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1 Introduction and summary

One central organizing principle in the space of quantum field theories (QFTs) is the
Renormalization Group (RG) flow. RG flow is often understood as a family of successive
quantum field theories starting at some high-energy (UV) conformal field theory (CFT)
and flowing to some low-energy (IR) CFT. As the flow progresses, the effective number
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of degrees of freedom decreases due to the process of coarse-graining. This reduction can
be accurately quantified by “counting functions,” which are monotonic along the RG flow
and thus render the flows irreversible. Of particular interest are functions that connect
quantities in the CFTs, such as A-type central charges in even dimensions and sphere
free energies in odd dimensions. Both of these quantities will be referred to as central
charges in the following discussion. There are well-established theorems regarding such
flows, including proofs of the 2d c-theorem by Zamolodchikov [1], the 3d F -theorem by
Casini and Huerta [2–5], and the 4d a-theorem by Komargodski and Schwimmer [6, 7];
an alternative approach that has been used to great effect involves entanglement entropy
and has been quite useful for proving results in d = 2, 3, 4 [8–10]. There also exist partial
results in 5d [11–13] and 6d [14–16].

The AdS/CFT correspondence geometrizes many aspects of QFTs and has proven a
particularly useful framework to study the properties of RG flows. Considerable progress
on constructing c-functions has been made from the holographic perspective: various holo-
graphic c-theorems have been established in this context by making use of the Null Energy
Condition (NEC) [17–20], as well as using the entanglement entropy perspective to analyze
holographic RG flows [21, 22]. Holographic methods, for example, permit the construction
of certain monotonic c-functions in any dimension and at strong coupling, something way
beyond the reach of field-theoretic approaches.

Naturally, much work has been done on extending holographic c-theorems to include
higher-derivative corrections [19, 20, 22–37]. Such extensions allow one to distinguish
various central charges [38, 39]. For example, in 4D, we have that a = c at the two-
derivative level in gravity or in the large-N limit in field theory. It is well known, however,
that a alone has a monotonic flow from the UV to the IR [7], while c does not. As such,
adding higher derivatives allows one to distinguish between the central charges that have
monotonic flows and the ones that do not. Such higher derivatives correspond to sub-
leading in N corrections to the central charges.

In this work we explore the notion of counting functions in RG flows across dimensions,
meaning the compactification of a D-dimensional CFT, which is the UV fixed point, on a
(D − d)-dimensional compact space, such that the IR fixed point is a d-dimensional CFT.
RG flows across dimensions are particularly amenable to holographic methods; there are
many examples of supergravity solutions holographically dual to RG flows interpolating
between CFTs of different dimensions [40–47]. Some candidate c-functions for such flows
were studied in [48–50], and more recently an explicit c-function was constructed in [51].
The holographic entanglement entropy picture for such flows was further analyzed in [52].
In this manuscript, we explore the role of higher-derivative corrections in holographic flows
across dimensions. As a natural starting point, we generalize some of the results of Myers-
Sinha [19, 20], who considered the effect of higher-derivative terms in holographic RG flows,
to flows across dimensions.

1.1 The holographic setup

Our starting point is Einstein gravity with a negative cosmological constant. From an
effective field theory point of view, one would expect this to be corrected by a set of higher
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derivative operators. The first such terms arise at the four-derivative level and involve a
combination of R̂MNP QR̂MNP Q, R̂MN R̂MN , and R̂2. However, since the Ricci terms can
be shifted by a field redefinition, we may choose the Gauss-Bonnet combination

χ4 = R̂MNP QR̂MNP Q − 4R̂MN R̂MN + R̂2. (1.1)

As a result, we focus on the bulk (D + 1)-dimensional Lagrangian

e−1L = 1
2κ2

[
R̂ + D(D − 1)

L2 + αχ4

]
, (1.2)

where α parametrizes the correction. This choice of the Gauss-Bonnet combination is
convenient since in this case, the corrected Einstein equation remains second order in
derivatives. This system admits a maximally symmetric AdSD+1 vacuum with an AdS
radius L2

UV = L2 − α(D − 2)(D − 3), to linear order in α.
We are interested in flows from AdSD+1 in the UV to AdSd+1 ×MD−d in the IR. Such

flows can be induced by coupling the gravitational Lagrangian, (1.2), to a suitable matter
sector, i.e., L → L + Lmatter. To parametrize the flow, we split off the would-be internal
space MD−d and assume a spacetime metric of the form

ds2 = e2f(z)(ηµνdxµdxν + dz2) + e2g(z)gij(y)dyidyj . (1.3)

The flow is along the bulk radial coordinate, z, and we take the asymptotics to be such
that e2f ∼ e2g ∼ 1/z2 in the UV (z → 0) while e2f ∼ 1/z2 with e2g ∼ const. in the IR
(z → ∞). Note that this metric implicitly assumes flat slicings of AdSd+1, although some
authors have considered curved slicings [53–55].

Given a bulk metric parametrized by the two functions f(z) and g(z), we then explicitly
construct a function c(f, g; z) such that dc/dz ≤ 0 upon imposing the NEC, TMN ξM ξN ≥ 0,
on the matter sector where ξ is a future-directed null vector. This is the desired mono-
tonicity property. This c-function directly generalizes the two-derivative case [51] to which
it reduces when the Gauss-Bonnet coupling α is sent to zero, as well as generalizing the
four-derivative case of flows within the same dimension [19, 20] to which it reduces in the
limit that there are no compact internal dimensions. This c-function is not unique, but
instead has two free parameters characterizing it; despite this mild ambiguity, the IR limit
of this central charge is unambiguously the A-type central charge as expected. In other
words, limz→∞ c(z) = aIR, where aIR is the four-derivative A-type central charge.

As in the two-derivative case [51], this c-function diverges in the UV. However, we show
that the divergence of the c-function encodes the UV central charge. As we approach the
UV, the compact extra dimensions unfurl and our massive KK towers become increasingly
light and begin to enter the spectrum, meaning that the number of lower-dimensional
degrees of freedom appears to become infinite. Dimensional analysis alone tells us that the
central charge must diverge as a pole of order the number of compact dimensions; however,
we go further and show that the coefficient of this pole encodes the value of the UV central
charge, i.e.,

c(z) z→0∼ aUV
zD−d

, (1.4)
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where aUV is the (four-derivative) A-type central charge in the UV. This is not entirely
automatic; it requires an additional constraint on the remaining free parameters of the
c-function. However, we may always choose the parameters so that this is the case.

We also construct c-functions from the entanglement entropy. In particular, we con-
sider entangling regions of this CFT which completely wrap the internal space. The entan-
glement entropy has been shown [56–59] to then be given by finding the extremal surface
which minimizes the Jacobson-Myers functional [60]

SJM = 1
4GN

∫
Σ

ddx
√

h (1 + 2αR) + 1
2GN

∫
∂Σ

dd−1x
√

h̃(2αK), (1.5)

where Σ is the extremal surface with boundary ∂Σ, h is the determinant of the induced
metric on Σ, h̃ is the induced metric (of the induced metric h) on ∂Σ, R is the scalar
curvature of Σ, and K is the trace of the extrinsic curvature of the boundary ∂Σ. For the
case of flows from AdSD+1 to AdS3, which may be equivalently viewed as flows from CFTD

to CFT2, we explicitly obtain a monotonic c-function from the entanglement entropy as

cEE = R ∂R SJM, (1.6)

where R is the radius of the entangling region. Given a minimal surface whose profile
is r(z), SJM admits a first integral that can be solved for r′(z). This then allows us to
explicitly evaluate (1.6) and subsequently verify its monotonicity as a consequence of the
NEC. Moreover, it turns out to be the case that this c-function which one obtains from the
holographic entanglement entropy is indeed related to the local c-function obtained directly
from the NEC; we show that the monotonicity of one directly implies the monotonicity of
the other. Such precise connection of two a priori differently defined c-functions opens
the possibility of better understanding the connection between strong subadditivity of the
entanglement entropy and the NEC as a condition on the holographic gravity backgrounds.

The rest of this paper is organized as follows: in section 2, we explicitly construct a
local c-function for the case of Gauss-Bonnet corrected gravity and demonstrate that it
flows monotonically from the UV to the IR as a consequence of the null energy condition
(NEC). In section 3, we show that the IR limit of this c-function is the A-type central charge
and, although the c-function diverges in the UV, the coefficient of this divergence encodes
the UV central charge. In section 4, we discuss the c-function obtained from holographic
entanglement entropy and show that it is monotonic, at least when there is no curvature
of the internal space, and show that this quantity is related to the NEC-motivated central
charge constructed in section 2. A summary and conclusions are given in section 5. We
relegate some of the more technical details to appendix A.

2 Higher-derivative gravity and NEC

We are interested in RG flows from CFTD to CFTd triggered by compactification on a
(D − d)-dimensional manifold, MD−d. Holographically, this corresponds to a geometric
flow from AdSD+1 to AdSd+1 ×MD−d. The holographic radial coordinate z then naturally
functions as the scale for RG flow. We may explicitly realize this setup by choosing a metric

ds2 = e2f(z)(ηµνdxµdxν + dz2) + e2g(z)gij(y)dyidyj , (2.1)
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such that in the UV region z → 0 the metric is asymptotically AdSD+1 and in the IR region
z → ∞ the metric asymptotes to AdSd+1 × MD−d. To be rigorous, the metric (2.1) is not
the most general metric describing holographic RG flows across dimensions; for example,
there are known holographic RG flows where the internal space MD−d depends on the holo-
graphic radial coordinate z in a non-separable way [61–63]. We restrict our attention to the
separable case (2.1) for simplicity; we leave it as an exercise for future research to extend our
analysis of holographic c-functions in separable flows to more general non-separable flows.

Furthermore, unless otherwise specified, we will assume that the metric gij of MD−d

is maximally symmetric with Ricci curvature

R̃ij = κ
D − d − 1

ℓ2 gij , (2.2)

where κ = −1, 0, or 1 for negative, flat, or positive curvature, respectively. This is not the
most general choice of metric on the internal space but we make this choice for simplicity;
we will generalize this to arbitrary Einstein internal manifolds in section 2.4.1.

