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Basic properties of gauge theories in the framework of the Faddeev-Popov (FP) method, Batalin-
Vilkovisky (BV) formalism, and functional renormalization group (FRG) approach are considered. The FP
andBVquantizations are characterizedby theBecchi-Rouet-Stora-Tyutin (BRST) symmetry,while theBRST
symmetry is broken in the FRG approach. It is shown that the FP method, the BV formalism, and the FRG
approach can be provided with the Slavnov-Taylor identity, the Ward identity, and the modified Slavnov-
Taylor identity, respectively. It is proven that using the background field method the background gauge
invariance of the effective actionwithin the FP and FRGquantization procedures can be achieved in nonlinear
gauges. The gauge-dependence problem within the FP, BV, and FRG quantizations is studied. Arguments
allowing us to state the existence of principal problems of the FRG in the case of gauge theories are given.
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I. INTRODUCTION

Over the past three decades, there has been increased
interest in the nonperturbative approach in quantum field
theory known as the functional renormalization group
(FRG), which has been proposed in papers [1,2] and can
be considered as a version of Wilson renormalization group
[3,4]. The FRG approach has gotten further developments
[5–11] and numerous applications [12–23]. There are many
reviews devoted to detailed discussions of different aspects
of the FRG approach, and among them, one can find
Refs. [24–31] with qualitative references.
As a quantization procedure, the FRGbelongs to covariant

quantization schemes. In the case of gauge theories, any
covariant quantization faces two principal problems: the
unitarity of S matrix first formulated by Feynman [32] and
the gauge dependence of results obtained. The study of the
unitarity problem requires consideration of canonical for-
mulation of a given theory on the quantum level and use of
the Kugo-Ojima method in construction and analysis of
physical state space with the help of the nilpotent Becchi-
Rouet-Stora-Tyutin (BRST) operator [33] to discovery the
criteria providing the unitarity. In the present paper, we will
not touch the unitary problem in all covariant quantization

approaches to gauge theories, restrictingourselves thegauge-
dependence problem.
The gauge dependence is a problem in the quantum

description of gauge theories beginning with famous papers
by Jackiw [34] and Nielsen [35]. Study of the gauge-
dependence problem can be directly performed in covariant
quantization schemes, namely, in the Faddeev-Popov (FP)
method [36], the Batalin-Vilkovisky (BV) formalism
[37,38], and the FRG approach [1,2]. Analysis of the
gauge dependence problem for Yang-Mills theories in the
framework of the FP-method and for general gauge theories
within the BV-formalism has been given in papers [39–41],
respectively. Aspects of gauge invariance and related topics
were always under close attention in the FRG
[8,11,12,16,17,19,42–47]. Nevertheless, it seems a useful
and important task to consider the gauge-dependence
problem within the FRG approach for different types of
gauge theories from general points of view.
We are going to compare with each other basic properties

providing the FP method, BV formalism, and the FRG
approach and find new features concerning the gauge-
dependence problem in the FRG. Among the basic proper-
ties, it needs first of all to mention the BRST symmetry
[48,49], which is considered a fundamental principle of
modern quantum field theory allowing a suitable quantum
description of a given dynamical system [50,51]. For the
first time, the BRST symmetry was discovered as a global
supersymmetry of quantum action (the Faddeev-Popov
action) appearing in the process of quantization of Yang-
Mills theories. In its turn, the BRST symmetry in the BV
formalism is not the global supersymmetry of some action,
but it is encoded into the quantummaster equation. The role
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of BRST symmetry in the FP method and in the BV
formalism is extremely important because it guarantees the
gauge independence of the S-matrix elements. The BRST
symmetry is broken in the FRG approach, which leads to
the ill-defined S matrix [52].
TheWard identities in quantum theory of gauge fields are

the next basic property. Their existence is a direct conse-
quence of gauge invariance of the initial classical action
underlying a given system with gauge freedom. The BRST
transformations help to present the Ward identities in a
unique form that sometimes causes incorrect conclusions
concerning relations between the BRST symmetry and the
Ward identities; namely, the Ward identities by themselves
do notmean the existence of the BRST symmetry for a given
gauge system. It is exactly the case of the FRG approach
when it cannot be provided by the BRST symmetry in the
presence of the modified Slavnov-Taylor (mST) identities.
In our investigation, we pay special attention to the

gauge-dependence problem within the FP method, the BV
formalism, and the FRG approach with or without using the
background field method (BFM) [53–55] because of its
importance for the physical interpretation of used schemes
of quantization. Our interest in the background field
method is caused by an important property of gauge
invariance of the background effective action under gauge
transformations of background fields helping to simplify
quantum calculations in the Yang-Mills and gravity theo-
ries within the FP method. Unfortunately, this method
does not help to improve the situation with the gauge-
dependence problem in the FRG because the effective
average action being a gauge-invariant functional remains a
gauge-dependent object.
The paper is organized as follows. In Sec. II, a brief

description of theories invariant under the gauge trans-
formations from the point of view of the structure of
corresponding gauge algebras is given. In Sec. III, the
BRST symmetry in the context of the FP method, BV
formalism, and FRG approach is discussed. In Sec. IV, the
Slavnov-Taylor (ST) identity in the FP method, the Ward
identity in BV formalism, and the mST identity in the FRG
approach are studied. In Sec. V, the gauge-dependence
problem is studied within quantization schemes mentioned
above. In Sec. VI, the all basic properties of FP method and
FRG approach are investigated for the Yang-Mills type of
gauge theories within the BFM. Finally, in Sec. VII, the
results obtained in the paper are discussed.
We use the DeWitt’s condensed notations [56]. We

employ the notation εðAÞ for the Grassmann parity of
any quantity A. The right and left functional derivatives
with respect to fields and antifields are marked by special
symbols ← and →, respectively. Arguments of any func-
tional are enclosed in square brackets ½�, and arguments of
any function are enclosed in parentheses (). The symbol
F;A½ϕ;…� means the right derivative of F½ϕ;…� with
respect to field ϕA.

II. GAUGE THEORIES

Let us start from some initial classical action S0½A� of the
fields Ai, with Grassmann parities εðAiÞ≡ εi, being invari-
ant under the gauge transformations (X; ≡ δX=δAi)

δAi ¼ Ri
αðAÞξα; S0;i½A�Ri

αðAÞ ¼ 0; ð2:1Þ

where ξα are arbitrary functions with Grassmann parities
εðξαÞ≡ εα, α ¼ 1; 2;…; m, and Ri

αðAÞ, εðRi
αðAÞÞ¼ εiþεα

are generators of gauge transformations. It is assumed the
set of fields Ai is linear independent (in particular, it is not
the case of higher-spin fields [57]). The general form of
algebra of generators Ri

αðAÞ reads

Ri
α;jðAÞRj

βðAÞ − ð−1ÞεαεβRi
β;jðAÞRj

αðAÞ
¼ −Ri

γðAÞFγ
αβðAÞ − S0;j½A�Mij

αβðAÞ; ð2:2Þ

where Fγ
αβðAÞ ¼ −ð−1ÞεαεβFγ

βαðAÞ are structure functions

depending, in general, on the fields Ai and Mij
αβðAÞ

satisfies the conditions Mij
αβðAÞ ¼ −ð−1ÞεiεjMji

αβðAÞ ¼
−ð−1ÞεαεβMij

βαðAÞ.
If the structure functions do not depend on fields Ai,

Mij
αβðAÞ ¼ 0 and, in addition, the generators Ri

αðAÞ form a
set of linear independent operators with respect to the index
α, then we have the case of the Yang-Mills type of gauge
theories being very important for practical applications
because all modern models of fundamental forces are
described in terms of such a kind of theories.
For an example, let us consider the case of the pure

Yang-Mills theory, defined by the action

SYM½A� ¼ −
1

4
Fa
μνðAÞFa

μνðAÞ; ð2:3Þ

where Fa
μνðAÞ ¼ ∂μAa

ν − ∂νAa
μ þ fabcAb

μAc
ν is the field

strength for the non-Abelian vector field Aμ, taking values
in the adjoint representation of a compact semisimple Lie
group with structure coefficients fabc. We have the follow-
ing identifications with previous notations:

Ai↦Aa
μ; Fα

βγ ↦fabc; Ri
αðAÞ↦Dab

μ ðAÞ¼δab∂μþfacbAc
μ:

ð2:4Þ

Here, Dab
μ ðAÞ is the covariant derivative.

For a second example, consider the case of quantum
gravity theories, defined by an action S0ðgÞ of a Riemann
metric g ¼ fgμνðxÞg with εðgÞ ¼ 0

1 and which is invariant
under general coordinate transformations. The generator of
such transformation is linear in gμν and reads

1The standard example is Einstein gravity with a cosmological
constant term, S0½g� ¼ − 1

κ2

R
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ðRðgÞ þ 2ΛÞ:
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Rμνσðx; y; gÞ ¼ −δðx − yÞ∂σgμνðxÞ − gμσðxÞ∂νδðx − yÞ
− gσνðxÞ∂μδðx − yÞ: ð2:5Þ

Therefore, for an arbitrary gauge function ξα with
εðξαÞ ¼ 0, one has δgμν ¼ RμνσðgÞξσ , or, writing all the
arguments explicitly,

δgμνðxÞ ¼
Z

dyRμνσðx; y; gÞξσðyÞ: ð2:6Þ

In this case, the structure functions are given by

Fα
βγðx;y;zÞ¼δðx−yÞδαγ∂ðxÞ

β δðx−zÞ−δðx−zÞδαβ∂ðxÞ
γ δðx−yÞ;

ð2:7Þ

which satisfies the antisymmetry properties, Fα
βγðx; y; zÞ ¼

−Fα
γβðx; z; yÞ, as usual.
In terms of the notation used, one has the correspondence

Ai↦gμνðxÞ; Ri
αðAÞ↦Rμνσðx;y;gÞ; Fα

βγ ↦Fα
βγðx;y;zÞ:

ð2:8Þ

In general, the structure functions may depend on fields
Ai, Mij

αβðAÞ may not be equal to zero (open algebras), and
Ri
αðAÞ may not be linear independent in the index α

(reducible algebras). In all these cases, we meet the so-
called general gauge theories [37,38]. For our goals, a
detailed description of structure of gauge algebras is not
essential, and we omit their further discussions.
All results obtained below within the FP method and the

FRG are valid for any Yang-Mills type of gauge theories in
any admissible gauge. The same remark is valid for general
gauge theories in the BV formalism.

III. BRST SYMMETRY

At present, the BRST symmetry is considered as a
fundamental principle in the construction of the consistent
quantization procedure for field and string theories [50,51].
In the next three subsections, we are going to discuss a
status of the BRST symmetry for the Yang-Mills type of
gauge theories within the FP method and the FRG approach
and for the general gauge theories within the BV
formalism.

