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In this work we study the radiative decays of heavy-light quarkonia through M1 and E1 transitions that
involve quark-triangle diagrams with two hadron-quark vertices in the framework of 4x4 Bethe-Salpeter
equation (BSE) under covariant instantaneous ansatz (CIA). We have expressed the transition amplitude
Mfi as a linear superposition of terms involving all possible combinations of þþ and −− components of
Salpeter wave functions of final and initial hadron, with coefficients being related to the results of pole
integrations over a complex σ plane. We evaluate the decay widths for M1 transitions (3S1 → 1S0 þ γ) and
E1 transitions (3S1 → 1P0 þ γ and 1P0 → 3S1 þ γ). We have used algebraic forms of Salpeter wave
functions obtained through analytic solutions of mass spectral equations for ground and excited states of
0þþ; 1−−, and 0−þ heavy-light quarkonia in an approximate harmonic oscillator basis to calculate their
decay widths. The input parameters used by us were obtained by fitting to their mass spectra. We have
compared our results with experimental data and other models and found reasonable agreements.
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I. INTRODUCTION

The most important goal of hadronic physics is to bridge
the gap between quantum chromodynamics (QCD)
Lagrangian and the observed hadronic properties. One of
the challenging areas in hadronic physics presently is
probing the inner structure of hadrons. There has a been
a renewed interest in recent years in spectroscopy of these
heavy hadrons in charm and beauty sectors, which was
primarily due to experimental facilities the world over such
as BABAR, Belle, CLEO, DELPHI, BES, etc. [1–5], which
have been providing accurate data on cc̄ and bb̄ hadrons
with respect to their masses and decays. In the process many
new states have been discovered such as χb0ð3PÞ,
χc0ð2PÞ; Xð3915Þ; Xð4260Þ; Xð4360Þ; Xð4430Þ; Xð4660Þ
[5], some of which are exotic states, which cannot be readily
explained through the predictions of the quark model.
The radiative transitions of heavy quarkonia are of consid-
erable experimental and theoretical interest and provide an
insight into the dynamics of quarkonium. The radiative
transitions between 0−þ (pseudoscalar) and 1−− (vector)
mesons [for instance, J=ΨðnSÞ → ηcðn0SÞ þ γ], which

proceeds through the emission of a photon, is characterized
by ΔL ¼ 0; there is change in C-parity between the
initial and final hadron states, though the total C-parity
is conserved. These are the magnetic dipole transitions,
M1. This transition mode is sensitive to relativistic effects,
especially between different spatial multiplets (n > n0).
The E1 transitions are characterized by j△Lj ¼ 1. Thus
in these transitions, there is change in parity between
the initial and final hadronic states, for instance, Ψð2SÞ →
χcð1PÞ þ γ or χcð1PÞ → J=Ψð1SÞ þ γ. In bothM1 and E1
transitions, C-parity is conserved. Electric dipole transitions
are much stronger than magnetic dipole transitions, and
involve transitions between excited states. These transitions
have been recently studied in various models, such as
relativistic quark model (RQM) [6,7], effective field theory
[8,9], light-front quark model (LFQM) [10,11], lattice QCD
[12,13], and the Bethe-Salpeter equation [14–17].
In this work we focus on the radiative decays of the

charmed and bottom vector mesons through the processes
V → Pγ, V → Sγ, and S → Vγ, where V, P, S refer to
vector, pseudoscalar, and scalar quarkonia, and calculate
the radiative decay widths of B� and D� mesons for the
above mentioned processes in the framework of a 4 × 4
Bethe-Salpeter equation. In our recent works [18,19], we
studied the mass spectrum of ground and excited states
of heavy-light scalar (0þþ), pseudoscalar (0−þ), and vector
(1−−) quarkonia, along with the leptonic decays of ground
and excited states of 0−þ and 1−− quarkonia. These studies
were used to fit the input parameters of our model
as C0 ¼ 0.69, ω0 ¼ 0.22 GeV, ΛQCD ¼ 0.250 GeV, and
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A0 ¼ 0.01 with input quark masses mu ¼ 0.300 GeV,
ms ¼ 0.430 GeV, mc¼1.490GeV, and mb¼4.690GeV.
In the present work on radiative decays, we use these same
input parameters to calculate the single photon decay
widths for the above processes.
Now, as mentioned in our previous works [17–20], we

are not only interested in studying the mass spectrum of
hadrons, which no doubt is an important element to study
dynamics of hadrons, but also the hadronic wave functions
that play an important role in the calculation of decay
constants, form factors, structure functions, etc. forQQ̄ and
Qq̄ hadrons. These hadronic Bethe-Salpeter wave functions
were calculated algebraically by us in [17–19]. The plots of
these wave functions [19] show that they can not only
provide information about the long distance nonperturba-
tive physics but also act as a bridge between the long
distance and short distance physics. Further, they provide
us with information about the contribution of the short
ranged Coulomb interactions in the mass spectral calcu-
lation of heavy-light quarkonia. These wave functions can
also lead to studies on a number of processes involvingQQ̄
and Qq̄ states, and provide a guide for future experiments.
This paper is organized as follows: In Sec. II, we

introduce the formulation of the 4 × 4 Bethe-Salpeter
equation under the covariant instantaneous ansatz, and
derive the hadron-quark vertex. In Secs. III–V, we calculate
the single photon decay widths for the processes V → Pγ,
V → Sγ, and S → Vγ, where P, S, and V are the pseudo-
scalar, scalar, and vector heavy-light quarkonium states. In
Sec. VI, we provide the numerical results and discussion.

II. FORMULATION OF THE BSE UNDER CIA

Our work is based on a QCD motivated BSE in ladder
approximation, which is an approximate description, with
an effective four-fermion interaction mediated by a
gluonic propagator that serves as the kernel of a BSE
in the lowest order. The precise form of our kernel is taken
in analogy with potential models (PM), which includes a
confining term along with a one-gluon exchange term.
Such effective forms of the BS kernel in ladder BSE have
recently been used in [21–25], and can predict bound
states having a purely relativistic origin (as shown recently
in [21]). As mentioned above, the BSE is quite general,
and provides an effective description of bound quark-
antiquark systems through a suitable choice of input
kernel for confinement.
The Bethe-Salpeter equation that describes the quark-

antiquark bound state of momenta p1 and p2, relative
momentum q, and meson momentum P is

S−1F ðp1ÞΨðP; qÞS−1F ð−p2Þ ¼ i
Z

d4q00

ð2πÞ4Kðq; q00ÞΨðP; q00Þ;

ð1Þ

where Kðq; q00Þ is the interaction kernel and S−1F ð�p1;2Þ ¼
�i=p1;2 þm1;2 are the usual quark and antiquark propa-
gators. We now make use of the covariant instantaneous
ansatz (CIA) (which is a Lorentz-covariant 3D support),
where Kðq; q00Þ ¼ Kðq̂; q̂00Þ on the BS kernel, and the BS
kernel depends entirely on the variable. q̂μ ¼ qμ −

q·P
P2 Pμ is

the component of internal momentum of the hadron that is
orthogonal to the total hadron momentum, i.e. q̂ · P ¼ 0,
while σPμ ¼ q·P

P2 Pμ is the component of q longitudinal
to P, where the four-dimensional volume element is
d4q ¼ d3q̂Mdσ. Now working on the right side of
Eq. (1), and making use of the fact that

ψðq̂00Þ ¼ i
2π

Z
Mdσ00ΨðP; q00Þ; ð2Þ

and the fact that the longitudinal component ofMdσ00 of q00
does not appear in Kðq̂; q̂00Þ, carrying out integration over
Mdσ on right side of Eq. (1), we obtain

S−1F ðp1ÞΨðP; qÞS−1F ð−p2Þ ¼
Z

d3q̂00

ð2πÞ3 Kðq̂; q̂
00Þψðq̂00Þ

¼ Γðq̂Þ; ð3Þ

where Γðq̂Þ is the hadron-quark vertex function and is
directly related to the 4D wave function ΨðP; qÞ, and one
can express the 4D BS wave function ΨðP; qÞ in terms of
Γðq̂Þ as

ΨðP; qÞ ¼ S1ðp1ÞΓðq̂ÞS2ð−p2Þ: ð4Þ

Further, the 4D hadron-quark vertex that enters into the
definition of the 4D BS wave function in the previous
equation can be identified as

Γðq̂Þ ¼
Z

d3q̂00

ð2πÞ3Kðq̂; q̂00Þψðq̂00Þ: ð5Þ

Following a sequence of steps outlined in [17], we get
four Salpeter equations which are effective 3D forms of
BSE given below:

ðM − ω1 − ω2Þψþþðq̂Þ ¼ Λþ
1 ðq̂ÞΓðq̂ÞΛþ

2 ðq̂Þ;
ðM þ ω1 þ ω2Þψ−−ðq̂Þ ¼ −Λ−

1 ðq̂ÞΓðq̂ÞΛ−
2 ðq̂Þ;

ψþ−ðq̂Þ ¼ 0;

ψ−þðq̂Þ ¼ 0: ð6Þ

Thus, in our framework, a crucial role is played by the
component q̂μ, which is always orthogonal to Pμ and
satisfies the unconstrained relation q̂ · P ¼ 0, regardless of
whether q · P ¼ 0 (i.e., σ ¼ 0) or q · P ≠ 0 (i.e., σ ≠ 0). We
further wish to point out that the effectively 3D Salpeter
equations (used for mass spectral calculations), as well as

SHASHANK BHATNAGAR and ESHETE GEBREHANA PHYS. REV. D 102, 094024 (2020)

094024-2



the vertex function Γðq̂Þ (used for transition amplitude
calculations) have a common dependence on the quantity
q̂2, whose most important property is its positive definite-

ness q̂2 ¼ q2 − ðq:PÞ2
P2 ≥ 0 on the hadron mass shell

ðP2 ¼ −M2Þ throughout the entire 4D space
[14,15,24,26,27]. Thus, q̂2 is a Lorentz-invariant variable
and is a four-scalar, whose validity extends over the entire
4D space, while keeping contact with the surface P:q ¼ 0

(hadron rest frame), where q̂2 ¼ q⃗2. This condition P:q¼0
is in fact the same as instantaneous approximation.
Thus, in view of these remarkable properties of q̂μ,

which makes it an effectively 3D vector, our twin objective
of (i) 3D structure of BSE as the controlling equation for
spectra, and (ii) a general enough (off-shell) structure of BS
vertex function Γðq̂Þ to facilitate applications to transition
amplitudes in 4D form is largely met if the BS kernel
depends on q̂μ. Thus, the ansatz, Kðq; q00Þ ¼ Kðq̂; q̂00Þ on
the BS kernel, is known as the covariant instantaneous
ansatz and is a Lorentz-invariant generalization of the
instantaneous approximation.
Besides the 3D Salpeter equations, the hadron-quark

vertex functions Γðq̂Þ also have an explicit dependence on
the variable, q̂2. These equations form a zero-order basis for
making contact with the mass spectrum of hadronic states
and calculations of various types of transition amplitudes
through appropriate quark-loop diagrams.
Thus, the Lorentz-invariant nature of q̂2 increases the

applicability of this framework of covariant instantaneous
ansatz all the way from low energy spectra to high energy
transition amplitudes. Further, in this approach, the most
important aspect is the appearance of the hadron-quark
vertex Γðq̂Þ (used for calculation of transition amplitudes)
on the right side of effectively 3D Salpeter equations (used
for calculation of spectra) in Eq. (6), which gives a
dynamical link between low energy mass spectroscopy
and high energy transition amplitudes. The dynamical links
between 3D spectra and 4D transition amplitudes have been
explored in detail in [14,15,26] by showing the exact
interconnection between the 3D and 4D BSE.
The 3D BS wave function can be expressed in terms of

the projected wave functions as

ψðq̂Þ ¼ ψþþðq̂Þ þ ψþ−ðq̂Þ þ ψ−þðq̂Þ þ ψ−−ðq̂Þ; ð7Þ

where

ψ��ðq̂Þ ¼ Λ�
1 ðq̂Þ

=P
M

ψðq̂Þ =P
M

Λ�
2 ðq̂Þ ð8Þ

and the projection operators

Λ�
j ðq̂Þ ¼

1

2ωj

�
=P
M

ωj � JðjÞðimj þ =̂qÞ
�
;