As discussed above, we start with a two-derivative theory in the gravitational sector,
namely the Einstein-Hilbert Lagrangian with a negative cosmological constant. At the
four-derivative level, we add a Gauss-Bonnet coupling

χ4 = R̂MNP QR̂MNP Q − 4R̂MN R̂MN + R̂2, (2.3)

so we end up considering the gravitational Lagrangian

e−1L = 1
2κ2

[
R̂ + D(D − 1)

L2 + αχ4

]
, (2.4)

coupled to a matter sector satisfying the null energy condition.
While the NEC is a condition on the matter, namely TMN ξM ξN ≥ 0, with ξ a future-

directed null vector, the Einstein equation allows this to be recast as a condition on the
four-derivative corrected geometry, namely[

R̂MN + α
(
R̂MP QRR̂ P QR

N − 2R̂P QR̂MP NQ − 2R̂MP R̂ P
N + R̂R̂MN

)]
ξM ξN ≥ 0. (2.5)

The main result of this section is to show that the NEC (2.5) implies the existence of a
monotonic c-function from the UV to the IR in the background (2.1).

2.1 Domain wall flows

Before discussing flows across dimensions, let us first review the case of flows within the
same dimension [19, 20], i.e., for which we have a metric of the form

ds2 = e2f(z)
(
ηµνdxµdxν + dz2

)
. (2.6)

Pure AdS corresponds to the solution f(z) = log(L/z), with L being the AdS radius.
Then, in these coordinates, z = 0 corresponds to the UV and z = ∞ corresponds to
the IR. Thus, we have a gravity solution that is a domain wall interpolating between two
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AdSD+1 regions; the corresponding field theory interpretation is that of an RG flow [17, 18].
One can calculate the curvature tensor components

R̂µνρσ = −e−2f (f ′)2(ηµρηνσ − ηµσηνρ), R̂µzνz = −e2f f ′′ηµν ,

R̂µν = −
[
f ′′ + (D − 1)(f ′)2

]
ηµν , R̂zz = −Df ′′. (2.7)

Choosing a null vector ξ = ∂t ±∂z, the NEC with Gauss-Bonnet corrections is then simply
expressed as [19, 20]

(D − 1)
(
e−f

)′′(
1 − 2α(D − 2)(D − 3)e−2f (f ′)2

)
≥ 0. (2.8)

Note that this will be the only non-trivial NEC due to the planar symmetry of the domain
wall.

We now consider flows to the IR. In the IR, the A-type central charge may be computed
via the methods of [64, 65] to be [66]

aIR = LD−1
IR
GN

(
1 − 2(D − 1)(D − 2) α

L2
IR

)
, (2.9)

where GN is the (D + 1)-dimensional Newton’s constant. In order to obtain a c-function,
note that in the IR, we expect that ef ∼ LIR/z, so that (e−f )′ ∼ 1/LIR. Replacing LIR by
an effective AdS radius

Leff(z) = 1
(e−f )′ , (2.10)

that interpolates between LUV and LIR then leads to a natural ansatz for an unnormalized
c-function

c(z) = 1

GN

(
(e−f )′

)D−1

(
1 − 2α(D − 1)(D − 2)((e−f )′)2

)
. (2.11)

Taking a derivative with respect to z, one gets that

c′(z) = −
(D − 1)

(
e−f

)′′
GN

(
(e−f )′

)D

(
1 − 2α(D − 2)(D − 3)((e−f )′)2

)
≤ 0, (2.12)

where the final step makes use of the null energy condition, (2.8). So, there is a monotoni-
cally non-increasing flow of c(z) from the UV to the IR. Moreover, one can check that this
function c(z) interpolates between the UV and IR central charges, in the sense that

c(z = ∞) = aIR, c(z = 0) = aUV. (2.13)

Here aIR and aUV are the A-type central charges in the IR and UV, respectively, where

aUV = LD−1
UV
GN

(
1 − 2(D − 1)(D − 2) α

L2
UV

)
. (2.14)

This expression agrees with [66].

– 6 –



J
H
E
P
0
8
(
2
0
2
3
)
1
4
7

2.2 Two-derivative flows across dimensions

We now turn to the case at hand, which is flows across dimensions. Before considering the
full case, we start by reviewing the two-derivative case of flows across dimensions [51], i.e.,
without higher-derivative corrections. For such flows, we use the full metric ansatz (2.1),
with corresponding Ricci tensor components

R̂µ
ν = −e−2f [f ′′ + f ′((d − 1)f ′ + (D − d)g′

)]
δµ

ν ,

R̂i
j = e−2gR̃i

j − e−2f [g′′ + g′
(
(d − 1)f ′ + (D − d)g′

)]
δi

j ,

R̂z
z = −e−2f [df ′′ + (D − d)

(
g′′ + g′(g′ − f ′)

)]
. (2.15)

Note that because we are assuming the AdSd+1 in the IR to have flat slicings, the corre-
sponding Ricci tensor Rµν will vanish.

At the two-derivative level, the null energy condition is equivalent to RMN ξM ξN ≥ 0.
Since the D-dimensional isometry is broken by the flow, we end up with two independent
inequalities, which correspond to choosing null vectors along t-z and t-y. These conditions
are, respectively,

NEC1: −(d − 1)
(
f ′′ − (f ′)2

)
− (D − d)

(
g′′ + g′(g′ − 2f ′)

)
≥ 0, (2.16a)

NEC2: (f ′ − g′)′ + (f ′ − g′)
(
(d − 1)f ′ + (D − d)g′

)
+ κ

D − d − 1
ℓ2 e2f−2g ≥ 0. (2.16b)

NEC1 may be suggestively rewritten as

(
e−f̃

)′′
≥ (D − 1)(D − d)

(d − 1)2 e−f̃ (g′)2 ≥ 0, (2.17)

where f̃ is an effective warp factor

f̃(z) ≡ f(z) + D − d

d − 1 g(z). (2.18)

Likewise, NEC2 can be rearranged into the form(
e(d−1)f+(D−d)g(f ′ − g′)

)′
≥ −κ

D − d − 1
ℓ2 e(d+1)f+(D−d−2)g. (2.19)

Note that the sign of the right-hand side term depends on the sign of the internal curvature,
κ. For κ = −1 or κ = 0 the expression on the left-hand side is non-negative. But for κ = 1
the sign of this term is unconstrained.

As in the domain wall flow, we seek a c-function that flows to aIR in the IR. Before
constructing such a function, we first recall the asymptotics of the flow. Flowing from
AdSD+1 in the UV to AdSd+1 in the IR, one expects

UV (z = 0) : (e−f )′ = (e−g)′ = 1
LUV

,

IR (z = ∞) : (e−f )′ = 1
LIR

, (e−g)′ = 0, (2.20)
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For AdSd+1 in the IR, we have

aIR = Ld−1
IR

Gd+1
= e(D−d)g(∞)Vol(MD−d)Ld−1

IR
GN

= Vol(MD−d)
GN

(
e

D−d
d−1 g(∞)LIR

)d−1
, (2.21)

where GN is the (D+1)-dimensional Newton’s constant, and Gd+1 is obtained by a standard
Kaluza-Klein reduction with internal space metric ĝij = e2g(z)gij . Taking LIR ∼ 1/(e−f )′,
it is then natural to write down an unnormalized local holographic c-function of the form

c(z) = 1
((e−f̃ )′)d−1

. (2.22)

In particular, the effective warp factor f̃ gives the precise combination of internal volume
and AdS radius needed to obtain the IR central charge. As before, one can verify that this
is monotonic along flows

c′(z) = −(d − 1)(e−f̃ )′′

((e−f̃ )′)d
≤ 0, (2.23)

since (e−f̃ )′′ ≥ 0 from NEC1, (2.17). Moreover,
As before, we may define an effective AdS radius

Leff(z) = 1
(e−f̃ )′

, (2.24)

such that L′
eff(z) ≤ 0. The c-function is then simply

c(z) = Leff(z)d−1

GN
. (2.25)

Note, however, that Leff defined here does not correspond directly to the radius of AdSd+1;
instead it is the AdS radius modified by the internal volume to account for the dimensionally
reduced Newton’s constant. Moreover, unlike the domain wall flow case, this c(z) diverges
in the UV. This has a natural explanation: the D-dimensional theory appears to have
an infinite number of d-dimensional degrees of freedom; i.e., as we approach the UV, the
compact dimensions become large and we can no longer ignore the infinite KK tower of
states. As it turns out, the divergence still encodes the UV central charge; we will return
to this point in section 3.2.

Note that NEC2, given in the form (2.19) also leads to a monotonicity of sorts. In
particular, as long as the internal curvature is non-positive, κ ≤ 0, the quantity

C(z) = e(d−1)f̃ (f ′ − g′), (2.26)

satisfies the inequality
C′(z) ≥ 0 (provided κ ≤ 0) (2.27)

Hence C(z) is a monotonically non-decreasing function towards the IR. Moreover, making
use of the IR behavior, (2.20), we see that

C z→∞∼ −e(D−d)gIR

LIR

(
LIR

z − z0

)d

< 0, (2.28)
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where z0 is a constant offset. Since this is negative in the IR and the flow is non-decreasing
towards the IR, we see that C(z) is negative along the entire flow. Thus it must be the
case that f ′ < g′ along the entire flow, so long as κ ≤ 0. It would be interesting to explore
the implications of this condition as a second constraint on the flow (for κ ≤ 0).

