
 

Fermions at Finite Density in 2 + 1 Dimensions with Sign-Optimized Manifolds
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We present Monte Carlo calculations of the thermodynamics of the (2þ 1)-dimensional Thirring model
at finite density. We bypass the sign problem by deforming the domain of integration of the path integral
into complex space in such a way as to maximize the average sign within a parameterized family of
manifolds. We present results for lattice sizes up to 103 and we find that at high densities and/or
temperatures the chiral condensate is abruptly reduced.
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Monte Carlo methods are critical to the nonperturbative
study of strongly interacting quantum field theories and
many-body systems. In the lattice field theory approach,
one discretizes spacetime and formulates observables as
high dimensional lattice path integrals. For systems in
thermal equilibrium, such integrals take the form hOi ¼
Z−1

R
DAe−SOwhere Z is the partition function and S is the

(Euclidean) action. Path integrals are typically only com-
putable by importance sampling, which relies on interpret-
ing e−S=Z as a probability distribution. However, many
theories of interest have complex actions. This sign problem
is a major roadblock to the ab initio study of such systems,
including fermions at finite density.
For systems with complex actions S ¼ SR þ iSI, a

common method is to sample according to the distribution
PrðAÞ ∼ e−SRðAÞ, and to express observables as hOi ¼
hOe−iSIiR=he−iSIiR, where h·iR means averaging with
respect to the SR. This “reweighting” procedure is effective
if the average sign hσi≡ he−iSIiR is not too small. However,
hσi typically decreases exponentially with the spatial
volume Ld, chemical potential μ, and inverse temperature
β, so, for cold dense matter, standard reweighting fails [1].
In response to this failure, many ideas have been explored:
the complex Langevin [2], the density of states method [3],
canonical methods [4,5], reweighting methods [6], series
expansions in the μ [7], fermion bags [8], and analytic
continuation from imaginary μ [9].
In a recently developed family of approaches to

taming the sign problem, the original domain of integration
MO of the path integral is deformed to a submanifold
M of the complexified field space. A multidimensional

generalization of Cauchy’s integral theorem guarantees, for
suitable deformations, that integrals of holomorphic func-
tions (e.g., physical observables) remain unchanged. In
contrast, integrals of nonholomorphic functions such as hσi
depends on M, and therefore a judicious choice of
manifold can increase hσi and render reweighting feasible.
The first manifolds suggested were sets of multidimen-

sional stationary phase contours called “Lefschetz thim-
bles,” ML [10–13]. Analytically, ML have been found in
only a handful of cases that include few dimensional
integrals and quantum mechanical models [14–17].
Numerous algorithms have been developed to integrate
onML, but these methods have difficulty addressing which
set of thimbles reproduce the results on MO [18–24]. To
address this, a generalized thimble method was developed.
In this approach, one deforms MO via the holomorphic
gradient flow for a fixed time T, which yields a manifold
MT that approaches ML as T → ∞ [25]. The generalized
thimble method has been applied to analyze bosonic and
fermionic systems at finite density [26–30], real-time linear
response [31,32], and gauge theories [33]. One drawback to
the generalized thimble method is that it requires a
computationally expensive Jacobian related to the manifold
parametrization. This lead to developments in rapidly
computable estimators [34] and in applying machine
learning to approximate the manifold [35].
To avoid all these difficulties, the sign-optimized mani-

fold method was introduced in [36] wherein one deforms
MO to a manifold MS that maximizes hσi within a family
of manifolds Mλ parametrized by a set of real numbers λi.
A similar method is described in [37]. To guarantee that the
path integral remains invariant under the deformation to
MS, it is sufficient that MO is continuously deformable to
Mλ without crossing any singularity of the integrand.
These conditions are satisfied by construct in our family
of manifolds because our deformations are smooth and
involve only finite shifts of the fields in the imaginary
direction.
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In this Letter, we explore the finite density phase diagram
of the two flavor (2þ 1)-dimensional Thirring model using
the sign-optimized manifold method, extending the range
in ðT; μÞ space beyond what is possible on MO.
We parametrize the manifoldMλ by its projection on the

real spaceMO, so that integration onMλ may be achieved
by integrating on MO with the inclusion of a Jacobian,
which is included into an effective action. Thus, the
expectation value of an observable O can be written as
follows:

hOi ¼
R
MO

DAO½ÃðAÞ�e−Seff ½A;λ�R
MO

DAe−Seff ½A;λ�
; ð1Þ

where ÃðAÞ is the point on the manifold Mλ parametrized
by A, Seff ≡ S − ln det J is the effective action, and J is the
Jacobian of the parametrization. The average sign onMλ is
given by

hσiλ ¼
R
MO

DAe−Seff ½A;λ�R
MO

DAe−ReSeff ½A;λ�
: ð2Þ

The numerator of Eq. (2) is independent of λ because it is
the integral of a holomorphic function in A, but the
denominator depends on λ because e−ReSeff is not holo-
morphic. We are interested in maximizing this as a function
of the manifold parameters λ—this is equivalent to maxi-
mizing log jhσiλj. The gradient of log jhσiλj with respect to
λ is

∇λ log jhσiλj ¼
R
MO

DAe−ReSeff ½A;λ�½∇λSR − ReTrJ−1∇λJ�R
MO

DAe−ReSeff ½A;λ�
:

ð3Þ

This gradient is the phase-quenched expectation value
h∇λSeffiReSeff , and is therefore free from a sign problem.
This allows ∇λ log jhσiλj to be computed reliably by a short
Monte Carlo simulation at each gradient ascent step. To do
gradient ascent we use the adaptive moment estimate
algorithm [38]. We stress that the sign-free nature of the
calculation of the gradient is central to the method and
allows our calculations to be efficient even when hσi is
exponentially small.
One potential issue is that the computation of det J is an

expensive operation—for a general J, this requires time
proportional to the cube of the spacetime volume. In
Ref. [36] it was shown that this computational cost can
be avoided by proposing a family of manifolds for which
the Jacobian matrix is diagonal. We use a similar family
here (details below). A more general ansatz with non-
diagonal Jacobian with nearest-neighbor correlations has
been shown to improve the sign problem in bosonic
theories, with increased computational expense [39].

To integrate on our curved manifolds, we have imple-
mented a modified version of a hybrid Monte Carlo (HMC)
algorithm. We define a Hamiltonian

Hðπ; AÞ ¼ 1

2

X
x

πx½JðAÞJ†ðAÞ�−1xy πy þ SR½ÃðAÞ� ð4Þ

and sample according to the distributionPðπ; AÞ ∼ e−Hðπ;AÞ.
Marginalizing over the momenta yields the distribution
PðAÞ ∼ j det JðAÞje−SRðAÞ. Sampling according to PðAÞ and
then reweighting with the residual phase e−iImSeff yields the
correct observables. For generic dense Jacobians, the
derivatives ∂H=∂Ax are extremely expensive to compute,
but for manifolds with diagonal Jacobians the derivatives
are computed analytically and implemented with sparse
matrices. Thus, HMC allows for sampling onMλ as fast as
sampling on MO. Due to this Jacobian structure the
evolution of Eq. (4) can be calculated with implicit and
explicit symplectic integrators. Both were implemented and
found to agree.
We now apply the sign-optimized manifold method to

the (2þ 1)-dimensional Thirring model defined by the
lattice action

S ¼
X
x;ν

NF

g2
½1 − cosAνðxÞ� þ

X
x;y

ψ̄aðxÞDxyðAÞψaðyÞ ð5Þ

where −π < AμðxÞ ≤ π is a compact bosonic auxiliary field
[40–42]. By virtue of the compact fields,MO ¼ ðS1ÞN and
the deformed manifold are submanifolds in the complexi-
fied space ðS1 × RÞN , where N is the number of links. The
staggered fermion matrix is given by

Dxy ¼ mδxy þ
1

2

X2
ν¼0

½ηνðxÞeiAνðxÞþμδν0δxþν̂;y

− η†νðyÞe−iAνðyÞ−μδν0δx;yþν̂�; ð6Þ

where ηνðxÞ ¼ ð−1Þx0þ���þxν−1 , the flavor indices a taking
values from 1;…; NF=2, g is the coupling, and m is the
bare mass. There are different lattice actions which
naively appear to have as their continuum limit the
(2þ 1)-dimensional Thirring model. A substantial litera-
ture exists studying different discretizations of the (2þ 1)-
dimensional Thirring model at zero density, with emphasis
on determining the critical NF below which the chiral
condenstate hψ̄ψi is nonzero when m → 0 [40–45]. It is,
however, unclear which discretizations are equivalent in the
continuum limit. For our purpose the action in Eq. (5)
defines what we mean by Thirring model.
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Integrating out the fermions in Eq. (5) gives