JðjÞ ¼ ð−1Þjþ1; j ¼ 1; 2 ð9Þ

with the relation

ω2
j ¼ m2

j þ q̂2: ð10Þ

III. RADIATIVE DECAYS OF HEAVY-LIGHT
QUARKONIA THROUGH V → Pγ

In transitions involving single photon decays, such as
V → Pþ γ, the process requires calculation of a triangle
quark-loop diagram, which involves two hadron-quark
vertices that we attempt in the 4 × 4 representation of a
BSE. The single photon decay of vector (1−−) quarkonia is
described by the direct and exchange Feynman diagrams as
in Fig. 1.
To apply the framework of BSE to study radiative

decays, V → Pγ, we have to remember that there are
two Lorentz frames, one the rest frame of the initial meson,
and the other, the rest frame of the final meson. To calculate
further, we first write the relationship between the momen-
tum variables of the initial and final meson. Here, P and q
are the total momentum and the internal momentum of
the initial hadron, while P0 and q0 are the corresponding
variables of the final hadron. Let k, and ϵλ

0
be momentum

and polarization vectors of the emitted photon, while ϵλ is
the polarization vector of the initial meson. Thus if p1;2 and
p0
1;2 are the momenta of the two quarks in the initial and

final hadron respectively, then we have the momentum
relations

P ¼ p1 þ p2; p1;2 ¼ m̂1;2P� q;

P0 ¼ p0
1 þ p0

2; p0
1;2 ¼ m̂1;2P0 � q0 ð11Þ

for initial and final hadrons, respectively. From the
Feynman diagrams we see that conservation of momentum
demands that P ¼ P0 þ k, while from the first diagram
p1 ¼ p0

1 þ k and −p2 ¼ −p0
2, where k ¼ P − P0 is the

momentum of the emitted photon. Making use of the above
equations, we can express the relationship between the
internal momenta of the two hadrons in terms of the photon
momentum k as

q0 ¼ qþ ðm̂1 − 1Þk ¼ q − m̂2k; ð12Þ

FIG. 1. Radiative decays of heavy-light quarkonia.
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where m̂1;2 ¼ 1
2
½1� ðm2

1
−m2

2
Þ

M2 � is the Wightman-Garding
definitions [26] of masses of individual quarks, which
ensure that P:q ¼ 0 on the mass shells of either quarks,
even when m1 ≠ m2. They act like momentum partitioning
functions for the two quarks in a hadron. We had already
decomposed the internal momentum q of the initial hadron
into two components, q ¼ ðq̂; iMσÞ, where q̂μ is the
component of internal momentum transverse to P such
that q̂:P ¼ 0, while σ is the longitudinal component in
the direction of P. Similarly for the final meson, we
decompose its internal momentum q0 into two components
q0 ¼ ðq̂0; iMσ0Þ with q̂0 ¼ q0 − σ0P transverse to the initial
hadron momentum P, and σ0 ¼ q0:P

P2 , longitudinal to P.
Thus, P:q̂0 ¼ 0.
We now first try to find the relationship between the

transverse components of internal momenta of the two
hadrons, q̂ and q̂0. For this, we resolve all momenta in
Eq. (12) along the direction transverse to the momentum of
the initial meson P. Thus we can express Eq. (12) as

q̂0 ¼ q̂þ m̂2ðP̂0 − P̂Þ;
P̂ ¼ 0;

P̂0 ¼ P0 −
P0:P
P2

P; ð13Þ

where it can be easily checked that P̂:P ¼ 0, and thus P̂0 is
orthogonal to P. The above equation can be simplified as

q̂0 ¼ q̂þ m̂2ðP̂0Þ: ð14Þ

It should be mentioned that the above relation connect-
ing q̂ and q̂0 is again consistent with the transversality of q̂0
with P, given by the definition of q̂0. And it can be easily
checked that q̂0:P ¼ 0.
Now, the kinematics gets simplified in the rest frame of

the initial meson, where we have P ¼ ð0⃗; iMÞ, while for an
emitted meson, P0 ¼ ðP⃗0; iE0Þ, where E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P⃗02 þM02

p
,

and since the photon momentum can be decomposed as
k ¼ ðk⃗; ijk⃗jÞ, where k⃗ ¼ −P⃗0, since the final meson and
photon would be emitted in opposite directions. Hence we
get jP⃗0j ¼ jk⃗j ¼ M2−M02

2M . Thus the energy of the emitted

meson can be expressed as E0 ¼ M2þM02
2M .

Further, the dot products of momenta of the initial and
the emitted meson can be expressed as

P0:P ¼ −ME0 ¼ −
M2 þM02

2
: ð15Þ

Thus, it can be seen that −E0 acts as the projection of P0
along the direction of an initial hadron momentum P. Now,
we try to find the relationship between the time components
σ and σ0 of the two hadrons. Taking the dot product of

Eq. (12) with P, the momentum of the initial hadron, we
obtain

P:q0 ¼ P:q − m̂2P:k: ð16Þ

Making use of the above decomposition of internal
momenta, we obtain the relation between the longitudinal
components of internal momenta of the two hadrons as

σ0 ¼ σ þ α;

α ¼ m̂2

M02 −M2

2M2
; ð17Þ

which is again a consequence of the transversality of q̂0
with initial hadron momentum P. Thus, up to Eq. (17), the
kinematics is the same for all the three processes (V → Pγ,
V → Sγ, and S → Vγ) studied in this work.
It is to be noted that 4D BS wave functions of a vector

meson involved in the process (in variable q̂) is exactly
the same as Eq. (4), with ΨðP; qÞ ⇒ ΨVðP; qÞ and
Γðq̂Þ ⇒ ΓVðq̂Þ. However, for transition amplitude calcu-
lation, we are choosing to do the calculation in the rest
frame of the initial meson. Thus, we write

ΨPðP0; q0Þ ¼ SFðp0
1ÞΓPðq̂0ÞSFð−p0

2Þ; ð18Þ

with q̂0 defined earlier as q̂0 ¼ q0 − q0:P
P2 P, that is transverse

to initial hadron momentum P, where the hadron-quark
vertex function ΓVðq̂0Þ for the final meson is

Γðq̂0Þ ¼
Z

d3q̂000

ð2πÞ3Kðq̂
0; q̂000Þψðq̂000Þ: ð19Þ

Similarly for final meson, the expression for the 3D BS
wave function ψðq̂0Þ is expressed in terms of the projection
operators as

ψðq̂0Þ ¼ ψþþðq̂0Þ þ ψþ−ðq̂0Þ þ ψ−þðq̂0Þ þ ψ−−ðq̂0Þ ð20Þ

where

ψ��ðq̂0Þ ¼ Λ�
1 ðq̂0Þ

=P
M

ψðq̂0Þ =P
M

Λ�
2 ðq̂0Þ;

Λ�
j ðq̂0Þ ¼

1

2ω0
j

�
=P
M

ω0
j � JðjÞðimj þ =̂q0Þ

�
; ð21Þ

with the relation ω02
1;2 ¼ m2

1;2 þ q̂02.
The EM transition amplitude of the process is

Mfi ¼ −i
Z

d4q
ð2πÞ4 Tr½eqΨ̄PðP0; q0Þ=ϵλ0ΨVðP; qÞ

× S−1F ð−p2Þ þ eQ̄Ψ̄PðP0; q0ÞS−1F ðp1ÞΨVðP; qÞ=ϵλ0 �:
ð22Þ
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Here, the first term corresponds to the first diagram,
where the photon is emitted from the quark, while the
second term corresponds to the second diagram where the
photon is emitted from the antiquark.
In the above expression, ΨP and ΨV are the 4D BS wave

functions of pseudoscalar and vector quarkonia involved in
the process, and are expressed above, while eq and eQ are
the electric charge of quark and antiquark, respectively, and
ϵλ

0
μ is the polarization vector of the emitted photon.
Using the fact that the contribution of the second term is

the same as that of the first term (except that eq ≠ eQ̄),
we rewrite the above equation in terms of the electronic
charge e as

Mfi ¼ −ie
Z

d4q
ð2πÞ4 Tr½Ψ̄PðP0; q0Þ=ϵ0ΨVðP; qÞS−1F ð−p2Þ�:

ð23Þ
Now, we reduce the above equation to the effective 3D

form by integrating over the longitudinal component Mdσ.
This can be expressed as

Mfi ¼ −ie
Z

d3q̂
ð2πÞ3

Z
iMdσ
ð2πÞ Tr½Γ̄Pðq̂0ÞSFðp0

1Þ=ϵ0SFðp1Þ

× ΓVðq̂ÞSFð−p2Þ�: ð24Þ
To calculate Mfi, we express the propagators SF as

SFðp1Þ ¼
Λþ
1 ðq̂Þ

Mσ þ m̂1M − ω1 þ iϵ
þ Λ−

1 ðq̂Þ
Mσ þ m̂1M þ ω1 − iϵ

;

SFð−p2Þ ¼
−Λþ

2 ðq̂Þ
−Mσ þ m̂2M − ω2 þ iϵ

þ −Λ−
2 ðq̂Þ

−Mσ þ m̂2M þ ω2 − iϵ
;

SFðp0
1Þ ¼

Λþ
1 ðq̂0Þ

Mσ0 þ m̂1ð−E0Þ − ω0
1 þ iϵ

þ Λ−
1 ðq̂Þ0

Mσ0 þ m̂1ð−E0Þ þ ω0
1 − iϵ

: ð25Þ

It should be noted that the expression forMfi in Eq. (24)
is written down in the frame of the initial hadron. We wish
to mention that, from the very beginning, we have used
the relationship that connects the internal momentum q0 ¼
ðq̂0; iMσ0Þ of the final hadron with the internal momentum
q ¼ ðq̂; iMσÞ of the initial hadron, given by Eq. (12). As
mentioned earlier, the space component q̂0 of q0 is trans-
verse to the total momentum P of the initial hadron, while
the time component Mσ0 is longitudinal to P. A conse-
quence of Eq. (12) is that q̂0 and q̂ are related to each other
by Eq. (14), while the time component σ0 is related to σ
through Eq. (17). Thus, these relations, Eqs. (12), (14), and

(17), are made use of to express Mfi as a single integral
over d4q ¼ d3q̂Mdσ, while transforming σ0 that enters
through the propagator SFðp0

1Þ in terms of σ through
Eq. (17). We then carry out the contour integral over
Mdσ over the poles of the propagators in Eqs. (24) and (26)
to finally obtain Eq. (31).
We now put the propagators into Eq. (24), and multi-

plying this equation from the left by the relation =P
M
=P
M ¼

−1 ¼ =P
M ðΛþ

2 ðq̂0Þ þ Λ−
2 ðq̂0ÞÞ [24], and making use of

Eq. (17) to transform σ0 to σ through relation
σ0 ¼ σ þ α, the transition amplitude can be expressed as

