 Evolution equations for non-comoving warm inflation

We begin our investigation with the wave equation, i.e.
Eq. (75), in which, by assuming the condition ¢ /¢ < 3H,
the time variation ¢ of the inflaton field can be expressed as

U'(¢)

?=T3HI T 00+ 8a)) (85)
where
0= L _ Baa (86)

3H  3H (14 8a?)

gives the dissipation function, while, as already indicated in
Eq. (49), I is the dissipation coefficient. Now whereas we are
working in a quasi-stable environment, with prag < Hprad »
Eq. (76) can be expressed as follows:

/d H
AH prag = 40 (3 F3H + 7*) . 87)
(07

From Egs. (78) and (79) one obtains immediately for the term
a’$? the expression

o’P? = 1d (VH)) — 1d (VH3) (88)
T Vvdr ! V dr 3

To find an explicit expression of the above equations, and
without losing any generality, one can assume that az(t) =
aik (¢),i = 1,2, in which A is a constant whose value should
be obtained from the comparison with the observational data
[170-172]. Since the scale factor for the x direction is the
same as for the y one, so that a;(t) = a(¢), consequently,
from Eqgs. (61) and (62) we obtain at once

V=a H=2%E i=12 (89)
a;
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and

1 \%4 .
H=3Q+MH =1 i=12 0)

3V’
respectively. By combining Eqgs. (88)—(90), it follows that the
term o> can be expressed as follows:

2P =1 -V[Q+MNH+H], i=1,2 1)
Next in Eq. (87) we suppose that
a
—=—hoH;, i=1,2, (92)
o
where h is a constant that can be constrained by the data.
To determine o we can use the generalized de Sitter scale
factor, the so-called intermediate scale factor [168—172], and
a power-law expression of the scale factor. As the first exam-
ple we can consider g; () = ag;e?’ " while for the power-law
case we will introduce the scale factor as a; () = ag;t™ (see
[173] and the references therein). Here aq;, ag;, n and m
are some constants that will be fixed by means of observa-
tions. From Eq. (92), and for the generalized de Sitter and
power-law cases, one finds

—ho
n I t
o = ape " = g (al( )) , i=1,2, 93)
ao;
and
_ —hy
i (f
o = Gorm = G (“’_( )) L i=12, 94)
ao;

where o and @ are some arbitrary integration constants.
From the above equations and from Eq. (91) the expression
of the inflaton field as a function of the cosmic time can
be straightforwardly obtained. Thus, for the generalized de
Sitter and power-law scale factors, respectively, it follows
that

. 1—X
? = %[@ +" —ny (1 =], ©3)
0
and
=" @+ aym — 1], (96)
0

In the warm inflationary scenarios, the slow-roll approxi-
mations are still valid, that is, the rate of the Hubble parame-
ter during a Hubble time is assumed to be smaller than unity.
This condition is imposed via the first slow-roll parameter

H

€] =
which satisfies the constraint €; < 1. Besides the quasi-de
Sitter assumption leading to Eq. (97), the energy density of
the inflaton field dominates over the radiation energy density.



Eur. Phys. J. C (2021) 81:165

Page 13 of 24 165

Moreover, the kinetic term of the scalar field is negligible as
compared to its potential, i.e. pg > prad and py = U ().

Then, from Egs. (51), (67), (87), (90), and (92), it follows
that

2 4+ )2
3H2=%Hi2:(](¢), i=1,2, (98)
3 2hg + 31+ 4 .
prad::CyT4=<2+A>< s )a2¢2, (99)

where T is the temperature of the photon gas. By substituting
Eq. (97) into (98), and with the use of Eq. (85), it follows that
in the warm inflationary scenario with non-comoving scalar
field and radiation the slow-roll parameters can be expressed
as

1 U/Z .
€ = G U (100)
2(1+ Q) (1+8a2) U2() He,
In an isotropic background, i.e. A = 1, and when «

tends to zero, the first slow-roll parameter goes back to the
usual warm inflation relation [138,174,175]. To examine
the validity of a theoretical model, one basic approach is
to compare its predictions with the observations. In doing
so for the non-comoving warm inflationary model, at first
we will obtain some important perturbations parameters,
including the amplitude of the scalar perturbations, Ps, the
amplitude of the tensor perturbations 7, the scalar and ten-
sor spectral indices ng, n;, and the tensor-to-scalar ratio
r, respectively. Then we will compare the predictions of
the theoretical model with the Planck 2018 data. Following
[85,87,103,119], the amplitude of the scalar perturbations is
calculated to be

H2\* 2W3rQ T
Py = <m) (1 +2npg + —mﬁ> G(0Q),

(101)

where n g g is the Bose—Einstein distribution, givenbynpg =
[exp(H /Ts¢) — 1]_1, and Tsy is the temperature of the
inflaton fluctuations [119]. Here G (Q), which describes the
growth of the fluctuations, is a function of Q, and its presence
has arisen from the coupling of the scalar field and radiation
[103,119].