S ¼ NF

�
1

g2
X
x;ν

½1 − cosAνðxÞ� −
1

2
log detDðAÞ

�
: ð7Þ

We presently study the phase diagram in the ðT; μÞ plane
for NF ¼ 2. For μ ≠ 0, the determinant detDðAÞ is com-
plex and we must address the resulting sign problem.
For insight into a family of manifolds that may increase

hσi, we look to the μ → ∞ limit of the theory. In this limit,
the density matrix is dominated by forward time links, and
the path integral becomes

Z ¼
�Z

d3Ae
1

g2
ð
P

ν
cosAνÞþμþ1

2
iA0

�
βV

ð8Þ

where only the leading terms in eβμ are included. In this
limit, the path integral factorizes, and the sign problem
itself comes only from the integral over A0. Consequently,
we will consider Mλ in which A1 and A2 remain on MO,
and ImÃ0ðxÞ depends only on A0ðxÞ, not on any other link.
Such factorizable manifolds have the desirable property
that J is diagonal.
At weak coupling (g2 → 0), one expects the partition

function tobedominated by the saddle pointwith the smallest
action,which isA0ðxÞ ¼ iαðg; μÞ; A1ðxÞ ¼ A2ðxÞ ¼ 0 for all
xwhereαðg; μÞ is the solution to the gap equation [20,28]. As
found in lower dimensional Thirring models, the thimble
attached to this critical point canbe approximatedby a shift of
fields in the imaginary direction. This suggests that a shift
A0ðxÞ → A0ðxÞ þ iα will improve hσi, and this was con-
firmed in simulations [20,25,28].
Consistent with these observations, we extend the

manifolds used in [36] to the following three-parameter
family:

Ã0 ¼ A0 þ i½λ0 þ λ1 cosA0 þ λ2 cosð2A0Þ�;
Ã1 ¼ A1; Ã2 ¼ A2: ð9Þ

Every member of the family of manifolds above can be
smoothly deformed to ðS1ÞN with the interpolation ðÃ0Þt¼
A0þit½λ0þλ1cosA0þλ2cosð2A0Þ� with 0 ≤ t ≤ 1 shows.
Moreover, the imaginary shift is bounded, so the condition
for the applicability of Cauchy’s theorem is satisfied.
The results presented use bare parameters g ¼ 1.08 and

m ¼ 0.01. We quote the results of our simulations using
lattice units. To demonstrate that we are in the strong
coupling regime and to ascertain whether we are not too far
from the continuum and thermodynamic limits, we measure
the mass of the lowest fermionic and bosonic excitations by
fitting the large-time behavior of correlators hOfðtÞOfð0Þ†i
and < ObðtÞObð0Þ† >, where OfðtÞ ¼

P
x⃗ψðt; x⃗Þ and

ObðtÞ ¼
P

x⃗ð−1Þx0þx1þx2 ψ̄ψðt; x⃗Þ. Using a spatial volume
of L2 ¼ 102 we find mf ¼ 0.46ð1Þ and mb ¼ 0.21ð1Þ. The
masses depend slightly on L2, but in all cases mb=mf ≪ 2.
This indicates that the system is strongly coupled since the
binding energy of the boson is comparable to the 2mf.
In this Letter, we calculate on six lattice geometries. We

perform a series of simulations with fixed volume L2 ¼ 62

and varying temperature β ¼ 4, 6, 8, 10, 12 to scan the
ðT; μÞ plane, and we perform one simulation with L2 ¼ 102

and β ¼ 10 to investigate the finite volume effects. The
parameters λi are typically smooth functions of μ. For the
12 × 62 lattice with μ ¼ 0.30 as an example, we found
λ0 ¼ 0.218; λ1 ¼ −0.126; λ2 ¼ 0.042. On MSs, we per-
formed Monte Carlo calculations generating between 102

and 108 independent configurations depending on the
magnitude of hσi.
The advantages of using MS over a naive calculation

on ðS1ÞN can be ascertained by computing hσi. When
computed on ðS1ÞN , hσi decreases (exponentially) with μ.
OnMS, hσi initially decreases, but near lattice saturation—
where the chemical potential is sufficiently large that all
available fermionic sites are occupied—it increases and
approaches unity, as can be seen in Fig. 1. This is consistent
with expectations due to the discussion of limiting behavior
around Eq. (8).