A. BRST in FP method

Let S0½A� be an action of fields Ai which include Yang-
Mills fields and, in general, multiplets of spinor and scalar
fields. Vacuum functional for the Yang-Mills type of gauge
theories is constructed by the Faddeev-Popov rules [36] in
the form of functional integral

Z ¼
Z

Dϕ exp

�
i
ℏ
SFP½ϕ�

�
ð3:1Þ

over fields ϕ. In (3.1), SFP½ϕ� is the Faddeev-Popov action,

SFP½ϕ� ¼ S0½A� þ C̄αðχαðA;BÞ∂⃖AiÞRi
βðAÞCβ þ BαχαðA; BÞ;

ð3:2Þ

where χαðA;BÞ are functions lifting the degeneracy of the
Yang-Mills action, ϕ ¼ fϕAg is the set of all fields

ϕA ¼ ðAi; Bα; Cα; C̄αÞ; εðϕAÞ ¼ εA; ð3:3Þ

with the Faddeev-Popov ghost and antighost fields Cα and
C̄α [εðCαÞ ¼ εðC̄αÞ ¼ 1; ghðCαÞ ¼ −ghðC̄αÞ ¼ 1], respec-
tively, and the Nakanishi-Lautrup auxiliary fields
Bα½εðBαÞ ¼ 0; ghðBαÞ ¼ 0�. A standard choice of linear
and nondegenerate gauges χαðA;BÞ reads

χαðA;BÞ ¼ FαiAi þ ξ

2
Bα; ð3:4Þ

where Fαi, being some differential operations, do not
depend on fields Ai and ξ is a constant gauge parameter.
In what follows, we do not restrict ourselves to the case
(3.4) and consider the gauge-fixing functions in general
settings.
The action (3.2) is invariant under global supersymmetry

(BRST symmetry) [48,49]2

δBAi ¼ Ri
αðAÞCαμ; δBCα ¼ −

1

2
ð−1ÞεβFα

βγC
γCβμ;

δBC̄α ¼ Bαð−1Þεαμ; δBBα ¼ 0; ð3:5Þ

where μ is a constant anticommuting parameter or, in short,

δBϕ
A ¼ RAðϕÞμ; εðRAðϕÞÞ ¼ εA þ 1; ð3:6Þ

where

RAðϕÞ¼ðRi
αðAÞCα; 0; −

1

2
ð−1ÞεβFα

βγC
γCβ;Bαð−1ÞεαÞ:

ð3:7Þ

Introducing the gauge-fixing functional Ψ ¼ Ψ½ϕ�,

Ψ ¼ C̄αχαðA; BÞ; ð3:8Þ

the action (2.7) is rewritten in the form

2For more compact presentation, we use the notation δB for
δBRST.
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SFP½ϕ� ¼ S0½A� þΨ½ϕ�R̂ðϕÞ ¼ S0½A� þ Ψ½ϕ�;ARAðϕÞ;
S0½A�R̂ðϕÞ ¼ 0; ð3:9Þ

where

R̂ðϕÞ ¼ ∂⃖ϕARAðϕÞ ð3:10Þ

is the generator of BRST transformations. Because of the
nilpotency property of R̂, R̂2 ¼ 0, the BRST symmetry of
SFP follows from the presentation (3.9) immediately,

SFP½ϕ�R̂ðϕÞ ¼ 0: ð3:11Þ

The BRST symmetry of SFP leads to a very important
property of the vacuum functional (3.1), namely, its gauge
independence. Indeed, let Zψ be vacuum functional corre-
sponding to choice of gauge-fixing functional Ψ. Consider
the vacuum functional for another choice of gauge con-
dition Ψþ δΨ, ZψþδΨ. Then, we have

ZΨþδΨ ¼
Z

Dϕ exp

�
i
ℏ
ðSFP½ϕ� þ δΨ½ϕ�R̂ðϕÞÞ

�
: ð3:12Þ

Making use of change of integration variables in the
functional integral (3.12) in the form of the BRST trans-
formations (3.6) but with parameter μ being an functional
μ ¼ μ½ϕ� with

μ½ϕ� ¼ i
ℏ
δΨ½ϕ� ð3:13Þ

and taking into account that the Jacobian of the trans-
formations is equal to

J ¼ expf−μ½ϕ�R̂ðϕÞg; ð3:14Þ

we obtain

ZΨþδΨ ¼ ZΨ: ð3:15Þ

In deriving (3.14), the relations

ð−1Þεi ∂⃗AiRi
αðAÞ þ ð−1Þϵβþ1Fβ

βα ¼ 0 ð3:16Þ

were used. In Yang-Mills theories, for instance, the
relations (3.16) are satisfied due to antisymmetry properties
of the structure constants. The BRST transformations (3.5)
obey the property of nilpotency, δ2Bϕ

A ¼ 0. In terms of
RAðϕÞ, this property means equalities

RA
;BðϕÞRBðϕÞ ¼ 0: ð3:17Þ

In turn, the relations (3.16) are equivalent to

RA
;AðϕÞ ¼ 0: ð3:18Þ

We assume the validity of (3.17) and (3.18) in the case of
any Yang-Mills type of gauge theories.
From (3.15), we conclude the gauge independence of the

vacuum functional. It was the reason for us to drop
subscript Ψ in the vacuum functional (3.1). The gauge
independence of Z is closely related with the BRST
symmetry of SFP½ϕ� and leads to the gauge independence
of S-matrix elements due to the equivalence theorem [58].

B. BRST in BV formalism

Let S0½A� be an initial classical action belonging to the
set of general gauge theories described in Sec. II.
Quantization of this gauge theory can be performed in
the BV formalism [37,38]. The vacuum functional can be
presented in the form of functional integral

Z ¼
Z

DϕDϕ�dλexp
�
i
ℏ
ðS½ϕ;ϕ�� þ ðϕ�

A −Ψ½ϕ�∂⃖ϕAÞλAÞ
�
;

ð3:19Þ

where S ¼ S½ϕ;ϕ�� is an action satisfying the quantum
master equation

1

2
ðS; SÞ ¼ iℏΔS ð3:20Þ

and the boundary condition

Sjϕ�¼ℏ¼0 ¼ S0½A�: ð3:21Þ

The total configuration space ϕ ¼ fϕAg; εðϕAÞ ¼ εA is
introduced. For irreducible theories, the set of fields ϕA

coincides with (3.3). For reducible theories, the set of fields
ϕA has more complicated structure [38] and contains main
chains of the ghost, antighost, and auxiliary Nakanishi-
Lautrup fields as well as pyramids of the ghosts for ghosts
and auxiliary fields. For our goals here, the explicit
structure of ϕA is not important; only its existence suffi-
cient. To each field ϕA of the total configuration space, one
introduces the corresponding antifield ϕ�

A. The statistics of
ϕ�
A is opposite to the statistics of the corresponding fields

ϕA, εðϕ�
AÞ ¼ εA þ 1. In the left-hand side of (3.20) on the

space of the fields ϕA and antifields ϕ�
A, the notation of

antibracket

ðF;GÞ ¼ Fð∂⃖ϕA ∂⃗ϕ�
A
− ∂⃖ϕ�

A
∂⃗ϕAÞG ð3:22Þ

is used. In the right-hand side of (3.20), Δ means the
second-order functional differential operator

Δ ¼ ð−1ÞεA ∂⃗ϕA ∂⃗ϕ�
A
; εðΔÞ ¼ 1; ð3:23Þ
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which obeys the nilpotency property

Δ2 ¼ 0: ð3:24Þ

Additionally, in (3.19), the auxiliary fields λA; εðλAÞ ¼
εA þ 1 are introduced. Finally, in (3.19), Ψ ¼ Ψ½ϕ� is
suitable odd gauge-fixing functional.
Note, first of all, that the integrand in (3.19) is invariant

under the following global supertransformations:

δBϕ
A¼ λAμ; δBϕ

�
A¼μðS½ϕ;ϕ��∂⃖ϕAÞ; δBλ

A¼0: ð3:25Þ

These transformations represent the BRST transformations
in the space of variables ϕ;ϕ�; λ. In the case of general
gauge theories, the BRST symmetry is not the symmetry of
some action in contrast with the FP method, but as in the
case of the Yang-Mills type of gauge theories, they do not
depend on the choice of the gauge-fixing condition. It is
very important to realize that the existence of this symmetry
is the consequence of the fact that the bosonic functional
S satisfies the quantum master equation (3.21).

The role of this symmetry is the same as in the case of the
Yang-Mills type of gauge theories; namely, it is responsible
for the gauge independence of vacuum functional (3.19).
Indeed, suppose ZΨ ≡ Z. We shall change infinitesimally
the gauge Ψ → Ψþ δΨ. In the functional integral for
ZΨþδΨ,

ZΨþδΨ ¼
Z

DϕDϕ�dλ exp
�
i
ℏ
ðS½ϕ;ϕ��

þ ðϕ�
A −Ψ½ϕ�∂⃖ϕAÞλA − δΨ½ϕ�∂⃖ϕAλAÞ

�
; ð3:26Þ

we make the change of variables in the form of (3.25) but
with μ ¼ μ½ϕ� being a functional of ϕ. The Jacobian of the
transformations in lower order of μ½ϕ� reads

J ¼ expf−μ½ϕ�∂⃖ϕAλA þ μ½ϕ�ΔS½ϕ;ϕ��g: ð3:27Þ

Then, we have

ZΨþδΨ ¼
Z

DϕDϕ�dλJ exp
�
i
ℏ

�
S½ϕ;ϕ�� þ ðϕ�

A −Ψ½ϕ�∂⃖ϕAÞλA − δΨ½ϕ�∂⃖ϕAλA þ μ½ϕ� 1
2
ðS; SÞ

��
: ð3:28Þ

Choosing the functional μ½ϕ� in the form

μ½ϕ� ¼ −
i
ℏ
δΨ½ϕ� ð3:29Þ

and taking into account that S½ϕ;ϕ�� satisfies the quantum
master equation (3.20), we obtain

ZΨþδΨ ¼ ZΨ: ð3:30Þ

In turn, the gauge independence of vacuum functional
(3.30) leads to the statement about the gauge independence
of the S matrix due to the equivalence theorem [58]. Let us
stress once more that the gauge independence of the
vacuum functional (and S matrix) is a direct consequence
of the BRST symmetry.