The scalar spectral index and its running behavior, o, are
obtained from the amplitude of the scalar perturbations, and
they are defined as

_dIn(Py)  dn,
Tk YT dmk)

(102)

ng —

Tensor perturbations, representing the gravitational waves,
are measured indirectly through the tensor-to-scalar ratio

parameter r = P;/P;. The amplitude of the tensor perturba-
tions is given by [103]

2H?
P= (103)
bid
The tensor spectral index is defined as
d ll’l(Pt)
= ) 104
" k) (104)

To measure the amount of cosmic expansion during infla-
tion it is customary to use the number of e-folds NV, defined

as
te ¢eH
N:/ Hdt:/ 2 ag.
th [N ¢

where the subscript » denotes the horizon exit values.

In the warm inflationary approach, it is a common practice
to investigate the model in two different and important ther-
mal regimes, known as the strong and the weak dissipative
regimes,respectively, where the dissipative ratio satisfies the
conditions Q > 1,and Q < 1, respectively. From Eq. (100)
it should be noted that inflation ends when

(105)

e1=14+0, (106)
where for the weak and the strong regimes €; behaves as
€1 >~ 1, and €] =~ Q, respectively [136]. In the subsequent
subsections, we are going to investigate in detail the non-
comoving warm inflationary model in the presence of scalar
field and radiation in these two limiting regimes.

4.2 Weak dissipative regime

In the weak dissipative regime, the dissipative ratio is much
smaller than unity, i.e., 0 < 1 (I' « 3H). Consequently,
we also have (1 + Q) ~ 1. Moreover, in this regime, the
parameter G(Q) =~ 1 at the time of horizon crossing. Then,
from Eq. (101), the amplitude of the scalar perturbations in
the weak regime reads

H2\ T
Ps =2Ps0 <%) H (107)
where Pso is a constant should be determined comparing to
data. To investigate the consistency of the warm inflation-
ary models one has to test the condition 7/H > 1, besides
other observational constraints. Thus, for the case of the non-
comoving warm inflation from Egs. (85), (98) and (99) we
obtain

1
T [ JTow \? U2
H \1+82) i’

(108)
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Table 1 Estimation of the free parameters of the non-comoving warm
inflationary model in the weak dissipation regime with power-law scale
factors by using the Planck 2013, 2015 and 2018 data sets, and for

C, = 50. To obtain the presented results we have fixed the power spec-
trum to its horizon exit value, i.e., Py = 2.17 x 10~2. For this case we
restrict our analysis to real values of the scalar field at the horizon exit

m A R e ho Qo ng I'x Pso T (¢x)/H(gs) N
29.950 11.810 1809.87 3169.22 0.0096592 26.1 0.944287 0.0000111051 2.96471 1.05881 58
29.952 11.812 1792.78 3169.75 0.0096591 26.02 0.938879 0.0000111068 2.52561 1.01903 59
29.949 11.814 1793.13 3170.36 0.00965899 26.04 0.964083 0.0000110715 2.56107 1.02204 59
29.948 11.816 1810.85 3170.9 0.00965898 26.06 0.968554 0.0000111356 2.92386 1.05495 58
where with power-law scale factor to the recent observational data.

32 <2ho +3x +4>
To .

RRCESIe >

Hence the ratio of the photon temperature and of the Hubble
function depends on the function «, describing the differ-
ences in the four-velocities of the radiation and scalar field.

From Eq. (102), and from the combination of Egs. (107)
and (108), the scalar spectral index is obtained:

9
n‘v_1=_§€1+377_,8’ (109)
where
1 U/2
2(1 + 8a2) U2(¢)
For the potential slow-roll parameter n we find
1 U//
) @) a1
2(1 4 8a?) U(e)
while the slow-roll parameter j is given as
1 U'(P)T .
5 @)y 112

T 2(1+8a2) U(@)Teir |

where efr = a(1 + 8a2)3.
For the tensor-to-scalar ratio, from Egs. (85), (103) and
(107), in the weak dissipative regime, we also obtain

8¢g H

= . 113
" 1482 T (113)

As one can see, all these important observational param-
eters are functions of «, describing the deviations from the
comoving motion of the fluid components of the early Uni-
verse.

4.2.1 Weak dissipative regime with power-law scale factor
In this subsection we are going to investigate the compatibil-

ity of the theoretical results of the non-comoving warm infla-
tionary model obtained within the weak dissipative regime

@ Springer

In doing so we will consider the Planck 2013, 2015, and 2018
data sets as our criteria.

