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We extend our study of the large-N expansion of general nonequilibrium many-body systems with matrix
degrees of freedomM, and its dual description as a sum over surface topologies in a dual string theory, to the
Keldysh-rotated version of the Schwinger-Keldysh formalism. The Keldysh rotation trades the original fields
M�—defined as the values ofM on the forward and backward segments of the closed time contour—for their
linear combinations Mcl and Mqu, known as the “classical” and “quantum” fields. First we develop a novel
“signpost” notation for nonequilibrium Feynman diagrams in the Keldysh-rotated form, which simplifies the
analysis considerably. Before the Keldysh rotation, each world-sheet surface Σ in the dual string theory
expansion was found to exhibit a triple decomposition into the parts Σ� corresponding to the forward and
backward segments of the closed time contour, and Σ∧ which corresponds to the instant in timewhere the two
segments meet. After the Keldysh rotation, we find that the world-sheet surface Σ of the dual string theory
undergoes a very different natural decomposition: Σ consists of a “classical” part Σcl and a “quantum
embellishment” part Σqu. We show that both parts of Σ carry their own independent genus expansion. The
nonequilibrium sum over world-sheet topologies is naturally refined into a sum over the double
decomposition of each Σ into its classical and quantum part. We apply this picture to the classical limits
of the quantum nonequilibrium system (with or without interactions with a thermal bath), and find that in
these limits, the dual string perturbation theory expansion reduces to its appropriately defined classical limit.
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I. INTRODUCTION

In our previous paper [1], to which this paper is a sequel,
we studied the structure of the large-N expansion of non-
equilibrium systems with matrix degrees of freedom using
the Schwinger-Keldysh formalism1 and its dual description
in terms of strings. The goal of [1] was to use this duality to
identify some of the first elements of the universal calculus
for nonequilibrium string perturbation theory.
We limited our attention in [1] to the “forward-

backward” (henceforth referred to as “�”) representation
of the Schwinger-Keldysh formalism: The system is
evolved along an oriented closed time contour C , which
consists of a forward componentCþ evolving from an early
time t0 to a late time t∧, followed by the backward

component C− going back from t∧ to t0. This leads to a
doubling of fields as functions of the single coordinate
time t: For each field ϕ, we denote by ϕþðtÞ the values of ϕ
on Cþ, and by ϕ−ðtÞ the values of ϕ on C−.
It is well known (see for example [2–6]) that many

important physical features of the Schwinger-Keldysh
formalism for nonequilibrium systems are revealed in a
different representation, involving a simple but very useful
field redefinition. Instead of the ϕ� fields, this representa-
tion uses their sum and difference,

ϕcl ¼
1

2
ðϕþ þ ϕ−Þ; ð1:1Þ

ϕqu ¼ ϕþ − ϕ−: ð1:2Þ

The variables ϕcl and ϕqu are often referred to as “classical”
and “quantum” [4–6], even though they of course both
represent fluctuating fields. This field redefinition is usu-
ally referred to as the “Keldysh rotation,” since its idea goes
back to [7]. It leads to remarkable simplifications. First, in
the � formalism, there are four nonzero propagators G��
satisfying one sum-rule identity
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1See [1] for an extensive list of references on the Schwinger-
Keldysh formalism and some applications.
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Gþþ þG−− ¼ Gþ− þ G−þ: ð1:3Þ

The implications of this identity are often obscure in
individual Feynman diagrams. After the Keldysh rotation,
only three propagators are nonzero:

hϕquðt0ÞϕclðtÞi0 ≡GAðt0; tÞ; ð1:4Þ

hϕclðt0ÞϕquðtÞi0 ≡GRðt0; tÞ; ð1:5Þ

hϕclðt0ÞϕclðtÞi0 ≡GKðt0; tÞ; ð1:6Þ

hϕquðt0ÞϕquðtÞi0 ≡ 0: ð1:7Þ

Thus, in the Keldysh-rotated basis, the sum rule equivalent
to (1.3) is automatically satisfied, reducing the number
of diagrams that need to be summed. The second—and
physically more important—simplification is that in the
Keldysh basis, the information about the dynamics and the
information about the state have been decoupled from
each other: The mixed propagators GA and GR are state-
independent, and the entire information about the state is
carried by GK. In contrast, in the � formalism all four
propagators G�� are sensitive to both the dynamics and the
state. These features of the Keldysh formalism make not
only practical calculations more efficient, but also the
physical picture more direct and easier to interpret.
To illustrate this well-known usefulness of the Keldysh

rotation, consider the example of a relativistic scalar field
of mass m in thermal equilibrium at temperature T. In the
� formalism, the momentum-space propagators (in the
mostly minus spacetime metric signature) are

GþþðpÞ ¼
i

p2 −m2 þ iϵ
þ 2πnBðjp0jÞδðp2 −m2Þ;

G−−ðpÞ ¼
−i

p2 −m2 − iϵ
þ 2πnBðjp0jÞδðp2 −m2Þ;

Gþ−ðpÞ ¼ 2π½θð−p0Þ þ nBðjp0jÞ�δðp2 −m2Þ;
G−þðpÞ ¼ 2π½θðp0Þ þ nBðjp0jÞ�δðp2 −m2Þ;

where

nBðωÞ ¼
1

expðω=TÞ − 1
ð1:8Þ

is the Bose-Einstein distribution function. After the
Keldysh rotation, we get just three nonzero propagators,

hϕquϕcli0 ¼
i

p2 −m2 þ isignðp0Þϵ≡GAðpÞ; ð1:9Þ

hϕclϕqui0 ¼
i

p2 −m2 − isignðp0Þϵ≡GRðpÞ; ð1:10Þ

hϕclϕcli0 ¼ 2π

�
1

2
þ nBðjp0jÞ

�
δðp2 −m2Þ

¼ π coth
�jp0j
2T

�
δðp2 −m2Þ≡GKðpÞ: ð1:11Þ

As promised, the quantum-to-quantum propagator vanishes
identically, the mixed propagators become the advanced
and retarded propagators GA and GR which only know
about the dynamics but not about the state, and all the
information about the initial density matrix is stored in the
classical-to-classical propagator GK.
The Keldysh rotation also has a number of closely

related cousins, which appear across a multitude of diverse
areas of physics, always with similar simplifying results. In
the Larkin-Ovchinnikov representation [8], popular in
nonequilibrium condensed matter [3,4], another unitary
transformation is performed on the fields; the same three
propagators appear, but the propagator 2 × 2 matrix is now
upper triangular, withGA andGR on the diagonal andGK in
the upper-right corner. In the closely related Langreth-
Wilkins representation [9] (see [10] for a review), popu-
larized by the influential lecture [11] and now widespread
in use in nonequilibrium physics of mesoscopic systems
[12], a nonunitary field transformation is performed such
that the propagator matrix stays upper triangular as in the
Larkin-Ovchinnikov representation, but with theGK propa-
gator replaced by G<. The Keldysh rotation (1.1) and (1.2)
also plays a prominent role in the theory of the decoherence
functional of Gell-Mann and Hartle [13],2 which is instru-
mental in the description of the quantum-to-classical
transition in the sum-over-histories approach to quantum
systems, including those involving the dynamical space-
time geometries of quantum gravity and cosmology. In this
paper, we will concentrate on the original Keldysh rotation
in its original context, but we expect that our results can be
extended straightforwardly to such closely related cases
as well.
In [1], we used the � version of the Schwinger-Keldysh

formalism to derive some universal implications of the
large-N expansion for the dual string theory. We found that,
in comparison to strings at equilibrium, the string pertur-
bation expansion is further refined, with each world-sheet Σ
subdivided into a triple decomposition,

Σ ¼ Σþ ∪ Σ∧ ∪ Σ−: ð1:12Þ

Here the forward part Σþ is associated with the forward part
Cþ of the time contour, and similarly for the backward