C. BRST in FRG

The recent development of quantum field theory is
greatly related with attempts to study nonperturbative
aspects of gauge theories. The request for such a non-
perturbative treatment is related to nonperturbative nature
of low-energy QCD and also an expectation to achieve a
consistent theory of quantum gravity. One of the most
promising approaches is related to different versions of the
Wilson renormalization group approach [3,4]. The quali-
tative idea of this work can be formulated as follows:
regardless, we do not know how to sum up the perturbative

series; in some sense, there is a good qualitative under-
standing of the final output of such a summation for the
propagator of the quantum field. A regularized propagator
is supposed to have a singe pole and also provide some
smooth behavior in the infrared (ir) region. It is possible to
write a cutoff-dependent propagator which satisfies these
requirements. Then, the cutoff dependence of the vertices
can be established from the general scale dependence of the
theory, which can be established by means of the functional
methods. A compact and elegant formulation of the non-
perturbative renormalization group has been proposed in
Refs. [1,2] in terms of effective average action. The method
was called the FRG approach for the effective average
action; it is nowadays one of the most popular and
developed methods, which can be seen from the review
papers on the FRG approach [24–30].
The starting point of the FRG is the action

SWk½ϕ� ¼ SFP½ϕ� þ Sk½ϕ�; ð3:31Þ

where regulator action Sk½ϕ� is constructed by the rule

Sk½ϕ� ¼
1

2
AiRð1Þ

kjijA
j þ C̄αRð2Þ

kjαβC
β; Rð1Þ

kjij ¼ Rð1Þ
kjjið−1Þεiεj :

ð3:32Þ

In turn, regulator functionsRð1Þ
kjij andR

ð2Þ
kjαβ obey the properties
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lim
k→0

Rð1Þ
kjij ¼ 0; lim

k→0
Rð2Þ
kjαβ ¼ 0 εðRð1Þ

kjijÞ ¼ εi þ εj;

εðRð2Þ
kjαβÞ ¼ εα þ εβ: ð3:33Þ

It means that at vanishing regulators the action SWk coincides
with the FP action,

lim
k→0

SWk½ϕ� ¼ SFP½ϕ�: ð3:34Þ

The vacuum functional in the FRG approach is defined with
the help of action SWk½ϕ� in the form of functional integral

Zk ¼
Z

Dϕ exp
�
i
ℏ
SWk½ϕ�

�
: ð3:35Þ

By construction, the following relation exists,

lim
k→0

Zk½ϕ� ¼ Z; ð3:36Þ

where Z is the well-defined vacuum functional in the FP
method for anyYang-Mills type of gauge theories. The action
SWk½ϕ� is not invariant under the BRST transformations,

δBSWk½ϕ� ¼ δBSk½ϕ� ≠ 0; ð3:37Þ

where

δBSk½ϕ� ¼ ðAiRð1Þ
kjijR

j
αðAÞCα − BαRð2Þ

kjαβC
β

−
1

2
C̄αRð2Þ

kjαβF
β
γσCσCγð−1Þεγ Þμ: ð3:38Þ

Violation of the BRST symmetry leads to the gauge-depend-
ence problem at least when k ≠ 0. Indeed, let Zk ¼ ZkjΨ be
vacuum functional (3.35) corresponding to a choice of gauge
fixing Ψ ¼ Ψ½ϕ�. Consider the vacuum functional when the
gauge condition is described by functional Ψþ δΨ,

ZkjΨþδΨ ¼
Z

Dϕ exp
�
i
ℏ
ðSWk½ϕ� þ δΨ½ϕ�R̂ðϕÞÞ

�
: ð3:39Þ

Making use of the change of integration variables in the
form of BRST transformation with μ½ϕ� being as in (3.13),
we obtain

ZkjΨþδΨ ¼
Z

Dϕ exp

�
i
ℏ
ðSWk½ϕ� þ δBSk½ϕ�Þ

�
: ð3:40Þ

We cannot propose a change of integration variables
in (3.40) to reduce it to ZkjΨ (see, for example, recent
efforts to find a solution of the problem in gravity theories
[59]). So,

ZkjΨþδΨ ≠ ZkjΨ: ð3:41Þ

Therefore, in any case, the gauge-dependence problem
exists within the FRG at the level when k ≠ 0, and the
corresponding S matrix does depend on gauges. Violation
of the BRST symmetry entails an additional problem
associated with unitarity since the usual solution assumes
the existence of a nilpotent BRST charge [33]. Later on, we
will return to discussion of this problem when studying the
gauge dependence of the effective average action.

IV. WARD IDENTITIES

Quantization of gauge theories leads to very important
understanding concerning the existence of relations between
some Green’s functions. These relations in the case of Yang-
Mills theories are known as the Slavnov-Taylor identities
[60,61]; for general gauge theories, they are named as the
Ward identities in honor of John Ward who first discovered
an identity in quantum electrodynamics providing the
gradient invariance of the S-matrix elements [62]. In the
FRG approach, the relations are refereed as the modified
Slavnov-Taylor identities [8]. Notice that the ST identities
are direct consequences of the gauge invariance of the Yang-
Mills action, and they were introduced before the discovery
of the BRST symmetry. In turn, the BRST symmetry helps
to present the ST identities in a unique and compact form
(see, for example, Ref. [52], in which this issue is presented
and discussed in details). The latter circumstance is often the
cause of misconception regarding the role of BRST sym-
metry in the existence of ST identities. Our interest in this
issue is caused by the widespread opinion among the FRG
community that these identities solve the problem of gauge
dependence. Our point of view is completely different from
this opinion. These identities are direct consequences of the
gauge invariance of the initial classical action on the
quantum level providing a correct solution to the renorm-
alization procedure. Possible misunderstandings are caused
by the fact that these identities can be represented in a
universal form using the BRST transformations. But one
must keep in mind that only in the case when the BRST
transformations are transformations of global supersym-
metry of a given gauge system the gauge independence
of the S matrix can be confirmed. In particular, in the case of
FRG approach, the mST identities do not guarantee the
BRST symmetry.

A. ST identities in FP method

We begin our discussion of the ST identities appearing as
a direct consequence of gauge invariance of initial classical
action S0½A�. For all practical goals of quantum calculations
in the case of Yang-Mills type of gauge theories, it is
sufficient to introduce the generating functional of Green’s
functions

Z½j� ¼
Z

Dϕ exp

�
i
ℏ
ðSFP½ϕ� þ jAÞ

�
; ð4:1Þ
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where ji, εðjiÞ ¼ εi are external sources to fields Ai.
Thanks to the gauge invariance of the action S0½A� (2.1),
the Green’s functions of the theory obey the relations
known as the ST identities [60,61]. These identities can be
derived from (4.1) by means of the change of integration
variables Ai, in the form of infinitesimal gauge trans-
formations (2.1). The Jacobian of these transformations is
equal to unity. Then, the basic ST identities for Yang-Mills
fields can be written in the form

jihRi
αðAÞij þ hBβðχαðA;BÞ∂⃖AiÞRi

αðAÞij
þ hC̄βðχβðA; BÞ∂⃖AiÞRi

γ;kðAÞRk
αðAÞCγijð−1Þεαðεγþ1Þ

− hC̄βðχβðA;BÞ∂⃖Ai ∂⃖AkÞRk
γðAÞCγRi

γðAÞijð−1Þεiþεj ≡ 0;

ð4:2Þ

where the symbol hGðϕÞij means the vacuum expectation
value of the quantity GðϕÞ in the presence of external
sources jaμ,

hGðϕÞij ¼
Z

DϕGðϕÞ exp
�
i
ℏ
½SFP½ϕ� þ jA�

�
: ð4:3Þ

The generating functional Z½j� contains information about
all Green’s functions of the theory, which can be obtained
by taking variational derivatives with respect to the sources.
Similarly, the ST identities represent an infinite set of
relations obtained from (4.2) by taking derivatives with
respect to external sources jaμ. In the case of the linear gauge
condition, the last summand in (4.2) disappears.
The form of the ST identities can be greatly simplified by

introducing extra sources to the ghost, antighost, and
auxiliary fields. In this case, one has to deal with the
extended generating functional of the theory

Z½J� ¼
Z

Dϕ exp

�
i
ℏ
½SFP½ϕ� þ Jϕ�

�
: ð4:4Þ

The generating functional of connected Green’s functions,
W½J�, is defined by the relation

Z½J� ¼ exp

�
i
ℏ
W½J�

�
: ð4:5Þ

Finally, the generating functional of the vertex Green’s
functions (effective action) is defined through the Legendre
transformation of W½J�,

Γ½Φ� ¼ W½J� − JΦ; ð4:6Þ

where the source fields JA are solutions of the equations

ΦA ¼ ∂⃗JAW½J�: ð4:7Þ

By means of (4.6) and (4.7), one can easily arrive at the
relations

Γ½Φ�∂⃖ΦA ¼ −JA: ð4:8Þ

The ST identities which are consequences of gauge
symmetry of initial action can be rewritten with the help
of the BRST symmetry of the Faddeev-Popov action. For
this end, we make use of the change of variables in the
functional integral (4.4) of the form (3.6). Because of the
property (3.16) and nilpotency of μ, the Jacobian of this
transformation is equal to 1. Using the invariance of the
functional integral under change of integration variables,
the following identity holds:

Z
DϕJδBϕ exp

�
i
ℏ
ðSFP½ϕ� þ JϕÞ

�
≡ 0: ð4:9Þ

Here, the nilpotency of BRST transformation and the
consequent exact relation

exp

�
i
ℏ
JδBϕ

�
¼ 1þ i

ℏ
JδBϕ ð4:10Þ

have been used.
From (4.5) and (4.8), it follows that

JARAð−iℏ∂⃗JÞZ½J�≡ 0; JARAð−iℏ∂⃗JÞW½J�≡ 0; ð4:11Þ

which are the ST identities in a closed form for the
functionals Z½J� and W½J�. These identities, like those in
(4.2), contain explicit information about gauge theory
through generators of the BRST transformations. There
exists a possibility to present the ST identities in a unique
form with the introduction of a set of external sources
(known as antifields in the BV formalism) Φ�

A; εðΦ�
AÞ ¼

εA þ 1 to the BRST transformations and the extended
generating functional of Green’s functions

Z½J;Φ�� ¼
Z

Dϕ exp

�
i
ℏ
½SFP½ϕ� þ JϕþΦ�

AR
AðϕÞ�

�

¼ exp

�
i
ℏ
W½J;Φ��

�
; ð4:12Þ

where we used the notation for BRST transformations,
RAðϕÞ, which was previously introduced in (3.6). It is clear
that

Z½J;Φ��jΦ�¼0 ¼ Z½J�: ð4:13Þ

Now, we can present the ST identities (4.11) in the
following form:

JA∂⃗Φ�
A
Z½J;Φ��≡ 0; JA∂⃗Φ�

A
W½J;Φ��≡ 0: ð4:14Þ
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In terms of the extended effective action, Γ ¼ Γ½Φ;Φ��,

Γ½Φ;Φ��¼W½J;Φ��−JΦ; ΦA¼ ∂⃗JAW½J;Φ��;
Γ½Φ;Φ��∂⃖ΦA ¼−JA; ð4:15Þ

the identities (4.14) is rewritten as

Γ∂⃖ΦA ∂⃗Φ�
A
Γ≡ 0 ð4:16Þ

in the form of a nonlinear equation with respect to Γ (in the
form of the Zinn-Justin equation [63]).