From Eq. (96) a relation for the cosmic time as a function
of the scalar field can be obtained:

Tgm
) . (114)

hooom

(@) =
\/m(l — W[+ 2m —1]

By substituting Eq. (114) into Egs. (85) and (96), for the
weak regime with power-law scale factor, the scalar field
potential can be obtained as a function of the scalar field as

U(g) = [3h(2)m (1 — mho) ¢* + 2400 — D)(hgm — 1)

3
hom

3 hom¢ b

— 0—Dm(O+2m—D)
g

(hom — 3) (hom — 1)

hom

X (mA +2m — 1)]X
(115)

In addition, by taking Eq. (110) equal to unity, and after
some simple mathematical manipulations, we obtain the
magnitude of the scalar field at the end of inflation as pre-
sented in Table 1.

Then, by using Eqgs. (96) and (105), the scalar field at
the horizon exit can be obtained in the non-comoving warm
inflation model as
¢ = ¢ x exp[—hoN]. (116)

Now, by using Eq. (116), and the results of the Sect. 4.2,
especially Egs. (109) and (113), we can examine the behavior
of the scalar spectral index versus the tensor-to-scalar ratio,
and of the temperate-Hubble parameter ratio against the num-
ber of e-folds at the horizon exit in the non-comoving warm
inflationary model.

The results of the comparison between the theoretical
results and the observations can be summarized in Table 1,
and Figs. 1 and 2, respectively.
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1.00

0.94

0.95 0.96
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Fig. 1 The r-n, diagram comparing the predictions of the non-
comoving warm inflation model in the weak regime with power-law
scale factors, having the model parameters of Table 1, with the observa-
tional data of the Planck 2013, 2015 and 2018 data sets. In the left panel,
the likelihood of Planck 2013 are indicated with gray contours, Planck
TT+lowP with red contours, and Planck TT, TE, EE+lowP (2015) with

4.2.2 Weak dissipative regime with generalized de Sitter
scale factor

Now we are going to investigate the compatibility of the the-
oretical predictions of the non-comoving warm inflationary
model, obtained within the weak dissipative regime, with
generalized de Sitter scale factor, to the recent observational
data. In doing so we will consider the Planck 2013, 2015,
and 2018 data sets as our criteria.

From Eq. (95), the relation of the cosmic time as a function
of the scalar field can be obtained:

1) = -

25 _
L [_/\ + A 2] 117

n 2
2y ho Y (@ohod)

By substituting Eq. (117) into Egs. (85) and (95), for the
weak regime with generalized de Sitter case, the scalar field
potential as a function of the scalar field reads

atyh3e?

3y [8 (=22 =1 +2)In (- W“) + yh(z)¢2:|
U¢) = :

2ho
(118)

In addition, by taking Eq. (110) equal to unity, and after
some simple mathematical manipulations, we obtain the
magnitude of the scalar field at the end of inflation as pre-
sented in Table 2.

Then, by using Egs. (95) and (105), the scalar field at
the horizon exit can be obtained in the non-comoving warm

0.4

0.3+
0.2

0.1+

Sy

0.93 094 0.95 0.96

ns

0.97 0.98 0.99 1.00

blue contours. In the right panel, the results of Planck 2018 are indicated
by dark and light blue colors, referring to 68% and 95% confidence lev-
els, respectively. In both figures the thick black lines give the predictions
of the non-comoving warm inflation model, while the small, brown, and
large, green, circles are the values of ng at the number of e-folds N = 58
and N = 62, respectively

TIN]J/H[N]

10 20 30 40 50 60
N

he=0.0096592;m=29.95;a,=26.1;A=11.81

— — hy=0.0096591;m=29.952;a(=26.02;A=11.812
= = = = hy=0.00965899;m=29.948;0,=26.04;A=11.814
----- = hy=0.00965898;m=29.948;a(=26.06;A=11.816

Fig. 2 The ratio of the temperature to the Hubble parameter during the
inflationary evolution of the non-comoving warm inflationary model in
the weak dissipation regime with power-law scale factors versus the
number of e-folds, for different values of parameters of the model.
During inflation the temperature is higher than the Hubble parameter,
and their ratio decreases when approaching the end of inflation

inflation model as

¢s = ¢ x exp[—hoN]. (119)

Now, by using Eq. (119), and by taking into account the
results of Sect. 4.2, especially Egs. (109) and (113), we can
investigate the behavior of the scalar spectral index versus the
tensor-to-scalar ratio, and of the temperate-Hubble parameter
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Table 2 Estimation of the free parameters of the non-comoving warm
inflationary model in the weak dissipation regime with generalized de
Sitter scale factors by using the Planck 2013, 2015 and 2018 data sets,
and for C,, = 55. To obtain the presented values of the model param-

eters we have fixed the power spectrum to its horizon exit value, i.e.,
P, = 2.17 x 1072 For this case we restrict our analysis to real values
of the scalar field at the horizon exit