FIG. 1. hψ̄ψi (left) and hσi (right) as a function of μ for β × 62 lattices. Notice the increase of hσi for large values of μ as expected from
the discussion in the text. The black points are hσi for simulations on ðS1ÞN on a β ¼ 10 lattice.
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In order to quantify the speedup gained onMS, note that
the number of measurements required for a fixed precision
scales like hσi−2. Thus the speedup may be estimated by
computing hσi2MS

=hσi2ðS1ÞN . Computing this ratio is difficult

however because hσiðS1ÞN is very small at large values of μ.
We therefore estimate the value of hσiðS1ÞN by performing a
fit to loghσi (see Fig. 1). Using this fit, we can compare the
hσi at large values of μ. We find that on a β × L2 ¼ 10 × 62

lattice for μ ¼ 0.45, hσi2MS
=hσi2RN ≈ 104, indicating a

sizeable speedup.
All hψ̄ψiðμÞ are fit well with the ansatz: hψ̄ψiðμÞ ¼

c0 þ c1 tanh½c2ðμ − c3Þ� with c0, c1 quadractic in T and c2,
c3 quadractic in 1=T. These interpolations are plotted along
the numerical results.
Our results for the L2 ¼ 62 lattices are shown in

Fig. 1. The distinctive feature is the rapid transition from
hψ̄ψi ≫ 0 to hψ̄ψi ≈ 0 as μ increases. As expected
on physical grounds, the transition sharpens with
lowering T. We present the phase diagram of hψ̄ψi
in the ðT; μÞ plane in the right panel of Fig. 2. The
heat map is the smooth interpolation of our results
based on the fit discussed above. As expected, hψ̄ψi ≈ 0
at large values of T or μ. To estimate the location of the
transition from a chirally broken to a chirally restored
phase, we have highlighted the contour at hψ̄ψiμ;T ¼
0.5hψ̄ψi0.
A natural question is whether the transition between

these two regimes is a true phase transition. Since chiral
symmetry is explicitly broken by mf, we do not expect a
second order transition line, but a first order transition
could exist at a small T and a large μ. An indication
of a true phase transition would be the sharpening of the
transition as the volume grows. In the left panel of Fig. 2,
we show hψ̄ψi as a function of μ for β ¼ 10 and L2 ¼ 62,
102. The hψ̄ψi transition indeed sharpens with L2 but the

data we presently have do not allow a definitive answer on
whether this extrapolates to a genuine transition at infinite
volume.
In this Letter, we have extended the sign-optimized

manifold method to reduce the finite-density sign problem
of a (2þ 1)-dimensional field theory. The integration
manifold was chosen by maximizing hσi over a family
of manifolds for which fast hybrid Monte Carlo calcula-
tions are possible. The speed at which independent con-
figurations can be collected compensates for the still
substantial sign problem on the family of manifolds.
Using this method, calculations on lattice sizes up to
103 and 12 × 62 were feasible. These calculations were
enough to outline the broad features of the system’s phase
diagram.We find a low temperature and density region with
a large chiral condensate and a high temperature and
density region where the condensate is very small.
Investigation of the detailed nature of the phase transition
is saved for future work.
It is likely that other manifolds providing a better

compromise between speed of calculation and average
sign exist and can be found. Greater analytical insight
into the geometry of complexified field theories could
yield such manifolds. Another direction for future
research is the extension of our methods to gauge
theories. Although the general idea of changing the
domain of integration is shown to be sound [33], suitable
manifolds were found only through the computationally
expensive method of solving the holomorphic flow
equations.

A. A. is supported in part by the National Science
Foundation CAREER Grant No. PHY-1151648 and by
U.S. Department of Energy Grant No. DE-FG02-
95ER40907. P. F. B., H. L., S. L., and N. C.W. are sup-
ported by U.S. Department of Energy under Contract
No. DE-FG02-93ER-40762.

FIG. 2. Left: hψ̄ψi as a function of μ for β ¼ 10 at two different volumes: L2 ¼ 102 and 62. A sharpening of the chiral transition can be
seen as the volume is increased. Right: hψ̄ψi as a function of T and μ for a spatial volume of size 62. The thick central band indicates the
location of hψ̄ψiμ;T ¼ 0.5hψ̄ψi0 and its width represents the statistical error. The peripheral thin lines indicate hψ̄ψiμ;T ¼ ð0.5�
0.05Þhψ̄ψi0 to help gauge the sharpness of the transition.
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