2In this context, the rotation acts on two alternative histories
ϕþðtÞ and ϕ−ðtÞ of the system that enter the decoherence
functional; see also [14,15] for the earlier and closely related
concept of an influence functional.
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part Σ− and C−. The “end of time” wedge region Σ∧ is
associated with the meeting point of Cþ and C− at t∧, and it
provides a bridge between Σþ and Σ−. Remarkably, each of
the three parts of this triple decomposition of Σ has its own
associated genus expansion.
In view of the importance of the Keldysh-rotated version

of the Schwinger-Keldysh formalism, in this paper we
extend our analysis of the large-N expansion and string
theory to this Keldysh-rotated case. Our results were briefly
announced in [16], which also contains a brief summary of
the results of [1] in the � formalism. Here we provide our
detailed arguments and proofs justifying the statements
announced in [16], and we also present additional results
not advertised in [16]. Our analysis of the large-N expan-
sion again reveals an intriguing refinement of string world-
sheet diagrams. This time, however, the subdivision of
world sheets is not into the tree parts as observed in the
� formalism—instead, we will find a subdivision distinct
from (1.12):

Σ ¼ Σcl ∪ Σqu; ð1:13Þ

with the world-sheet Σ composed of a classical part Σcl

and its “quantum embellishments” Σqu. Each of the two
parts of Σ is again associated with its own genus
expansion.
The resulting picture of nonequilibrium string pertur-

bation theory that emerges in the Keldysh-rotated formal-
ism is by no means a straightforward consequence of the
world-sheet picture established in [1] in the � formalism
based on the triple decomposition (1.12). This is not
entirely unexpected: Whereas in the language of the
original matrix degrees of freedom, the Keldysh rotation
is a rather simple change of variables, the world-sheet dual
theories before and after the rotation should not be related
in any simple way for the following reason. On the side of
the matrix degrees of freedom, the Keldysh rotation mixes
the values ofM on the forward and backward branches Cþ
and C− of the time contour for the same value of t.
The simplicity of this mixing relies crucially on the
existence of a canonical identification of the time evolu-
tion parameter t along Cþ and C−. In contrast, things are
not this simple on the world sheets: Even in the absence of
knowing any details of the world-sheet dynamics, we
anticipate some form of world-sheet diffeomorphism
invariance, which makes any identification of the
world-sheet time coordinate τ on Σþ and Σ− noncanonical
at best, and impossible globally if Σþ and Σ− are of
different topology (which they typically are). The world-
sheet representations before and after the Keldysh rotation
will be related by a complicated resummation of many
ribbon diagrams, and for these reasons, we do not
anticipate any simple procedure for deriving one world-
sheet picture from the other. This is indeed the perspective
supported by the main results of this paper.

II. LARGE-N EXPANSION AFTER THE
KELDYSH ROTATION

As in [1], we start with a theory of N × N Hermitian
matrix degrees of freedom Ma

bðt;…Þ, which may be
spacetime fields, or just quantum mechanical degrees of
freedom; we only display the dependence on time, with the
dependence on space and possible other quantum numbers
playing only a spectator role in our arguments and therefore
kept implicit. In this way, our results will be universal, in
particular independent of whether the theory is relativistic
or not. We further assume that the theory has an SUðNÞ
symmetry, and that the original action of the theory takes
the single-trace form

SðMÞ ¼ 1

g2

Z
dtTrð _M2 þM3 þM4 þ � � �Þ: ð2:1Þ

We studied this theory on the Schwinger-Keldysh time
contourC in detail in Sec. 2 of [1], and analyzed its large-N
expansion with the fixed ’t Hooft coupling λ≡ g2N, using
the � formalism.3 In the � formalism, MðtÞ becomes
doubled to M�ðtÞ, and the action is formally of the form

SSKðM�Þ ¼ SðMþÞ − SðM−Þ; ð2:2Þ
which needs to be augmented by the appropriate boundary
conditions: the correct rules at the meeting point t∧ between
the two branches of C , and the information about the initial
state at t0 if different from the vacuum.
Now we perform the Keldysh rotation of the fields: As

in (1.1) and (1.2), we define Mcl and Mqu. Each of these
fields continues to carry the adjoint representation of our
symmetry group. In order to avoid notational clutter and too
many subscripts and superscripts, we will use M to denote
the classical matrix field Mcl,

MðtÞ ¼ 1

2
ðMþðtÞ þM−ðtÞÞ; ð2:3Þ

and M to denote the quantum matrix field Mqu,

M ðtÞ ¼ MþðtÞ −M−ðtÞ: ð2:4Þ
After the Keldysh rotation, the action SSK becomes

SSK ¼ 1

g2

Z
dtTr

�
KðM;M Þ þ 3M2M þ 1

4
M 3

þ 4M3M þMM 3 þ � � �
�
: ð2:5Þ

3As in [1], it would be easy to generalize all our arguments to
the case of more than one independent ’t Hooft coupling,
controlling different interaction terms in SðMÞ. We concentrate
on one λ for simplicity. Also, as in [1], we keep the dependence
on spatial coordinates and spatial derivatives in the action
implicit.
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The structure of the quadratic kinetic term KðM;M Þ is
such that it gives the three propagators that we discussed in
Sec. I, as we will see again when we look at the Feynman
rules below. This form of the action would naturally
generalize if we added higher polynomial interactions to
SðMÞ, or allowed independent couplings to control differ-
ent terms in SðMÞ. Note, however, that the number ofM ’s
in each monomial interaction term in (2.5) will always
be odd.

A. Feynman rules for the ribbon diagrams
after Keldysh rotation

Feynman rules for the ribbon diagrams after the Keldysh
rotation are as follows. The quadratic kinetic term
KðM;M Þ in (2.5) yields three propagators,4

ð2:6Þ

ð2:7Þ

ð2:8Þ

We use the notation popular in the nonequilibrium field
theory literature (see, e.g., [4]): The dotted line denotes the
quantum end of a propagator, and the full line denotes the
classical end. Here we have just extended this convention to
ribbons.
The vertices are

ð2:9Þ

ð2:10Þ

at three points, and

ð2:11Þ

ð2:12Þ

at four points. As in [1], the vertical dots at the end of this
list stand for higher n-point vertices, which we allow to be
present for full generality, but do not depict explicitly.
Note that they all have to satisfy one restriction: The
number of quantum ends at each vertex always has to be
odd, a feature that follows from the general structure
of (2.5).
The precise numerical values of the vertices can easily be

extracted from (2.5) (or appropriate generalizations
thereof). The horizontal dots “ð� � �Þ” on the right-hand
sides of (2.9)–(2.12) refer to all the group-theory as well as
momentum- and frequency-dependent factors which do not
depend on N and λ; their details are unimportant for our
arguments. The only important fact for our analysis is that
all the vertices are proportional to N when λ is held fixed.
Similarly, in that regime, all the propagators (2.6)–(2.8) are
proportional to 1=N.
We summarize the rules for building consistent Feynman

diagrams:
(i) Quantum ends of propagators are attached to quan-

tum ends of vertices;
(ii) Classical ends of propagators are attached to

classical ends of vertices;
(iii) The following rule is a simple consequence of

causality: If there is a closed loop consisting of a
sequence of only GA (or only GR) propagators, the
diagram is identically zero and will be system-
atically ignored.5 Note that in order for the
diagram to be identically zero, the closed loop
in question does not have to surround just one
plaquette.

4In our notation, we use the subscript “0” in h� � �i0 to
distinguish the bare propagators from the full two-point functions
h� � �i which we will be studying below.