2.3 A concrete example: AdS5 → AdS3

We now turn to four-derivative flows across dimensions where we include the Gauss-Bonnet
coupling. Since the expressions are somewhat lengthy for arbitrary UV and IR dimensions,
D and d, we start with a simple example of flowing from AdS5 to AdS3 × T 2 to motivate
our procedure. We thus take a metric of the form

ds2 = e2f(z)(− dt2 + dx2 + dz2) + e2g(z)(dy2 + dw2). (2.29)

There are various explicit solutions in this class, including supergravity solutions describing
flows of N = 4 SYM on T 2 [46, 67–69]. The resulting NECs, in the presence of a Gauss-
Bonnet term in the action, are obtained by orienting the null vectors along the t-z and t-y
directions, respectively,

NEC1: −
(
f ′′(z) − f ′(z)2

)
− 2

(
g′′(z) + g′(z)

(
g′(z) − 2f ′(z)

))
+ 4αe−2f(z)g′(z)

[
g′(z)

(
f ′′(z) − f ′(z)2

)
+ 2f ′(z)

(
g′′(z) + g′(z)

(
g′(z) − 2f ′(z)

))]
≥ 0, (2.30a)

NEC2:
(
f ′(z) − g′(z)

)′ +
(
f ′(z) − g′(z)

) (
f ′(z) + 2g′(z)

)
+ 4αe−2f(z)

[
−
(
f ′(z)g′(z)

(
f ′(z) − g′(z)

))′
+ f ′(z)g′(z)

(
f ′(z) − g′(z)

) (
f ′(z) − 2g′(z)

)]
≥ 0. (2.30b)

These generalize the two-derivative NECs, (2.16), in the case where D = 4, d = 2, and
κ = 0. As a sanity check, note that NEC2 becomes trivial in the domain wall limit, g = f ,
while NEC1 reduces to

−3
(
f ′′(z) − f ′(z)2

) (
1 − 4αe−2f f ′(z)2

)
≥ 0, (2.31)

in agreement with the domain wall flow case (2.8).
In order to obtain a c-function, note that, following (2.17), the two-derivative NEC1

can be written as (
e−f̃

)′′
≥ 6e−f̃ (g′)2, (2.32)

where f̃ = f+2g. Examination of (2.30) indicates that, in the presence of the Gauss-Bonnet
correction, this can be extended to((

e−f̃
)′

+ 4αe−f̃−2f f ′g′2
)′

≥ 6e−f̃ (g′)2
[
1 + 4

3α e−2f
(
(f ′ − g′)2 − g′2

)]
. (2.33)

Since (g′)2 is non-negative, the right-hand side of the two-derivative expression, (2.32), is
non-negative. However, the same cannot be said for (2.33), as the term inside the square
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brackets can in principle have either sign. However, as long as we are working perturbatively
in the higher derivative coupling, α, this still leads to a monotonic expression for the left-
hand side.

Validity of the perturbative expansion requires that the four-derivative Gauss-Bonnet
term be parametrically smaller than the leading-order two derivative term, αR2 ≪ R, or
α/ℓ2 ≪ 1 where ℓ is some radius of curvature of the background. For the particular higher
derivative flow at hand, (2.33), this corresponds to the two conditions

αe−2f f ′2 ≪ 1, αe−2f g′2 ≪ 1, (2.34)

in which case we can conclude that((
e−f̃

)′
+ 4αe−f̃−2f f ′g′2

)′
≥ 0. (2.35)

For a flow interpolating between the asymptotic regions given in (2.20), we note that
e−f ∼ e−g ∼ z/LUV in the UV region, z → 0. Then the perturbative conditions, (2.34),
translate into

α

L2
UV

≪ 1. (2.36)

While this changes along the flow, the first condition in (2.34) corresponds to α/Leff ≪ 1
where Leff is an effective AdS radius interpolating between LUV and LIR. For the second
condition in (2.34), note that e−g interpolates from z/LUV to a constant in the IR. Hence
g′2 flows from 1/z2 to 0. Since e−2f scales as z2 throughout the flow, the combination
e−2f g′2 then interpolates between the values

e−2f (g′)2 =

0, z → ∞ (IR)
1

L2
UV

, z → 0 (UV)
(2.37)

The requirement that we are working perturbatively in α is, therefore,{
α

L2
UV

,
α

L2
IR

}
≪ 1. (2.38)

at the endpoints of the flow, along with the assumption that the four-derivative corrections
remain parametrically small along the flow. This is equivalent to requiring that our EFT
description remains valid.

With this in mind, one may generalize the two-derivative c-function defined in (2.25)
by taking

c(z) = Leff(z)
GN

, (2.39)

where now
Leff(z) = 1(

e−f̃
)′

+ 4αe−f̃−2f f ′(g′)2
, (2.40)

is the Gauss-Bonnet corrected effective AdS3 radius including the internal volume factor.
From (2.35), we immediately see that L′

eff(z) ≤ 0, so that c′(z) ≤ 0. As a result, c(z) is
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monotonic non-increasing along the flow to the IR, so long as we work perturbatively in α.
Note that this c-function reduces to the two-derivative c-function in the IR where g′ = 0;
this is a consequence of the fact that the Gauss-Bonnet term is trivial for AdS3 and we
might expect otherwise in general dimensions.

Turning our attention to NEC2, we see that it can be written as a total derivative(
ef̃ (f ′ − g′)

(
1 − 4αe−2f f ′g′

))′
≥ 0, (2.41)

which generalizes (2.19) for the case κ = 0. If we commit to being perturbatively small in
α, (2.34), then the interpretation of NEC2 is almost identical to the two-derivative case [51]
as summarized above. We can define a function

C(z) = ef̃ (f ′ − g′)
(
1 − 4αe−2f f ′g′

)
, (2.42)

such that C′(z) ≥ 0. In the IR, we have that

C(z) z→∞∼ −e2gIR

LIR

(
LIR

z − z0

)2
< 0, (2.43)

where z0 is a constant. Since this is a negative in the IR and monotonically non-decreasing
with respect to z, it must be the case that it is also negative in the UV. Hence, we have
that f ′ < g′ along the entire flow.

2.4 Gauss-Bonnet flows in arbitrary dimensions

Having examined flows from AdS5 to AdS3 we now turn to the general case of Gauss-
Bonnet corrected flows in arbitrary dimensions. Consider a flow from AdSD+1 to AdSd+1.
As noted above, we consider two conditions arising from the null energy condition, which
we denoted NEC1 and NEC2. Our main interest is in the c-function arising from NEC1,
although NEC2 will also give rise to a monotonic function from the case κ ≤ 0.

Making use of the curvature tensor components summarized in appendix A.1, we find
the t-z NEC1 to be given by

− (d − 1)(f ′′ − (f ′)2) − (D − d)(g′′ + g′(g′ − 2f ′)) (2.44)

+ 2αe−2f
[
(d − 1)(d − 2)(f ′)2

(
(d − 3)(f ′′ − f ′2) + (D − d)(g′′ + g′(g′ − 2f ′))

)
+ 2(D − d)(d − 1)f ′g′

(
(d − 2)(f ′′ − f ′2) + (D − d − 1)(g′′ + g′(g′ − 2f ′))

)
+ (D − d)(D − d − 1)g′2

(
(d − 1)(f ′′ − f ′2) + (D − d − 2)(g′′ + g′(g′ − 2f ′))

)]
− 2α

κ

ℓ2 (D − d)(D − d − 1)e−2g
[
(d − 1)(f ′′ − f ′2) + (D − d − 2)(g′′ + g′(g′ − 2f ′))

]
≥ 0.

One can check that upon setting f = g and κ = 0, we get

(D − 1)
(
(f ′)2 − f ′′

)(
1 − 2α(D − 2)(D − 3)e−2f (f ′)2

)
≥ 0, (2.45)

which is in perfect agreement with the domain wall flow NEC (2.8). As a sanity check, one
can also see that setting α = 0 recovers the correct two-derivative result (2.16).
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We now seek a holographic c-function which could, a priori, be any arbitrary function

c(z) = c(f, f ′, f ′′, . . . , g, g′, g′′, . . . ; z). (2.46)

However, inspired by the form of the two-derivative c-function (2.22) and the AdS5 → AdS3
case, namely (2.39) and (2.40), a natural generalization would to be

c(z) = 1
((e−f̃ )′)d−1

→ 1 + O(α)
((e−f̃ )′ + O(α))d−1

, (2.47)

where the O(α) terms are made from combinations of f ′, g′ and κ. Hence, we propose a
candidate c-function

c(z) = Leff(z)d−1

GN

[
1 + α

(
e−2f

(
a1(f ′)2 + a2f ′g′ + a3(g′)2

)
+ b1e−2g κ

ℓ2

)]
,

Leff(z) =
[(

e−f̃
)′

+ α e−f̃
(

e−2f
(
a4(f ′)3 + a5(f ′)2g′ + a6f ′(g′)2 + a7(g′)3

)
+ e−2g κ

ℓ2
(
b2f ′ + b3g′

))]−1
, (2.48)

for some choice of real coefficients {ai, bj}. The structure of the central charge contains
various occurring products of derivatives of the functions f and g. Note that we are
interested in comparing to NEC1 in order to obtain monotonicity, and hence have avoided
any terms with f ′′ or g′′ in c(z) as these would lead to f ′′′ and g′′′ terms in c′(z), as well as
(f ′′)2 and (g′′)2 terms.

We now fix the coefficients {ai, bj} by demanding monotonicity of c(z), namely c′(z) ≤
0 under the assumptions of NEC1 and perturbative control. To do so, we compute c′(z)
and adjust the coefficients to match the f ′′ and g′′ terms with the structure of NEC1,
namely (2.44). The expression for c′(z) is not particularly illuminating, but it is given in
appendix A.2 for completeness. Comparing c′(z) to NEC1, we see that for the particular
choice of coefficients

a1 = −2(d − 1)(d − 2),
a2 = −4(D − d)(d − 2),
a3 = arbitrary,

a4 = 0,

a5 = 4(D − d)(d − 2)
(d − 1) ,

a6 = 2(D − d)
((2d − 3)(D − d)

(d − 1)2 − 1
)
− a3

d − 1 ,

a7 = arbitrary,

b1 = 2(D − d)(D − d − 1),
b2 = 0,

b3 = 4(D − d)(D − d − 1)
(d − 1) , (2.49)
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we get monotonicity of the c-function, in the sense that

c′(z) = −e−f̃ (Leff)d

GN

[
NEC1 + (D − 1)(D − d)

d − 1 (g′)2(1 + O(α))
]
≤ 0, (2.50)

where we have made crucial use of the fact that we are working perturbatively in α. Here,
O(α) denotes only terms which remain under perturbative control throughout the flow in
the sense of (2.34). Notice also that (2.48) reduces to (2.39) upon setting D = 4, d = 2,
and κ = 0, provided we take a3 = a7 = 0.

Note that the two coefficients a3 and a7 are left undetermined; a7 will be the coefficient
of a term proportional to (g′)2 and so can never matter within the context of our analysis,
and shifting a6 is equivalent to a shift in a7 and a shift in a3 since we are working pertur-
batively in α. This freedom in choosing a3 and a7 in principle yields a family of c-functions
that all flow to the same IR central charge as g′ → 0 in the IR. However, the UV behavior
will be affected, and below we will find a preferred combination of these coefficients. In fact,
if one were to relax the above condition (2.50) by replacing NEC1 with NEC1×(1+O(α)),
then it would become apparent that, due to the perturbative nature of our analysis, there
are actually five free parameters rather than the naïvely apparent two. Intuitively, this
is equivalent to the freedom of perturbatively combining the numerator of (2.48) with its
denominator. It is convenient, however, to keep these terms separate when taking the IR
limit, as we will see in section 3.1.