B. Ward identities in BV formalism

Now, we shall proceed with the derivation of the Ward
identity for general gauge theories within the BV formal-
ism. It is very useful from the beginning to work with the
extended generating functional of Green’s functions

Z½J;ϕ�� ¼
Z

Dϕ exp

�
i
ℏ
ðSext½ϕ;ϕ�� þ JAϕAÞ

�

¼ exp

�
i
ℏ
W½J;ϕ��

�
; ð4:17Þ

where W½J;ϕ�� is the generating functional for connected
Green’s functions,

Sext½ϕ;ϕ�� ¼ S½ϕ;ϕ� þ Ψ½ϕ�∂⃖ϕ�; ð4:18Þ

and functional S½ϕ;ϕ�� satisfies the quantum master equa-
tion (3.19) and the boundary condition (3.20). The gauge-
fixing procedure (4.17) used in the BV formalism [37,38]
can be described in terms of anticanonical transformation,

ϕ0A ¼ ∂⃗ϕ�0
A
F½ϕ;ϕ�0 �; ϕ�

A ¼ F½ϕ;ϕ�0 �∂⃖ϕA ; ð4:19Þ

of a special form corresponding to the choice of generating
functional F½ϕ;ϕ�0 � in the form

F½ϕ;ϕ�0 � ¼ ϕ�0
Aϕ

A þ Ψ½ϕ�; εðΨÞ ¼ 1; ð4:20Þ

as it was proposed for the first time in Ref. [41].
Notice that the action Sext½ϕ;ϕ�� satisfies the quantum

master equation (3.19) as well. Indeed, the equality holds,3

exp

�
i
ℏ
Sext½ϕ;ϕ��

�
¼expf½Ψ;Δ�gexp

�
i
ℏ
S½ϕ;ϕ��

�
; ð4:21Þ

because

½Ψ;Δ� ¼ Ψ∂⃖ϕA ∂⃗ϕ�
A
; ð4:22Þ

and the operator expf½Ψ;Δ�g acts as the translation
operator with respect to ϕ�

A. Note that

½Δ; ½Ψ;Δ�� ¼ 0; ð4:23Þ

and therefore

Δ exp

�
i
ℏ
Sext

�
¼ 0 →

1

2
ðSext; SextÞ ¼ iℏΔSext: ð4:24Þ

Taking into account the equation (4.24), the explicit form
of the operator Δ (3.23) and independence of operator ∂⃗ϕ�

A
on the integration variables in functional integral we have
the evident relation

0¼
Z

Dϕexp

�
i
ℏ
JAϕA

�
Δexp

�
i
ℏ
Sext½ϕ;ϕ��

�

¼ð−1ÞεA ∂⃗ϕ�
A

Z
Dϕexp

�
i
ℏ
JAϕA

�
∂⃗ϕA exp

�
i
ℏ
Sext½ϕ;ϕ��

�
:

ð4:25Þ

Integrating by parts in the last integral, one finds that the
theory in question satisfies the equality

JA∂⃗ϕ�
A
Z½J;ϕ�� ¼ 0: ð4:26Þ

This is the Ward identity written for the extended generat-
ing functional of Green’s functions. For the generating
functional of connected Green’s functions W½J;ϕ��, the
identity (4.26) is rewritten in the form

JA∂⃗ϕ�
A
W½J;ϕ�� ¼ 0: ð4:27Þ

Introducing the generating functional of the vertex func-
tions Γ ¼ Γ½Φ;Φ�� (for uniformity of notations, we use
ϕ�
A ¼ Φ�

A) in a standard manner, through the Legendre
transformation of W½J;Φ��,

Γ½Φ;Φ�� ¼ W½J;Φ�� − JAΦA; ΦA ¼ ∂⃗JAW½J;Φ��;
Γ½Φ;Φ��∂⃖ϕA ¼ −JA: ð4:28Þ

the Ward identity (4.27) for Γ ¼ Γ½Φ;Φ�� takes the form of
the classical master equation,

ðΓ;ΓÞ ¼ 0: ð4:29Þ

The form (4.29) coincides with (4.16). The Ward identity
(4.29) plays a crucial role in proving the gauge-invariant
renormalizability of general gauge theories [41].

C. Modified Slavnov-Taylor identities in FRG

Although the BRST symmetry is broken in the FRG
approach, nevertheless, certain relations between the

3For any two quantities F and H, the supercommutator is
defined as ½F;H� ¼ FH −HFð−1ÞεðFÞεðHÞ.
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Green’s functions known as the mST identities exist. It
confirms that the existence of these relations is not related
with the BRST symmetry but the main reason is gauge
invariance of an initial classical action.
To discuss the mST identities, it is useful as in previous

cases to introduce the average generating functional of
Green’s functions Zk ¼ Zk½J;Φ�� and the average generat-
ing functional of connected Green’s functions Wk ¼
Wk½J;Φ�� in the FRG approach,

Zk½J;Φ��¼
Z

Dϕexp

�
i
ℏ
ðS0½A�þSk½ϕ�þΨ½ϕ�R̂ðϕÞ

þJAϕAþΦ�
AR

AðϕÞÞ
�

¼ exp

�
i
ℏ
Wk½J;Φ��

�
: ð4:30Þ

Making use of the change of integration variables in the
sector of fields Ai in the form of gauge transformations

δAi ¼ Ri
αðAÞCαμ ¼ RiðϕÞμ; ð4:31Þ

taking into account the invariance of S0½A� under trans-
formations (4.31) and the Jacobian of these transformations

J ¼ 1þ ð−1Þεi ∂⃗AiRi
αðAÞCαμ; ð4:32Þ

we arrive at the identity

ðJj∂⃗Φ�
j
þ Sk;j½−iℏ∂⃗J�∂⃗Φ�

j
þ ð−1Þεjðεαþ1ÞRj

α;jð−iℏ∂⃗JÞ∂⃗ J̄α þΦ�
AR

A
;jð−iℏ∂⃗JÞ∂⃗Φ�

j

þ Ψ;A½−iℏ∂⃗J�RA
;ið−iℏ∂⃗JÞ∂⃗Φ�

j
þ ð−1ÞεjΨ;jA½−iℏ∂⃗J�∂⃗Φ�

A
∂⃗Φ�

j
ÞZk½J;Φ��≡ 0; ð4:33Þ

which is nothing but the mST identity in the FRG approach
and a direct consequence of gauge invariance of initial
classical action S0½A� at the quantum level. Note that the
mST identity in the case of pure Yang-Mills theory
formulated in linear nonsingular Lorenz invariant gauges
for the FRG approach was derived in Ref. [8].
One can present the mST identity (4.33) in a more

compact form using additional information about invari-
ance properties of quantities entering the exponent of the
integrand (4.30). Consider the change of variables Cα, C̄α,

δCα ¼ −
1

2
ð−1ÞεβFα

βγC
γCβμ; δC̄α ¼ μBα ð4:34Þ

in the functional integral entering the identity (4.33). Then,
the result

ðJA∂⃗Φ�
A
þ Sk;A½−iℏ∂⃗J�∂⃗Φ�

A
ÞZk½J;Φ��≡ 0 ð4:35Þ

coincides with that obtained by making use the change of
variables ϕA in the form of the BRST transformations,
δϕA ¼ RAðϕÞμ in the functional (4.30). In terms of
the average generating functional of connected Green’s
functions, Wk ¼ Wk½J;Φ��, the mST identity (4.35) is
rewritten as

ðJA∂⃗Φ�
A
þ Sk;A½ð∂⃗JWkÞ − iℏ∂⃗J�∂⃗Φ�

A
ÞWk½J;Φ��≡ 0: ð4:36Þ

The effective average action, Γk ¼ Γk½Φ;Φ��, is defined
through the Legendre transformation of Wk,

Γk½Φ;Φ��¼Wk½J;Φ��−JΦ; ΦA¼ ∂⃗JAWk½J;Φ��;
Γk½Φ;Φ��∂⃖ΦA ¼−JA: ð4:37Þ

Then, the mST identity (4.36) can be presented in terms of
Γk as

Γk∂⃖ΦA ∂⃗Φ�
A
Γk − Sk;A½Φ̂�∂⃗Φ�

A
Γk ≡ 0; ð4:38Þ

or, using the antibracket,

1

2
ðΓk;ΓkÞ − Sk;A½Φ̂�∂⃗Φ�

A
Γk ≡ 0; ð4:39Þ

where the notations

Φ̂A¼ΦAþ iℏðΓ00−1
k ÞAB∂⃗ΦB ;

ðΓ00
kÞAB¼ ∂⃗ΦAΓk∂⃖ΦB ; ðΓ00−1

k ÞAC ·ðΓ00
kÞCB¼δAB ð4:40Þ

are used. In the limit k → 0, the mST identity (4.39)
reduces to (4.29).

V. GAUGE DEPENDENCE

The gauge dependence is a problem in quantum descrip-
tion of gauge theories. Any covariant quantization scheme
(FP method [36], BV formalism [37,38], FRG approach
[1,2], and Gribov-Zwanziger theory [64–66]) for gauge
theories meets with the gauge-dependence problem. Here,
we remember the main aspects and solutions of the gauge-
dependence problem in the FP method and the BV
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formalism. We obtain new results concerning the gauge-
dependence problem of the effective average action pre-
cisely on the level of the flow equation.

A. Gauge dependence in FP method

It iswell known that theGreen’s functions in gauge theories
depend on the choice of gauge [17,34,35,39,40,53,67–71].
From the gauge independence of theSmatrix [seeEq. (3.15)],
it follows that the gauge dependence of the Green’s functions
in gauge theories must be of a special character. To study the
character of this dependence, let us consider an infinitesimal
variation of gauge-fixing functional Ψ½ϕ� → Ψ½ϕ� þ δΨ½ϕ�
in the functional integral (3.12). Then, we obtain

δZ½J;Φ��¼ i
ℏ

Z
DϕδΨ;A½ϕ�RAðϕÞ

×exp

�
i
ℏ
ðSPF½ϕ�þJAϕAþΦ�

AR
AðϕÞÞ

�
: ð5:1Þ

Making use of the change of integration variables in the
functional integral (5.1) in the form of the BRST trans-
formations,

δϕA ¼ RAðϕÞμ½ϕ�; ð5:2Þ

taking into account that due to (3.17) the corresponding
Jacobian, J, is equal to

J ¼ expf−μ½ϕ�;ARAðϕÞg; ð5:3Þ

choosing the functional μ½ϕ� in the form μ½ϕ� ¼ ði=ℏÞδΨ½ϕ�,
the relation (5.1) is rewritten as

δZ½J;Φ�� ¼ i
ℏ

Z
DϕJARAðϕÞδΨ½ϕ� exp

�
i
ℏ
ðSPF½ϕ� þ JAϕA þΦ�

AR
AðϕÞÞ

�
¼ i

ℏ
JARAð−iℏ∂⃗JÞδΨ½−iℏ∂⃗J�Z½J;Φ��: ð5:4Þ

The Eq. (5.1) can be equivalently presented in the form

δZ½J;Φ�� ¼ i
ℏ
δΨ;A½−iℏ∂⃗J�RAð−iℏ∂⃗JÞZ½J;Φ��: ð5:5Þ

The relations (5.4) and (5.5) are equivalent due to the
evident equality

Z
Dϕ∂⃗ϕB

�
Ψ½ϕ�RBðϕÞ exp

�
i
ℏ
ðSPF½ϕ�

þ JAϕA þΦ�
AR

AðϕÞÞ
��

¼ 0; ð5:6Þ

where the equations

SPF;A½ϕ�RAðϕÞ ¼ 0; RA
;AðϕÞ ¼ 0; RA

;BðϕÞRBðϕÞ ¼ 0

ð5:7Þ

should be used. In terms of the functional W½J;Φ��, the
relations (5.4) and (5.5) are rewritten as

δW½J;Φ��¼JARAð∂⃗JW− iℏ∂⃗JÞδΨ½∂⃗JW− iℏ∂⃗J� ·1 ð5:8Þ

and

δW½J;Φ��¼δΨ;A½∂⃗JW− iℏ∂⃗J�RAð∂⃗JW− iℏ∂⃗JÞ ·1: ð5:9Þ

Finally, the gauge dependence of the effective action,
Γ ¼ Γ½Φ;Φ��, is described by the relation

δΓ½Φ;Φ�� ¼ −ðΓ∂⃖ΦAÞRAðΦ̂ÞδΨ½Φ̂� · 1; ð5:10Þ

or

δΓ½Φ;Φ�� ¼ δΨ;A½Φ̂�RAðΦ̂Þ · 1: ð5:11Þ

Calculating the effective action Γ½Φ;Φ�� on its extremals
∂ΦAΓ ¼ 0, from the equation (5.10) it follows that this
action does not depend on the gauges,

δΓj∂ΦΓ¼0 ¼ 0; ð5:12Þ

making possible the physical interpretation of results
obtained in the FP method.