5Strictly speaking, such diagrams are not illegal, but since they
identically vanish, leaving them systematically out will signifi-
cantly reduce the number of diagrams that need to be drawn for
any process. Also, we do not expect that such diagrams should be
independently reproduced on the string-theory side of the duality
between the large-N theory and string theory.
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B. Signpost notation for the Feynman diagrams

Before we proceed to the analysis of the large-N
expansion, we find it convenient to introduce a slightly
different graphical notation for the nonequilibrium
Feynman diagrams, which will simplify the look of the
diagrams and allow us to develop some useful intuition.
This new notation will also simplify our proofs and other
arguments below.
Recall that in the � formalism, it was very convenient

that the ribbon diagrams looked just like those in equilib-
rium, with all the additional information carried solely by
the vertices: Each vertex was labeled by a sign choice �.
The type of propagator connecting two given vertices was
then uniquely determined by the signs at the vertices. At
first glance, the Feynman rules after the Keldysh rotation do
not share the same simplicity. We will develop a more
useful prescription in several simple steps. First, it is rather
awkward to deal with dotted versus undotted halves of
propagators—we will encode the same information by
using regular undotted lines for all the ribbon edges,
but placing a “bulk arrow” in the middle of the ribbon
propagator pointing in the direction from the quantum end
to the classical end of the propagator. The classical-to-
classical propagatorsGK do not get any bulk arrowmark. In
the next step, one can pull each arrow from the middle of
the propagator to the quantum end of the propagator, and
associate this arrow with the adjacent vertex instead. In this
way, each vertex is uniquely assigned a collection of arrows
rooted at the vertex and pointing in the directions of various
attached propagators. This collection of arrows rooted at
the same vertex is reminiscent of a signpost at trail
intersections. For the lack of a better term, from now on
we will refer to this collection of arrows at a given vertex as
a “signpost,” and this notation as the “signpost notation”.6

In this new signpost notation, our three-point vertices
(2.9) and (2.10) look as follows:

ð2:13Þ

ð2:14Þ

while the four-point vertices (2.11) and (2.12) are

ð2:15Þ

ð2:16Þ

Note that the propagators do not require any additional
notation—each propagator is uniquely determined by the
two signposts at the vertices it connects. The rules for
building consistent diagrams can now be rewritten solely as
restrictions on the signposts allowed at the vertices of the
ribbon diagrams:

(i) At each vertex, the signpost carries an odd number of
arrows, each pointing into a distinct propagator.

(ii) The signposts are such that each propagator can have
at most one arrow pointing into it from the adjacent
vertices.

(iii) Starting from any vertex, follow the signpost in-
structions: Follow any of the adjacent propagators
which has an arrow pointing into it; repeat this
process at each vertex you visit. If after n such steps
you return to the vertex you started from, the
diagram is identically zero and will be systematically
omitted. (See an example in Fig. 1.) This rule is the

0−−−

FIG. 1. An example of a signpost ribbon diagram which
vanishes identically. Note that in this example, the closed path
made of GA propagators that makes this diagram vanish is not
surrounding just one plaquette.

6A somewhat similar notation, using arrows to indicate the GA
and GR propagators, has been used in the literature (for example
see [2]). The novelty of our signpost notation is that we assign the
arrows to the vertices, not the propagators. Note also the different
status of the edge arrows reflecting the SUðNÞ group structure,
and the signpost arrows reflecting the nonequilibrium ingredients
in our diagrams: We often indicate graphically only one edge
arrow per each closed edge loop or each open edge segment in a
given diagram, and do not put edge arrows on all individual
propagators, to avoid notational clutter in the figures. On the
other hand, the location and direction of each signpost arrow
carries important information, and such arrows cannot be
conveniently left out.
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rephrasing of the analogous rule we encountered
above in the original notation.

It will be useful to formalize the prescription for
traveling along a ribbon diagram Δ in the direction of
the arrows, as follows: We define an admissible path on Δ
from a vertex v1 to another vertex v2 to be a collection of
consecutive propagators and vertices, obtained by starting
at v1, choosing an arrow from the signpost at v1, moving in
the direction of this chosen arrow along the attached
propagator to the next vertex, and repeating the steps at
each signpost encountered along the way, until we reach v2.
As a consequence of this definition, there is always at least
one admissible path going through any given vertex of Δ.
Also, for any pair v1, v2 of vertices, there might be one or
more distinct admissible paths connecting them, or none
at all.

C. All vacuum diagrams vanish identically

To practice the use of our new notation and to show its
efficiency, we will now prove that all vacuum diagrams are
zero. Begin at any vertex, and imagine being a traveler who
follows the arrows at all signposts, i.e., travels along an
admissible path as defined above. Since the number of
arrows at each vertex is odd, there is at least one arrow at
your original location. Follow that arrow, and repeat the
step at each new vertex you visit. Again, since there is at
least one arrow at each vertex, this procedure makes sense
at each step. If after a finite number of steps you return to a
vertex you already visited, by our rules the diagram is
declared to be zero identically. Since for a vacuum diagram,
there are no external legs at which you could end up after a
finite number of steps, to prevent the diagram from being
zero you would have to travel forever, visiting an infinite
number of new vertices. Since in our analysis we only
consider Feynman diagrams with a finite number of
vertices, this concludes the proof.
Thus, we reach our first conclusion about the universal

structure of nonequilibrium string perturbation theory in the
Keldysh-rotated form:

Z ¼
X∞
h¼0

�
1

N

�
2h−2

F hðλ;…Þ ¼ 0; ð2:17Þ

the sum of all the zero-point diagrams vanishes identi-
cally.7 This is an example of the efficiency of the
Keldysh-rotated formalism, which must be reproduced
by any candidate for the description of the world-sheet
dynamics of the string.

III. LARGE N AND STRING WORLD SHEETS:
CLASSICAL AND QUANTUM SURFACES

We are now ready to demonstrate that for each ribbon
diagram Δ in the Keldysh-rotated formalism, its associated
Riemann surface ΣðΔÞ can be naturally decomposed into a
classical part Σcl plus its quantum “embellishment” part
Σqu. This will be done in two steps: First, we define for each
diagram its “classical foundation” Σ̂cl: a surface whose
topology is generally simpler (or at least not more com-
plicated) than that of Σ. The full surface Σ is then obtained
by replacing a collection of nonoverlapping disks on Σ̂qu

with the quantum embellishments. However, since we have
just shown that all vacuum diagrams vanish, we cannot use
vacuum diagrams to illustrate our arguments as we did in
the � representation [1]—we will need n-point correlation
functions.

A. Adding external sources

In what follows, we mostly concentrate for simplicity on
diagrams which contribute to the two-point correlator ofM
and M,

hM a
bMc

di ¼ hM a
bMc

di0 þ � � � ; ð3:1Þ

an equation represented graphically as follows:

ð3:2Þ

where the “� � �” denote all the loop corrections. In fact, in
order to eliminate the loose indices at the ends of the
propagators, it will be better to couple Ma

b and M a
b to

their conjugate sources, Jba andJb
a, and encode the two-

point function (and all higher n-point functions) in SUðNÞ
singlets such as

JbahM a
bMc

diJd
c: ð3:3Þ

Note that it is the classical source J that couples to the
quantum field M , and the quantum source J to the
classical field M. This follows from the fact that in the �
formalism, the coupling to sources adds the following term
to the full action (2.2):

Z
dtTrðJþMþ − J−M−Þ: ð3:4Þ

With the standard definitions

Jcl ≡ J ¼ 1

2
ðJþ þ J−Þ;

Jqu ≡J ¼ Jþ − J−; ð3:5Þ
7Note that as in [1,16], we continue denoting the sum over all

connected ribbon diagrams by Z. As usual, the sum Z over all
diagrams, connected or not, is related to Z by Z ¼ logZ .
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the coupling in (3.4) indeed adds to the Keldysh-rotated
action (2.5) the following source term:

Z
dtTrðJM þJMÞ:

In our ribbon diagrams, we will graphically denote the
external sources as follows:

,

.