We may also consider NEC2, which can be arranged in the form{
e(d−1)f̃

[
(f ′ − g′) + 2α

(
e−2f (f ′ − g′)

(
− (d − 1)(d − 2)(f ′)2

− 2(d − 1)(D − d − 1)f ′g′ − (D − d − 1)(D − d − 2)(g′)2
)

+ e−2g κ

ℓ2

(
(D − 4d − 1)f ′ + (−5 + (8 − 3D)D + d(−8 + 6D))g′

))]}′

≥ − κ

ℓ2 e(d−1)f̃+2f−2g
[
D − d − 1 + 2α

(
e−2f

(
3d(d + 1)f ′′ + 3d2g′′

+ (D + 2d + 2)d(d − 1)(f ′)2 − d(D(3 − 2D) + dD + 4d2 + 2)f ′g′

+ (D − d − 2)(D2 − 2dD − 4D − 2(d − 2) + 3)(g′)2
)

+ κ

2ℓ2 (D − d − 1)(7 + 2d2 − 4d(D − 2) + 2D(D − 4))
)]

. (2.51)

One may check that setting g = f and κ = 0 makes the left- and right-hand sides of this
inequality identically zero, as it should. This suggests that we define

C(z) = e(d−1)f̃
[
(f ′ − g′) + 2α

(
e−2f (f ′ − g′)

(
− (d − 1)(d − 2)(f ′)2

− 2(d − 1)(D − d − 1)f ′g′ − (D − d − 1)(D − d − 2)(g′)2
)

+ e−2g κ

ℓ2

(
(D − 4d − 1)f ′ + (−5 + (8 − 3D)D + d(−8 + 6D))g′

))]
, (2.52)
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analogous to (2.42) for the case of AdS5 → AdS3. NEC2 is then the statement that

C′(z) ≥ − κ

ℓ2 e(d−1)f̃+2f−2g(D − d − 1)(1 + O(α)). (2.53)

Then C′(z) > 0 for κ = −1 and C′(z) ≥ 0 for κ = 0, so long as the O(α) corrections are
parametrically small. Then in the IR, we find that

C(z) z→∞∼ −e(D−d)gIR

LIR

(
LIR

z − z0

)d
(

1 − 2α(d − 1)(d − 2)
L2

IR
+ αe−2gIR

κ

ℓ2 (D − 4d − 1)
)

< 0.

(2.54)
This should hold so long as α/L2

IR ≪ 1 and α/ℓ2 ≪ 1. Then since C(z) is negative in the
IR and non-decreasing as z increases, we conclude that it must always be negative. This
imposes a constraint

0 > (f ′ − g′) + 2α

(
e−2f (f ′ − g′)

(
− (d − 1)(d − 2)(f ′)2

− 2(d − 1)(D − d − 1)f ′g′ − (D − d − 1)(D − d − 2)(g′)2
)

(2.55)

+ e−2g κ

ℓ2

(
(D − 4d − 1)f ′ + (−5 + (8 − 3D)D + d(−8 + 6D))g′

))
.

Heuristically, this provides an additional constraint to the c-function considerations.

2.4.1 Generic Einstein internal manifolds

If we relax the condition that the internal manifold is maximally symmetric, and instead
only require it to be an Einstein manifold with Ricci curvature

R̃ij = kgij , (2.56)

with g the metric on the internal space, then the null energy condition will be, in general,
more complicated. In particular, we no longer know the internal Riemann tensor R̃ijkl;
however, the only component of the full Riemann tensor R̂MNP Q that contains the uncon-
tracted internal Riemann tensor is R̂ijkl with all internal indices, which will not affect the
t-z null energy condition NEC1. Then all the previous arguments hold for the monotonicity
of the c-function if we replace

κ

ℓ2 → k

D − d − 1 . (2.57)

However, the same is not true of NEC2 since it would be dependent on R̃ijkl in general.

2.5 Changing coordinates

While we have parametrized the bulk metric according to (2.1), in some situations it is
convenient for one to work in a different gauge,

ds2 = e2A(r)(− dt2 + dx⃗2) + dr2 + e2B(r) ds2
MD−d

. (2.58)

The c-functions we have defined do not depend on the choice of coordinates. Neverthe-
less, we present NEC1 and the corresponding c(r) function in appendix B.1 in case such
expressions may prove useful.
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3 Fixed point limits of the c-function

In section 2, we have constructed a monotonic c-function, (2.48) with coefficients given
in (2.49), for Einstein-Gauss-Bonnet flows across dimensions. This c-function is a nat-
ural extension of its two-derivative counterpart, (2.22), as well as the higher-derivative
c-function, (2.11), for flows in the same dimension. To better understand the physics of
this NEC-motivated c-function, we now consider its UV and IR limits and compare it to
the expected central charges at the endpoints of the flow.

3.1 The IR limit

One important reason for considering higher derivatives is that they break the degeneracy
between the a-type and c-type central charges. Focusing on d = 4 for the moment, the
Gauss-Bonnet correction splits the two central charges in the IR [20]

a = L3
IR

G5

(
1 − 12α

L2
IR

)
, (3.1a)

c = L3
IR

G5

(
1 − 4α

L2
IR

)
. (3.1b)

If we do not include higher derivatives, then these are exactly the same. In particular, a
holographic two-derivative flow cannot tell the difference between whether a or c is flowing
monotonically. However, for the four-derivative central charge, (2.48), we find the IR limit

c(z) z→∞∼ Ld−1
IR

Gd+1

(
1 − 2α(d − 1)(d − 2)

L2
IR

)
, (3.2)

where, as we show below, the (d + 1)-dimensional Newton’s constant is

1
Gd+1

= e(D−d)gIRVol(MD−d)
GN

(
1 + 2α(D − d)(D − d − 1) κ

ℓ2 e−2gIR

)
. (3.3)

While the above holds for arbitrary D and d, we can compare with the four-dimensional
IR central charges, (3.1), by setting d = 4. In this case, we get that

c(z) z→∞∼ L3
IR

G5

(
1 − 12α

L2
IR

)
, (3.4)

with
1

G5
= e(D−4)gIR

GN

(
1 + 2α(D − 4)(D − 5) κ

ℓ2 e−2gIR

)
. (3.5)

This then clearly reduces to the a central charge as we would expect from the a-theorem,
and notably is not the c central charge.

More generally, we expect the A-type central charge in the IR to be [57, 70]

A = Ld−1
IR

Gd+1

(
1 − 2(d − 1)(d − 2) α

L2
IR

)
, (3.6)
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which precisely matches the IR limit, (3.2). Hence, the c-function originating from NEC1
pertains to the monotonicity of what becomes the A-type central charge in the IR. Note that
we have not imposed this fact; simply solving for the allowed parameters {ai, bi} in (2.48)
that give monotonicity from NEC1 has demanded that the IR limit be unambiguously the
A-type central charge.

We now return to the relation between the (D+1)-dimensional and (d+1)-dimensional
Newton’s constant, (3.5). The lower-dimensional Newton’s constant is obtained from com-
pactification of the gravitational part of the Lagrangian, (2.4). In the IR, the spacetime is
AdSd+1 × MD−d. Furthermore, in this limit, the Gauss-Bonnet term, (2.3), splits as

χ4 → χ4 + χ̃4 + 2RR̃, (3.7)

where R̃ is the internal Ricci scalar and χ̃4 is the internal Gauss-Bonnet term

R̃ = κ

ℓ2 (D − d)(D − d − 1),

χ̃4 = 1
ℓ4 (D − d)(D − d − 1)(D − d − 2)(D − d − 3). (3.8)

Then the gravitational action reduces as

S = 1
16πGN

∫
dD+1x

√
−g

[
R + D(D − 1)

L2 + αχ4

]
= 1

16πGN

∫
dd+1x

√
−gd+1

∫
dD−dye(D−d)gIR

√
gD−d

×
[(

1 + 2αR̃
)

R + D(D − 1)
L2 + αχ4 + R̃ + αχ̃4

]
. (3.9)

Integrating out the internal coordinates gives the (d + 1)-dimensional Newton’s constant

1
Gd+1

= e(D−d)gIRVol(MD−d)
GN

(
1 + 2αR̃

)
, (3.10)

where R̃ is given in (3.8). Making this substitution for R̃ then yields the expression given
above in (3.5).

3.2 The UV divergence

We now turn to the UV behavior of the c-function, (2.48). As is often the case when
defining c-functions in flows across dimensions, this function diverges in the UV. This, of
course, is not surprising since we will see an infinite number of lower-dimensional degrees
of freedom in the UV. While (2.48) does not interpolate between the UV and IR central
charges, we can still ask whether its UV divergence can be related to the UV central charge.
To answer this question, we first look at the two-derivative case.

3.2.1 Two-derivative case

Ignoring higher-derivative corrections for the moment, for general D to d dimensional flows,
the c-function is given by (2.22), which we write out as

c(z) = e(d−1)f+(D−d)g
(
−f ′ − D − d

d − 1 g′
)−(d−1)

. (3.11)
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In the UV we have ef ∼ eg ∼ LUV/z, so

c(z) z→0∼
(

LUV
z

)D−1 ( d − 1
D − 1z

)d−1
∝ (LUV)D−1

zD−d
. (3.12)

The numerator gives the unnormalized UV central charge. The denominator diverges with
increasing energy scale, and the power is the number of compact dimensions.

3.2.2 Gauss-Bonnet

Now we consider what happens when we reintroduce the Gauss-Bonnet term. For the case
of no internal curvature, κ = 0, the c-function in (2.48) reduces to

c(z) = e(d−1)f+(D−d)g 1 + αe−2f
(
a1(f ′)2 + a2f ′g′ + a3(g′)2)(

−f ′ − D−d
d−1 g′ + αe−2f (a5(f ′)2g′ + a6f ′(g′)2 + a7(g′)3)

)d−1 , (3.13)

which, in the UV limit, behaves as

c(z) z→0∼
(

LUV
z

)D−1 1 + α
L2

UV
(a1 + a2 + a3)(

D−1
d−1

1
z − α

L2
UV

(a5 + a6 + a7)1
z

)d−1

=
(

d − 1
D − 1

)d−1 (LUV)D−1

zD−d

1 + α
L2

UV
(a1 + a2 + a3)(

1 − α
L2

UV

d−1
D−1(a5 + a6 + a7)

)d−1 . (3.14)

Note that the curvature terms proportional to κ/ℓ2 do not affect the UV limit (3.14) since
e−2gf ′ ∼ z and e−2g ∼ z2 in the UV, which is to be expected since intuitively the “compact”
dimensions will appear large at very high energies. If we demand that c(z) ∝ aUV/zD−d

in the UV limit, (3.14) places constraints on sums of the a coefficients. In particular,
comparing to the known result,

aUV = LD−1
UV
GN

(
1 − 2(D − 1)(D − 2) α

L2
UV

)
, (3.15)

we must satisfy

a1 + a2 + a3 + (d − 1)2

D − 1 (a5 + a6 + a7) = −2(D − 1)(D − 2), (3.16)

which corresponds to the requirement that

a7 = D −1
(d−1)2

[
2(D −1)((D +1)(D −4)−3d(d−3))+(d−3)(d−1)(D −d)+(2d−3)(D −d)2

(D −1) − D −d

d−1 a3

]
.