Mfi ¼ −ie
Z

d3q̂
ð2πÞ3 ½Ω1 þΩ2 þΩ3 þΩ4�;

Ω1 ¼
Z

dσ
ð2πÞ

i
M3

Tr

�
−=PΛþ

2 ðq̂0ÞΓ̄Pðq̂0ÞΛþ
1 ðq̂0Þ=ϵ0Λþ

1 ðq̂ÞΓVðq̂ÞΛþ
2 ðq̂Þ

½σ − ð−αþ m̂1
E0
M þ ω0

1

MÞ�½σ − ð−m̂1 þ ω1

MÞ�½σ − ðm̂2 −
ω2

MÞ�

�
;

Ω2 ¼
Z

dσ
ð2πÞ

i
M3

Tr

�
−=PΛþ

2 ðq̂0ÞΓ̄Pðq̂0ÞΛþ
1 ðq̂0Þ=ϵ0Λ−

1 ðq̂ÞΓVðq̂ÞΛ−
2 ðq̂Þ

½σ − ð−αþ m̂1
E0
M þ ω0

1

MÞ�½σ − ð−m̂1 −
ω1

MÞ�½σ − ðm̂2 þ ω2

MÞ�

�
;

Ω3 ¼
Z

dσ
ð2πÞ

i
M3

Tr

�
−=PΛ−

2 ðq̂0ÞΓ̄Pðq̂0ÞΛ−
1 ðq̂0Þ=ϵ0Λþ

1 ðq̂ÞΓVðq̂ÞΛþ
2 ðq̂Þ

½σ − ð−αþ m̂1
E0
M − ω0

1

MÞ�½σ − ð−m̂1 þ ω1

MÞ�½σ − ðm̂2 −
ω2

MÞ�

�
;

Ω4 ¼
Z

dσ
ð2πÞ

i
M3

Tr

�
−=PΛþ

2 ðq̂0ÞΓ̄Pðq̂0ÞΛ−
1 ðq̂0Þ=ϵ0Λ−

1 ðq̂ÞΓVðq̂ÞΛ−
2 ðq̂Þ

½σ − ð−αþ m̂1
E0
M − ω0

1

MÞ�½σ − ð−m̂1 −
ω1

MÞ�½σ − ðm̂2 þ ω2

MÞ�

�
; ð26Þ
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where the rest of the terms are anticipated to be zero
on account of 3D Salpeter equations. The contour integra-
tions over Mdσ are performed over each of the four terms
taking into account the pole positions in the complex σ
plane:

σ�3 ¼ −αþ m̂1

E0

M
∓ ω0

1

M
� iϵ;

σ�1 ¼ −m̂1 ∓ ω1

M
� iϵ;

σ�2 ¼ m̂2 ∓ ω2

M
� iϵ: ð27Þ

In Eq. (26), the contour integral over each of the four
terms can be performed by closing the contour either above
or below the real axis in the complex σ plane with pole
positions displayed in Fig. 2. We demonstrate, for instance,
the calculation of Ω1 in which the poles σ−3 and σ−1 are

below the real axis, while σþ2 is above the real axis
in the complex σ plane. The result of Ω1 integration is
I1 given below:

Ω1 ¼ Tr½−=P½Λþ
2 ðq̂0ÞΓ̄Pðq̂0ÞΛþ

1 ðq̂0Þ�=ϵ0½Λþ
1 ðq̂ÞΓVðq̂ÞΛþ

2 ðq̂Þ�I1�;

I1 ¼
Z

i
2πM3

dσ

½σ − ð−αþ m̂1
E0
M þ ω0

1

MÞ�½σ − ð−m̂1 þ ω1

MÞ�½σ − ðm̂2 −
ω2

MÞ�

¼ −
1

M2

1

½M − ω1 − ω2�½α − m̂1
E0
M þ m̂2 − 1

M ðω1
0 þ ω2Þ�

: ð28Þ

We now make use of the Salpeter equations in variable q̂
in Eq. (6), and the Salpeter equations in variable q̂0 given
below. It is to be noted that the Salpeter equations in q̂0

involve −E0 ¼ P:P0
M , which is the projection of P0 along the

direction of initial momentum P and are given as [24]

ð−E0 − ω0
1 − ω0

2Þψþþðq̂0Þ ¼ Λþ
1 ðq̂0ÞΓðq̂0ÞΛþ

2 ðq̂0Þ;
ð−E0 þ ω0

1 þ ω2Þψ−−ðq̂0Þ ¼ −Λ−
1 ðq̂0ÞΓðq̂0ÞΛ−

2 ðq̂0Þ;
ψþ−ðq̂0Þ ¼ 0;

ψ−þðq̂0Þ ¼ 0: ð29Þ

It can then be verified that Ω1 can be expressed as

Ω1 ¼
1

M2
α1=Pψ̄

þþ
P ðq̂0Þ=ϵ0ψþþ

V ðq̂Þ;

α1 ¼
½−E0 − ω0

1 − ω0
2�

½α − m̂1
E0
M þ m̂2 − 1

M ðω0
1 þ ω2Þ�

: ð30Þ

Similarly, it can be verified that the results of each of
these four integrals Ω1;…;Ω4 whether we close the
contour above or below the real σ axis comes out to be
the same, thereby validating the correctness of the formal-
ism employed. These results of integrals over dσ in
Ω1;…;Ω4 are given as α1;…; α4 in Eq. (32).

This leads to the expression for the effective 3D form of
the transition amplitude Mfi under a covariant instanta-
neous ansatz as

Mfi ¼ −ie
Z

d3q̂
ð2πÞ3

1

M2
Tr½α1=Pψ̄þþ

P ðq̂0Þ=ϵ0ψþþ
V ðq̂Þ

þ α2=Pψ̄
þþ
P ðq̂0Þ=ϵ0ψ−−

V ðq̂Þ þ α3=Pψ̄−−
P ðq̂0Þ=ϵ0ψþþ

V ðq̂Þ
þ α4=Pψ̄−−

P ðq̂0Þ=ϵ0ψ−−
V ðq̂Þ�: ð31Þ

where:

α1 ¼
½−E0 − ω0

1 − ω0
2�

½α − m̂1
E0
M þ m̂2 − 1

M ðω0
1 þ ω2Þ�

;

α2 ¼
−½−E0 − ω0

1 − ω0
2�

½α − m̂1ðE0
M − 1Þ − 1

M ðω1 þ ω0
1Þ�

;

α3 ¼
½−E0 þ ω0

1 þ ω0
2�

½α − m̂1ðE0
M − 1Þ þ 1

M ðω1 þ ω0
1Þ�

;

α4 ¼
−½−E0 þ ω0

1 þ ω0
2�

½α − m̂1
E0
M þ m̂2 þ 1

M ðω0
1 þ ω2Þ�

; ð32Þ

with the projected wave functions ψ�� being taken from
the 3D Salpeter equations [19] derived earlier, which for

FIG. 2. Pole positions in the complex σ plane.
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the initial meson in the internal variable q̂ are given
in Eq. (6).
[It is to be noted that the factors ðM � ω1 � ω2Þ that

were also present in the numerators of α’s in Eq. (32) as a
result of the first two Salpeter equations in variable q̂ in
Eq. (6) get cancelled from the corresponding factors (in
denominator) resulting from contour integrals over dσ,
while the numerators of α1;…; α4 come from the Salpeter
equations in variable q̂0 in Eq. (29).]
Thus, we have given a generalized method for handling

quark-triangle diagrams with two hadron-quark vertices in
the framework of a 4 × 4 BSE under a covariant instanta-
neous ansatz by expressing the transition amplitude Mfi

[Eq. (31)–(32)] as a linear superposition of terms involving
all possible combinations of þþ and −− components of
Salpeter wave functions of final and initial hadrons through
not only theþþþþ and − − −− terms but also terms like
þþ −− and − −þþ, with each of the four terms being
associated with a coefficient, αiði ¼ 1;…; 4Þ, which is the
result of pole integration in the complex σ plane, with pole
positions in Eq. (27) (shown in Fig. 2). This superposition
of all possible terms in Eqs. (31)–(32) should be a feature of
relativistic frameworks.
Now, to calculate the process, we need the 4D BS wave

functions for vector and pseudoscalar mesons. We again
start with the general 4D decomposition of BS wave
functions [28]. Using 3D decomposition under a covariant
instantaneous ansatz, the wave function of vector mesons of
dimensionality M can be written as [17,18]

ψVðq̂Þ ¼ iM=ϵχ1ðq̂Þ þ =ϵ=Pχ2ðq̂Þ þ ½=ϵ=̂q − q̂:ϵ�χ3ðq̂Þ

− i½=P=ϵ=̂qþ q̂:ϵ=P� 1
M

χ4ðq̂Þ þ ðq̂:ϵÞχ5ðq̂Þ

− iq̂:ϵ
=P
M

χ6ðq̂Þ; ð33Þ

where ϵλ is the vector meson polarization vector. Similarly
for a pseudoscalar meson, the 3D wave function with
dimensionality M can be written as

ψPðq̂Þ¼NP

�
Mϕ1ðq̂Þ− i=Pϕ2ðq̂Þþ i=̂qϕ3ðq̂Þþ

=P=̂q
M

ϕ4ðq̂Þ
�
γ5:

ð34Þ

We wish to mention that in our previous works [17–19]
we had calculated the mass spectrum of vector, pseudo-
scalar, and scalar mesons by using a full Dirac structure of
wave functions in Eqs. (33), (34), and (48), respectively,
into the 3D Salpeter equations in Eq. (6) and obtained the
coupled Salpeter equations in the amplitudes of various
Dirac structures, which were then decoupled using heavy-
quark approximation. Also, mass spectral equations were
obtained in an approximate harmonic oscillator basis,
which were used not only to calculate the mass spectrum

but also to analytically derive the algebraic forms of wave
functions [17,18] in Eq. (37) for both pseudoscalar and
vector quarkonia, and in Eq. (50) for scalar mesons [19]
in an approximate harmonic basis. These algebraic wave
functions were used to calculate various transitions [17–19]
by fixing the parameters of the model to the mass spectrum.
Also the plots of these wave functions were studied in detail
in these works. It is these very analytic forms of wave
functions in Eqs. (37) and (50) that we are now using to
calculate the M1 and E1 transitions in this work.
However, we further wish to mention that in some of the

recent works [29], it was noticed that among all Dirac
covariants in a structure of hadronic BS wave function,
some covariants contribute much more than others in
calculation of hadronic observables. This led us to develop
a naive power counting rule in [26,30,31] by which one
could classify various Dirac structures as leading and
subleading. Thus, in our framework [26,30,31], we had
shown that in case of pseudoscalar mesons, the Dirac
structures associated with amplitudes ϕ1 and ϕ2 are
leading, while the structures associated with ϕ3 and ϕ4

are subleading. In various calculations [26,30–33] it was
shown that the Dirac structure associated with ϕ1 (i.e., γ5) is
most dominant, for not only ground state pseudoscalar
mesons but also their excited states, and this is more true for
heavy mesons.
A similar behavior was observed in the case of vector

mesons [26,30], where structures associated with χ1 and χ2
are leading, while those associated with χ3;…; χ6 are
subleading, and among the leading Dirac structures,
the structure associated with χ1 (i.e., iγ:ϵ) is the most
dominant. These dominant Dirac structures contribute
nearly 80%–90% to the calculation of any meson observ-
able, and their contribution [26,29–31] increases with an
increase in meson mass. Further, such dominant Dirac
structures, such as Γ ¼ γ5 (for 0−þ), γμ (for 1−−), and 1 (for
0þþ), have also been used recently in lattice calculations
[34] of radiative decays of charmonium.
Now, it does appear that when one uses only the dominant