Using this notation, the expression in (3.3) is graphically
represented by

J . ð3:6Þ

On the string dual side, the insertions of the singlets JM
and JM will correspond to marked points on the
surface Σ.
In the full theory, one is more appropriately interested

in correlation functions of n local composite operators
OiðM;M Þ (with i ¼ 1;…; n) that are singlets of the
SUðNÞ symmetry. It is such operators that can be expected
to be associated with simple local vertex-operator inser-
tions on the world sheets in the dual string theory. The
sources J and J that we use to form the singlets JM and
JM can be seen simply as placeholders for the insertions
of such more complicated singlet operators Oi, and we use
them solely for the convenience of our presentation.

B. Reduction of Σ to its classical foundation Σ̂cl

Each ribbon diagram Δ can be associated with a unique
surface Σ, constructed by simply forgetting the nonequili-
brium signposts at the vertices and following the prescrip-
tion for Σ that worked in equilibrium. Restoring the
signposts will then equip Σ with some additional structure,
and we expect the topological sum over surfaces of genus h
to be correspondingly refined.
How do we identify the refined structure that is naturally

induced on Σ by the restoration of the nonequilibrium data?
There is one physically well-motivated decomposition of
each nonequilibrium ribbon diagram Δ, which induces a
natural decomposition of Σ. Recall first that the information
about the state is carried by the Keldysh propagators GK ,
but not the GA and GR propagators and the vertices. It is
then natural to define an operation which acts on a ribbon
diagram Δ by “forgetting” the GK propagators: Erasing all
the GK propagators from a ribbon diagram should leave a
subdiagram Δ̂, in which the information about the state of
the system has been erased. Note that since every vertex of
Δ has at least one arrow at its signpost, no vertices are
erased in the process of forming Δ̂. Some of the vertices of

Δ̂will have fewer attached legs than their counterparts inΔ.
In particular, some vertices in the reduced diagram Δ̂might
become “1-vertices” or “2-vertices,” but each vertex still
has at least one propagator attached to it. Even to such
generalized diagrams, one can still apply the standard
process of constructing an associated compact surface
without boundaries (by gluing in a disk to fill each closed
loop). We will denote this surface by Σ̂cl and refer to it as
the classical foundation of Σ. By design, the expectation is
that even on the string side, the classical foundation Σ̂cl

should be encoding the information about the dynamics but
not about the state of the original system.
Note that Σ̂cl is either topologically simpler than Σ or at

most topologically equivalent to Σ. In technical terms, the
increasing topological complexity of surfaces is measured
by the decreasing value of their Euler number. It turns out
that the Euler number of the classical foundation Σ̂cl is
always greater than or equal to the Euler number of Σ. We
postpone the proof of this statement until Sec. III F, after
we define more precisely the decomposition of Σ into its
classical and quantum part.

C. Topology of the classical foundation Σ̂cl

First, we will show that the classical foundations Σ̂cl that
emerge from consistent diagrams can be arbitrarily topo-
logically complicated, as two-dimensional orientable sur-
faces without boundaries. Since such two-dimensional
surfaces are topologically classified by their non-negative
integer genus n, we need to show that Σ̂cl for all possible n
arise from consistent ribbon diagrams. We will prove this
statement by constructing a sequence of ribbon diagrams
which contain no GK propagators, implying that their
associated surface Σ is identical to its classical foundation,
Σ̂cl ¼ Σ, and with Σ of arbitrarily high genus. We will
illustrate this on the two-point functions with the JJ
external source insertions.
First, consider the diagram in Fig. 2. It is planar,

containing only GA and GR propagators, and Σ ¼ Σ̂cl is
a two-sphere. Following the cutting and regluing procedure
on the two indicated propagators as described in Fig. 2
gives Σ which is a two-torus, again isomorphic to Σ̂cl.

J

FIG. 2. An example of a ribbon diagram without any GK
propagators; thus, the associated surface Σ has no quantum
embellishments, and Σ̂cl ¼ Σ, the two-pointed sphere. Cutting the
two propagators inside this diagram across the indicated dashed
line, and re-gluing them in the opposite order, turns Σ ¼ Σcl into a
two-pointed torus.
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In the next step, we iterate this procedure to form any
higher genus surface Σ, again isomorphic to its classical
foundation Σ̂cl: Starting with the planar ladder diagram with
2nþ 1 rungs as indicated in Fig. 3, we cut the 2n indicated
rungs and reglue them in the opposite order. Counting the
number of plaquettes, propagators, and vertices of the
resulting nonplanar diagram demonstrates that its associ-
ated surface is of genus n. Since there were no GK

propagators involved, the classical foundation Σ̂cl is iso-
morphic to Σ, and therefore also of genus n.

D. Decomposition of Σ into its classical
and quantum parts Σcl and Σqu

When we restore the GK propagators in a given ribbon
diagram Δ, we reconstruct the full surface Σ from the
classical foundation Σ̂cl. This process defines a decom-
position of the original surface Σ into its quantum and
classical parts, which we denote by Σcl and Σqu. Both Σcl

and Σqu will be two-dimensional surfaces whose bounda-
ries consist of a collection of S1, along which Σcl and Σqu

are glued together. The classical foundation Σ̂cl is then
related to Σcl simply by gluing disks into each boundary
component of Σcl. For an algorithmic definition of this
decomposition of Σ for any given ribbon diagram Δ, we
now refer to a more precise combinatorial description.

E. Combinatorial picture of Σ̂cl, Σcl, and Σqu

Begin with a ribbon diagram Δ in the Keldysh-rotated
formalism. The collection of vertices, propagators, and
closed loops (which we refer to as “plaquettes”) in Δ
provides a simplicial decomposition of the associated
surface Σ. We subdivide this combinatorial data associated
with Δ as follows:

(i) All vertices belong to Σcl.
(ii) All GA and GR propagators belong to Σcl.
(iii) All plaquettes that have no adjacent GK propagators

belong to Σcl.
(iv) All GK propagators belong to Σqu.
(v) All plaquettes with at least one adjacent GK propa-

gator belong to Σqu.

This assigns each building block of the cellular decom-
position of Σ to either Σcl or Σqu. (Perhaps the only
exception is the treatment of the external source insertions,
to which we return in Sec. III H.) What is less clear is that
Σcl and Σqu can be naturally interpreted as smooth surfaces,
connected to each other along a common boundary which
is topologically just a collection of S1 ’s. That it is indeed
so can be demonstrated by an equivalent definition of
the decomposition of Σ into Σcl and Σqu, which works
plaquette-by-plaquette, and follows a similar plaquette-by-
plaquette definition of the triple decomposition of Σ in
terms of the widened cuts in the � formalism studied in
detail in [1,16].

F. Plaquette-by-plaquette construction
of a smooth Σqu

Begin by placing a transverse line segment across the
middle of each GK propagator, and widen this cut into a
segment of a two-dimensional ribbon. Inside each pla-
quette, connect all such line segments entering the pla-
quette to the marked center inside the plaquette. Widening
the resulting graph gives a unique portion of a smooth
surface with boundaries inside the plaquette, a portion
which connects smoothly to other such portions of a
smooth surface with boundaries across each adjacent GK
propagator (see Fig. 4 for illustrations). Their union thus
defines a smooth surface with a smooth boundary consist-
ing of a number of S1 ’s. It is easy to see that this surface is
topologically canonically equivalent to our Σqu as defined
combinatorially above.
Another natural perspective on the plaquette-by-pla-

quette construction is obtained when we switch from the
original ribbon diagram Δ to its dual ribbon diagram Δ⋆.
(We reviewed this duality of ribbon diagrams in Sec. 2.8 of
[1], and used it there to study the triple decomposition of Σ
in the � formalism.) In this dual picture, the widened cut
across each GK propagator in Δ represents a certain ribbon
propagator ofΔ⋆, and their connection to the marked center
inside a plaquette with at least one adjacent GK propagator
represents a vertex in Δ⋆. The collection of all such

0 1 2 −1n n2 2J

FIG. 3. A construction that yields a higher-genus Σ with no
quantum embellishments. Starting from this planar diagram,
cut the propagators labeled 1 to 2n across, along the indicated
dashed line, and reglue them in the opposite order: 1 to 2n, 2 to
2n − 1, …, 2n to 1. This gives a ribbon diagram associated with
Σ ¼ Σcl of genus n.