(3.17)
This provides an additional constraint on the coefficients (2.49), reducing the number of
free coefficients from two to one. Given the discussion hitherto, we may always impose this
additional requirement.
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4 Higher-derivative gravity and holographic entanglement entropy

In this section, we discuss the construction of monotonic c-functions from the perspective of
holographic entanglement entropy. It is well-known that finding the entanglement entropy
of a region in a holographic CFT is equivalent to finding a bulk surface minimizing some
choice of functional; at the two-derivative level, this is just the Ryu-Takayanagi (RT) area
functional [71, 72]. However, minimizing the area of the extremal surface is insufficient
when higher derivatives are present; in particular it has been argued [56–59] that, given a
theory described by the Einstein-Gauss-Bonnet action

Itotal = Ibulk + IGH + Ict,

Ibulk =
∫

dD+1x

[
R + D(D − 1)

L2 + αχ4

]
,

IGH =
∫

dDx

[
K − 2α

(
GabK

ab + 1
3
(
K3 − 3KK2 + 2K3

))]
, (4.1)

where Kab is the extrinsic curvature with trace K, K2 = (Kab)2, and K3 = KabK
bcK a

c ,
the RT functional must be replaced with the Jacobson-Myers (JM) functional1 [60]

SJM = 1
4GN

∫
Σ

ddx
√

h (1 + 2αR) + 1
2GN

∫
∂Σ

dd−1x
√

h̃2αK, (4.2)

where Σ is the surface over which the functional is being minimized with boundary ∂Σ, h is
the determinant of the induced metric on Σ, h̃ is the induced metric (of the induced metric
h) on ∂Σ, R is the scalar curvature of Σ, and K is the trace of the extrinsic curvature of
the boundary ∂Σ. The term containing K may be viewed as a Gibbons-Hawking term that
renders the variational principle well-defined. The equation of motion that follows from
the JM functional is

K + 2α(RK− 2RijKij) = 0. (4.3)

We may then compute the holographic entanglement entropy of a region A by minimizing
this functional over all surfaces homologous to A

SEE = min
Σ∼A

SJM(Σ). (4.4)

The goal of this section is to construct monotonic c-functions from the entanglement
entropy. For flows down to AdS3, it is natural to obtain a monotonic c-function as the
coefficient of the logarithmic term [8]

cEE = R∂RSEE, (4.5)

where R is the radius of the entangling region. An analogous quantity that interpolates
between free energies in AdS4 flows is

cEE = R∂RSEE − SEE , (4.6)
1Note that for black holes, the Jacobson-Myers functional leads to the same result as Wald’s entropy [73–

75], but it is generically different.
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and its monotonicity can be proven using strong subadditivity on field-theoretic
grounds [10]. However, it is not clear how to define similar quantities for AdS5 and above.
Strong subadditivity may be used to construct monotonic functions in higher dimensions,
but they no longer interpolate between central charges at the fixed points.

4.1 AdSD+1 → AdS3

It is most tractable to look at flows from AdSD+1 down to AdS3. Equivalently, this may
be viewed as a flow from CFTD to CFT2. Generically, we have a metric of the form (2.1),
but we will further specify the metric to be

ds2 = e2f(z)
(
−dt + dz2 + dr2

)
+ e2g(z)ds2

MD−2 , (4.7)

with asymptotic behavior

z → 0 : f(z) → log (LUV/z), g(z) → log (LUV/z),
z → ∞ : f(z) → log (LIR/z), g(z) → gIR. (4.8)

Our CFTD lives on R1,1 × MD−2. We will consider entangling regions2 which wrap the
internal MD−2. The induced metric on a constant time slice parameterized by a profile
r(z) is

dσ2 = e2f (1 + r′(z)2) dz2 + e2g ds2
MD−2 . (4.9)

We will assume boundary conditions

r(0) = R, r(z0) = 0, r′(z0) = −∞, (4.10)

where R is the radius of the entangling region and z0 is the deepest point in the bulk that the
minimal surface probes along the holographic radial coordinate, that is, the turning point
of the surface in the mechanical analogy. In terms of this profile, the induced Ricci scalar is

R = (D − 2)(D − 3) κ

ℓ2 e−2g

+ (D − 2) e−2f

(1 + (r′)2)2

[(
1 + (r′)2

)(
2f ′g′ − (D − 1)(g′)2 − 2g′′

)
+ 2g′r′r′′

]
, (4.11)

which, after some integration by parts, leads to a JM functional

SJM = 2Vol(MD−2)
4GN

∫
dz ef̃

[√
1 + (r′)2

(
1 + 2α̃

κ

ℓ2 e−2g
)

+ 2α̃
e−2f (g′)2√

1 + (r′)2

]
, (4.12)

where the rescaled Gauss-Bonnet coupling

α̃ ≡ α(D − 2)(D − 3), (4.13)

2For a more detailed discussion of choices of entangling regions in flows across dimensions, see [51].
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is introduced for convenience. Here we have ignored the boundary term from integrating
by parts since it will automatically cancel with the Gibbons-Hawking term K. Since this
functional is independent of r(z), SJM admits a first integral

C =
r′ef̃

((
(r′)2 + 1

) (
1 + 2α̃ κ

ℓ2 e−2g
)
− 2α̃e−2f (g′)2

)
((r′)2 + 1)3/2 , (4.14)

which can be solved to give

r′(z) = − F√
1 −F2 + 4α̃

(
κ
ℓ2 e−2g − e−2f (g′)2(1 −F2)

) , F(r) ≡ Ce−f̃ , (4.15)

or, equivalently,

z′(r) = −

√
1 −F2 + 4α̃

(
κ
ℓ2 e−2g − e−2f (g′)2(1 −F2)

)
F

. (4.16)

To fix the value of C, we note that we should have r′(z) → −∞ as z → z0; this then
requires that

C = ef̃0

(
1 + 2α̃

κ

ℓ2 e−2g0

)
where f̃0 = f̃(z0), g0 = g(z0). (4.17)

Recall that we are interested in obtaining a monotonic c-function from the entangle-
ment entropy following (4.5), where R is given by

R = −
∫ z0

0
dz r′(z). (4.18)

The negative sign is due to the fact that r′(z) is negative in this parameterization. We
know r′(z) from the integral of motion, (4.15), and so we may write

R =
∫ z0

0
dz

F√
1 −F2 + 4α̃

(
κ
ℓ2 e−2g − e−2f (g′)2(1 −F2)

)
=
∫ z0

0
dz

 F√
1 −F2 + 4α̃ κ

ℓ2 e−2g
+ 2α̃

e−2f (g′)2F√
1 −F2

+ O(α̃2). (4.19)

Note that in the second line, we have partially expanded the denominator; this will be im-
portant to avoid triple derivatives from integrating by parts. As in the two-derivative case,
the integrand is divergent at the cap-off point z0, so it must be integrated by parts to give

R = lim
ϵ→0

∫ rc

r0
dr

[√
1 −F2 + 4α̃

κ

ℓ2 e−2g
d
dr

1
F ′ + 4α̃

F
κ
ℓ2 e−2gg′

+ 2α̃
√

1 −F2 d
dr

(
e−2f (g′)2

F ′

)]

+ 2α̃ lim
ϵ→0

e−2f (g′)2

F ′

∣∣∣∣∣
z=ϵ

+ O(α̃2). (4.20)
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The profile r(z) has been useful for obtaining an expression for R, but it will now be
useful to phrase matters in terms a profile z(r) with boundary conditions

z(0) = z0, z′(0) = 0, z(R) = 0. (4.21)

The induced Ricci scalar with respect to this profile is

R = (D − 2)(D − 3) κ

ℓ2 e−2g

+ (D − 2) e−2f (z′)2

(1 + (z′)2)2

[(
1 + (z′)2

)(
2f ′g′ − (D − 1)(g′)2 − 2g′′

)
+ 2g′z′z′′

]
, (4.22)

which leads to a Jacobson-Myers functional of the form

SJM = 2Vol(MD−2)
4GN

∫ Rc

0
dr ef̃(z(r))

[√
1 + (z′)2

(
1 + 2α̃

κ

ℓ2 e−2g(z(r))
)

+ 2α̃
e−2f(z(r))(g′)2(z′)2√

1 + (z′)2

]
− 2α̃ef̃−2f g′

∣∣∣
r=Rc

, (4.23)

where Rc is the cutoff value of R such that z(Rc) = ϵ. The boundary term, while divergent,
is independent of R and so will not cause us any issues. Since the UV boundary condition
has the form zR(r = Rc) = ϵ, varying this boundary condition with respect to R gives the
relation

z′
dRc

dR
+ dz

dR
= 0. (4.24)

Moreover, as ϵ → 0, dRc/dR → 1 at the boundary. One may now apply R∂R to (4.23) and
impose the equations of motion. Using the relation (4.24), the monotonic central charge
is then given by

cEE = 2Vol(MD−2)
4GN

ef̃0

(
1 + 2α̃

κ

ℓ2 e−2g0

)
R. (4.25)

This generalizes the two-derivative case [51] by simply using the four-derivative first
integral C rather than the two-derivative one ef̃0 . Using the identity

∂F
∂z0

=
(

f̃ ′(z0) − 4α̃
κ

ℓ2 e−2g0g′(z0)
)
F , (4.26)

substituting our expression for R (4.20) into cEE, and differentiating with respect to z0,
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we can show that

dcEE
dz0

= 2Vol(MD−2)
4GN

∫ R

0
dr

ef̃F2f̃ ′
0√

1−F2(f̃ ′)2

{
(f̃ ′)2−f̃ ′′+α̃

κ

ℓ2
e−2g0g′0

f̃ ′
0

(
(f̃ ′)2−f̃ ′′

)
+α̃e−2f

[
−2f ′′(g′)2+4g′′f ′g′+2(D−2)g′′(g′)2−2(f ′)2(g′)2+2(D−2)(g′)4

]
+2α̃

κ

ℓ2
e2(f̃−2f̃0−g)(
e2f̃0−e2f̃

)
f̃ ′

[
−4e4f̃0(f ′)3+3

(
4ef̃−(D−4)e4f̃0−6e2(f̃+f̃0)

)
(f ′)2g′

−(D−2)
(
−4(3D−8)ef̃ +(D(D+10)+20)e4f̃0+6(3D−8)e2(f̃+f̃0)

)
(g′)3

+
(
−8ef̃ +(D−6)e4f̃0+12e2(f̃+f̃0)

)
g′f ′′+(D−2)

(
−4ef̃ +(D−4)e4f̃0+6e2(f̃+f̃0)

)
g′g′′

+
(
2(3D−7)(g′)2+g′′

)
f ′
(
4ef̃−6e2(f̃+f̃0)

)
+4e4f̃0f ′

(
−(3D(D−8)+40)(g′)2+f ′′+Dg′′

)]}
, (4.27)

where, for notational simplicity, we have denoted

f̃ ′
0 = f̃ ′(z0), g′0 = g′(z0). (4.28)

The above formula (4.27) of course assumes the use of the integral of motion (4.16). Note
that this agrees with [51] for α̃ = 0.