B. Gauge dependence in BV formalism

Let us consider the gauge-dependence problem in the
BV formalism. To do this, we make an infinitesimal
variation of the gauge-fixing functional Ψ½ϕ� → Ψ½ϕ�þ
δΨ½ϕ�. Then, due to (4.21), the variation of expfði=ℏÞSextg
reads

δ

�
exp

�
i
ℏ
Sext

��
¼½δΨ;Δ�exp

�
i
ℏ
Sext

�
¼ΔδΨexp

�
i
ℏ
Sext

�

ð5:13Þ

because in the case, when Ψ and δΨ depend on the
variables ϕ only, the operator ½δΨ;Δ� commutes
with ½Ψ;Δ�.
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Next, the corresponding variation of the functional Z½J;Φ�� has the form

δZ½J;ϕ�� ¼
Z

dϕ exp

�
i
ℏ
JAϕA

�
ΔδΨ exp

�
i
ℏ
Sextðϕ;ϕ�Þ

�

¼ ð−1ÞεA ∂⃗ϕ�
A

Z
dϕ exp

�
i
ℏ
JAϕA

�
∂⃗ϕAδΨ exp

�
i
ℏ
Sextðϕ;ϕ�Þ

�

¼ −∂⃗ϕ�
A
JA

Z
dϕδΨ exp

�
i
ℏ
½Sextðϕ;ϕ�Þ þ JAϕA�

�
: ð5:14Þ

Therefore,

δZ½J;ϕ�� ¼ −
i
ℏ
JA∂⃗ϕ�

A
δΨ½−iℏ∂⃗J�Z½J;ϕ��: ð5:15Þ

In terms of the generating functional W ¼ W½J;ϕ�� of
connected Green’s functions, we have

δW½J;ϕ�� ¼ −JA∂⃗ϕ�
A
Ψ½ð∂⃗JWÞ − iℏ∂⃗J� · 1: ð5:16Þ

In deriving the relation (5.16) describing the gauge
dependence of functional W, the Ward identity (4.14)
has been substantially used. This once again emphasizes
that the gauge-dependence problem cannot be reduced to
fulfilling Ward’s identities. The variation of the generating
functional of vertex functions Γ ¼ Γ½Φ;Φ��, where

Φ�
A ¼ ϕ�

A, ΦA ¼ ∂⃗JAW½J;Φ��, can be written as

δΓ ¼ Γ∂⃖ΦAð∂⃗Φ�
A
hδΨi þ ð∂⃗Φ�

A
ΦBÞ∂⃗ΦBhδΨiÞ; ð5:17Þ

where we have used the equality

∂⃗Φ�
A
jJ ¼ ∂⃗Φ�

A
jΦ þ ð∂⃗Φ�

A
ΦBÞjJ∂⃗ΦB jΦ� ð5:18Þ

and also introduced the notation hδΨi ¼ hδΨi½Φ;Φ�� for
the functional

hδΨi¼δΨ½Φ̂� ·1; Φ̂A¼ΦAþ iℏðΓ00−1ÞAB∂⃗ΦB ; ð5:19Þ

where

Γ00
AB ¼ ∂⃗ΦAΓ∂⃖ΦB ; ðΓ00−1ÞAC · Γ00

CB ¼ δAB: ð5:20Þ

Calculating the effective action Γ½Φ;Φ�� on its extremals
∂ΦAΓ ¼ 0, from the Eq. (5.17) it follows that this action
does not depend on the gauges,

δΓ½Φ;Φ��j∂ΦΓ¼0 ¼ 0: ð5:21Þ

There is another point of view related with this fact.
Indeed, taking into account the Ward identity for the
functional W ¼ W½J;Φ�� (4.14), we derive the relations

0 ¼ ∂⃗JBðJA∂⃗Φ�
A
WÞ ¼ ∂⃗Φ�

A
W þ ð−1ÞεBJA∂⃗Φ�

A
∂⃗JBW;

JA∂⃗Φ�
A
ΦB ¼ JA∂⃗Φ�

A
∂⃗JBW: ð5:22Þ

Therefore, we can rewrite the equation (5.17) in the form

δΓ ¼ Γð∂⃖ΦA ∂⃗Φ�
A
− ∂⃖Φ�

A
∂⃗ΦAÞhδΨi ¼ ðΓ; hδΨiÞ: ð5:23Þ

We see that the variation of the functional Γ under an
infinitesimal change of gauge fixing may be expressed in
the form of anticanonical transformation (4.19) of the
fields and antifields with the generating function F ¼
FðΦ;Φ�Þ ¼ Φ�

AΦA þ hδΨ̂i,

Φ0A ¼ΦA þ ∂⃗Φ�
A
hδΨi; Φ�0

A ¼Φ�
A − hδΨi∂⃖ΦA : ð5:24Þ

For the first time, such character of the gauge dependence
of the effective action in the BV formalism has been
described in Ref. [41], allowing one to prove gauge-
invariant renormalizability of general gauge theories.

C. Gauge dependence in FRG

We consider the gauge-dependence problem within the
FRG approach not restricting ourselves to special types of
the initial classical action, S0½A�, or gauge-fixing condition,
Ψ½ϕ�. We demonstrate that derivation of the flow equation
and analysis of gauge dependence have the same level of
accuracy.
The generating functional of the Green’s functions has

the form

Zk½J;Φ�� ¼
Z

Dϕ exp

�
i
ℏ
½SWk½ϕ� þΦ�

AR
AðϕÞ þ JAϕA�

�

¼ exp

�
i
ℏ
Wk½J;Φ��

�
; ð5:25Þ

where

SWk½ϕ� ¼ S0½A� þ Sk½ϕ� þ Ψ;A½ϕ�RAðϕÞ: ð5:26Þ

Let us find the partial derivative of Zk½J;Φ�� with respect to
ir cutoff parameter k. The result reads
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∂kZk½J;Φ�� ¼ i
ℏ

Z
Dϕ∂kSk½ϕ� exp

�
i
ℏ
½SWk½ϕ�

þΦ�
AR

AðϕÞ þ JAϕA�
�

¼ i
ℏ
∂kSk½−iℏ∂⃗J�Zk½J;Φ��: ð5:27Þ

In deriving this result, the existence of the functional
integral (5.25) is only used. In terms of generating func-
tional of the connected Green’s functions, we have

∂kWk½J;Φ�� ¼ ∂kSk½∂⃗JWk − iℏ∂⃗J� · 1: ð5:28Þ

The basic equation (flow equation) of the FRG approach
follows from (5.28)

∂kΓk½Φ;Φ�� ¼ ∂kSk½Φ̂� · 1; ð5:29Þ

where Φ̂ ¼ fΦ̂Ag is defined in (4.40). It follows from
(4.40) that ∂kΦ̂A ≠ 0. It is assumed that solutions to the
flow equations (5.29) present the effective average action
Γk½Φ;Φ�� beyond the usual perturbation calculations. In
perturbation theory, the functional Γk ¼ Γk½Φ;Φ�� is con-
sidered as a solution to the functional integrodifferential
equation

exp

�
i
ℏ
Γk½Φ;Φ��

�
¼
Z

Dϕexp

�
i
ℏ
½SWk½Φþϕ�

þΦ�
AR

AðΦþϕÞ−Γk½Φ;Φ��∂⃖ΦAϕA�
�
;

ð5:30Þ

using in the functional integral the Taylor expansion for the
exponent with respect to fields ϕ and then integrating over
ϕ. Such a procedure is mathematically correct because the
functional integral is well defined in the perturbation theory
[72]. It is a known fact [52] that the effective average action
found as a solution to the equation (5.30) depends on
gauges even on shell.
Now, we analyze the gauge-dependence problem of the

flow equation (5.29). Note that up to now this problem has
never been discussed in the literature. To do this, we
consider the variation of ∂kZk½J;Φ�� (5.27) under an
infinitesimal change of the gauge-fixing functional,
Ψ½ϕ� → Ψ½ϕ� þ δΨ½ϕ�. Taking into account that ∂kSk does
not depend on the gauge-fixing procedure, we obtain

δ∂kZk½J;Φ�� ¼
�
i
ℏ

�
2∂kSk½−iℏ∂⃗J�δΨ;A½−iℏ∂⃗J�

× RAð−iℏ∂⃗JÞZk½J;Φ��: ð5:31Þ

In terms of the functional Wk½J;Φ��, we have

δ∂kWk½J;Φ�� ¼ ∂kSk½∂⃗JWk − iℏ∂⃗J�δΨ;A½∂⃗JWk

− iℏ∂⃗J�RAð∂⃗JWk − iℏ∂⃗JÞ · 1: ð5:32Þ

Finally, the gauge dependence of the flow equation is
described by the equation

δ∂kΓk½Φ;Φ�� ¼ ∂kSk½Φ̂�δΨ;A½Φ̂�RAðΦ̂Þ · 1: ð5:33Þ

Therefore, at any finite value of k, the effective average
action depends on gauges. But what about the case when
k → 0? One can think that due to the property

lim
k→0

Γk ¼ Γ; ð5:34Þ

where Γ is the standard effective action constructed by the
Faddeev-Popov rules, the gauge dependence of the effec-
tive average action disappears at the fixed points (see, for
example, Ref. [44]). It is not true because by itself the
effective action Γ depends on gauges. Moreover, there
exists an additional reason to doubt the gauge independ-
ence of the effective average action at the fixed points.
Indeed, in the FRG, the effective average action Γk should
be found as a solution to the flow equation (5.29), which
includes the differential operation with respect to the ir
parameter k. Let us present the effective average action in
the form

Γk ¼ Γþ kHk; ð5:35Þ

where functional Hk obeys the property

lim
k→0

Hk ¼ H0 ≠ 0: ð5:36Þ

Then, we have the relations

∂klim
k→0

Γk ¼ 0; lim
k→0

∂kΓk ¼ H0: ð5:37Þ

These two operation do not commute, and the gauge
independence at the fixed points requires some additional
study. Taking into account the commutativity of gauge
variation and of the limit k → 0 from Eqs. (5.33) and
(5.37), it follows that

lim
k→0

δ∂kΓk ¼ δH0: ð5:38Þ

If H0 depends on gauges, then δH0 ≠ 0, and one meets the
gauge-dependence problem at the fixed points. We are
going to support the existence of this problem by explicit
calculations of the effective average action for a toy gauge
model based on electromagnetic field in the flat space-time.
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The classical action of the model is

S0ðAÞ¼−
1

4

Z
d4xFμνFμν; Fμν¼∂μAν−∂νAμ: ð5:39Þ

We choose the gauge-fixing function in the form corre-
sponding to nonsingular gauges