FIG. 4. Two examples illustrating the direct plaquette-by-
plaquette construction of Σqu as a surface with smooth bounda-
ries. For those readers viewing this figure in color, the portions of
Σqu so constructed are denoted in green.
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propagators and vertices of Δ⋆ that have been assigned
to Σqu thus represents a ribbon subdiagram in Δ⋆, and
therefore has a natural interpretation as a topologically
smooth surface with boundaries. This surface is precisely
the surface Σqu that we obtained from the plaquette-by-
plaquette prescription.
Given our combinatorial definition of Σcl and Σqu, it is

natural to define the following combinatorial Euler num-
bers associated with the combinatorial ingredients defining
the decomposition,

χclðΔÞ¼V−PclþLcl; χquðΔÞ¼−PquþLqu: ð3:7Þ

Here V is the number of vertices in Δ, Pqu the number of its
Keldysh propagators, Pcl ¼ P − Pqu the number of its non-
Keldysh propagators, Pcl the number of plaquettes with
no adjacent GK propagators, and Pqu the number of the
plaquettes with at least oneGK propagator. By repeating the
steps used in the� formalism in [1], it is straightforward to
show that these combinatorial Euler numbers reproduce the
Euler characteristics of the smooth surfaces Σcl and Σqu,

χclðΔÞ ¼ χðΣclÞ; χquðΔÞ ¼ χðΣquÞ: ð3:8Þ

The sum of the two is of course the Euler number of Σ,
simply given in terms of the number of handles h
as χðΣÞ ¼ 2 − 2h.
We can now return to the statement we made in

Sec. III B, that the topology of the classical foundation
Σ̂cl is simpler than that of the full surface Σ. The notion of
“topological simplicity” of a surface Σ is quantified by the
Euler number χðΣÞ: The simpler the topology of the
surface, the greater its Euler number. We wish to show that

χðΣ̂clÞ ≥ χðΣÞ: ð3:9Þ

The proof is now simple, because we can rely on the
features of the decomposition of each Σ as Σcl ∪ Σqu.
Consider the connected components of Σqu, one by one.
Each such component has some number b of boundaries,
b ≥ 1, along which it connects to Σcl. Its Euler number is
≤ 2 − b. Replace this connected component with b disks;
the Euler number of the replacement is b. Since b ≥ 1, the
Euler number of the replacement is always greater than
or equal to the Euler number of the original connected
component of Σqu. By definition, the classical foundation
Σ̂cl is obtained from Σ by performing this replacement
procedure with all connected components of Σqu. Using the
additivity property of the Euler number, this demonstrates
that the Euler number of Σ̂cl must be greater than or equal to
that of Σ, thus proving (3.9).
Note that according to this definition of topological

complexity of a surface, we find that the collection of n
disconnected spheres is simpler than a collection of n0

spheres if n > n0. This is a consequence of our definition of
topological complexity that we can live with.

G. Topology of the quantum embellishments Σqu

In our next step, we show that arbitrarily complicated
topologies of the quantum embellishment surfaces Σqu can
appear from consistent ribbon diagrams. We will prove this
statement by constructing a sequence of ribbon diagrams
whose quantum embellishments Σqu are connected surfaces
with one boundary and an arbitrarily high genus.
This construction is illustrated in Figs. 5 and 6: First, we

construct a surface whose classical foundation is an S2 with
two marked points at which the sources are inserted, and
the quantum part Σqu is a torus with one boundary. Then we
iterate this process and construct a surface whose Σqu has
any number of handles and one boundary.
Next we need to show that Σqu can have connected

components with more than one boundary component.
Examples of ribbon diagrams with this feature are easy to
find if we consider higher 2n-point correlation functions.
Consider the diagram in Fig. 7, which contributes to the
four-point function with the external sources JJJJ . This
diagram is connected and planar; therefore the surface Σ
associated with it is the sphere (with four marked points
corresponding to the insertions of the two J’s and two
J’s). Its Σqu is a cylinder, and this diagram thus shows that
connected components of Σqu can have more than one
boundary.

FIG. 5. An example of a ribbon diagram with two GK
propagators, whose Σ is again a two-pointed sphere, and
Σcl ¼ Σ. In this case, the quantum embellishment Σqu is a disk.
Cutting the two indicated propagators along the dashed line and
regluing them in the opposite order gives Σ which is a two-
pointed torus, with Σcl a two-pointed sphere, and Σqu a torus with
one boundary.

FIG. 6. The construction of a surface with a higher-genus
quantum embellishment Σqu. The indicated diagram gives Σ a
two-pointed sphere, with Σqu a disk, just as in Fig. 5. Cutting
propagators labeled 1 to 2n and regluing them back in the
opposite order as in Fig. 3 yields Σwhich is a two-pointed surface
with n handles, Σ̂cl a two-pointed sphere, and Σqu with n handles
and one boundary.
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One can also use this four-point function to find
diagrams whose Σqu are connected, have two boundaries,
and an arbitrary number h of handles: Simply replace the
one GK propagator in Fig. 7 by 2hþ 1 propagators, glue
them to the bottom horizontal ribbon in the order from 1 to
2hþ 1, and glue them to the top horizontal ribbon in the
reverse order, from 2hþ 1 to 1. This resulting ribbon
diagram will have 2hþ 1 propagators and just one pla-
quette. Its Σqu is a connected surface with two boundaries
and h handles.
This process can easily be extended to construct exam-

ples whose Σqu is connected and has more than two
boundaries. One of the simplest ribbon diagrams whose
Σqu is connected and with three boundaries is depicted in
Fig. 8 and involves a six-point function. (In fact, an even
simpler ribbon diagram with the same properties would
result from removing any one of the three GK propagators
in Fig. 8.) Clearly, by iterating this construction to 2b-point
functions, one easily obtains examples whose Σqu has b
boundary components.
Is it necessary to go to such higher-point functions in

order to find examples with connected components of Σqu

having high numbers b of boundaries, or do such Σqu

appear already in the two-point function? The answer is
that they do appear, but in order to find examples of ribbon
diagrams that contribute to the two-point function and

whose Σqu has a connected component with more than
one boundary, one must look a bit harder, to nonplanar
diagrams. Consider the diagram in Fig. 9. It has been
designed such that it only has one GK propagator. It leads
to Σqu which has two boundary components. The process
clearly iterates and gives examples of Σqu which are
connected and have an arbitrary number b of boundary
components, even in the case of the two-point function.