Dirac structures, we do not need all four Salpeter equations,
and we could have just used the first of the Salpeter
equations in Eq. (6). But if we do this, we cannot work
out the spectral problem analytically in an approximate
harmonic oscillator basis, which has the advantage of
exhibiting a greater transparency by providing an explicit
dependence of the mass spectrum on the principle quantum
numberN, which gives a much deeper insight, and wewould
have to resort to numerical analysis at an early stage for
calculating the mass spectrum. Further, we would also not be
able to obtain the algebraic forms of wave functions in
Eqs. (37) and (50) (that arise as solutions of the mass spectral
equation in an approximate harmonic basis) that are in turn
used to calculate various transition amplitudes.
Thus to simplify the algebra, we take the most dominant

Dirac structures, while keeping the radial wave functions
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the same as those obtained through solutions of the full
spectral problem. This might lead to a little loss of
numerical accuracy, but the major gain is in retaining
the explicit dependence of mass spectrum on the principle
quantum number N and algebraic forms of wave functions
that are used for all transition amplitude calculations.
Thus, the 3D Bethe-Salpeter wave functions of heavy-

light pseudoscalar and vector quarkonia are taken as

ψPðq̂Þ ¼ NPðMγ5ÞϕPðq̂Þ;
ψVðq̂Þ ¼ NVðiM=ϵÞϕVðq̂Þ: ð35Þ

The Bethe-Salpeter normalizers obtained through the
current conservation condition are

N−2
P ¼ 4m̂1m̂2M02 1

m1

Z
d3q̂
ð2πÞ3 ϕ

2
Pðq̂Þ;

N−2
V ¼ 4m̂1m̂2M2

1

m1

Z
d3q̂
ð2πÞ3 ϕ

2
Vðq̂Þ: ð36Þ

The 3D wave functions of ground and excited states of
pseudoscalar 0−þ and vector 1−− quarkonia are [19]

ϕP;Vð1S; q̂Þ ¼
1

π3=4
1

β3=2P;V

e
− q̂2

2β2
P;V ;

ϕP;Vð2S; q̂Þ ¼
ffiffiffi
3

2

r
1

π3=4
1

β3=2P;V

�
1 −

2q̂2

3β2P;V

�
e
− q̂2

2β2
P;V ;

ϕVð1D; q̂Þ ¼
ffiffiffiffiffi
4

15

r
1

π3=4
1

β7=2V

q̂2e
− q̂2

2β2
V ;

ϕP;Vð3S; q̂Þ ¼
ffiffiffiffiffi
15

8

r
1

π3=4
1

β3=2P;V

�
1 −

4q̂2

3β2P;V
þ 4q̂4

15β4P;V

�
e
− q̂2

2β2
P;V ;

ð37Þ

where βP;V [19] are the inverse range parameters.
We have made use of the 3D Salpeter equations in Eq. (6)

that depend on the variable q̂2, that (as explained in Sec. II) is
Lorentz invariant and is a four-scalar, whose validity extends
over the entire 4D space, while also keeping contact with the
surface P:q ¼ 0 (hadron rest frame). Now, our mass
spectrum, and the 3D wave functions ϕðq̂Þ in Eqs. (37)
and (50) (please see [17]) were calculated from Salpeter
equations in Eq. (6) in the rest frame of the hadron.
The þþ and −− components of the BS wave function

for a pseudoscalar meson are [17,24]

ψ��
P ðq̂0Þ ¼ Λ�

1 ðq̂0Þ
=P
M

ψPðq̂0Þ
=P
M

Λ�
2 ðq̂0Þ: ð38Þ

Substituting the 3D BS wave function of a pseudoscalar
meson, the þþ and −− components of the 3D BS wave

function of a pseudoscalar meson can be obtained
using Eq. (38) as given in Eq. (A1) of Appendix A. 1.
The corresponding adjoint wave functions are given
in Eq. (A2).
Whereas the positive and negative energy components of

the vector meson wave function are

ψ��
V ðq̂Þ ¼ Λ�

1 ðq̂Þ
=P
M

ψVðq̂Þ
=P
M

Λ�
2 ðq̂Þ: ð39Þ

Following the same steps as in Eq. (A3), we obtain the
þþ and −− components of the 3D BS wave function of a
vector meson through Eq. (39). These components of a
vector meson wave function are given in Eq. (A3), and their
corresponding adjoint wave functions are given
in Eq. (A4).
We now calculate the individual terms, =Pψ̄þþ

P ðq̂0Þ=ϵ0
Ψþþ

V ðq̂Þ, =Pψ̄þþ
P ðq̂0Þ=ϵ0Ψ−−

V ðq̂Þ, =Pψ̄−−
P ðq̂0Þ=ϵ0Ψþþ

V ðq̂Þ, and
=Pψ̄−−

P ðq̂0Þ=ϵ0Ψ−−
V ðq̂Þ in the transition amplitude Mfi.

These terms are given in Eqs. (A5)–(A8).
Here, it is to be mentioned that the transverse component

of internal momentum of the pseudoscalar meson1 can be
expressed as q̂0 ¼ q̂þ m̂2P̂

0, as in Eq. (14), where m̂2 act as
momentum partitioning parameters. Now squaring both
sides of Eq. (14) that connect q̂0 with q̂, making use of the
fact that P̂0 and q̂ are both transverse to the initial hadron
momentum, and jP̂0j ¼ jP⃗j ¼ M2−M02

2M , we can express the
relationship between q̂02 and q̂2 as

q̂02 ¼ q̂2 þ 2m̂2

ðM2 −M02Þ
2M

jq̂j þ m̂2
2

ðM2 −M02Þ2
4M2

ð40Þ

where,jq̂j is the length of the 3D vector q̂, defined as
jq̂j ¼

ffiffiffiffiffi
q̂2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ðq:PÞ2=P2

p
, and is a Lorentz-invariant

variable.

1Now, for the final meson, we can define the internal
momentum q0 ¼ ðq̂00; iM0σ00Þ, where q̂00 ¼ q0 − σ00P0 is a compo-
nent of q0 that is transverse to P0 and σ00 ¼ q0:P0=P02 is the
component of q0 that is longitudinal to P0, such that P0:q̂00 ¼ 0,
regardless of whether P0:q0 ¼ 0 or P0:q0 ≠ 0. Here q̂002 ¼ q02 −
ðP0:q0Þ2=P02 is Lorentz invariant and a four-scalar having validity
over the entire 4D space and in the rest frame of the final hadron
(i.e., P0:q0 ¼ 0, which is the same as instantaneous approxima-
tion) q0 ¼ ðq̂00; i0Þ; these wave functions reduce to ϕðq⃗00Þ. But for
transition amplitude calculations, we choose to calculate in the
initial hadron rest frame. For this, we need to perform Lorentz
transformation, where the internal momentum of the final hadron
is written as q0 ¼ ðq̂0; iMσ0Þ. The 3D vector q̂0 ¼ q0 − σ0P is
transverse to P [where σ0 ¼ q0:P=P2 (see Sec. III)], and q̂02 is a
Lorentz-invariant quantity and a four-scalar. Here q0 acquires the
time component σ0 that is transformed to σ through Eq. (17),
which is later integrated out to obtain Mfi in Eq. (31) through
pole integrations in a complex σ plane. However, as explained
after Eq. (50), the wave functions of P-wave or S-wave mesons in
a final state will not involve the time component σ0 due to their
dependence on jq̂0j and/or even powers of q̂0, which are both
Lorentz-invariant variables.
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The transition amplitude Mfi is expressed as

Mfi ¼ FVPϵμναβPμϵ
λ0
ν ϵ

λ
αP0

β; ð41Þ

where the antisymmetric tensor ϵμναβ ensures its gauge invariance. Here, FVP is the transition form factor for V → Pγ, with
the following expression:

FVP ¼ −eNPNV
M0

M3

Z
d3q̂
ð2πÞ3

ϕPðq̂0ÞϕVðq̂Þ
16ω1ω2ω

0
1ω

0
2

�
T1 − T2

M2 −M02

2MM02 jq̂j
�
;

T1 ¼ 4ðα1 þ α2 þ α3 þ α4ÞM2ðm1 −m2Þm̂2ð−q̂2 − ω1ω2 −m1m2Þ
− 4ðα1 − α2 − α3 þ α4ÞM2m̂2ðω1m2 þ ω2m1Þðω0

1 þ ω0
2Þ;

T2 ¼ 4ðα1 þ α2 þ α3 þ α4ÞM2ðm1 −m2Þ
�
ω0
1ω

0
2 − ω1ω2 −Mðω0

1 þ ω0
2Þm̂2

M2 þM02

M2

�

− 4ðα1 − α2 − α3 þ α4ÞM2ðω0
1m2 þ ω0

2m1Þðω1 þ ω2Þ þ ðω1m2 þ ω2m1Þðω0
1 þ ω0

2ÞÞ

þ 4ðα1 − α2 þ α3 − α4ÞMðm1 −m2Þm̂2ðω1 þ ω2Þ
M2 þM02

2
: ð42Þ

The above expression corresponds to FVPðk2 ¼ 0Þ,
which corresponds to an emission of a real photon.
However, since in this work we were mainly interested
in the calculation of decay widths for various transitions,
detailed calculations of FVPðk2Þ along the lines of [10,16]
will be relegated to a separate paper. Now we proceed
to calculate the decay widths for the process V− > Pγ,
which corresponds to an emission of a real photon,
for which we need FVPðk2 ¼ 0Þ given above. The kin-
ematical relation connecting q̂02 with q̂2 is given in
Eq. (40). To calculate the decay widths, we need to
calculate the spin averaged amplitude square jM̄fij2, where
jM̄fij2 ¼ 1

2jþ1

P
λ;λ0 jMfij2, where we average over the

initial polarization states λ of the V meson, and sum over
the final polarization λ0 of a photon. We make use of the

normalizations, Σλϵ
λ
μϵ

λ
ν ¼ 1

3
ðδμν þ PμPν

M2 Þ for the vector

meson and Σλ0ϵ
λ0
μ ϵ

λ0
ν ¼ δμν, for the emitted photon, with

Mfi taken from Eq. (41).
The spin-averaged amplitude square of the process,

obtained after dividing by the total spin states (2jþ 1)
of the initial vector meson, can be obtained as

jMfij2 ¼ −
2e2

3
½M2M02 − ðP:P0Þ2�jFVPð0Þj2: ð43Þ

In the above equation, we evaluate P:P0 ¼ −ME0 in the

rest frame of the initial vector meson, where E0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P⃗02 þM02

p
is the energy of the final pseudoscalar meson,

giving P:P0 ¼ −ðM2þM02
2

Þ. Thus, jM̄fij2 can be expressed as

jM̄fij2 ¼
2

3
e2

ðM2 −M02Þ2
4

jFVPð0Þj2: ð44Þ

The decay width of the process (V → Pγ) in the rest
frame of the initial vector meson is expressed as

ΓV→Pγ ¼
jM̄fij2
8πM2

jP0!j; ð45Þ

where we make use of the fact that the modulus of the
momentum of the emitted pseudoscalar meson can be

expressed in terms of masses of particles as jP0!j ¼ jk⃗j ¼
ωk ¼ 1

2M ðM2 −M02Þ, where ωk is the kinematically
allowed energy of the emitted photon. Thus, Γ in turn
can be expressed as

Γ ¼ αe:m:

3
jFVPj2ω3

k: ð46Þ

We now calculate the radiative decay widths for the
process V → Sþ γ in the next section.