χðA; BÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p ∂αAα þ B; ð5:40Þ

where B is an auxiliary field introducing the gauge and ξ is
a gauge parameter. Integrating over field B in the functional
integral yields the gauge-fixing action

SgfðAÞ ¼ −
1

2ð1þ ξÞ
Z

d4xð∂αAαÞ2: ð5:41Þ

The action for ghosts reads

SghðC̄; CÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
Z

d4xC̄ð∂α∂αÞC: ð5:42Þ

Calculation of the effective average action of the model
within the standard FRG method gives

ΓkðΦÞ¼S0ðAÞþSgfðAÞþSghðC̄;CÞþSkðΦÞþ iℏΓð1Þ
k ðξÞ;
ð5:43Þ

where the regulator action, SkðA; C̄; CÞ, is

SkðΦÞ ¼ 1

2

Z
d4xAαðRk;AÞαβAβ þ

Z
d4xC̄Rk;ghC; ð5:44Þ

and the function Γð1Þ
k ðξÞ has the form

Γð1Þ
k ðξÞ ¼ 1

2
Tr ln

�
□δαβ −

ξ

1þ ξ
∂α∂β þ ðRk;AÞαβ

�

− Tr ln

�
1ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p □þ Rk;gh

�
: ð5:45Þ

It is important to note that the action (5.43) is the exact
solution to the flow equation without using any truncation
schemes.
From (5.43)–(5.45), it follows that

lim
k→0

ΓkðΦÞ ¼ S0ðAÞ þ SgfðAÞ þ SghðC̄; CÞ

þ iℏ
1

2
Tr ln

�
□δαβ −

ξ

1þ ξ
∂α∂β

�

− iℏTr ln

�
1ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p □

�
; ð5:46Þ

and

∂kΓkðΦÞ¼∂kSkðΦÞþ iℏ
1

2
Tr½Gα

βðξÞ∂kðRk;AÞβγ �

þ iℏTr

��
1ffiffiffiffiffiffiffiffiffiffi
1þξ

p □þRk;gh

�
−1∂kRk;gh

�
; ð5:47Þ

where Gα
βðξÞ is an operator inverse to

Mα
βðξÞ¼□δαβ−

ξ

1þξ
∂α∂βþðRk;AÞαβ; Mα

βðξÞGβ
γ ðξÞ¼δαγ :

ð5:48Þ

Therefore, the relations (5.46) and (5.47) confirm main
statements about gauge dependence in the FRG: the
effective average action depends on gauges in the limit
k → 0, and the flow equation depends on gauges at any
value of ir parameter k. Moreover, if the partial derivatives
of regulator functions with respect to parameter k do not
disappear in the limit k → 0,

lim
k→0

∂kRk ≠ 0; ð5:49Þ

then in this case the second limit in Eq. (5.37) depends on
gauges explicitly. Let us emphasize again that the toy
model is useful in studying basic properties of effective
average action in the FRG due to the its explicit form of
this action. It allows to analyze the gauge dependence not
only the effective average action but the flow equation at
any value of ir parameter. In particular, this study indicates
the existence of a real problemwith gauge dependence even
at the fixed points.
Quite recently by explicit calculations in the FRG

approach, the gauge dependence of some mass parameters
in gravity theories at the fixed points has been found [73]. It
means that all general conclusions made in this subsection
about gauge dependence in the FRG are true.

VI. BACKGROUND FIELD METHOD

The background field method (BFM) [53–55] presents a
reformulation of quantization procedure for Yang-Mills
theories allowing to work with the effective action invariant
under the gauge transformations of background fields
and to reproduce all usual physical results by choosing a
special background field condition [50,55]. Application of
the BFM simplifies essentially calculations of Feynman
diagrams in gauge theories [74–78] (among recent appli-
cations of this approach see, for example, [79–83]). The
gauge-dependence problem in this method remains very
important matter although it does not discuss because
standard considerations are restricted by the background
field gauge condition only.
We study the gauge dependence of generating func-

tionals of the Green’s functions in the BFM for Yang-Mills
theories in class of gauges depending on gauge and
background vector fields. The background field gauge
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condition belongs them as a special choice. We prove that
the gauge invariance can be achieved if the gauge-fixing
functions satisfy a tensor transformation law. We consider
the gauge dependence and gauge invariance problems
within the background field formalism as two independent
ones. To support this point of view we analyze the FRG
approach [1,2] in the BFM. We find restrictions on tensor
structure of the regulator functions which allow to construct
a gauge invariant average effective action. Nevertheless,
being gauge invariant this action remains a gauge-depen-
dent quantity on-shell making impossible a physical
interpretation of results obtained for gauge theories.

A. BFM in FP method

We consider any Yang-Mills type of gauge theory of
fields Ai, with Grassmann parity εi ¼ εðAiÞ. Application
of the BFM requires specifying gauge fields of initial
action S0½A� being invariant under gauge transformations,
δξAi ¼ Ri

αðAÞξα, εðRi
αÞ ¼ εi þ εα; εðξαÞ ¼ εα. A complete

set of fields Ai ¼ ðAαk; AmÞ includes fields Aαk of the gauge
sector and also fields Am of the matter sector of a given
theory. We do not assume linearity in the fields of the gauge
generators Ri

αðAÞ because quite recently generalization of
the BFM for nonlinear gauge-fixing conditions and non-
linear realizations of the gauge generators has been
found [84].
The BFM story begins with splitting the original fields

Ai into two types of fields, through the substitution
Ai⟼Ai þ Bi in the initial action S0½A�. It is assumed that
the fields Bi are not equal to zero only in the gauge sector.
These fields form a classical background, while Ai are
quantum fields, which means being subject of quantization;
e.g., these fields are integration variables in functional
integrals. It is clear that the total action satisfies

δωS0½Aþ B� ¼ 0 ð6:1Þ

under the transformation Ai⟼A0i ¼ Ai þ Ri
αðAþ BÞωα.

On the other hand, the new field Bi introduces extra new
degrees of freedom and, thence, there is an ambiguity in the
transformation rule for each of the fields Ai and Bi. This
ambiguity can be fixed in different ways, and in the BFM, it
is done by choosing the transformation laws

δðqÞω Ai ¼ ½Ri
αðAþ BÞ − Ri

αðBÞ�ωα; δðcÞω Bi ¼ Ri
αðBÞωα;

ð6:2Þ

defining the background field transformations for the fields
Ai and Bi, respectively. In linear realization of gauge
generators, the transformations (6.2) in the sector of fields

Ai are just in the form δðqÞω Ai ¼ Ri
αðAÞωα. The superscript

(q) indicates the transformation of the quantum fields,
while that of the classical fields is labeled by (c). Thus, in

Eq. (6.1), one has δω ¼ δðqÞω þ δðcÞω . Indeed, the background
field transformation rule for the field Ai was chosen so that

δðcÞω Bi þ δðqÞω Ai ¼ Ri
αðAþ BÞωα: ð6:3Þ

Quantization of gauge theory with action S0½Aþ B� and
gauge generators Ri

αðAþ BÞ is performed in the FP method
[36]. It means that one has to introduce a gauge-fixing
condition for the quantum fields Ai and the set of all
quantum fields ϕ ¼ fϕAg as described in Sec. III. The
corresponding Faddeev-Popov action in the BFM reads

SFP½ϕ;B� ¼ S0½Aþ B� þ Ψ½ϕ;B�R̂ðϕ;BÞ; ð6:4Þ

where the notations

R̂ðϕ;BÞ¼ ∂⃖ϕARAðϕ;BÞ; Ψ½ϕ;B�¼ C̄αχαðA;B;BÞ; ð6:5Þ

RAðϕ;BÞ ¼ ðRi
αðAþ BÞCα; 0;

− ð1=2ÞFα
βγC

γCβð−1Þεβ ; ð−1ÞεαBαÞ ð6:6Þ

are used. In (6.5), χαðA;B;BÞ are gauge-fixing functions
which may depend on fields Bα allowing us to introduce
nonsingular gauges,

χαðA;B;BÞ ¼ χαðA;BÞ þ ðξ=2ÞgαβBα: ð6:7Þ

In this expression, ξ is a gauge parameter that has to be
introduced in the case of a nonsingular gauge condition,
and gαβ is an arbitrary invertible constant matrix such that
gβα ¼ gαβð−1Þεαεβ . The standard choice of χαðA;BÞ in the
BFM is of the type χαðA;BÞ ¼ FαiðBÞAi, which is a gauge-
fixing condition linear in the quantum fields Ai. In what
follows, consequent results do not require any kind of
a priori specific dependence of the gauge-fixing functions
χαðA; B;BÞ on Ai, Bα, and Bi.
The action (6.4) is invariant under the BRST

transformations

δBϕ
A ¼ RAðϕ;BÞμ; SFP½ϕ;B�R̂ðϕ;BÞ ¼ 0; ð6:8Þ

which do not depend on choice of the gauge-fixing
condition. In (6.8), μ is a constant anticommuting para-
meter. The BRST transformations are applied only on
quantum fields; thus, δBBi ¼ 0. Notice that the BRST
operator is nilpotent,

R̂2ðϕ;BÞ ¼ 0: ð6:9Þ

Apart from the global supersymmetry (BRST sym-
metry), a consistent formulation of the BFM requires that
the Faddeev-Popov action be invariant under background
field transformations. The former symmetry is ensured in
the representation (6.4) of the Faddeev-Popov action, for
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any choice of gauge-fixing functional Ψ. Therefore, it is
possible to extend considerations to a more general case in
which Ψðϕ;BÞ ¼ C̄αχαðϕ;BÞ, where the gauge-fixing
functions χαðϕ;BÞ depend on all the fields under consid-
eration and satisfy the condition εðχαÞ ¼ εα. On the other
hand, the presence of the background field symmetry is not
immediate—especially in the case of nonlinear gauges—as
the gauge-fixing functionals depend on the background
fields. Below, we derive necessary conditions that the
fermion gauge-fixing functional should satisfy to achieve
the consistent application of the BFM.
Let us extend the transformation rule (6.2) to the whole

set of quantum fields, as

δðqÞω Bα ¼ −Fα
γβB

βωγ; δðqÞω Cα ¼ −Fα
γβC

βωγð−1Þεγ ;
δðqÞω C̄α ¼ −Fα

γβC̄
βωγð−1Þεγ : ð6:10Þ

Following the procedure used for the BRST sym-
metry, one can define the operator of background field
transformations,

R̂ωðϕ;BÞ¼ ∂⃖BiδðcÞω Biþ ∂⃖ϕAδðqÞω ϕA; εðR̂ωÞ¼0: ð6:11Þ

The gauge invariance of the initial classical action implies
that S0ðAþ BÞR̂ωðϕ;BÞ ¼ 0. Furthermore, it is not diffi-
cult to verify that the background gauge operator,
R̂ω ¼ R̂ωðϕ;BÞ, commutes with the generator of BRST
transformations, R̂ ¼ R̂ðϕ;BÞ, i.e.,

½R̂; R̂ω� ¼ 0: ð6:12Þ

Combining this result with the representation (6.4) of the
Faddeev-Popov action, we get