H. Locations of the external sources

Besides the internal number of vertices, propagators, and
closed loops, our Feynman diagrams inevitably contain a
nonzero number of external source insertions. The external
sources can be either classical J or quantumJ . In order to
complete the combinatorial rules proposed in Sec. III E to
define the decomposition of Σ to Σcl and Σqu, we must
decide how to assign the external sources to the two parts of
this decomposition.
Since the classical source J can never be attached to

the GK propagator, it would appear natural to assign the
insertion of J always to Σcl. With the quantum source J ,
the story is not so clear: We can choose to assign it always
to Σqu, or we can choose to assign it to either Σqu or Σcl,
depending on whether it is attached to theGK propagator or
the GA propagator. Which of these two choices, if any, is
more natural?
Perhaps the most natural and elegant answer is to simply

admit that the external source insertions are not a part of Σ,
and therefore do not have to be assigned to either Σcl or Σqu.
This picture is further supported by the fact that in critical
string theory, the insertions of the vertex operators corre-
spond to the “punctures” in the Riemann surface, points
which have been removed from Σ. This agrees with the
observation that each such puncture contributes −1 to the
Euler number χðΣÞ: In the combinatorial picture, creating a
puncture means removing a vertex in the cellular decom-
position of Σ, resulting in the subtraction of 1 from the
overall Euler number. On surfaces with complex structures
(such as those in critical string theory in Euclidean world-
sheet signature), a puncture can be viewed as an infini-
tesimally small boundary, and therefore contributes the
same amount to χðΣÞ. For Σ with h handles, b boundaries,
and n punctures, the Euler number is then

χðΣÞ ¼ 2 − 2h − b − n: ð3:10Þ

(a) (b)

FIG. 8. (a) This ribbon diagram is again planar and contributes
to a six-point function. (b) Its associated surface Σ is an S2 with
six marked points. Σ̂cl consists of a collection of three S2’s with
two marked points each, and Σqu is the “pair of pants” surface,
with no handles and three boundary components.

FIG. 9. The construction of a surface Σ that contributes to the
JhMMiJ two-point function, and whose Σqu is a cylinder. Here
Σ ¼ T2, and its classical foundation is Σ̂cl ¼ S2.

FIG. 7. This diagram is planar, and Σ is an S2 with four marked
points. The classical foundation Σ̂cl consists of two disconnected
S2’s, each with two marked points. The quantum embellishment
Σqu is a cylinder: Combinatorially, it is constructed from one GK
propagator and the one plaquette of this diagram, and has two
boundaries.
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This is indeed the expression relevant for the counting of
the powers of N in our large-N expansion.
Even if we agree not to consider the source insertions a

part of Σ, a small ambiguity remains: How do we treat the
plaquettes in the ribbon diagram, immediately surrounding
the source insertions? To see a simple example of the
possible ambiguity, consider Fig. 10. If we follow our
plaquette-by-plaquette prescription, one of the quantum
sources ends up surrounded by a small disk with no other
source insertions, which by our rules is assigned to Σcl. This
punctured disk is surrounded by Σqu. Would it not be more
natural and economical to assign this small disk (and its
puncture, representing the J insertion) to Σqu?
We believe that the answer is no, and that the straightfor-

ward plaquette-by-plaquette definition of the decomposi-
tion is both natural and most economical. If the diagram in
Fig. 10 were the only one with theJ insertion surrounded
by a disk assigned to Σcl, it would make sense to reassign it
to Σqu and end up with a simplified sum over surface
decompositions. However, there is an entire family of
diagrams with the same decomposition into Σcl and Σqu,
of which the example in Fig. 10 is only the lowest-order
representative, with the fewest vertices inside this punc-
tured disk. Another example is given in Fig. 11. The
existence of such higher-order diagrams suggests that it is
natural to follow the simple rules of our plaquette-by-
plaquette definition of the decomposition of Σ: According
to that definition, every internal vertex in a given ribbon

diagram is always inside Σcl—there is an open disk in Σ
which contains the vertex and is entirely in Σcl. It is then
natural to extend this picture also to the 1-vertices asso-
ciated with the vertex insertions: Even if the puncture in Σ
that corresponds to the source insertion is technically not a
part of Σ, it has a neighborhood in Σ with the topology of a
punctured disk, which intersects only one propagator of the
ribbon diagram. The logic of the plaquette-by-plaquette
construction suggests that this punctured disk should be
assigned to Σcl.
Thus, the extension of the plaquette-by-plaquette con-

struction to the ribbon diagrams with external source
insertions suggests that all insertions of both J and J

should be naturally interpreted as punctures in Σcl. This is
the definition of the decomposition of Σwith punctures into
its classical and quantum parts which we adopt for the rest
of this paper: All punctures of Σ will always belong to Σcl.

IV. NONEQUILIBRIUM STRING PERTURBATION
THEORY AFTER THE KELDYSH ROTATION

Thus, we arrive at the form of the topological genus
expansion in nonequilibrium string perturbation theory,
in the Keldysh-rotated form. Consider again the sum over
all connected ribbon diagrams in our generic large-N non-
equilibriumsystemwithmatrix degrees of freedom, andwith
ncl insertions of the classical source J and nqu insertions of
the quantum source J . This amplitude can be written as

Ancl;nquðN; λ;…ÞJnclJnqu : ð4:1Þ

The coefficients Ancl;nquðN; λ;…Þ can then be expanded in
the powers of 1=N, leading to the string dual description as a
sum over connected world-sheet topologies, eachwith ncl þ
nqu punctures.
For notational simplicity, we introduce the generating

functional ZðJ;JÞ of the amplitudes (4.1), defined as a
formal sum of (4.1) over all ncl and nqu, and refer to

FIG. 11. Another ribbon diagram that leads to the same Σcl and
Σqu as the example in Fig. 10.

(a) (b)

FIG. 10. A quantum source J attached to a GK propagator,
and its location on Σ. (a) This diagram is planar and Σ is a four-
pointed sphere. One of the external quantum sources J is
connected to a GK propagator. (b) Following our rules for the
plaquette-by-plaquette construction of Σqu, we find the decom-
position of Σ depicted here, with one J isolated inside a disk
component of Σcl.

FIG. 12. A typical surface Σ contributing to (4.2), and its
decomposition into the classical foundation Σ̂cl and the quantum
embellishment Σqu. In this example, Σ is a surface with five
handles, and with three J sources inserted at three marked
points. Its classical foundation Σ̂cl is a torus with three marked
points, and its Σqu consists of three disconnected components: A
torus with one boundary, a surface with two handles and two
boundaries, and a disk.
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ZðJ;JÞ as the partition function for short. In this
language, we can now summarize the main results of this
paper as follows: The large-N expansion of the partition
function for the nonequilibrium system in the Keldysh-
rotated version of the Schwinger-Keldysh formalism takes
the form of a sum over surface topologies, refined to

ZðJ;JÞ ¼
X∞
h¼0

�
1

N

�
2h−2 X

double decompositions
χðΣclÞþχðΣquÞ¼2−2h

FΣcl;ΣquðJ;J ; λ;…Þ:

ð4:2Þ

In this nonequilibrium case, the sum over the surface
topologies goes over all double decompositions of Σ into
Σcl and Σqu, such that Σ is the connected surface of genus h,
and with ncl þ nqu marked points inside Σcl corresponding
to the insertions of ncl classical sources J and nqu quantum
sources J . (See Fig. 12 for a typical surface that
contributes to this sum).
We have already demonstrated that Zð0; 0Þ ¼ 0 identi-

cally. In fact, this observation can be extended from the
vacuum diagrams to the more general case of all diagrams
with nonzero J but zero J ,

ZðJ; 0Þ ¼ 0: ð4:3Þ

The proof is simple: Consider a ribbon diagram with at least
one vertex. There is at least one arrow at the signpost at that
vertex. Follow any admissible path starting in the direction
of this arrow. In a diagram with a finite number of vertices,
this path must end in a finite number of steps. The only place
where an admissible path can end is at aJ source insertion.
Thus, for the diagram to be nonzero, there must be at least
one J attached. There are no diagrams that would
contribute to a correlation function with n classical sources
J, if there is not at least oneJ source insertion, thus proving
(4.3). Of course, this proof is perturbative in nature, as are all
our arguments based on the perturbative expansion in terms
of the underlying perturbative ribbon diagrams.