IV. RADIATIVE DECAYS OF HEAVY-LIGHT
QUARKONIA THROUGH V → Sγ

E1 transitions always involve excited states. The
scattering amplitude of the decay process V → Sγ can be
written as
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Mfi ¼ −ie
Z

d3q̂
ð2πÞ3

1

M2
Tr½α1=Pψ̄þþ

S ðq̂0Þ=ϵ0ψþþ
V ðq̂Þ

þ α2=Pψ̄
þþ
S ðq̂0Þ=ϵ0ψ−−

V ðq̂Þ þ α3=Pψ̄−−
S ðq̂0Þ=ϵ0ψþþ

V ðq̂Þ
þ α4=Pψ̄−−

S ðq̂0Þ=ϵ0ψ−−
V ðq̂Þ�: ð47Þ

After the 3D reduction of the 4D BS wave function of a
scalar meson under a CIA, we express the 3D BS wave
function with dimensionality M as

ψSðq̂Þ ¼ NS

�
Mf1ðq̂Þ þ i=Pf2ðq̂Þ − i=̂qf3ðq̂Þ þ 2

=P=̂q
M

f4ðq̂Þ
�
:

ð48Þ

Making use of the fact that the most leading Dirac structure
in a scalar meson BS wave function is MI (I being the unit
4 × 4 unit matrix), and making use of [18], we express the
3D scalar meson BS wave function as

ψSðq̂Þ ¼ NSðM0ÞϕSðq̂0Þ; ð49Þ

where ϕSðq̂Þ is the spatial part of this wave function, whose
analytic forms obtained by power series solutions of 3D
mass spectral equations [derived from 3D Salpeter equa-
tions in Eq. (6)], in the variable q̂ (which is in fact jq̂j) for a
P-wave meson in its own rest frame, calculated in [18] are

ϕSð1P;q̂Þ¼
ffiffiffi
2

3

r
1

π3=4
1

β5=2S

q̂e
− q̂2

2β2
S ;

ϕSð2P;q̂Þ¼
ffiffiffi
5

3

r
1

π3=4
1

β5=2S

q̂

�
1−

2q̂2

5β2S

�
e
− q̂2

2β2
S ;

ϕSð3P;q̂Þ¼
ffiffiffiffiffi
35

12

r
1

π3=4
1

β5=2S

q̂

�
1−

4q̂2

5β2S
þ 4q̂4

35β4S

�
e
− q̂2

2β2
S ;

ϕSð4P;q̂Þ¼
ffiffiffiffiffi
35

8

r
1

π3=4
1

β5=2S

q̂

�
1−

6q̂2

5β2S
þ12q̂4

35β4S
−

8q̂6

315β6S

�
e
− q̂2

2β2
S :

ð50Þ

These wave functions in Eq. (50) involve even powers of
q̂ along with odd power q̂. Here q̂ ¼ jq̂j as explained above
is the length of the 3D vector q̂ and is expressed as
jq̂j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ðq:PÞ2=P2

p
. It is a Lorentz-invariant quantity

[24], along with even powers of q̂, such as q̂2; q̂4;… etc.
which are again Lorentz invariant. While for S-wave
mesons, the wave functions are only functions of even
powers of q̂. Thus when P-wave or S-wave mesons are in
the final state, their wave functions after Lorentz trans-
formation would involve the variables jq̂0j and/or even
powers of q̂0. We express q̂02 in terms of q̂2 directly through
Eq. (40), that connects q̂02 with q̂2, while odd power jq̂0j is
expressed as jq̂0j ¼

ffiffiffiffiffiffi
q̂02

p
, where we again make use of

Eq. (40). Thus as mentioned in footnote 1, the time
component σ0 of q0 will not appear in the wave functions
of both P-wave and S-wave mesons in a final state in the
transition amplitude calculation.
The BS normalizer of a scalar meson NS can be obtained

by solving the current conservation conditions and is
expressed as

N−2
S ¼ 4m̂1m̂2M02 1

m1

Z
d3q̂
ð2πÞ3 ϕ

2
Sðq̂0Þ: ð51Þ

We now obtain the þþ and −− components of the
scalar meson wave function through Eq. (38) as given in
Eq. (A9) with the corresponding adjoint wave functions in
Eq. (A10). The expressions for þþþþ, þþ −−,
− −þþ, and − − −− terms of the scattering amplitude
in Eq. (31) is relegated to Appendix A. 2.
We first evaluate the trace over the gamma matrices in

Eq. (47). We make use of the fact that q̂0 ¼ q̂þ m̂2P̂
0,

where P̂0 ¼ P0 − P0:P
P2 P. We combine various terms and

further make use of the fact that for the initial vector meson
P:ϵλ ¼ 0, and in its rest frame P0:ϵλ0 ¼ 0 (where ϵλ

0
is the

photon polarization vector). Due to this, we express P̂0:ϵ ¼
P0:ϵ and P̂0:ϵ0 ¼ βP:ϵ0, where β ¼ − P0:P

P2 ¼ −M2þM02
2M2 from

Eq. (15). We can then express the invariant matrix element
Mfi as

Mfi ¼ −ieNSNV
1

M2

Z
d3q̂
ð2πÞ3

ϕSðq̂0ÞϕVðq̂Þ
16ω1ω2ω

0
1ω

0
2

½Θ1ðϵλ0 :ϵλÞ þ Θ2βðϵλ0 :PÞðϵλ:P0Þ�; ð52Þ

Θ1 ¼ 4M3

�
ðα1 − α2 þ α3 − α4Þðω0

1ω
0
2 −m1m2 þ q̂02Þðω1m2 þm1ω2Þ

þ ðα1 þ α2 − α3 − α4Þðω0
1m2 −m1ω

0
2Þðω1ω2 þm1m2 þ q̂2Þ þ ½ðα1 þ α2 − α3 − α4Þðm1 −m2Þðω0

1 þ ω0
2Þ

− ðα1 − α2 þ α3 − α4Þðm1 þm2Þðω1 − ω2Þ�
�
q̂2 þ m̂2

M2 −M02

2M
jq̂j

��
;

SHASHANK BHATNAGAR and ESHETE GEBREHANA PHYS. REV. D 102, 094024 (2020)

094024-10



Θ2 ¼
16M5q̂2

ðM2 −M02Þ2 ððα1 þ α2 − α3 − α4Þ½−ðω0
1m2 −m1ω

0
2Þ þm2ðω0

1 þ ω0
2Þ� þ ðα1 − α2 þ α3 − α4Þω2ðm1 þm2ÞÞ

þ 8M4jq̂j
ðM2 −M02Þ m̂2ð−ðα1 þ α2 − α3 − α4Þðm1 −m2Þðω0

1 þ ω0
2Þ þ ðα1 − α2 þ α3 − α4Þðm1 þm2Þðω1 þ ω2ÞÞ: ð53Þ

After carrying out the integrals d3q̂ over Θ1 and Θ2 in
Eq. (45), we can express the amplitude Mfi as

Mfi ¼ S1ðϵλ0 :ϵλÞ þ S2βðϵλ0 :PÞðϵλ:P0Þ;

S1 ¼ −ieNSNV
1

M2

Z
d3q̂
ð2πÞ3

ϕSðq̂0ÞϕVðq̂Þ
16ω1ω2ω

0
1ω

0
2

Θ1;

S2 ¼ −ieNSNV
1

M2

Z
d3q̂
ð2πÞ3

ϕSðq̂0ÞϕVðq̂Þ
16ω1ω2ω

0
1ω

0
2

Θ2: ð54Þ

And, S1 and S2 are the form factors. Now, to calculate the
decay widths, we need to calculate the spin averaged
amplitude square jM̄fij2, where jM̄fij2 ¼ 1

2jþ1

P
λ;λ0 jMfij2,

wherewe average over the initial polarization states λ of theV
meson, and sum over the final polarization λ0 of the photon.
We make use of the normalizations Σλϵ

λ
μϵ

λ
ν ¼ 1

3
ðδμν þ PμPν

M2 Þ
for the vector meson and Σλ0ϵ

λ0
μ ϵ

λ0
ν ¼ δμν for the emitted

photon, with Mfi taken from the previous equations. This
gives

P
λ0
P

λ jϵλ0 :ϵλj2 ¼ 1.
The spin-averaged amplitude square of the process can

be written as

jM̄fij2 ¼
1

3

�
jS1j2 þ

1

3
β2½M2M02 − ðP0:PÞ2�jS2j2

�
; ð55Þ

where β2 ¼ ðM2þM02Þ2
4M2 . We can write the decay width,

ΓV→Sγ ¼
jM̄fij2
8πM2

jP0!j; ð56Þ

where we make use of the fact that the modulus of
the momentum of the emitted pseudoscalar meson
can be expressed in terms of masses of particles as

jP0!j ¼ 1
2M ðM2 −M02Þ.

V. RADIATIVE DECAYS OF HEAVY-LIGHT
QUARKONIA THROUGH S → Vγ

We proceed to evaluate the process in the same manner
as V → Sγ, using Fig. 1, where the initial scalar meson
decays into a vector meson and a photon. Drawing analogy
from V → Pγ, and V → Sγ, the effective 3D form of the
transition amplitude Mfi for S → Vγ under a covariant
instantaneous ansatz can be expressed as

Mfi ¼ −ie
Z

d3q̂
ð2πÞ3

1

M2
Tr½α1=Pψ̄þþ

V ðq̂0Þ=ϵ0ψþþ
S ðq̂Þ þ α2=Pψ̄

þþ
V ðq̂0Þ=ϵ0ψ−−

S ðq̂Þ

þ α3=Pψ̄−−
V ðq̂0Þ=ϵ0ψþþ

S ðq̂Þ þ α4=Pψ̄−−
V ðq̂0Þ=ϵ0ψ−−

S ðq̂Þ�: ð57Þ

The transition amplitude of the S → Vγ process can be obtained as

Mfi ¼ eNSNV
M0

M3

Z
d3q̂
ð2πÞ3

ϕSðq̂0ÞϕVðq̂Þ
16ω1ω2ω

0
1ω

0
2

½TR� ð58Þ

where

½TR� ¼ Tr½−ðα1 − α2 þ α3 − α4ÞiM3ðω0
1ω

0
2 þm1m2Þðω1m2 −m1ω2Þ=ϵλ=ϵλ0

þ ðα1 − α2 þ α3 − α4ÞiM3ðω1m2 −m1ω2Þ=̂q0=ϵλ=̂q0=ϵλ0 − ðα1 þ α2 þ α3 þ α4ÞiM2ðm1 þm2Þ=P=̂q0=ϵλ=̂q0=ϵλ0 =̂q
− ðα1 þ α2 − α3 − α4ÞiM3ðω0

1m2 þm1ω
0
2Þðω1ω2 −m1m2 þ q̂2Þ=ϵλ=ϵλ0

− ðα1 − α2 þ α3 − α4ÞiM3ðm1ðω1 þ ω2Þ=̂q0=ϵλ=ϵλ0 =̂qþm2ðω1 þ ω2Þ=ϵλ=̂q0=ϵλ0 =̂qÞ
þ ðα1 þ α2 − α3 − α4ÞiM3ðm1 þm2Þðω0