δωSFPðϕ;BÞ ¼ SFPðϕ;BÞR̂ωðϕ;BÞ ¼ 0

⇔ Ψðϕ;BÞR̂ωðϕ;BÞ ¼ 0: ð6:13Þ

In other words, the Faddeev-Popov action is invariant under
background field transformations if and only if the fermion
gauge-fixing functional is a scalar with respect to this
transformation. The condition (6.13) constrains the pos-
sible forms of the (extended) gauge-fixing function
χαðϕ;BÞ, as the relation

Ψðϕ;BÞR̂ωðϕ;BÞ¼ C̄αδωχαðϕ;BÞ
−Fα

γβC̄
βωγð−1Þεγ χαðϕ;BÞ¼0 ð6:14Þ

fixes the transformation law for χαðϕ;BÞ,

δωχαðϕ;BÞ ¼ −χβðϕ;BÞFβ
αγωγ: ð6:15Þ

Therefore, to have the invariance of the Faddeev-Popov
action under background field transformations, it is

necessary that the gauge function χα transforms as a tensor
with respect to the gauge group. This requirement can be
fulfilled, provided that χαðϕ;BÞ is constructed only by
using tensor quantities. Thus, Eq. (6.15) may impose a
restriction on the form of gauge-fixing functions which are
nonlinear on the fields Ai. In particular, if the gauge-fixing
function χαðϕ;BÞ is chosen in a form leading to invariance
of the gauge-fixing action under the background gauge
transformations, then the ghost action by itself will be
invariant under these transformations as well.
At this point, we can conclude that (6.8) and (6.13)

represent necessary conditions for the consistent applica-
tion of the BFM. The first relation is associated to the gauge
independence of the vacuum functional, which is needed
for the gauge-independent S matrix and hence is a very
important element for the consistent quantum formulation
of a gauge theory [38,58], while the second relation is
called to provide the invariance of the effective action in the
BFM with respect to deformed (in the general case)
background field transformations. In what follows, we
shall consider these statements explicitly. To this end, it
is convenient to introduce the extended action

Sext½ϕ;B;Φ�� ¼ SFP½ϕ;B� þΦ�
AR

Aðϕ;BÞ; ð6:16Þ

where Φ� ¼ fΦ�
Ag denote as usual the set of sources

(antifields) to the BRST transformations, with the parities
εðΦ�

AÞ ¼ εA þ 1. The corresponding (extended) generating
functional of the Green’s functions reads

Z½J;B;Φ��¼
Z

Dϕexp

�
i
ℏ
ðSFP½ϕ;B�þJAϕA

þΦ�
AR

Aðϕ;BÞÞ
�

¼ exp

�
i
ℏ
W½J;B;Φ��

�
; ð6:17Þ

where JA ¼ ðJi; JðBÞα ; J̄α; JαÞ [with the parities εðJAÞ ¼ εA]
are the external sources for the fields ϕA. The BRST
symmetry, together with the requirement that the generators
Ri
α of gauge transformation satisfy

ð−1Þεi ∂⃗AiRi
αðAþBÞ þ ð−1Þεβþ1Fβ

βα ¼ 0⇔ RA
;Aðϕ;BÞ ¼ 0;

ð6:18Þ

implies in the ST identity

JA∂⃗Φ�
A
Z½J;B;Φ�� ¼ 0: ð6:19Þ

The relation (6.18) plays an important role in the derivation
of the Ward identity insomuch as it ensures the triviality of
the Berezenian related to the change of integration variables
in the form of BRST transformations.
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In terms of the generating functional W½J;B;Φ�� of the
connected Green’s functions, the ST identity reads

JA∂⃗Φ�
A
W½J;B;Φ�Þ ¼ 0: ð6:20Þ

The (extended) effective action is defined as

Γ ¼ Γ½Φ;B;Φ�� ¼ W½J;ϕ�;B� − JAΦA;

ΦA ¼ ∂⃗JAW½J;B;Φ��; ð6:21Þ

and it satisfies the ST identity

Γ∂⃖ΦA ∂⃗Φ�
A
Γ ¼ 0; ð6:22Þ

written in the form of the Zinn-Justin equation [63].
Let ZΨ½B� ¼ Z½0;B; 0� be the vacuum functional which

corresponds to the choice of gauge-fixing functional
Ψ½ϕ;B� in the presence of external fields B,

ZΨ½B� ¼
Z

Dϕ exp

�
i
ℏ
SFP½ϕ;B�

�
: ð6:23Þ

In turn, let ZΨþδΨ be the vacuum functional corresponding
to a gauge-fixing functional Ψ½ϕ;B� þ δΨ½ϕ;B�,

ZΨþδΨ½B�¼
Z

dϕexp

�
i
ℏ
ðSFP½ϕ;B�þδΨ½ϕ;B�R̂ðϕ;BÞÞ

�
:

ð6:24Þ

Here, δΨ½ϕ;B� is an arbitrary infinitesimal odd functional
which may in general have a form differing from (6.5).
Making use of the change of variables ϕi in the form of
BRST transformations but with replacement of the constant
parameter μ by the functional

μ ¼ μ½ϕ;B� ¼ i
ℏ
δΨ½ϕ;B� ð6:25Þ

and taking into account that the Jacobian of transformations
is equal to

J ¼ expf−μ½ϕ;B�R̂ðϕ;BÞg; ð6:26Þ

we find the gauge independence of the vacuum functional

ZΨ½B� ¼ ZΨþδΨ½B�: ð6:27Þ

The property (6.27) was a reason to omit the label Ψ in the
definition of generating functionals (6.17), and it means
that, due to the equivalence theorem [58], the physical S
matrix does not depend on the gauge fixing.
The vacuum functional Z½B� ¼ ZΨ½B� obeys the very

important property of gauge invariance with respect to
gauge transformations of external fields,

δðcÞω Bi ¼ Ri
αðBÞωα; δðcÞω Z½B� ¼ 0: ð6:28Þ

It means the gauge invariance of functional W½B� ¼
W½0;B; 0�, δðcÞω W½B� ¼ 0, as well. The proof is based on

using the change of variables ϕA → ϕA þ δðqÞω ϕA in the

functional integral (6.23) where δðqÞω ϕA are defined in
Eqs. (6.2) and (6.10) and taking into account that the
Jacobian of these transformations is equal to a unit, and
assuming the transformation law of gauge-fixing functions
χα according to δωχαðϕ;BÞ ¼ −χβðϕ;BÞFβ

αγωγ . In particu-
lar, we can argue the invariance of SFP½ϕ;B� under
combined gauge transformations of external and quantum
fields

δωSFP½ϕ;B� ¼ 0: ð6:29Þ

In its turn from the second in (6.28) and the relation
W½B� ¼ −iℏ lnZ½B�, it follows the invariance of functional
W½B�,

δðcÞω W½B� ¼ 0 ð6:30Þ

under the background gauge transformations. Finally, the
main object of the BFM, namely, the effective action of
background fields, Γ½B�, is invariant,

δðcÞω Γ½B� ¼ 0; ð6:31Þ

under the background gauge transformations as well.
The relations between the standard generating func-

tionals and the analogous quantities in the background
field formalism are established with modification of gauge
functions [55]. Here, for the sake of completeness, we
compare the generating functionals in the BFM and in the
traditional one—and, ultimately, their relations with Γ½B�.
To do this, we consider the generating functional of the
Green’s functions, which corresponds to the standard
quantum field theory approach, but in a very special gauge
fixing,

Z2½J�¼
Z

Dϕexp

�
i
ℏ
ðS0½A�þΨ½ϕ−B;B�R̂ðϕÞþJAϕAÞ

�
;

ð6:32Þ

where R̂ðϕÞ is the generator of standard BRST trans-
formations (3.10). In the last expression, all the dependence
of the quantity Z2½J� on the external field is only through
the gauge-fixing functional. Thus, this functional depends
the external field Bi, but since this dependence is not of the
BFM type, Z2½J� is nothing else but the conventional
generating functional of the Green’s functions of the theory,
defined by S0 in a specific Bi-dependent gauge. One of the
consequences is that any kind of physical results does not
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depend on Bi. The arguments of Ψ are written explicitly,
showing that we assume that Ai only occurs in a specific
combination with Bi. We stress that, being formulated in
the traditional way (i.e., not in the BFM), Z2½J� does not
impose any constraint on the linearity of the gauge-fixing
fermion Ψ with respect to the quantum field Ai.
Making some change of variables in the functional

integral, it is easy to verify that there exists the relation

Z½J;B� ¼ Z2½J� exp
�
−
i
ℏ
JiBi

�
; ð6:33Þ

where Z½J;B� is the functional Z½J;B;Φ�� (6.17) restricted
on hypersurface Φ�

A ¼ 0. Accordingly, for the generating
functional of the connected Green’s functions, one has

W½J;B� ¼ W2½J� − JiBi; ð6:34Þ

where W2½J� ¼ −iℏ lnZ2½J�. Recall that

Ai ¼ ∂⃗JiW½J;B�: ð6:35Þ

Similarly,

Ai
2 ¼ ∂⃗JiW2½J� ¼ Ai þ Bi: ð6:36Þ

Following the same line, let us define the effective action
associated to Z2½J� as

Γ2½Φ2� ¼ W2½J� − JAΦA
2 : ð6:37Þ

A moment’s reflection shows that

Γ½Φ;B� ¼ Γ2½Φ2�: ð6:38Þ

In other words, the effective action Γ½Φ;B� in the back-
ground field formalism is equal to the initial effective action
in a particular gauge with mean field Ai

2 ¼ Ai þ Bi—or,
switching off the mean fields,

Γ½B� ¼ Γ2½A2�jA2¼B: ð6:39Þ

We point out that the gauge is not associated to its linearity
with respect to the quantum fields but to its dependence on
the background field [see Eq. (6.32)].
Quantization of the Yang-Mills type of gauge theories in

the BFM within the FP method provides very attractive
features, namely, the BRST symmetry of the FP action, the
background gauge invariance of effective action, and gauge
independence of S-matrix elements.