These vanishing identities have a clear physical inter-
pretation familiar from the field-theory side of the non-
equilibrium system: Setting the quantum source J to zero
is equivalent in the original � formalism to setting the
sources Jþ and J− on the C� parts of the Schwinger-
Keldysh contour equal to each other. When this is done, the
probe of the system by Jþ on the forward branch is exactly
undone by the compensating probe by J− on the return
path, and all the diagrams contributing to such a process are
identically zero. On the string side, this is reflected by the
statement of (4.3): All contributions from the world-sheets
Σ without at least one J insertion vanish identically.
In fact, this statement about nonequilibrium string per-

turbation expansion can be further refined: For the amplitude
associated with a given decomposition of Σ into Σcl and Σqu

to be nonzero, each connected component of Σcl must have
at least oneJ insertion. The proof is a simple generalization
of the argument we used to prove (4.3): Each connected
component of Σcl has at least one vertex. There is at least one
allowed path that begins at this vertex. This allowed path
stays within the same connected component of Σcl, and it has
to end somewhere after a finite number of steps. Since it can
only end at an J insertion, each connected component of
Σcl must have at least one such insertion.
Note that (4.3) can be interpreted as the boundary

condition for solving the full generating functional of
the correlation functions (4.2). Finding that (4.3) is valid
represents an important check of self-consistency for any
ZðJ;JÞ in nonequilibrium string theory.

A. Resummation of the perturbative expansion

The decomposition of the string world-sheet Σ into its
classical and quantum parts suggests a reorganization of the
perturbative expansion in string theory: We can first perform
the sum over the topologically inequivalent classical foun-
dations Σ̂cl, and then sum over all quantum embellishments
that can be added to a given Σ̂cl. This resummation leads to
the following expression, equivalent to (4.2):

ZðJ;JÞ ¼
X
Σ̂cl

�
1

N

�
−χðΣ̂clÞ�X∞

b¼0

�
1

N

�
b
�X

Σqu
b

�
1

N

�
−χðΣqu

b Þ
F Σ̂cl;b;Σqu

b
ðJ;J ; λ;…Þ

��
: ð4:4Þ

Here Σqu
b denotes a quantum embellishment surface, not

necessarily connected, with b boundary components. The
first sum in (4.4) is over the classical foundations, which are
closed surfaces, also not necessarily connected. The second
sum in (4.4) is over the number b of disks excised in the
classical foundation Σ̂cl, in order to form Σcl (and over the
distributions of such excisions among the connected com-
ponents of Σ̂qu). The third sum in (4.4) is over all possible
topologically inequivalent quantum embellishment surfaces

Σqu which have b boundary components, and can therefore
be glued to Σcl to form the full surface Σ. These ingredients
are subjected to just one overall constraint: The resulting Σ
must be connected.
The resummation of the nonequilibrium string perturba-

tion expansion in the form (4.4) exhibits one somewhat
unpleasant feature: For a given classical foundation Σ̂cl, the
sum over inequivalent Σqu topologies is not finite, even at a
fixed order in the string coupling 1=N. This infinity of

PETR HOŘAVA and CHRISTOPHER J. MOGNI PHYS. REV. D 106, 106014 (2022)

106014-12



inequivalent topologies contributing at the same order in
1=N for a given Σ̂cl has a simple origin: Disconnected
components of Σqu with the topology of a disk. One can
excise any number m of disks from Σ̂qu and replace them
with such disconnected disk components of Σqu, without
changing the Euler number of Σ and thus the order in 1=N
at which this surface contributes to the partition function.
This feature suggests performing yet another resumma-

tion: For a given Σ̂cl, we can split the sum over all quantum
embellishments in (4.4) into two steps: First the sum over
any number of connected components of Σqu with the disk
topology, followed by the sum over all components of Σqu

whose Euler number is ≤ 0 (and which are therefore not
disks). For a given classical foundation Σ̂cl, the first step
defines a “renormalized” surface obtained by summing
over all possible quantum embellishments by disks, and the
second sum over topologically nontrivial quantum embel-
lishments at each order in 1=N is then a finite sum over
finitely many topologically distinct quantum embellish-
ments of the renormalized Σ̂cl.
For specific models, or in specific circumstances, it

might happen that the sum over quantum embellishments
of each connected component of Σ̂cl by disks becomes
finite. Indeed, we shall see two such examples in Sec. V,
where we consider classical and stochastic limits of the
general nonequilibrium quantum systems: In Sec. VA, we
will find an example where all quantum embellishments
vanish identically; and in Sec. V B, we will encounter
another example, in which each connected component of
Σcl can have at most one boundary component, which
implies that the sum over its disk embellishments termi-
nates at order one in the number of disks.

B. World-sheet decompositions before
and after the Keldysh rotation

We can now compare and contrast the world-sheet
decompositions of Σ in nonequilibrium string perturbation
theory in the original forward-backward formulation and in
the formulation after the Keldysh rotation.
In the � formalism, there is a symmetry between the

forward and backward parts of the Schwinger-Keldysh
contour, which implies a symmetry between the forward
and backward parts Σþ and Σ− of the triple decomposition
of the world sheet. In particular, their combinatorial
definitions in terms of the ingredients in the underlying
ribbon diagram reflect this symmetry. The remaining part,
Σ∧, has a different standing: It represents the part of the
world sheet associated with the instant of time where the
forward and backward branches of the Schwinger-Keldysh
contour meet. Σ∧ does carry its own topological genus
expansion, and in this sense it is topologically two-
dimensional. Still, as we discussed in [16], its combinato-
rial definition suggests that Σ∧ may be interpreted as
geometrically one-dimensional.

In the Keldysh-rotated formulation, there is no symmetry
between the classical and quantum components Σcl and Σqu

of the twofold decomposition of the world-sheet surface Σ:
As we saw, the primary ingredient in this decomposition is
the classical foundation Σ̂cl, which is topologically simpler
or at most equivalent to Σ. Starting with this classical
foundation, Σ is formed by adding the quantum embel-
lishments represented by Σqu. Both Σcl and Σqu can have
topologies of any genus, but there is no similarity or
symmetry between them.
In fact, there appears to be a certain parallel between Σcl

of the Keldysh-rotated formalism and the Σþ and Σ−

components of the � formalism of [1]. Analogously, the
quantum part Σqu in the Keldysh-rotated formalism is
somewhat reminiscent of the wedge region Σ∧ of the �
formalism. Indeed, note an intriguing similarity between
the combinatorial definition of Σqu in the Keldysh-rotated
formalism as given in Sec. III E and the world-sheet region
Σ∧ at the “end of time” in the � formalism of [1]: In both
instances, these surfaces are built solely from propagators
and plaquettes, and there are no vertices in the original
ribbon diagram. Thus, in the Poincaré dual ribbon diagram,
Σqu and Σ∧ are both built from vertices and lines only,
which can make them appear geometrically one-
dimensional. Yet, topologically they correspond to two-
dimensional surfaces and carry their own genus expansion,
as we demonstrated in Sec. III G.

V. CLASSICAL LIMITS OF NONEQUILIBRIUM
SYSTEMS AND STRING THEORY

In nonequilibrium theory in the Keldysh form, there
are several popular approximations, which represent
various classical limits of the system. In this section,
we study the consequences of taking such limits for the
string perturbation expansion. Besides the interest in
studying the string-theory side of such approximations
for their own sake, this section serves one additional
purpose: We will see that our results will give further
justification to our terminology, and in particular
clarify why it makes sense to refer to the two parts
Σcl and Σqu as the classical and quantum parts of the
world-sheet Σ.

A. The classical limit

The first popular approximation is one in which we
consider the quantum field ϕqu (or, in our matrix case, M )
to be small compared to ϕcl (in our case M), expand the
action up to linear order in the quantum field M , and then
integrate M out (see, e.g., [4–6,17]).