1=̂q
0=ϵλ=ϵλ0 =̂q − ω0

2=ϵ
λ=̂q0=ϵλ0 =̂qÞ�: ð59Þ

We first evaluate the trace over the gamma matrices in the above equation. We make use of the fact that q̂0 ¼ q̂þ m̂2P̂
0,

where P̂0 ¼ P0 − P0:P
P2 P. We combine various terms and further make use of the fact that for the initial scalar meson at rest in
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its own frame, P:ϵλ
0 ¼ 0 and P0:ϵλ ¼ 0, where ϵλ is the polarization vector of the emitted vector meson with momentum P0

and ϵλ
0
is the photon polarization vector. Due to this, we express P̂0:ϵ ¼ βðP:ϵÞ and P̂0:ϵ0 ¼ P0:ϵ0, where

β ¼ − P0:P
P2 ¼ −M2þM02

2M2 . We can then express the invariant matrix element Mfi as

Mfi ¼ −ieNSNV
1

M2

Z
d3q̂
ð2πÞ3

ϕSðq̂0ÞϕVðq̂Þ
16ω1ω2ω

0
1ω

0
2

½Θ0
1ðϵλ

0
:ϵλÞ þ Θ0

2βðϵλ:PÞðϵλ
0
:P0Þ�; ð60Þ

where

Θ1
0 ¼ 4ðα1 − α2 þ α3 − α4ÞM3

�
ð−m2ω1 þm1ω2Þðm1m2 þ ω1

0ω2
0 þ q̂02Þ

þ 1

2M
½ðm̂2ðM2 −M02Þjq̂j þ 2Mq̂2Þðm1 −m2Þðω1 þ ω2Þ�

�
− 4M3ðα1 þ α2 − α3 − α4Þ

×
�
ðω1ω2 −m1m2 þ q̂2Þðm2ω1

0 þm1ω2
0Þ þ 1

2M
ðm̂2ðM2 −M02Þjq̂j þ 2Mq̂2Þðm1 þm2Þðω1

0 þ ω2
0Þ
�
;

Θ2
0 ¼ ðα1 − α2 þ α3 − α4ÞM3

�
m̂2

2ðm2ω1 −m1ω2Þ − 32
M2

ðM2 −M02Þ2 ðm1 þm2Þω2q̂2

− 16
Mm̂2

M2 −M02 jq̂jð−m2ω1 þ 2m1ω2 þm2ω2Þ
�

þ ðα1 þ α2 − α3 − α4ÞM3

�
−

32M2

ðM2 −M02Þ2 ðm1 þm2Þω2
0q̂2 − 16

Mm̂2

ðM2 −M02Þ jq̂jðm1 þm2Þω2
0
�
: ð61Þ

Thus, Mfi can be expressed as

Mfi ¼ S01ðϵλ
0
:ϵλÞ þ S02βðϵλ

0
:P0Þðϵλ:PÞ;

S01 ¼ −ieNSNV
1

M2

Z
d3q̂
ð2πÞ3

ϕSðq̂0ÞϕVðq̂Þ
16ω1ω2ω

0
1ω

0
2

Θ1
0;

S02 ¼ −ieNSNV
1

M2

Z
d3q̂
ð2πÞ3

ϕSðq̂0ÞϕVðq̂Þ
16ω1ω2ω

0
1ω

0
2

Θ2
0: ð62Þ

To calculate the decay widths, we again need to calculate
the spin averaged amplitude square jM̄fij2, where
jM̄fij2 ¼

P
λ;λ0 jMfij2, where we sum over the final polari-

zation states λ0 of the photon and λ of the V meson.
The spin averaged amplitude modulus square gives

jM̄fij2 ¼ ½jS01j2 þ
1

3
β2½P2P02 − ðP0:PÞ2�jS02j2�: ð63Þ

The decay widths Γ for the process S → Vγ are given by
Eq. (56), with P0 now the momentum of the emitted
vector meson.

VI. RESULTS AND DISCUSSION

We have studied radiative decays of conventional heavy-
light quarkonia through M1 and E1 transitions in the
framework of the Bethe-Salpeter equation. Such processes
involve quark-triangle diagrams and two hardon-quark

vertices and are difficult to evaluate in a BSE under a
CIA. In this work we have given a generalized method of
handling quark triangle diagrams with two hadron-quark
vertices in the framework of a 4 × 4 BSE by expressing the
transition amplitude Mfi [Eqs. (31) and (32)] as a linear
superposition of terms involving all possible combinations
of þþ and −− components of Salpeter wave functions of
final and initial hadrons, through not only the terms þþ
þþ and − − −− but also the terms like þþ −− and
− −þþ, with each of the four terms being associated with
a coefficient αiði ¼ 1;…; 4Þ, which is the result of pole
integration in the complex σ plane, with pole positions in
Eq. (27) (shown in Fig. 2). This superposition of all
possible terms in Eqs. (31) and (32) should be a feature
of relativistic frameworks.
Using this generalized expression for Mfi in Eqs. (31)

and (32), we have evaluated the decay widths for M1

transitions, 3S1 → 1S0 þ γ, involving the decays of the
ground and excited states of the heavy-light mesons
such as B�

c; B�; J=Ψ; D�, and D�
s . In regard to the E1

transitions, we have studied the processes 3S1 → 1P0 þ γ
that involve the decays of Ψð2SÞ; B�

cð2SÞ, and D�ð2SÞ, and
the processes 1P0 → 3S1 þ γ that involve decays of
χc0ð1PÞ; Bcð1PÞ and Bcð2PÞ.
We used algebraic forms of the 3D Salpeter wave

functions obtained through analytic solutions of mass
spectral equations in an approximate harmonic oscillator

SHASHANK BHATNAGAR and ESHETE GEBREHANA PHYS. REV. D 102, 094024 (2020)

094024-12



basis for ground and excited states of 0þþ; 1−−, and 0−þ
heavy-light quarkonia for calculation of their decay widths.
The input parameters we used were C0 ¼ 0.69, ω0 ¼
0.22 GeV, ΛQCD ¼ 0.25 GeV, and A0 ¼ 0.01, along with
the input quark masses mu ¼ 0.30 GeV, ms ¼ 0.43 GeV,
mc ¼ 1.49 GeV, and mb ¼ 4.67 GeV, which were
obtained by fitting to their mass spectra [19]. We have
compared our results with experimental data and other
models, and found reasonable agreements.
We get reasonable agreements of our decay widths for

M1 transitions, nS → n0Sþ γ. This can be seen from
Table I for the transitions J=Ψð1SÞ→ ηcð1SÞ, Ψð2SÞ→
ηcð2SÞ, and Ψð2SÞ → ηcð1SÞ. Similar agreements of
our decay widths for E1 transitions are noticed for nS →
n0Pþ γ and nP → n0Sþ γ, as can be seen from Table II.
We wish to mention that FVPð0Þ in Eq. (34) are the

electromagnetic coupling constants gVPγ . It is seen that

our coupling constant gJ=Ψηcγ ¼ 0.745 GeV−1ðexpt: ¼
0.570� 0.110 GeV−1Þ [44], while the coupling constant
gD�Dγ ¼ −0.438 GeV−1, which can be compared with
experimental data that gives −0.466 GeV−1 [44] and
−0.384 GeV−1 [11]. Our gDs�Dsγ ¼ −0.173 GeV−1, which
is comparable to the RQM model value 0.161 GeV−1 [11].
Our gBs�Bsγ ¼ −0.4773 GeV−1 which can be compared
with −0.536 [11] and −0.657 [41]. Similarly, our
gB�Bγ ¼ −0.764 GeV−1, which can be compared with
−0.749 [11] and −0.891 [41]. However, these results show
that various models have a wide range of variations of
coupling constants gVPγ for different transitions.
Similarly we again see a wide range of variations in

different models for M1 transitions, particularly for decays
of J=Ψ andΨð2SÞ. Further, our nS → nS transitions show a
marked decrease as we go from ground to higher excited

TABLE I. Radiative decay widths of heavy-light mesons (in keV) forM1 transitions in BSE, along with experimental data and results
of other models.

BSE-CIA Experiment LFQM PM RQM

ΓJ=ψð1S1Þ→ηcð1S0Þγ 1.7036 1.5793� 0.0112 [35] 1.69� 0.05 [11] 1.8 [36] 1.050 [37]
Γψð2S1Þ→ηcð2S0Þγ 0.18204 0.2002� 0.008 [38] 0.4 [36]
Γψð2S1Þ→ηcð1S0Þγ 0.9340 0.9724
ΓB�

cð1S1Þ→Bcð1S0Þγ 0.0664 0.06 [39] 0.033 [37]
ΓB�

cð2S1Þ→Bcð2S0Þγ 0.0360 0.01 [39] 0.017 [37]
ΓB�

s ð1S1Þ→Bsð1S0Þγ 0.0624 0.064� 0.016 [40] 0.068� 0.017 [11]
ΓB�

s ð2S1Þ→Bsð2S0Þγ 0.04708
ΓB�ð1S1Þ→Bð1S0Þγ 0.1364 0.13� 0.01 [40] 0.13� 0.01 [11]
ΓB�ð2S1Þ→Bð2S0Þγ 0.1467
ΓD�

s ð1S1Þ→Dsð1S0Þγ 0.2018 0.17� 0.01 [40] 0.213 [41]
ΓD�ð1S1Þ→Dð1S0Þγ 1.2843 1.3344� 0.0072 [40] 0.90� 0.02 [11]
ΓD�ð2S1Þ→Dð2S0Þγ 0.1381

TABLE II. Radiative decay widths of heavy-light mesons (in keV) for E1 transitions, along with experimental
data and results of other models.

BSE-CIA Experiment PM RQM

Γψð2S1Þ→χc0ð1P0Þγ 34.0419 28.5714� 0.0432 [38] 26.3 [37]
Γψð3S1Þ→χc0ð2P0Þγ 62.229 51.4 [42] 65.7 [36]
Γψð3S1Þ→χc0ð1P0Þγ 1.4441 1.2 [42]
ΓB�

cð2S1Þ→Bcð1P0Þγ 10.5249 9.6 [43] 3.78 [37]
ΓD�ð2S1Þ→Dð1P0Þγ 1.0214

Γχc0ð1P0Þ→J=ψð1S1Þγ 123.803 119.5� 8 [40] 161 [37]
Γχc0ð2P0Þ→ψð2S1Þγ 75.229 68 [42]
Γχc0ð2P0Þ→J=ψð1S1Þγ 129.86 146 [42] 21 [36]
ΓBcð1P0Þ→B�

cð1S1Þγ 68.580 65.3 [39] 75.5 [37]
ΓBcð2P0Þ→B�

cð2S1Þγ 51.3911 52.5 [39] 34 [37]
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states, which is in conformity with data and other models.