If one sets κ = 0, then we see that, schematically,

dcEE
dz0

=−2Vol(MD−2)
4GN

∫ R

0
dr

ef̃F2f̃ ′(z0)√
1−F2(f̃ ′)2

[
NEC1+(D−1)(D−2)(g′)2(1+O(α̃))

]
≤ 0.

(4.29)
Thus, for κ = 0, we recover a notion of monotonicity along flows from the UV to the IR.
Unfortunately, for κ ̸= 0, it is unclear what to make of the resulting expression.

Note that upon setting D = 2, g = f , and κ = 0, one recovers the result for the strip
in flows within the same dimension [22]. The comparison is more direct in the coordi-
nates (2.58); the expression (4.27) is reexpressed in said coordinates in appendix B.2.

4.2 Relation to the NEC-motivated c-function

It is interesting to note that the monotonic c-function (4.25) constructed from the entangle-
ment entropy is in fact related to the NEC-motivated c-function (2.48), at least for κ = 0.
For arbitrary D with κ = 0, we have

R =
∫ z0

0
dz

F√
1 −F2

(
1 + 2α̃e−2f (g′)2

)
, (4.30)

and the entropic c-function is

cEE(z0) ∝ ef0+(D−2)g0R =
∫ z0

0
dz

ef+(D−2)gF2
√

1 −F2

(
1 + 2α̃e−2f (g′)2

)
. (4.31)
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We may split up the integrand as(
−ef+(D−2)g

(f ′ + (D − 2)g′)
(
1 + 2α̃e−2f (g′)2

))(− (f ′ + (D − 2)g′)F2
√

1 −F2

)
(4.32)

such that the right term is a total derivative. Conveniently, the left term can be identified as

cNEC(z) = −ef+(D−2)g

(f ′ + (D − 2)g′)
(
1 + 2α̃e−2f (g′)2

)
, (4.33)

the NEC-motivated c-function (3.13). This c-function follows the coefficient constraints
presented in (2.49), and further constrains a3 = 2, where a3 was previously free. How-
ever, (4.33) does not give aUV as its residue, since it does not follow (3.16). The expression
for cEE can then be integrated by parts:

cEE(z0) ∝ −
√

1 −F2 cNEC(z)
∣∣∣∣∣
z0

0

+
∫ z0

0
dz
√

1 −F2
(dcNEC

dz

)
. (4.34)

After differentiating with respect to z0, the surface term disappears since F(z0) = 1.
Similarly, the derivative hitting the upper integration bound gives no contribution. When
computing dcEE/dz0 the z0 derivative does not modify dcNEC/dz, so the monotonicity of
cNEC directly translates to monotonicity of cEE.

4.3 AdSD+1 → AdSd+1 for general d

One might also consider the more general case of flows down to AdSd+1 with d > 2. We
will specialize our metric to be

ds2 = e2f(z)
(
−dt + dz2 + dr2 + r2dΩ2

d−2

)
+ e2g(z)ds2

MD−d
, (4.35)

and we will specify that our entangling region wraps MD−d and has a spherical cross-section
of radius R. Given a profile r(z), this then results in an induced metric

dσ2 = e2f(z)
(
1 + r′(z)2

)
dz2 + e2f(z)r(z)2dΩ2

d−2 + e2g(z)ds2
MD−d

, (4.36)

with induced Ricci scalar

R= (d−2)(d−3)e−2f

r2 +(D−d)(D−d−1) κ

ℓ2 e−2g

+ e−2f

r2(1+(r′)2)2

[
−
(
1+(r′)2

)(
2(d−2)

(
(d−2)f ′+(D−d)g′

)
rr′+(d−2)(d−3)(r′)2

+
(
(d−2)(d−3)(f ′)2 +2(d−3)(D−d)f ′g′+(D−d)(D−d−1)(g′)2 +2(d−2)f ′′

+2(D−d)g′′)
)
r2 +2

(
−(d−2)+

(
(d−2)f ′+(D−d)g′

)
rr′
)
rr′′
]
. (4.37)
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For more details see appendix A.3. It is straightforward to check that for d = 2, R reduces
to (4.11). Similar to (4.12), the JM functional is then

SJM =
Vol
(
Sd−2

)
Vol(MD−d)

4GN

∫
dz

{
rd−2e(d−1)f̃

√
1+(r′)2

(
1+2α(D−d)(D−d−1) κ

ℓ2 e−2g
)

+2αrd−4 e(d−1)f̃−2f√
1+(r′)2

[
r2((d−2)(d−3)(f ′)2+2(d−2)(D−d)f ′g′

+(D−d)(D−d−1)(g′)2)+2(d−2)rr′
(
(d−3)f ′+(D−d)g′

)
+(d−2)(d−3)

(
1+2(r′)2

)]}
, (4.38)

where we have we have again integrated by parts and used the boundary term to cancel the
Gibbons-Hawking term. If we set α = 0, this agrees with the two-derivative case [51, 52].
Moreover, setting D = d, we recover

SJM =
Vol
(
Sd−2

)
4GN

∫
dz rD−2e(D−1)f

√
1 + (r′)2

{
1 + 2α̃

[(
f ′ + r′

r

)2
+ 1 + (r′)2

r2

]}
,

(4.39)
which corresponds to the entanglement entropy of a spherical entangling region in flows
within the same dimension, as studied in [57, 58].

However, the method applied in the d = 2 case relied heavily on the fact that the
integrand of SJM admitted a first integral. Since (4.38) contains an explicit factor of r(z),
one cannot use the same technique. Without a first integral, we cannot rewrite r′(z) in
terms of the turning point z0 to produce an expression like (4.25). Recall that monotonicity
for the d = 2 was demonstrated with respect to z0, and it is not clear how one would proceed
when cEE is not expressed as a function of z0.

5 Conclusions

In this manuscript, we have explored higher-derivative renormalization group flows across
dimensions. Our first look at holographic flows across dimensions involved explicitly con-
structing a c-function which is monotonically decreasing along flows from the UV to the
IR as a consequence of the NEC. This c-function, just as the one constructed in the two-
derivative case [51], is divergent; we have, however, shown that this divergence can be made
to encode the UV central charge. Our second approach was to construct a monotonic c-
function from the holographic entanglement entropy, which is given by a minimal surface
prescription minimizing the Jacobson-Myers functional. We looked specifically at flows
from AdSD+1 to AdS3 and explicitly constructed a monotonic c-function. More surprising
is the fact that this c-function is related to the NEC-motivated c-function.

Of course, one could ask: given that the higher curvature corrections must be treated
perturbatively, how could our story have failed? Considering that we are working pertur-
batively in α, we can move terms from the numerator of our c-function (2.48) into the
denominator, and so there are really only 5 free parameters to consider. On the other
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hand, the four-derivative part of NEC1 (2.44) has, up to our perturbative omission of
terms proportional to (g′)2, 10 terms that must be matched in c′(z). So, the fact that the
NEC-motivated c-function evolves monotonically is a non-trivial statement and could have
easily not been the case.

We note that we could have additionally included in the action the quasi-topological
term ZD+1 given by

ZD+1 = R̂ P Q
M N R̂ R S

P Q R̂ M N
R S + 1

(2D − 1)(D − 3)

[3(3D − 5)
8 R̂MNP QR̂MNP QR̂

− 3(D − 1)R̂MNP QR̂MNP
RR̂QR + 3(D − 1)R̂MNP QR̂MP R̂NQ

+ 6(D − 1)R̂MN R̂NP R̂ M
P − 3(3D − 1)

2 R̂MN R̂MN R̂ + 3(D − 1)
8 R̂3

]
, (5.1)

which was constructed in [28, 29]; this term played a prominent role in [19, 20]. For
our purposes, however, this term presents some difficulties. In contrast to the Gauss-
Bonnet term, or even more generally Lovelock terms, the coefficients of ZD+1 are dimension-
dependent. This presents us with a problem: we must either choose ZD+1, which is quasi-
topological in the UV but which yields unsavory terms in the IR, or we could choose Zd+1
which is quasi-topological in the IR but not the UV. The conundrum originates from the fact
that ZD+1 was engineered to be quasi-topological for maximally symmetric backgrounds,
and our background (2.1) does not satisfy this criterion. Hence, we would generically have
to deal with fourth-order derivatives in the NEC.

As mentioned in the introduction and summary section, the field theory techniques
required for proving monotonicity theorems are very dimension dependent. Recall that
Zamolodchikov’s proof of the c-theorem in 2d relied on properties of the correlator of two
stress-energy tensors [1] while in 4d Schwimmer and Komargodski relied on properties of
certain four-point amplitudes to prove the a-theorem [7] . The entropic approach, due
largely to Casini and collaborators, relied almost exclusively on strong subadditivity of the
relative entropy [10]. It is an outstanding problem to connect these different approaches.
Holography has furnished two sets of proofs, one following from NEC and another related
to the entropy via the Ryu-Takayanagi prescription. We have found, at least in a particular
case, that the proofs are connected. We hope to explore this connection in more detail in
the future and hope to draw lessons that might translate to field theoretic approaches.
Another question that seems particularly suitable for holographic attacks is the nature of
supersymmetric flows; in this case, Einstein’s equations can be replaced by a set of linear
differential equations.
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A Technical details

In this appendix, we provide some supplementary technical details that were omitted from
the main text.