B. BFM in FRG

Here, we discuss the background gauge invariance and
gauge dependence of average effective action as well as
violation of the BRST symmetry in the FRG [1,2] using the

BFM. Of course, as to the background field symmetry, this
issue is not new, see, for example, Refs. [7,16,43]), but we
are going to remind the reader of the main results related to
specific features of the FRG approach in the BFM. We pay
special attention to the problem of gauge dependence of the
flow equation as a new issue in our studies of the FRG.
Inclusion of the FRG in the BFMmay be achieved in two

ways with the help of special dependence of regulator
functions on background fields [7,85] when the regulator
action Sk½ϕ;B� depends on background fields B or due to
special tensor structure of regulator functions [86] when
the regulator action Sk½ϕ� does not depend on B. In both
realizations, the regulator action Sk is invariant under

background gauge transformations δðqÞω ϕA ¼ RA
ωðϕ;BÞ,

δðcÞω Bi ¼ Ri
ωðBÞ [see the relations (6.2) and (6.10)],

δωSk ¼ 0: ð6:40Þ

In what follows, we use the notation Sk½ϕ;B� for definite-
ness. The full action of the FRG approach in the BFM has
the form

SWk½ϕ;B� ¼ SFP½ϕ;B� þ Sk½ϕ;B� ð6:41Þ

and is invariant under background gauge transformations,

δωSWk½ϕ;B� ¼ 0: ð6:42Þ

Consider the generating functional of the Green’s
functions,

Zk½J;B� ¼
Z

Dϕ exp

�
i
ℏ
½SWk½ϕ;B� þ JAϕA�

�

¼ exp

�
i
ℏ
Wk½J;B�

�
; ð6:43Þ

and variation of this functional with respect to background
gauge transformations of external fields Bi. We have

δðcÞω Zk½J;B�¼
i
ℏ

Z
DϕδðcÞω SWk½ϕ;B�

×exp

�
i
ℏ
½SWk½ϕ;B�þJAϕA�

�
: ð6:44Þ

Making use the change of integration variables ϕA in the
form of background gauge transformation in the functional
integral (6.44) and taking into account the invariance of
SWk½ϕ;B� (6.42), we obtain

δðcÞω Zk½J;B� ¼
i
ℏ
JARA

ωð−iℏ∂⃗J;BÞZk½J;B�: ð6:45Þ

In terms of generating functional of the connected Green’s
functions Wk½J;B�, the relation (6.45) is rewritten as
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δðcÞω Wk½J;B� ¼ JARA
ωð∂⃗JWk − iℏ∂⃗J;BÞ · 1: ð6:46Þ

Because of the linearity of generators RA
ωðϕ;BÞ with

respect to ϕ, we have

RA
ωð∂⃗JWk − iℏ∂⃗J;BÞ · 1 ¼ RA

ωð∂⃗JWk;BÞ; ð6:47Þ

and, therefore,

δðcÞω Wk½J;B� ¼ JARA
ωð∂⃗JWk;BÞ: ð6:48Þ

Introducing the effective average action Γk½Φ;B� through
the Legendre transformation of Wk½J;B�,

Γk½Φ;B� ¼ Wk½J;B� − JAΦA; ΦA ¼ ∂⃗JAWk½J;B�;
Γ½Φ;B�∂⃖ΦA ¼ −JA; ð6:49Þ

from (6.48), it follows that

δðcÞω Γk½Φ;B� ¼ −Γ½Φ;B�∂⃖ΦARA
ωðΦ;BÞ; ð6:50Þ

or

δωΓk½Φ;B� ¼ 0: ð6:51Þ
The effective average action Γ½Φ;B� is gauge invariant
under the background gauge transformations of all fields
ΦA, Bi. In particular, the functional Γk½B� ¼ Γk½Φ;B�jΦ¼0,

δðcÞω Γk½B� ¼ 0; ð6:52Þ

is invariant under the gauge transformations of external
fields Bi.
The BRST symmetry is broken on the level of action

δBSWk½ϕ;B� (6.41),

δBSWk½ϕ;B� ¼ δBSk½ϕ;B� ≠ 0; ð6:53Þ

On the quantum level, violation of the BRST symmetry
leads to gauge dependence of the vacuum functional

ZkjΨ½B� ¼
Z

Dϕ exp

�
i
ℏ
SWk½ϕ;B�

�
: ð6:54Þ

Indeed, consider the vacuum functional corresponding to
another choice of gauge-fixing functional, Ψ½ϕ� þ δΨ½ϕ�,

ZkjΨþδΨ½B� ¼
Z

Dϕ exp

�
i
ℏ
ðSWk½ϕ;B�

þ δΨ;A½ϕ;B�RAðϕ;BÞÞ
�
: ð6:55Þ

Making use the change of integration variables ϕA in the
form of BRST transformations with replacement constant

parameter μ by functional μ½ϕ;B� and choosing this func-
tional in the form

μ½ϕ;B� ¼ ði=ℏÞδΨ½ϕ;B�; ð6:56Þ

we obtain

ZkjΨþδΨ½B� ¼
Z

Dϕ exp

�
i
ℏ
ðSWk½ϕ;B� þ δBSk½ϕ;B�Þ

�
:

ð6:57Þ

We cannot propose any change of variables in the func-
tional integral (6.57) to reduce it to ZkjΨ½B�. Therefore,

ZkjΨþδΨ½B� ≠ ZkjΨ½B�; ð6:58Þ

and the vacuum functional of the FRG approach and the S
matrix remain gauge dependent within the BFM as well.
To discuss the mST identity, it is useful, as we know from

previous investigations, to introduce the extended generat-
ing functionals of the Green’s functions Zk½J;B;Φ�� and
connected Green’s functions Wk½J;B;Φ��,

Zk½J;B;Φ�� ¼
Z

Dϕ exp

�
i
ℏ
½SWk½ϕ;B�

þΦ�
AR

Aðϕ;BÞ þ JAϕA�
�

¼ exp

�
i
ℏ
Wk½J;B;Φ��

�
: ð6:59Þ

Using the change of variables ϕA in the form of BRST
transformations (6.8) and taking into account the BRST
invariance of SFP½ϕ;B�, we obtain

ðJA∂⃗Φ�
A
þ Sk;A½−iℏ∂⃗J;B�∂⃗Φ�

A
ÞZk½J;B;Φ��≡ 0; ð6:60Þ

which is the mST identity in the FRG within the BFM
written for functional Zk½J;B;Φ��. It is clear that this
identity coincides with the ST identity (6.19) in the limit
k → 0. In terms of the extended generating functional of the
connected Green’s functions,Wk ¼ Wk½J;B;Φ��, the iden-
tity (6.60) is rewritten as

ðJA∂⃗Φ�
A
þ Sk;A½ð∂⃗JWkÞ − iℏ∂⃗J;B�∂⃗Φ�

A
ÞWk½J;B;Φ��≡ 0:

ð6:61Þ

The extended effective average action, Γk ¼ Γk½Φ;B;Φ��,
is defined through the Legendre transformation of
Wk ¼ Wk½J;B;Φ��,

Γk½Φ;B;Φ��¼Wk½J;B;Φ��−JΦ; ΦA¼ ∂⃗JAWk½J;Φ��;
Γk½Φ;B;Φ��∂⃖ΦA ¼−JA: ð6:62Þ
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Then, the identity (6.61) can be presented in terms of Γk as

Γk∂⃖ΦA ∂⃗Φ�
A
Γk − Sk;A½Φ̂;B�∂⃗Φ�

A
Γk ≡ 0; ð6:63Þ

or, using the antibracket,

1

2
ðΓk;ΓkÞ − Sk;A½Φ̂;B�∂⃗Φ�

A
Γk ≡ 0; ð6:64Þ

where the notations

Φ̂A ¼ ΦA þ iℏðΓ00−1
k ÞAB∂⃗ΦB ; ðΓ00

kÞAB ¼ ∂⃗ΦAΓk∂⃖ΦB ;

ðΓ00−1
k ÞAC · ðΓ00

kÞCB ¼ δAB ð6:65Þ

are used.
The existence of the background mST identity for

functional Γk½Φ;B;Φ�� does not lead to a solution of the
gauge-dependence problem in the FRG approach at least
for any finite value of ir parameter k. The case when k → 0
requires special studies of the gauge-dependence problem
of the background flow equation. The background flow
equation can be formulated for the extended background
effective average action Γk½Φ;B;Φ�� or for the background
effective average action Γk½Φ;B�. In what follows, we study
the background flow equation for functional Γk½Φ;B� for
two reasons. First, this functional is under scrutiny of the
FRG community, and second, being invariant under the
background gauge transformations the functional remains
gauge dependent even on shell. In turn, it shows once again

that gauge-invariance and gauge-dependence properties in
gauge theories should be considered as independent ones.
The background flow equation for the functional

Zk½J;B�,

∂kZk½J;B� ¼
i
ℏ
∂kSk½−iℏ∂⃗J;B�Zk½J;B�; ð6:66Þ

and the corresponding equation for the functionalWk½J;B�,

∂kWk½J;B� ¼ ∂kSk½∂⃗JWk − iℏ∂⃗J;B� · 1; ð6:67Þ

follow from (6.43). The background effective average
action,

Γk½Φ;B� ¼ Wk½J;B� − JAΦA;

ΦA ¼ ∂⃗JAWk½J;B�;Γk½Φ;B�∂⃖ΦA ¼ −JA; ð6:68Þ

satisfies the background flow equation

∂kΓk½Φ;B� ¼ ∂kSk½Φ̂� · 1; ð6:69Þ

where the functional differential operators Φ̂A are defined
in the form of (4.40) with the functional Γk½Φ;B�.
Derivation of the equation describing the gauge depend-

ence of background flow equations (6.67), (6.68), and
(6.69) is similar to that used in Sec. V.C. The results read

δ∂kZk½J;B� ¼
�
i
ℏ

�
2∂kSk½−iℏ∂⃗J;B�δΨ;A½−iℏ∂⃗J;B�RAð−iℏ∂⃗J;BÞZk½J;Φ��; ð6:70Þ

δ∂kWk½J;B� ¼ ∂kSk½∂⃗JWk − iℏ∂⃗J;B�δΨ;A½∂⃗JWk − iℏ∂⃗J;B�RAð∂⃗JWk − iℏ∂⃗J;BÞ · 1; ð6:71Þ

δ∂kΓk½Φ;B� ¼ ∂kSk½Φ̂;B�δΨ;A½Φ̂;B�RAðΦ̂;BÞ · 1: ð6:72Þ

At any finite value of ir parameter k, the background flow
equations (6.67), (6.68), and (6.69) are gauge dependent
(6.70), (6.71), and (6.72). At the fixed point, the gauge
dependence does not disappear for same reasons which
were given in the end of Sec. V.C.
We see that application of the background field method

does not help to solve the gauge-dependence problem in the
FRG because the BRST symmetry remains broken [86].

VII. DISCUSSION

In the paper, the basic properties of gauge theories in the
framework of the FP method, BV formalism, and FRG
approach havebeen analyzed. It is known that the FPandBV
quantizations are characterized by the BRST symmetry

which governs gauge independence ofS-matrix elements. In
turn, the BRST symmetry is broken in the FRG approach
with all negative consequences for physical interpretation of
results. One of the goals of this work was to study the gauge
dependence of the effective average action as a solution of
the flow equation. For the first time, the equation describing
the gauge dependence of the flow equation has been
explicitly derived. The gauge dependence of flow equation
at any finite value of the ir parameter kwas found. As for the
limit k → 0, there is a strong motivation given in the paper
(see Sec. V C) about the gauge dependence of the effective
average action at the fixed point. Quite recently, this point of
view has been supported by explicit calculations of some
mass parameters in gravity theories at the fixed points [73].
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Despite of above feature, it was shown that the FPmethod,
the BV formalism, and the FRG approach can be provided
with the ST identity, theWard identity, and themST identity,
respectively. It was stressed that the existence of these
identities is a direct consequence of gauge invariance of the
initial classical action of the gauge theory under consid-
eration. Presentation of these identities is essentially sim-
plified by using both the extended generating functionals of
the Green’s functions and the BRST transformations.
It was proven that using the background field method the

background gauge invariance of the effective action within
the FP and FRG quantization procedures can be achieved in
nonlinear gauges. The gauge-dependence problem within
the FP and FRG quantizations in the framework of BFM
was studied. Application of the BFM in the case of the FRG

approach did not help in solving the problem of gauge
dependence of the Smatrix. Arguments allowing us to state
the impossibility of gauge independence of physical results
obtained within the FRG approach were given.
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