% A || el ho o ng re x 1077 Pyo x 10720 T(¢.)/H($) N
33 0.02 0.00369826 1.58425 0.101 60 0.959775 4.96773 1.26815 3.3729 60
34 0.03 0.00351334 1.5981 0.102 61 0.958454 4.76646 1.19188 3.36302 60
35 0.04 0.00334193 1.61412 0.103 62 0.956301 4.73632 1.13156 3.35017 60
36 0.05 0.00317758 1.62965 0.104 63 0.954101 4.69175 1.07226 3.33757 60
0.4 0.4
0.3} 0.3
= 0.2 0.2
0.1+ 0.1F
00 1 —‘—A‘

ns

Fig. 3 The r-ng diagram comparing the predictions of the non-
comoving warm inflation model in the weak regime with generalized
de Sitter scale factors, having the model parameters of Table 1, with the
observational data of the Planck 2013, 2015 and 2018 data sets. In the
left panel, the likelihood of Planck 2013 are indicated with gray con-
tours, Planck TT+lowP with red contours, and Planck TT,TE,EE+lowP

3.425F

3400 _ . _ . _ _ — — — — — — {

TINJ/H[N]
©
w
S
o

3.350|

3.325L

hp=0.101;y=33;a¢=60;A=0.02

— — ho=0.102;y=34;a¢=61;A=0.03

— = = = hy=0.103;y=35;a,=62;A=0.04

----- = h=0.104;y=36;a¢=63;A=0.05
Fig. 4 The ratio of the temperature to the Hubble parameter during the
inflationary evolution of the non-comoving model in the weak regime

with generalized de Sitter scale factors versus the number of e-folds,
for different values of the parameters of the model
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(2015) with blue contours. In the right panel, the results of Planck 2018
are indicated by dark and light blue colors, referring to 68% and 95%
confidence levels, respectively. In both figures the thick black lines give
the predictions of the non-comoving warm inflation model, while the
small, brown, and large, green, circles are the values of n at the number
of e-folds N' = 58 and N = 62, respectively

ratio against the number of e-folds at the horizon exit for the
non-comoving warm inflationary mode with generalized de
Sitter scale factor.

The results of the comparison between the theoretical
results and the observations have been summarized in Table 2
and Figs. 3 and 4.

4.3 Strong dissipative regime

In the strong dissipative regime, Eq. (101) takes the form

(120)

2\ 2
Py = ( - ) V310 - G(Q).

276

In the following we will consider models in which the
dissipation coefficient is introduced phenomenologically via
an ansatz of the form I' = ['gT¢/¢¢~!, where 'y and ¢
are constants [103,119,137,175]. Then the function G(Q),
depending on the different values of the parameter ¢, can be
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approximated by [103,119]

=1-— G(Q) ~1+0.1270*° + 4981 0",
¢=3— G(Q) ~1+0.01850*3" 1+ 0.3350!3¢4,
1+0.40%77

e R (E AR

Hence all the necessary parameters required to study the
evolution of a warm inflationary evolution come from the
above expressions of the decay rate I'. However, there is
no need to restrict our study to only these three parameters.
But, without any loss of generality, and in order to check the
compatibility of the non-comoving warm inflationary model
with the observations, following [137], we only consider one
of the ¢ values per each case.

Therefore, in a more convenient way, and by taking into
accountthat Q > 1, we can write down the function G(Q) =
ag Qbf , where

¢ =1-— a; =0.127, b =4.330,

¢ =3— a; =0.0185, b =2315,
{=—1—a; =1778, by =—14l.

Hence the amplitude of the scalar perturbations is obtained:

2\ 2

H T
PS ZPS() (m) \/37TQ E X a;th.

(121)

For the strong dissipation case, by taking into account
Eqgs. (85), (98), and (99), we obtain

(122)

10

1
2U2

T 3/ Toa : U’z
H (1 + 8a2> T
where Tp is the same as in Eq. (108). By taking the time
derivative of Eq. (121), and using the definitions of Eq. (102),
leads to the scalar spectral index in the strong dissipative
regime of the non-comoving warm inflation as given by

5

ng—1= <b§—§)61+377—4ﬂ—2b§,31, (123)
where

1 U/2
€] = (¢). (124)

20(1 + 8a2) U2(¢)
For the potential slow-roll parameter n we find

1 U//

. (¢) (125)

201 +842) U(p)

The slow-roll parameters 8 and §; are given by

B 1 U'(p)T
p= 20(1 +8a?) U(p)T (126)
and
Bi ! VD) e (127)

T 20(1 +8a2) U@)lesr’

where I'ef = a'. We notice that the function G(Q) for
¢ = 1 and ¢ = 3 has an acceptable behavior for the value
¢ =—1,orevenfor¢ = 1.