A.1 Riemann tensors

Here we collect Riemann tensors for the metric

ds2 = e2f(z)(ηµνdxµdxν + dz2) + e2g(z)gij(y)dyidyj . (A.1)

We will use µ, ν, ρ, . . . for curved indices in the d-simensional base space and i, j, k, . . .

for curved indices on MD−d, as well as α, β, γ, . . . for rigid indices in the d-dimensional
spacetime and a, b, c, d, . . . for rigid indices in the compact directions. We will use z to
denote the curved z-direction index and z to denote the rigid z-direction index. We will
use M, N, . . . for curved indices and A, B, C, . . . for rigid indices of the whole (D + 1)-
dimensional spacetime. We choose a vielbein

êα = ef(z)eα, êz = ef(z)dz, êa = eg(z)ẽa, (A.2)

so that ds2 = ηαβ êαêβ + êz êz + δabê
aêb. Here we have defined eα to be a vielbein for the

flat d-dimensional space with metric ηµν and ẽa to be a vielbein on MD−d. Imposing the
torsion-free condition

dêA + ω̂A
B êB = 0, (A.3)

gives a spin connection

ω̂αβ = ωαβ , (A.4a)
ω̂αz = e−f ∂zfêα, (A.4b)
ω̂aβ = 0, (A.4c)
ω̂az = e−f ∂zg êa, (A.4d)
ω̂ab = ω̃ab, (A.4e)

where ω is the spin connection on the d-dimensional base space and ω̃ is the spin connection
on MD−d. The Riemann curvature two-form is then given by

R̂AB = dω̂AB + ω̂A
C ∧ ω̂CB, (A.5)

which, in components, reads

R̂αβ
γδ = −2e−2f (f ′)2δα

[γδβ
δ], (A.6a)

R̂αβ
γz = 0, (A.6b)

R̂αz
γz = −e−2f f ′′δα

γ , (A.6c)

R̂αb
γd = −e−2f f ′g′δα

γ δb
d, (A.6d)

R̂αb
cz = 0, (A.6e)

R̂az
cz = −e−2f

(
g′′ − f ′g′ + (g′)2

)
δa

c , (A.6f)

R̂ab
cd = e−2gR̃ab

cd − 2e−2f (g′)2δa
[cδ

b
d], (A.6g)
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where we have denoted the Riemann tensor on MD−d by R̃ab
cd. Note that in the above, we

have used the fact that the d-dimensional base space is flat to remove all the corresponding
curvature tensors, hence why there is no Rαβγδ. From here, one can compute the Ricci
tensor, R̂AB = R̂C

ACB, to be

R̂αβ = −e−2f
[
f ′′ + (d − 1)(f ′)2 + (D − d)f ′g′

]
ηαβ , (A.7a)

R̂αz = 0, (A.7b)

R̂zz = −e−2f
[
df ′′ + (D − d)

(
g′′ − g′f ′ + (g′)2

)]
, (A.7c)

R̂aβ = 0, (A.7d)
R̂az = 0, (A.7e)

R̂ab = e−2gR̃ab − e−2f
[
g′′ + (D − d)(g′)2 + (d − 1)f ′g′

]
δab, (A.7f)

where R̃ab denotes the Ricci tensor on MD−d. Finally, the Ricci scalar is given by

R̂ = e−2gR̃ − e−2f
[
2df ′′ + 2(D − d)g′′ + d(d − 1)(f ′)2 + 2(d − 1)(D − d)f ′g′

+ (D − d + 1)(D − d)(g′)2
]
, (A.8)

where R̃ denotes the Ricci scalar on MD−d.

A.2 The general expression for c′(z)

In section 2.4, we made an ansatz for a candidate c-function, (2.48), in terms of real
parameters {ai, bj}. Given this ansatz, we find

c′(z) = e−f̃ (Leff)d

GN

{
−(d−1)(f ′′−(f ′)2)−(D−d)(g′′+g′(g′−2f ′))+ (D−1)(D−d)

d−1 (g′)2

+αe−2f
[
f ′′
(
ξ1(f ′)2 +ξ2f ′g′+ξ3(g′)2

)
+g′′

(
ξ4(f ′)2 +ξ5f ′g′+ξ6(g′)2

)
+ξ7(f ′)4 +ξ8(f ′)3g′+ξ9(f ′)2(g′)2 +ξ10f ′(g′)3 +ξ11(g′)4

]
+αe−2g κ

ℓ2

[
ω1f ′′+ω2g′′+ω3(f ′)2 +ω4f ′g′+ω5(g′)2

]}
, (A.9)

where, for brevity, we have defined coefficients

ξ1 = −(d − 3)a1 + 3(d − 1)a4,

ξ2 = 2D − d

d − 1 a1 − (d − 2)a2 + 2(d − 1)a5,

ξ3 = (d − 1)(a6 − a3) + D − d

d − 1 a2,

ξ4 = −(D − d)a1 + a2 + (d − 1)a5,

ξ5 = −(D − d)(d − 2)
d − 1 a2 + 2a3 + 2(d − 1)a6,

ξ6 = −(D − d)(d − 3)
d − 1 a3 + 3(d − 1)a7,
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ξ7 = (d − 3)a1 − 3(d − 1)a4,

ξ8 = 2(D − d)(d − 2)
d − 1 a1 + (d − 3)a2 − (D − d)a4 − 3(d − 1)a5,

ξ9 = (D − d)((D − d)a1 + 2(d − 2)a2)
d − 1 + (d − 3)a3 − (D − d)a5 − 3(d − 1)a6,

ξ10 = (D − d)((D − d)a2 + 2(d − 2)a3)
d − 1 − (D − d)a6 − 3(d − 1)a7,

ξ11 = (D − d)
(

D − d

d − 1 a3 − a7

)
,

ω1 = −(d − 1)(b1 − b2),
ω2 = (d − 1)b3 − (D − d)b1,

ω3 = (d − 1)(b1 − b2),
ω4 = 2(D − d − 1)b1 − (D + d − 2)b2 − (d − 1)b3,

ω5 = (D − d)(D − d − 2)
d − 1 b1 − (D + d − 2)b3. (A.10)

Note that the form of the ansatz, (2.48), was chosen so that no higher than second deriva-
tives of f and g appear in (A.9).

A.3 Induced Ricci scalar

In section 4, we require an expression for Ricci scalar of the induced metric on the entangling
surface, which we compute here. The induced metric is given by

dσ2 = e2f(z)
(
1 + r′(z)2

)
dz2 + e2f(z)r(z)2dΩ2

d−2 + e2g(z)ds2
MD−d

. (A.11)

By slight abuse of notation, we will use α, β, γ, δ, . . . to index the rigid indices along the
unit (d − 2)-sphere (for this section only, these indices will not run over t or r). A natural
choice of vielbein is then

êz̄ = ef
√

1 + (r′)2dz, êα = ef reα, êa = eg ẽa, (A.12)

where eα is a vielbein on the (d − 2)-sphere and ẽa is a vielbein on MD−d. Note that this
notation differs from the previous subsection. As before, we make use of the torsion-free
condition to compute the components of the spin connection

ω̂αβ = ωαβ , (A.13a)

ω̂αz = e−f√
1 + (r′)2

(
f ′ + r′

r

)
êα, (A.13b)

ω̂αb = 0, (A.13c)
ω̂ab = ω̃ab, (A.13d)

ω̂az = g′ e−f√
1 + (r′)2 , (A.13e)
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where ω is the spin connection on the (d−2)-sphere and ω̃ is the spin connection on MD−d.
The induced Riemann tensor components may then be computed to be

Rαβ
γδ = e−2f

r2 R̄αβ
γδ − 2 e−2f

1 + (r′)2

(
f ′ + r′

r

)2
δ[α

γ δ
β]
δ , (A.14a)

Rαz
βz = −

[
d
dz

(
e−f√

1 + (r′)2

(
f ′ + r′

r

))
e−f√

1 + (r′)2 + e−2f

1 + (r′)2

(
f ′ + r′

r

)2]
δα

β , (A.14b)

Raz
bz = −

[
d
dz

(
g′ e−f√
1 + (r′)2

)
e−f√

1 + (r′)2 + e−2f (g′)2

1 + (r′)2

]
δa

b , (A.14c)

Rab
cd = e−2gR̃ab

cd − 2e−2f (g′)2

1 + (r′)2 δ[a
c δ

b]
d , (A.14d)

Rαb
γd = − g′ e−2f

1 + (r′)2

(
f ′ + r′

r

)
δa

c δβ
δ , (A.14e)

where R̄αβ
γδ denotes the Riemann tensor on the (unit) (d − 1)-sphere and R̃ab

cd denotes
the Riemann tensor on MD−d. Computing the induced Ricci scalar as R = RAB

AB, and
using the identities for the Ricci scalars of the constituent metrics

R̄ = (d − 2)(d − 3), (A.15a)

R̃ = (D − d)(D − d − 1) κ

ℓ2 , (A.15b)

we finally arrive at our expression for the induced Ricci scalar

R= (d−2)(d−3)e−2f

r2 +(D−d)(D−d−1) κ

ℓ2 e−2g

+ e−2f

r2(1+(r′)2)2

[
−
(
1+(r′)2

)(
2(d−2)

(
(d−2)f ′+(D−d)g′

)
rr′+(d−2)(d−3)(r′)2

+
(
(d−2)(d−3)(f ′)2 +2(d−3)(D−d)f ′g′+(D−d)(D−d−1)(g′)2 +2(d−2)f ′′

+2(D−d)g′′)
)
r2 +2

(
−(d−2)+

(
(d−2)f ′+(D−d)g′

)
rr′
)
rr′′
]
. (A.16)

B Alternate coordinates

Here we collect some of the results from the main text reexpressed in alternate coordinates,
more akin to those used in [19, 20, 22]. These are not new results, but the reader might
find them more useful for some purposes.