We have also given our predictions for radiative decays of

B�
cð1SÞ; B�

cð2SÞ; B�
sð2SÞ; B�ð2SÞ, and D�ð2SÞ, for which

data is not yet available, and for D�
sð1SÞ, where PDG [40]

gives only the upper limit of the decay width. In regard to
E1 transitions, our decay width result for Ψð2SÞ is in good
agreement with data, but for χc0 is higher than data,
although again there is a lot of variation in results of other
models. These results have been obtained using leading
Dirac structures in the wave functions of P, V, and S
mesons, although incorporation of all Dirac structures is
expected to give better agreement with data.
The aim of doing this study was to mainly test our

analytic forms of wave functions in Eqs. (37) and (50),
obtained as solutions of mass spectral equations in an
approximate harmonic oscillator basis obtained analytically
from a 4 × 4 BSE as a starting point, that has so far given
good predictions [17–19] not only of the mass spectrum of
heavy-light quarkonia but also their leptonic decays, two-
photon and two gluon decays. The present work would in
turn lead to the validation of our approach, which provides
a much deeper insight than the purely numerical

calculations in a 4 × 4 BSE approach that are prevalent
in the literature.
This work mainly focused on evaluation of decay widths

for M1 and E1 transitions. A more detailed study on not
only the transition form factors of both M1 and E1
transitions but also the “static” form factors describing
meson-photon interactions through the vertex MγM for
various mesons will be relegated to a separate paper.
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APPENDIX

1. Radiative decays through V → Pγ

Substituting the 3D BS wave function of a pseudoscalar meson in Eq. (35), we obtain the þþ and −− components as

ψþþ
P ðq̂0Þ ¼ NP

4ω0
1ω

0
2

M0

M
ϕPðq̂0Þ½Mðω0

1ω
0
2 þm1m2 þ q̂02Þ − iðω0

1m2 þm1ω
0
2Þ=Pþ iMðm1 −m2Þ=̂q0 þ ðω0

1=P=̂q
0 − ω0

2=̂q
0=PÞ�γ5;

ψ−−
P ðq̂0Þ ¼ NP

4ω0
1ω

0
2

M0

M
ϕPðq̂0Þ½Mðω0

1ω
0
2 þm1m2 þ q̂02Þ þ iðω0

1m2 þm1ω
0
2Þ=Pþ iMðm1 −m2Þ=̂q0 − ðω0

1=P=̂q
0 − ω0

2=̂q
0=PÞ�γ5:

ðA1Þ

The adjoint Bethe-Salpeter wave function of a pseudoscalar meson can be obtained by evaluating ψ̄��
P ðq̂0Þ ¼

γ4ðψ��
P ðq̂0ÞÞþγ4 as

ψ̄þþ
P ðq̂0Þ ¼ NP

4ω0
1ω

0
2

M0

M
ϕPðq̂0Þ½−Mðω0

1ω
0
2 þm1m2 þ q̂02Þ − iðω0

1m2 þm1ω
0
2Þ=Pþ iMðm1 −m2Þ=̂q0 − ðω0

1=̂q
0=P − ω0

2=P=̂q
0Þ�γ5;

ψ̄−−
P ðq̂0Þ ¼ NP

4ω0
1ω

0
2

M0

M
ϕPðq̂0Þ½−Mðω0

1ω
0
2 þm1m2 þ q̂02Þ þ iðω0

1m2 þm1ω
0
2Þ=Pþ iMðm1 −m2Þ=̂q0 þ ðω0

1=̂q
0=P − ω0

2=P=̂q
0Þ�γ5:

ðA2Þ

Following the same steps as in Eq. (A3), we obtain the þþ and −− components of a vector meson wave function in
Eq. (35) as
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ψþþ
V ðq̂Þ ¼ iNV

4ω1ω2

ϕVðq̂Þ½Mðω1ω2 þm1m2Þ=ϵ −M=̂q=ϵ=̂qþ iðω1m2 þm1ω2Þ=ϵ=P − iMðm1=ϵ=̂qþm2=̂q=ϵÞ þ ðω1=ϵ=P=̂q − ω2=̂q=P=ϵÞ�;

ψ−−
V ðq̂Þ ¼ iNV

4ω1ω2

ϕVðq̂Þ½Mðω1ω2 þm1m2Þ=ϵ −M=̂q=ϵ=̂q − iðω1m2 þm1ω2Þ=ϵ=P − iMðm1=ϵ=̂qþm2=̂q=ϵÞ − ðω1=ϵ=P=̂q − ω2=̂q=P=ϵÞ�;

ðA3Þ

where as the adjoint wave functions are

ψ̄þþ
V ðq̂Þ ¼ −iNV

4ω1ω2

ϕVðq̂Þ½−Mðω1ω2 þm1m2Þ=ϵþM=̂q=ϵ=̂q− iðω1m2 þm1ω2Þ=P=ϵþ iMðm1=̂q=ϵþm2=ϵ=̂qÞ− ðω1=̂q=P=ϵ−ω2=ϵ=P=̂qÞ�;

ψ̄−−
V ðq̂Þ ¼ −iNV

4ω1ω2

ϕVðq̂Þ½−Mðω1ω2 þm1m2Þ=ϵþM=̂q=ϵ=̂qþ iðω1m2 þm1ω2Þ=P=ϵþ iMðm1=̂q=ϵþm2=ϵ=̂qÞ þ ðω1=̂q=P=ϵ−ω2=ϵ=P=̂qÞ�:

ðA4Þ

The =Pψ̄þþ
P ðq̂0Þ=ϵ0Ψþþ

V ðq̂Þ, =Pψ̄þþ
P ðq̂0Þ=ϵ0Ψ−−

V ðq̂Þ, =Pψ̄−−
P ðq̂0Þ=ϵ0Ψþþ

V ðq̂Þ, and =Pψ̄−−
P ðq̂0Þ=ϵ0Ψ−−

V ðq̂Þ in the calculation of a
transition amplitude Mfi for V → Pγ is done by using Eqs. (A3) and (A4) as

=Pψ̄þþ
P ðq̂0Þ=ϵ0Ψþþ

V ðq̂Þ ¼ −iNPNV

16ω1ω2ω
0
1ω

0
2

M0

M
ϕPðq̂0ÞϕVðq̂Þ½−iMðω0

1ω
0
2 þm1m2 þ q̂02Þðω1m2 þm1ω2Þ=P=ϵ0=ϵ=Pγ5

þ iM2ðω0
1ω

0
2 þm1m2 þ q̂02Þðm1=P=ϵ0=ϵ=̂qγ5 þm2=P=ϵ0=̂q=ϵγ5Þ

− iMðω0
1m2 þm1ω

0
2Þðω1ω2 þm1m2Þ=P=P=ϵ0=ϵγ5 þ iM3ðω0

1m2 þm1ω
0
2Þ=ϵ0=̂q=ϵ=̂qγ5

− iM2ðω0
1m2 þm1ω

0
2Þðω1=ϵ0=ϵ=P=̂qγ5 − ω2=ϵ0=̂q=P=ϵγ5Þ − iM2ðm1 −m2Þðω1ω2 þm1m2Þ=P=̂q0=ϵ0=ϵγ5

þ iM2ðm1 −m2Þ=P=̂q0=ϵ0=̂q=ϵ=̂qγ5 − iMðm1 −m2Þðω1=P=̂q
0=ϵ0=ϵ=P=̂qγ5 − ω2=P=̂q

0=ϵ0=̂q=P=ϵγ5Þ
− iM2ðω1m2 þm1ω2Þðω0

1 þ ω0
2Þ=̂q0=ϵ0=ϵ=Pγ5 þ iM3ðm1ðω0

1 þ ω0
2Þ=̂q0=ϵ0=ϵ=̂qγ5 þm2ðω0

1 þ ω0
2Þ=̂q0=ϵ0=̂q=ϵγ5�;

ðA5Þ

=Pψ̄−−
P ðq̂0Þ=ϵ0Ψ−−

V ðq̂Þ ¼ −iNPNV

16ω1ω2ω
0
1ω

0
2

M0

M
ϕPðq̂0ÞϕVðq̂Þ½iMðω0

1ω
0
2 þm1m2 þ q̂02Þðω1m2 þm1ω2Þ=P=ϵ0=ϵ=Pγ5

þ iM2ðω0
1ω

0
2 þm1m2 þ q̂02Þðm1=P=ϵ0=ϵ=̂qγ5 þm2=P=ϵ0=̂q=ϵγ5Þ

þ iMðω0
1m2 þm1ω

0
2Þðω1ω2 þm1m2Þ=P=P=ϵ0=ϵγ5 − iM3ðω0

1m2 þm1ω
0
2Þ=ϵ0=̂q=ϵ=̂qγ5

− iM2ðω0
1m2 þm1ω

0
2Þðω1=ϵ0=ϵ=P=̂qγ5 − ω2=ϵ0=̂q=P=ϵγ5Þ − iM2ðm1 −m2Þðω1ω2 þm1m2Þ=P=̂q0=ϵ0=ϵγ5

þ iM2ðm1 −m2Þ=P=̂q0=ϵ0=̂q=ϵ=̂qγ5 þ iMðm1 −m2Þðω1=P=̂q
0=ϵ0=ϵ=P=̂qγ5 − ω2=P=̂q

0=ϵ0=̂q=P=ϵγ5Þ
− iM2ðω1m2 þm1ω2Þðω0

1 þ ω0
2Þ=̂q0=ϵ0=ϵ=Pγ5 þ iM3ðm1ðω0

1 þ ω0
2Þ=̂q0=ϵ0=ϵ=̂qγ5 þm2ðω0

1 þ ω0
2Þ=̂q0=ϵ0=̂q=ϵγ5�;

ðA6Þ

=Pψ̄þþ
P ðq̂0Þ=ϵ0Ψ−−

V ðq̂Þ ¼ −iNPNV

16ω1ω2ω
0
1ω

0
2

M0

M
ϕPðq̂0ÞϕVðq̂Þ½−iMðω0

1ω
0
2 þm1m2 þ q̂02Þðω1m2 þm1ω2Þ=P=ϵ0=ϵ=Pγ5

− iM2ðω0
1ω

0
2 þm1m2 þ q̂02Þðm1=P=ϵ0=ϵ=̂qγ5 þm2=P=ϵ0=̂q=ϵγ5Þ

þ iMðω0
1m2 þm1ω

0
2Þðω1ω2 þm1m2Þ=P=P=ϵ0=ϵγ5 þ iM3ðω0

1m2 þm1ω
0
2Þ=ϵ0=̂q=ϵ=̂qγ5

þ iM2ðω0
1m2 þm1ω

0
2Þðω1=ϵ0=ϵ=P=̂qγ5 − ω2=ϵ0=̂q=P=ϵγ5Þ − iM2ðm1 −m2Þðω1ω2 þm1m2Þ=P=̂q0=ϵ0=ϵγ5

þ iM2ðm1 −m2Þ=P=̂q0=ϵ0=̂q=ϵ=̂qγ5 þ iMðm1 −m2Þðω1=P=̂q
0=ϵ0=ϵ=P=̂qγ5 − ω2=P=̂q

0=ϵ0=̂q=P=ϵγ5Þ
þ iM2ðω1m2 þm1ω2Þðω0

1 þ ω0
2Þ=̂q0=ϵ0=ϵ=Pγ5 þ iM3ðm1ðω0

1 þ ω0
2Þ=̂q0=ϵ0=ϵ=̂qγ5 þm2ðω0

1 þ ω0
2Þ=̂q0=ϵ0=̂q=ϵγ5�;