The amplitude of the tensor perturbations in the strong
dissipative regimes is given by [103,119]

_ 2H?

Pr=—. (128)
T

Then, from Egs. (120), (124) and (128), the tensor-to-
scalar ratio reads

16614/ 0 H
T

— 129
"7 B (14806 (0) (129

4.3.1 Strong dissipative regime with power-law scale factor

Following the procedure of Sect. 4.2, we are going to investi-
gate the accuracy of the non-comoving warm inflation model
with power-law scale factor in the strong regime. First, by
substituting Eq. (114) into Egs. (85) and (96), for the strong
regime with power-law scale factor the scalar field potential
as a function of the scalar field is expressed as

U(¢) = 4ho(h — Dm? [(A 4+ 2)m — 1]

_ 2
hom
h
x omé . (130)
\/_ (= Dm[OA2Dm—1]
2

B

Also from Egs. (130) and (86), for the dissipation ratio Q
one obtains

1
8 ( aohome )W
VO—D(=m) (GADm—1)
h0Zm¢? ’
Ime (8 - _<x—1)—(<x+2)m_1)>

Q@) =— (131)

Now we want to test the theoretical predictions of the non-
comoving warm inflationary model in the strong dissipative
regime by comparing the theoretical results to the observa-
tional data sets. In order to perform such a comparison, at first
and by means of Egs. (106) and (124) for the end of inflation
values of the scalar field, we obtain the results expressed in
Table 3.
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Table 3 The estimations of the free parameters of the non-comoving
warm inflationary model in the strong dissipation regime with power-
law scale factor by using the Planck 2013, 2015 and 2018 data sets, and
for C,, = 50. We have restricted our analysis to real values of the scalar

field at the horizon exit. To obtain the presented results we have fixed
the power spectrum to its horizon exit value, i.e., Py = 2.17 x 1079,
and we have used a; = 0.127, and b; = 4.330, respectively

m A P de ho & ng re Py x 1071 T(p)/H(p) N
7.79931 217 0.102944 13.8467 0.100033 188 0.954748 0.0892411 8.48726 1.00639 50
7.79930 218 0.101816 13.6944 0.100032 189 0.954852 0.087325 8.05104 1.00316 50
7.79929 216 0.106635 14.3446 0.100035 186 0.954644 0.0945849 9.73916 1.02192 50
7.79928 215 0.107853 14.5091 0.100036 185 0.954538 0.0967116 10.02805 1.02537 50

0.4 0.4

0.3} 0.3}

- 0.2 - 0.2+

0.1f 0.1F

: O_O—A_J i ; i

0.93 094 095 096 0.97 098 099 1.00 0.93 094 095 09 097 098 099 1.00

ng ns

Fig. 5 The r-ng diagram comparing the predictions of the non-
comoving warm inflation model in the strong dissipative regime with
power-law scale factor and with the free parameters given in Table 3,
with the Planck 2013, 2015 and 2018 data sets. In the left panel, the
likelihood of Planck 2013 are indicated with gray contours, Planck
TT+lowP with red contours, and Planck TT,TE,EE+lowP (2015) with

TINI/HI[N]

0.5}

0-1 L L L L L L
20 25 30 35 40 45 50 55

N

ho=0.100033;m=7.79931;a=188;A=217

— — hy=0.100032;m=7.79930;a(=189;A=218

= = = = hy=0.100035;m=7.79929;a,=186;A=216

----- = hy=0.100036;m=7.79928;a,=185;A=215
Fig. 6 The ratio of the temperature to the Hubble parameter during the
inflationary evolution of the non-comoving model in the strong regime

with power-law scale factors versus the number of e-folds for different
values of the parameters of the model
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blue contours. In the right panel, the results of Planck 2018 are indicated
by dark and light blue colors corresponding to 68% and 95% confidence
levels, respectively. In both figures the thick black lines refer to the the-
oretical predictions, with the small, brown, and large, green, circles
corresponding to the values of ng at the number of e-folds AV = 50 and
N =55, respectively

Consequently, by means of Egs. (96) and (105), the scalar
field at the horizon exit for the strong dissipative regime has
the value

¢y = P x exp[—hoN]. (132)