B.1 NEC-motivated c-function

One may alternately parameterize the metric as

ds2 = e2A(r)ηµν dxµ dxν + dr2 + e2B(r)gij(y) dyi dyj . (B.1)

These are the coordinates that are used in [19, 20]. Pure AdS corresponds to A(r) =
B(r) = r/L, and so it is natural to identify r = 0 with the IR and r = ∞ with the UV.
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We expect the asymptotic behavior of the metric functions to be

r → ∞ : A(r) → r

LUV
, B(r) → r

LUV
,

r → 0 : A(r) → r

LIR
, B(r) → BIR. (B.2)

We still assume that the internal manifold is maximally symmetric with Ricci scalar

R̃ = (D − d)(D − d − 1) κ

ℓ2 . (B.3)

One can take this metric and compute the resulting t-z null energy condition NEC1 for
arbitrary dimensions, which gives

0 ≤ −(d − 1)A′′ − (D − d)B′′ + (D − d)A′B′ − (D − d)(B′)2

+ α
[
2(d − 1)(d − 2)(d − 3)(A′)2A′′ + 4(d − 1)(d − 2)(D − d)A′B′A′′

+ 2(d − 1)(D − d)(D − d − 1)(B′)2A′′ + 2(d − 1)(d − 2)(D − d)(A′)2B′′

+ 4(d − 1)(D − d)(D − d − 1)A′B′B′′ + 2(D − d)(D − d − 1)(D − d − 2)(B′)2B′′

− 2(d − 1)(d − 2)(D − d)(A′)3B′ − 2(d − 1)(D − d)(2D − 3d)(A′)2(B′)2

− 2(D − d)(D − d − 1)(D − 3d)A′(B′)3 + 2(D − d)(D − d − 1)(D − d − 2)(B′)4
]

+ 2α(D − d)(D − d − 1) κ

ℓ2

[
−(d − 1)A′′ + (D − d − 2)

(
−B′′ + A′B′ − (B′)2

)]
. (B.4)

One might then propose a generic candidate c-function

c(r)=
e(D−d)B

(
1+α

(
a1(A′)2+a2A′B′+a3(B′)2+b1

κ
ℓ2 e−2B

))
(
Ã′+α

(
a4(A′)3+a5(A′)2B′+a6A′(B′)2+a7(B′)3+b2

κ
ℓ2 e−2BA′+b3

κ
ℓ2 e−2BB′

))d−1 ,

(B.5)
where we have defined

Ã = A + D − d

d − 1 B, (B.6)

in analogy to f̃ . This c-function is the obvious generalization of the two-derivative case
(when α = 0). As before, one computes

c′(z) = e(D−d)B(
Ã′ + α

(
a3(A′)2B′ + a4A′(B′)2 + a5(B′)3 + b2

κ
ℓ2 e−2BA′ + b3

κ
ℓ2 e−2BB′

))d

×
{
− (d − 1)A′′ − (D − d)B′′ + (D − d)A′B′ + (D − d)2(B′)2

+ α
[
ξ1(A′)2A′′ + ξ2A′B′A′′ + ξ3(B′)2A′′ + ξ4(A′)2B′′ + ξ5A′B′B′′ + ξ6(B′)2B′′

+ ξ7(A′)4 + (A′)3B′ + ξ8(A′)2(B′)2 + ξ9A′(B′)3 + ξ10(B′)4
]

+ α
κ

ℓ2

[
ω1A′′ + ω2B′′ + ω3A′B′ + ω4(B′)2

]}
, (B.7)
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where we have defined

ξ1 = 3(a1 + a4) − (a1 + 3a4)d,

ξ2 = a2 − (d − 1)(a2 + 2a5) + 2D − d

d − 1 a1,

ξ3 = −(d − 1)a6 + D − d

d − 1 a2,

ξ4 = a2 − (d − 1)a5 − (D − d)a1,

ξ5 = −2(d − 1)a6 + (D − d)(d − 2)
d − 1 a2,

ξ6 = −3(d − 1)a7,

ξ7 = (D − d)(a1 + a4),

ξ8 = (D − d)
(

a2 + a5 + D − d

d − 1 a1

)
,

ξ9 = (D − d)
(

a6 + D − d

d − 1 a2

)
,

ξ10 = (D − d)a7,

ω1 = −(d − 1)b2,

ω2 = −(d − 1)b3,

ω3 = (D − d − 2)b1 + (D − d − 2)b2,

ω4 = (D + d − 2)b3 + (D − d)(D − d − 2)
d − 1 b1. (B.8)

With the particular choice of

a1 = −2(d − 1)(d − 2), (B.9a)
a2 = −4(D − d)(d − 2), (B.9b)
a4 = 0, (B.9c)

a5 = −4(D − d)(d − 2)
(d − 1) , (B.9d)

a6 = a2
d − 1 + 2 D − d

(d − 1)2 (1 + d(−5 + 3d − 2D) + 3D), (B.9e)

b1 = 2(D − d − 1)((D + 1)d − D − d2 + 2)
d

, (B.9f)

b2 = 2(D − d − 1)(D − d − 2)
d

, (B.9g)

b3 = 2(D − d)(D − d − 1)(D − 3d − 2)
d(d − 1) , (B.9h)

we get that

c′(r) =
e(D−d)B

(
NEC1 + (D−1)(D−d)

d−1 (B′)2(1 + O(α))
)

(
Ã′ + α

(
a3(A′)2B′ + a4A′(B′)2 + a5(B′)3 + b2

κ
ℓ2 e−2BA′ + b3

κ
ℓ2 e−2BB′

))d
≥ 0,

(B.10)
and hence the candidate c-function gives us a monotonic flow from the UV to the IR.
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As before, we never need to use the all-internal components of the Riemann tensor
R̂ijkl to obtain NEC1, and so the above results also trivially generalize to arbitrary Einstein
internal manifolds, as in the f and g coordinates.

B.2 Entanglement entropy c-function

One may also repeat the arguments of section 4.1 in the alternate coordinates (B.1). Here
we focus on flows from AdSD+1 to AdS3, and so we specialize the metric (B.1) to

dσ2 = e2A(r)
(
−dt2 + dρ2

)
+ dr2 + e2B(r)ds2

MD−2 . (B.11)

In terms of a profile ρ(r), the induced Ricci scalar is

R = − (D − 2)(
1 + e2A(r)ρ′(r)2)2(e2A(r)ρ′(r)

×
(
ρ′(r)

(
2A′(r)B′(r) − (D − 1)B′(r)2 − 2B′′(r)

)
+ 2B′(r)ρ′′(r)

)
− (D − 1)B′(r)2 − 2B′′(r)

)
+ (D − 2)(D − 3) κ

ℓ2 e−2B, (B.12)

which leads to a JM functional whose first integral is

C =
ρ′(r)e2A(r)+(D−2)B(r)

((
1 + e2A(r)ρ′(r)2

) (
1 + 2α̃ κ

ℓ2 e−2B
)
− 2α̃B′(r)2

)
(
1 + e2A(r)ρ′(r)2)3/2 , (B.13)

which can be solved to give

ρ′(r) = e−AF√
1 −F2 + 4α̃

(
κ
ℓ2 e−2B − (B′)2(1 −F2)

) , F(r) ≡ Ce−A−(D−2)B. (B.14)

To fix the value of C, we note that we should have ρ′(r) → −∞ as r → r0, where r0 is the
deepest point in the bulk that the minimal surface. This then requires that

C = eA(r0)+(D−2)B(r0)
(

1 + 2α̃
κ

ℓ2 e−2B(r0)
)

. (B.15)

Then the radius of the entangling area is

R =
∫ ∞

r0
dr ρ′(r) =

∫ ∞

r0
dr

e−AF√
1 −F2 + 4α̃

(
κ
ℓ2 e−2B − (B′)2(1 −F2)

)
=
∫ ∞

r0
dr

 e−AF√
1 −F2 + 4α̃ κ

ℓ2 e−2B
+ 2α̃

e−A(B′)2F√
1 −F2

+ O(α̃2)

= lim
rc→∞

∫ rc

r0
dr
[√

1 −F2 + 4α̃
κ

ℓ2 e−2B
d
dr

e−A

F ′ + 4α̃
F

κ
ℓ2 e−2BB′

+ 2α̃
√

1 −F2 d
dr

(
e−A(B′)2

F ′

)]
+ 2α̃ lim

rc→∞
e−A(B′)2

F ′

∣∣∣∣∣
r=rc

+ O(α̃2). (B.16)
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Equivalently, in terms of a profile r(ρ), we may write

r′(ρ) = eA

√
1 −F2 + 4α̃

(
κ
ℓ2 e−2B − (B′)2(1 −F2)

)
F

. (B.17)

The JM functional may then be calculated as

SJM = 2Vol(MD−2)
4GN

∫
dρ

√e2A + (r′)2e(D−2)B
(

1 + 2α̃
κ

ℓ2 e−2B
)

+ 2α̃
e(D−2)B(B′)2(r′)2√

e2A + (r′)2


− 4α̃e(D−2)BB′

∣∣∣
ρ=ρc

. (B.18)

As before, the boundary term is independent of R and so it will not affect the succeeding
analysis. The monotonic central charge is then given by

cEE = R∂RSJM = 2πVol(MD−2)
ℓD−1

P

eA0+(D−2)B0

(
1 + 2α̃

κ

ℓ2 e−2B0

)
R. (B.19)

As before, this generically leads to rather complicated terms

dcEE
dr0

= 2Vol(MD−2)
4GN

∫
dρ

e(D−2)BF2Ã′
0√

1−F2(Ã′)2

{
−A′′−(D−2)B′′+(D−2)A′B′+(D−2)2(B′)2

+2α̃B′
[
A′((D−2)(B′)2 +2B′′)+B′(−A′′+(D−2)((D−2)(B′)2 +B′′)

]
+ α̃

κ

ℓ2

[
eÃ−2B A′′+(D−2)(B′′−Ã′B′)

eÃ−eÃ0
+4e−2B0B′

0
A′′+(D−2)(B′′−Ã′B′)

Ã′
0

−
4e2(Ã−2Ã0−2B−B0)

(
e2Ã0 −2eÃ

)
Ã′

×
(
A′(2Ã′B′+B′′)+B′((3D−8)Ã′B′−2A′′−(D−2)B′′)

)]}
,

but, if one sets κ = 0, then

dcEE
dr0

= 2Vol(MD−2)
4GN

∫
dρ

e(D−2)BF2Ã′
0√

1 −F2(Ã′)2

[
NEC1 + (D − 1)(D − 2)(B′)2(1 + O(α̃))

]
≥ 0,

(B.20)
which gives monotonicity along flows to the IR. This parallels the computation that was
done in f and g coordinates.
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