ðA7Þ
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and

=Pψ̄−−
P ðq̂0Þ=ϵ0Ψþþ

V ðq̂Þ ¼ −iNPNV

16ω1ω2ω
0
1ω

0
2

M0

M
ϕPðq̂0ÞϕVðq̂Þ½−iMðω0

1ω
0
2 þm1m2 þ q̂02Þðω1m2 þm1ω2Þ=P=ϵ0=ϵ=Pγ5

þ iM2ðω0
1ω

0
2 þm1m2 þ q̂02Þðm1=P=ϵ0=ϵ=̂qγ5 þm2=P=ϵ0=̂q=ϵγ5Þ

− iMðω0
1m2 þm1ω

0
2Þðω1ω2 þm1m2Þ=P=P=ϵ0=ϵγ5 − iM3ðω0

1m2 þm1ω
0
2Þ=ϵ0=̂q=ϵ=̂qγ5

þ iM2ðω0
1m2 þm1ω

0
2Þðω1=ϵ0=ϵ=P=̂qγ5 − ω2=ϵ0=̂q=P=ϵγ5Þ − iM2ðm1 −m2Þðω1ω2 þm1m2Þ=P=̂q0=ϵ0=ϵγ5

þ iM2ðm1 −m2Þ=P=̂q0=ϵ0=̂q=ϵ=̂qγ5 − iMðm1 −m2Þðω1=P=̂q
0=ϵ0=ϵ=P=̂qγ5 − ω2=P=̂q

0=ϵ0=̂q=P=ϵγ5Þ
þ iM2ðω1m2 þm1ω2Þðω0

1 þ ω0
2Þ=̂q0=ϵ0=ϵ=Pγ5 þ iM3ðm1ðω0

1 þ ω0
2Þ=̂q0=ϵ0=ϵ=̂qγ5 þm2ðω0

1 þ ω0
2Þ=̂q0=ϵ0=̂q=ϵγ5�:

ðA8Þ

2. Radiative decays through V → Sγ

The þþ and −− components of a scalar meson wave function in Eq. (49) can be obtained through Eq. (38) as

ψþþ
S ðq̂0Þ ¼ −NS

4ω0
1ω

0
2

ϕSðq̂0Þ½−Mðω0
1ω

0
2 −m1m2 þ q̂02Þ − iðω0

1m2 −m1ω
0
2Þ=P − ðω0

1=P=̂q
0 − ω0

2=̂q
0=PÞ − iMðm1 þm2Þ=̂q0;

ψ−−
S ðq̂0Þ ¼ −NS

4ω0
1ω

0
2

ϕSðq̂0Þ½−Mðω0
1ω

0
2 −m1m2 þ q̂02Þ þ iðω0

1m2 −m1ω
0
2Þ=Pþ ðω0

1=P=̂q
0 − ω0

2=̂q
0=PÞ − iMðm1 þm2Þ=̂q0: ðA9Þ

The corresponding adjoint wave functions are obtained by evaluating ψ̄��
S ðq̂0Þ ¼ γ4ðψ��

S ðq̂0ÞÞþγ4 as

ψ̄þþ
S ðq̂0Þ ¼ −NS

4ω0
1ω

0
2

ϕSðq̂0Þ½−Mðω0
1ω

0
2 −m1m2 þ q̂02Þ − iðω0

1m2 −m1ω
0
2Þ=P − ðω0

1=̂q
0=P − ω0

2=P=̂q
0Þ − iMðm1 þm2Þ=̂q0;

ψ̄−−
S ðq̂0Þ ¼ −NS

4ω0
1ω

0
2

ϕSðq̂0Þ½−Mðω0
1ω

0
2 −m1m2 þ q̂02Þ þ iðω0

1m2 −m1ω
0
2Þ=Pþ ðω0

1=̂q
0=P − ω0

2=P=̂q
0Þ − iMðm1 þm2Þ=̂q0: ðA10Þ

The individual terms =Pψ̄þþ
S ðq̂0Þ=ϵ0Ψþþ

V ðq̂Þ, =Pψ̄þþ
S ðq̂0Þ=ϵ0Ψ−−

V ðq̂Þ, =Pψ̄−−
S ðq̂0Þ=ϵ0Ψþþ

V ðq̂Þ, and =Pψ̄−−
S ðq̂0Þ=ϵ0Ψ−−

V ðq̂Þ in the
transition amplitude Mfi in Eq. (31) can be obtained as follows:

=Pψ̄þþ
S ðq̂0Þ=ϵλ0ψþþ

V ðq̂Þ ¼ −iNSNV

16ω1ω2ω
0
1ω

0
2

ϕSðq̂0ÞϕVðq̂Þ½iM3ðω0
1ω

0
2 −m1m2 þ q̂02Þðω1m2 þm1ω2Þ=ϵλ0=ϵλ

þ iM2ðω0
1ω

0
2 −m1m2 þ q̂02Þðm1=P=ϵλ

0
=ϵλ=̂qþm2=P=ϵλ

0
=̂q=ϵλÞ

þ iM3ðω0
1m2 −m1ω

0
2Þðω1ω2 þm1m2Þ=ϵλ0=ϵλ − iM3ðω0

1m2 −m1ω
0
2Þ=ϵλ

0
=̂qϵλ=̂q

þ iM2ðω0
1m2 −m1ω

0
2Þðω1=ϵλ

0
=ϵλ=P=̂q − ω2=ϵλ

0
=̂q=P=ϵλÞ − iM2ðω1m2 þm1ω2Þðω0

1=̂q
0=ϵλ0=ϵλ=Pþ ω0

2=̂q
0=ϵλ0=ϵλ=PÞ

þ iM3ðm1ðω0
1 þ ω0

2Þ=̂q0=ϵλ
0
=ϵλ=̂qþm2ðω0

1 þ ω0
2Þ=̂q0=ϵλ

0
=̂q=ϵλÞ − iM2ðm1 þm2Þðω1ω2 þm1m2Þ=P=̂q0=ϵλ0=ϵλ

þ iM2ðm1 þm2Þ=P=̂q0=ϵλ0 =̂q=ϵλ=̂q − iM3ðm1 þm2Þðω1=̂q
0=ϵλ0=ϵλ=̂q − ω2=̂q

0=ϵλ0 =̂q=ϵλÞ�; ðA11Þ

=Pψ̄−−
S ðq̂0Þ=ϵλ0ψ−−

V ðq̂Þ ¼ −iNSNV

16ω1ω2ω
0
1ω

0
2

ϕSðq̂0ÞϕVðq̂Þ½−iM3ðω0
1ω

0
2 −m1m2 þ q̂02Þðω1m2 þm1ω2Þ=ϵλ0=ϵλ

þ iM2ðω0
1ω

0
2 −m1m2 þ q̂02Þðm1=P=ϵλ

0
=ϵλ=̂qþm2=P=ϵλ

0
=̂q=ϵλÞ

− iM3ðω0
1m2 −m1ω

0
2Þðω1ω2 þm1m2Þ=ϵλ0=ϵλ þ iM3ðω0

1m2 −m1ω
0
2Þ=ϵλ

0
=̂qϵλ=̂q

þ iM2ðω0
1m2 −m1ω

0
2Þðω1=ϵλ

0
=ϵλ=P=̂q − ω2=ϵλ

0
=̂q=P=ϵλÞ − iM2ðω1m2 þm1ω2Þðω0

1=̂q
0=ϵλ0=ϵλ=Pþ ω0

2=̂q
0=ϵλ0=ϵλ=PÞ

− iM3ðm1ðω0
1 þ ω0

2Þ=̂q0=ϵλ
0
=ϵλ=̂qþm2ðω0

1 þ ω0
2Þ=̂q0=ϵλ

0
=̂q=ϵλÞ − iM2ðm1 þm2Þðω1ω2 þm1m2Þ=P=̂q0=ϵλ0=ϵλ

þ iM2ðm1 þm2Þ=P=̂q0=ϵλ0 =̂q=ϵλ=̂qþ iM3ðm1 þm2Þðω1=̂q
0=ϵλ0=ϵλ=̂q − ω2=̂q

0=ϵλ0 =̂q=ϵλÞ�; ðA12Þ
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=Pψ̄þþ
S ðq̂0Þ=ϵλ0ψ−−

V ðq̂Þ ¼ −iNSNV

16ω1ω2ω
0
1ω

0
2

ϕSðq̂0ÞϕVðq̂Þ½−iM3ðω0
1ω

0
2 −m1m2 þ q̂02Þðω1m2 þm1ω2Þ=ϵλ0=ϵλ

þ iM2ðω0
1ω

0
2 −m1m2 þ q̂02Þðm1=P=ϵλ

0
=ϵλ=̂qþm2=P=ϵλ

0
=̂q=ϵλÞ

þ iM3ðω0
1m2 −m1ω

0
2Þðω1ω2 þm1m2Þ=ϵλ0=ϵλ − iM3ðω0

1m2 −m1ω
0
2Þ=ϵλ

0
=̂qϵλ=̂q

− iM2ðω0
1m2 −m1ω

0
2Þðω1=ϵλ

0
=ϵλ=P=̂q − ω2=ϵλ

0
=̂q=P=ϵλÞ þ iM2ðω1m2 þm1ω2Þðω0

1=̂q
0=ϵλ0=ϵλ=Pþ ω0

2=̂q
0=ϵλ0=ϵλ=PÞ

þ iM3ðm1ðω0
1 þ ω0

2Þ=̂q0=ϵλ
0
=ϵλ=̂qþm2ðω0

1 þ ω0
2Þ=̂q0=ϵλ

0
=̂q=ϵλÞ − iM2ðm1 þm2Þðω1ω2 þm1m2Þ=P=̂q0=ϵλ0=ϵλ

þ iM2ðm1 þm2Þ=P=̂q0=ϵλ0 =̂q=ϵλ=̂qþ iM3ðm1 þm2Þðω1=̂q
0=ϵλ0=ϵλ=̂q − ω2=̂q

0=ϵλ0 =̂q=ϵλÞ�; ðA13Þ

and

=Pψ̄−−
S ðq̂0Þ=ϵλ0ψþþ

V ðq̂Þ ¼ −iNSNV

16ω1ω2ω
0
1ω

0
2

ϕSðq̂0ÞϕVðq̂Þ½iM3ðω0
1ω

0
2 −m1m2 þ q̂02Þðω1m2 þm1ω2Þ=ϵλ0=ϵλ

þ iM2ðω0
1ω

0
2 −m1m2 þ q̂02Þðm1=P=ϵλ

0
=ϵλ=̂qþm2=P=ϵλ

0
=̂q=ϵλÞ

− iM3ðω0
1m2 −m1ω

0
2Þðω1ω2 þm1m2Þ=ϵλ0=ϵλ þ iM3ðω0

1m2 −m1ω
0
2Þ=ϵλ

0
=̂qϵλ=̂q

− iM2ðω0
1m2 −m1ω

0
2Þðω1=ϵλ

0
=ϵλ=P=̂q − ω2=ϵλ

0
=̂q=P=ϵλÞ þ iM2ðω1m2 þm1ω2Þðω0

1=̂q
0=ϵλ0=ϵλ=Pþ ω0

2=̂q
0=ϵλ0=ϵλ=PÞ

− iM3ðm1ðω0
1 þ ω0

2Þ=̂q0=ϵλ
0
=ϵλ=̂qþm2ðω0

1 þ ω0
2Þ=̂q0=ϵλ

0
=̂q=ϵλÞ − iM2ðm1 þm2Þðω1ω2 þm1m2Þ=P=̂q0=ϵλ0=ϵλ

þ iM2ðm1 þm2Þ=P=̂q0=ϵλ0 =̂q=ϵλ=̂q − iM3ðm1 þm2Þðω1=̂q
0=ϵλ0=ϵλ=̂q − ω2=̂q

0=ϵλ0 =̂q=ϵλÞ�: ðA14Þ
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