Now we can calculate the scalar spectral index and the
tensor to scalar ratio as given by Eqgs. (123) and (129),
respectively. The range of the acceptable values of the free
parameters of the non-comoving warm inflationary model
in the strong regime is presented in Fig. 5. In addition, to
test the warm inflationary constraint that guaranties ther-
mal fluctuations’ dominance against quantum fluctuations,
we plot the T/H function in Fig. 6. Hence we see that
the condition 7/H > 1 is satisfied for the adopted range
of the model parameters. To obtain these results we have
fixed the power spectrum based on its horizon exit value, i.e.
Py = 2.17 x 1077, and we have used ¢ = 3, a; = 0.0185,
and b; = 2.315 in the definition of G(Q).
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Table 4 Estimation of the free parameters of the non-comoving warm
inflationary model with generalized de Sitter scale factors by using the
Planck 2013, 2015 and 2018 data sets, and with C;,, = 55, and n =1,
respectively. We have restricted our analysis to real values of the scalar

field at the horizon exit. To obtain the presented results we have fixed
the power spectrum to its horizon exit value, i.e. Py = 2.17 X 1079,
and we have used the numerical values a; = 0.0185, and b; = 2.315,
respectively

% -1 ba be ho o ng rex 10717 Py x 1072 T(g)/H(¢) N
4.20 18.890 0.000143554 0.00525699 0.06001 27.5 0.950937 6.3548 9.66527 1.11294 60
4.25 18.895 0.000118045 0.00432542 0.06002 28 0.952282 2.93027 5.32686 1.09665 60
4.30 18.897 0.000119332 0.00437521 0.06003 28.2 0.953098 3.06041 5.592 1.0807 60
4.35 18.899 0.000113554 0.00416586 0.06004 28.5 0.954025 2.51636 4.85727 1.06517 60
0.4 0.4
0.3~ 0.3~
- 0.2 0.2+
0.1 0.1
i 00 —A—‘ L 1 L
0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
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Fig. 7 The r—-ng diagram comparing the predictions of the non-
comoving warm inflation model in the strong dissipative regime with
generalized de Sitter scale factors having the free parameters of Table 4,
with the Planck 2013, 2015 and 2018 data sets. In the left panel, the
likelihood of Planck 2013 are indicated with gray contours, Planck
TT+lowP with red contours, and Planck TT,TE,EE+lowP (2015) with

4.3.2 Strong dissipative regime with generalized de Sitter
scale factor

Now let us turn our attention to the generalized de Sitter scale
factors model for the strong regime. Following the results
of the Sect. 4.3, and the procedure of Sect. 4.3.1, we are
going to examine the theoretical predictions for the strong
dissipative regime of the non-comoving warm inflation with
the generalized de Sitter scale factors, and compare them with
the observational data sets obtained by the Planck satellite.
In order to perform such a comparison, by using Eq. (124)
to obtain the end of inflation values of the scalar field, we
find the results presented in Table 4. Consequently, by using
Egs. (95) and (105), the scalar field at the horizon exit for
the strong regime is expressed as
¢s = ¢e x exp[—hoN]. (133)

By substituting Eq. (117) into Egs. (85) and (95), for the
strong regime with generalized de Sitter scale factors the
scalar field potential as a function of the scalar field can be

blue contours. In the right panel, the results of Planck 2018 are indicated
by dark and light blue colors corresponding to 68% and 95% confidence
levels, respectively. In both figures the thick black lines refer to the the-
oretical predictions, with the small, brown, and large, green, circles
corresponding to the values of ng at the number of e-folds ' = 55 and
N = 65, respectively

expressed as

U@) =4y (—a+ D | y2ho — 42 n (=t 2 =2

(134)

Also from Eqgs. (134) and (86), for the dissipation ratio Q
one obtains

8 (A2 41 —2)
3y¢ (yhie? —8r(A + 1) + 16)

Q) = (135)

To find acceptable values of the free parameters of the
model for the strong regime, one can consider the scalar spec-
tral index and tensor-to-scalar ratio given by Eq. (123) and
(129), respectively. The comparison of these quantities with
the observational data is presented in Fig. 7.

In addition, we test the warm inflation constraint, which
guarantees the thermal fluctuations’ dominance over the
quantum fluctuations. To do this we plot the function 7/H,
and we observe that the T/H > 1 constraint is satisfied,
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Fig. 8 The ratio of the temperature to the Hubble parameter during the
inflationary evolution of the non-comoving warm inflationary model in
the strong regime with generalized de Sitter scale factors, with n =
1, versus the number of e-folds, for different numerical values of the
parameters of the model

as shown in Fig. 8. To obtain these results we have fixed
the power spectrum based on its horizon exit value, i.e.,
P, = 2.17 x 1072, and we have used the numerical val-
ues ¢ = 3,a; = 0.0185, and by = 2.315 in the definition of
G(Q).

5 Discussions and final remarks

The assumption of the comoving motion of all the mat-
ter/energy components of the Universe is one of the corner-
stones of present day cosmology. This mathematical choice
of a universal reference frame allows a simple, but power-
ful theoretical description of the cosmological models to be
given, and it directly leads to the Friedmann equations of
standard cosmology, to the ACDM model, and to the infla-
tionary paradigm, all formulated in the comoving frame. But,
despite its remarkable success, still one may ask if from a
physical point of view the assumption of the existence of a
universal frame is really justified, especially if one takes into
account the very different nature of the major components of
the Universe, dark energy, dark and baryonic matter. If this is
indeed the case, certainly a significant amount of fine tuning
would be necessary to establish the universal cosmological
frame. Alternatively, one may also assume that some specific
physical processes in the early Universe led to the vanishing
of all forms of anisotropy, and of the possible differences in
the matter and energy components.

@ Springer

In the present paper, we have investigated the theoretical
possibility thatin the very early Universe, composed of a mix-
ture of two basic constituents, namely, scalar field and radi-
ation, the matter and field components have different four-
velocities. More exactly, we have considered this possibility
in the framework of the warm inflationary model, in which
matter, in the form of radiation, is generated during the initial
cosmological expansion due to the decay of the scalar field.
The warm inflationary scenario does not require a reheat-
ing phase at the end of inflation. Our basic assumption, and
starting point in our analysis, is that the four-velocities of the
radiation and scalar field are different, and thus they are not
comoving. Such an interpretation can also be supported by a
simple physical argument related to the decay of particles. Let
us assume that a particle of mass M decays into two particles
with masses m| and m,. The law of conservation of energy,
as applied to the system of reference in which the particle is at
rest, gives M = E o9+ E»o, where E1g and Ey are the ener-
gies of the emerging particles. Then, by taking into account
the energy conservation relation E7) —m? = E3, —m3, one
can easily obtain the energies of the decay products as E1g =
(M2 +m? —m3) /2M, and Ex = (M? — m? +m3) /2M,
and obviously Ejg # Ez9 # M. Consequently, the decay
products will move with different four-velocities with respect
to the particle generating them.

From a theoretical point of view the cosmological model
with non-comoving scalar field and radiation is formally
equivalent to a Universe model containing a single anisotropic
fluid, having different pressure components along the coordi-
nate axes. Moreover, the equivalent thermodynamic param-
eters of the anisotropic system are functions of the four-
velocities of the two components, and of their energy densi-
ties and pressures. As a first step in our analysis we have
explicitly obtained the thermodynamic parameters of the
anisotropic mixture of radiation and scalar field. Since the
resulting single fluid description leads to an anisotropic
matter/energy distribution, the resulting geometry is also
anisotropic. We have explicitly obtained the gravitational
field equations describing the non-comoving scalar field and
dark radiation mixture for the simplest anisotropic Universe,
described by a Bianchi Type I geometry.

We have implemented the basic idea of the warm inflation
by splitting the total energy conservation equation into two
components, describing the decay of the scalar field, and
radiation creation, respectively. This splitting can be done
naturally, without imposing any arbitrary form of the decay
and creation rates, with I'y, and I'r,g determined by a func-
tion F that depends on the differences in the four-velocities
of the scalar field and radiation, and on the energy densi-
ties and pressures of the components. In building the the-
oretical model we have assumed that the difference in the
four-velocities of the scalar field and radiation is small, and
therefore one can also consider the deviations from isotropy
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as small, representing just a small perturbation of the homo-
geneous and isotropic background metric. But even if there
is only a slight difference between the four-velocities of the
scalar field and radiation, the early Universe would acquire
some anisotropic characteristics, and its geometry will devi-
ate from the standard FLRW one. This aspect already appears
in Eq. (76), describing the radiation generation from the
scalar field, and which contains the anisotropic radiation cre-
ation term 2a2¢32H3, which indicates that the distribution of
the newly produced radiation is anisotropically distributed
along the coordinate axis.

One of the essential tests of any physical model is its
comparison with observations. In order to compare the non-
comoving warm inflationary model with the Planck data we
have adopted the standard slow-roll approximation, which
is commonly used in inflationary models. In the formalism
of the slow-roll inflation an essential quantity is the dissi-
pation function, which can be represented as a function of
o, &, and H, where « is the rotation angle in the velocity
space. When o = 0, the four-velocities of the scalar field
and of the radiation coincide. In the present approach we
have assumed that « is a decreasing function of time, with
o o t7hm and o oc eV respectively. The parameters
ho and m can be determined from the observational data, and
this would also fix the transition towards a universal comov-
ing frame of the warm inflationary model. For example, in
the weak dissipation regime, m =~ 30, and ko ~ 0.01 (see
Table 1, which would give a decay law of « of the form
a o t703, which indicates just a slow transition towards
isotropy. However, in the case of the generalized de Sitter
expansion the decay of « is of the form o o e™33 (see
Table 2), which would guarantee that the Universe enters in
an isotropic and comoving phase at the end of inflation. In
the case of the strong dissipative regime o o< 1 =08 (Table 3)
and o oc e 024 (Table 4), respectively. Hence, in the non-
comoving warm inflationary model with model parameters
consistent with the Planck data, the possibility that a resid-
ual anisotropy from the early Universe did survive due to the
non-comoving character of the scalar field and radiation fluid
evolution cannot be excluded a priori.

The present analysis based on the slow-roll approximation
also allow us to fix the functional form of the scalar field by
essentially using the theoretical model, as well as the obser-
vations. Therefore there is no need to postulate in advance
different forms of the scalar field potential. In the case of
the strong dissipative regime with power-law scale factor the
potential is also of power-law form, U (¢) o< ¢—2/"0™ while
in the other considered cases the potential is of a nonstandard
form, involving quadratic and logarithmic terms. Finding the
interpretation of these potentials from the elementary particle
physics perspective is a matter of further research.

Further constraints on the non-comoving warm inflation-
ary model can be obtained by considering the imprints of the

non-comoving expansion on the Cosmic Microwave Back-
ground. The photons generated at the end of inflation at cos-
mological distances move in the Bianchi Type I Universe,
having a geometry remnant from the non-comoving motion
in the early Universe, along the geodesic lines, given by

(136)

where A is an affine parameter, and the Christoffel symbols
r f; 5 are obtained from the metric Eq. (60), and they are given
by F?l. = aizHi, and 1"61. = H;,i = 1,2, 3, respectively (no
summation upon i in the Christoffel symbols). As for the
four-velocity u”* = dx*/dA of the photons, it satisfies the
normalization condition u*u, = 0, giving (uo)* = ai2 (ui)2.
The temperature distribution is determined by the relation

T (4)

where the redshift z is defined as 1 +z (A.) = 7 (A;) /T (Xe),
where 7 (A,) is the time difference of the received signals,
and the present day values of the photon four-velocity are
denoted as u' (tg) = ', i = 1,2,3. T, denotes the last
scattering temperature, which does not depend on the direc-
tion. But due the possible presence of anisotropies in the
geometry of the Universe, photons traveling from different
directions will be redshifted by different amounts. There-
fore in an anisotropic Universe one must consider the spa-
tial average T of the temperature field, which is given by
4xT = [ T (@) d2. Hence the anisotropies in the temper-
ature field are given by 87 (&) = 1 — T (&) /T. Another
important observational parameter that could be used to test
the anisotropy survival from the early non-comoving evo-
lution is the multipole spectrum Q;, which is obtained by
considering the coefficients in the spherical expansion of the
anisotropic temperature field. The quadrupole Q> is defined
as [144,176]

T

= —) 137
14z (@) (137

0> (138)

2 4
= — /e
53V ¢

where the eccentricities e 2

5 and eg are defined as e y =
(a1/a2)® — 1 and €2 = (a1/az)* — 1, respectively [176].

By using the nominal value of the best-fit quadrupole mea-
sured by Planck one can also constrain the parameters of the
non-comoving warm inflationary model. Another indepen-
dent test of the model could be provided by the observa-
tions of the anisotropies in the expansion rates of the Uni-
verse, which would determine luminosity distance—redshift
relationships that are non-invariant rotationally [176]. Such
relationships obtained from the study of the Ia type super-
novae can be therefore used to constrain the non-comoving
warm inflationary models, and to identify their imprints on
the anisotropies present in the Universe.

@ Springer
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There is some observational evidence, as shown by the
recent Planck data [1-6], that suggests that even though on
the large scale the Universe is homogeneous, small deviations
from isotropy may still be present on the cosmological scales.
In the present paper we have proposed a model that may
account for the presence of these anisotropies as generated
during the warm inflationary evolution in the very early Uni-
verse. One of the basic postulates of present day cosmology
is the possibility of choosing a comoving reference frame for
all components of the Universe, no matter their nature. How-
ever, there is no general principle requiring that such a frame
must have existed at all times in the Universe, and therefore
in our present investigation we have assumed that the scalar
field generating the radiation in the very early Universe did
in fact have a different four-velocity as compared to those
of the photons. Hence a comoving frame could have been
established dynamically, due to the time decay of the angle «
describing the differences between the four-velocities of the
two major initial components of the Universe. The possibil-
ity of non-comoving cosmological motions, their impact on
the evolution of the Universe and some observational impli-
cations will be considered in a future publication.
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