SSK ¼ 1

g2

Z
dtTrðMG−1

R M þMG−1
A M

þ 3M2M þ 4M3M þ � � �Þ: ð5:1Þ
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Integrating M yields a delta function, which makes the
remaining dynamical field M satisfy its classical equation
of motion,

M̈ðtÞ ¼ −V 0ðMðtÞÞ: ð5:2Þ

(Here V is the potential that contains all the cubic and
higher interaction terms of the original action, and we have
kept all the spatial-momentum dependence in the equation
implicit.) Thus, in this limit, all fluctuations (both quantum
and thermal) are infinitely suppressed. This is the reason
why this approximation is usually invoked to justify the
terminology classical and quantum for the fieldsM andM :
The classical field M in this classical approximation
satisfies the classical equation of motion, and the quantum
field has been integrated out.
What does this approximation look like in the string-

theory representation? Consider the general ribbon dia-
grams in this approximation. First, linearizing the cubic and
higher interaction terms in the action (2.5) in the quantum
fieldM means that we drop all vertices with more than one
arrow at their signpost. Note a curious consequence: In this
classical approximation, there is no free will left for our
hypothetical travelers following admissible paths on a
given ribbon diagram. Indeed, the choice of an admissible
direction at each vertex along the path is uniquely deter-
mined by the single arrow at its signpost, and all admissible
paths are completely deterministic.
Linearizing the quadratic term in (2.5) means that we

keep only the mixed propagators GA and GR, dropping all
the GK propagators. This step is familiar: This is how we
defined the reduction from the full surface Σ to its classical
foundation Σ̂cl in Sec. III B. However, not all classical
foundations of the original theory will appear: Only those
diagrams whose every vertex has just one arrow at its
signpost will survive the linearization procedure.
It is now easy to show that all such ribbon diagrams will

be collections of trees. Each of the trees is rooted by oneJ
insertion. The collection of all allowed paths that end at this
J form the branches of the tree. The deterministic feature
of the allowed paths discussed above ensures that there are
indeed no closed loops in this tree. Tree diagrams are
planar, and therefore Σ is just a collection of spheres.
Thus, we reach a very pleasing conclusion: In the

classical limit of the original nonequilibrium quantum
system, the partition function ZðJ;JÞ as given by the
sum over world-sheet topologies automatically reduces
itself to a sum over string world-sheet surfaces with only
spherical topologies. For each term, the number of S2 ’s is
equal to the number ofJ external insertions. Moreover, all
these surfaces have no quantum embellishments Σqu, and
therefore are equivalent to their classical foundation Σ̂qu.
In equilibrium closed string theory, summing over only
spherical topologies is the hallmark of taking the classical
limit. It is nice to see that taking the classical limit of the

nonequilibrium system matches the process of taking the
classical limit on the string side as well. We believe that this
result provides some intuitive justification for the termi-
nology we introduced for the decomposition of Σ into its
classical and quantum parts Σcl and Σqu.

B. Classical stochastic limit
and the Martin-Siggia-Rose method

In this approximation, we take the semiclassical limit
ℏ → 0 but keep the classical thermal fluctuations. This is
achieved by restoring the dependences on ℏ in the
Schwinger-Keldysh action (2.5), exposing the system to
an environment by coupling it to a thermal bath of
harmonic oscillators, and taking the classical limit while
keeping the temperature T fixed (see, e.g., [4], Chapters 3.2
and 4, for details). Note that this approximation will not
require theM degrees of freedom to be in equilibrium, only
the bath.
It turns out that keeping the dependence on nonzero T is

equivalent to keeping not only the linear terms but also the
terms quadratic in M in our expansion of the action (2.5).
The classical action (5.1) is then modified to

SSK ¼ 1

g2

Z
dtTrðMG−1

R M þMG−1
A M þ 3M2M

þ 4M3M þ � � � þ iγTM 2Þ: ð5:3Þ

Here γ is a constant that characterizes the spectral density of
the Ohmic bath modeling the environment (see [4]). This
constant γ also appears in the additive friction terms in the
GA and GR propagators, terms which were absent in these
propagators in the classical limit of Sec. VA; these addi-
tional terms do not influence our treatment of the Feynman
rules, ribbon diagrams, and our conclusions.
In order to see in what sense this action (5.3) represents a

classical stochastic system, it is convenient to use the
Hubbard-Stratonovich transformation in the path integral,

e−γT
R

dtTrðM 2Þ ¼
Z

DξðtÞe−
R

dtTrð 1
γTξ

2−2iξðtÞM ðtÞÞ; ð5:4Þ

so that we can trade the term quadratic in M for a linear
coupling betweenM and a new, typically Gaussian, field ξ.
In our case, both M ðtÞ and ξðtÞ are SUðNÞ matrices (with
all additional dependences on the spatial coordinates or
other quantum numbers again kept implicit, as has been the
case throughout our analysis).
Since M now appears only linearly, it can again be

integrated out to give a delta function localized on the
stochastic classical equation of motion for M,

M̈ðtÞ ¼ −γ _M − V 0ðMðtÞÞ þ ξðtÞ: ð5:5Þ

In this classical equation, ξðtÞ serves as a stochastic
noise, with a Gaussian distribution represented by the path
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integral (5.4). Note the presence of the friction term −γ _M,
which appears due to the dependence of GA and GR on γ
mentioned above. The famous Martin-Siggia-Rose method
[18] for dealing with stochastic systems reverses this
construction [19,20]: It starts with a Langevin equation
analogous to (5.5) and reintroduces the quantum fieldM to
represent the system in the path integral language.
Now we will use the action (5.3) of this classical

stochastic limit of the original system of matrix degrees
of freedom, to see the implications of this approximation on
the dual string side.
First note that in this limit, all vertices in the surviving

ribbon diagrams are again allowed to have just one arrow at
their signpost, just as in the classical limit discussed in
Sec. VA. In particular, the following conclusions about the
classical foundation Σ̂cl of the surfaces associated with the
surviving ribbon diagrams stay the same:

(i) All admissible paths on the ribbon diagrams are
completely deterministic.

(ii) The reduced ribbon diagram that defines the
classical foundation Σ̂cl is a collection of trees (with
one tree per each J source insertion), and each
connected component is therefore planar.

(iii) The classical foundation Σ̂cl is either a sphere or a
collection of disconnected spheres (with one S2 for
each connected tree component of the associated
reduced ribbon diagram).

(iv) The number of connected components S2 of Σ̂cl is
equal to the number of J source insertions in the
diagram.

In contrast to the zero-temperature classical limit studied
in Sec. VA, however, there is now a nonzero remnant of the
classical-to-classical GK propagator, due to the presence of
the M 2 term in (5.3) linear in T. Thus, the world-sheets Σ
contributing in this stochastic classical limit will still
contain quantum embellishments, but their classical foun-
dations will be collections of S2 ’s.
Restoring now all the GK propagators in the reduced

diagram, the surface Σ can have an arbitrarily high number
of handles, as we show in Fig. 13. However, this nontrivial

topology of Σ is now solely due to the quantum embel-
lishments: Leaving out the GK propagators reduces any
original ribbon diagram of this approximation to a collec-
tion of trees, implying that the classical foundation Σ̂cl is
always a collection of two-spheres. In addition, one can
similarly show that each connected component of Σcl is a
disk (i.e., it has only one boundary S1 connecting it to Σqu),
or the entire Σ is an S2 with no quantum embellishments.
We see that even in the stochastic classical limit, there

continues to be a meaningful sense in which the classical
limit in the nonequilibrium system [as defined by (5.3)]
means also a classical limit in the sense of the dual string
theory, where the classical string limit is conventionally
understood as the summation over world sheets with only
spherical topology [21] and possibly with marked points.
This time, however, this classical string limit applies only to
the classical foundation of Σ, while the higher-genus
quantum embellishments Σqu represent the classical ther-
mal or stochastic fluctuations in the original matrix system.

VI. CONCLUSIONS

In this paper we found that, as anticipated, the calculus
of nonequilibrium string perturbation theory looks quite
different in the Keldysh representation, in comparison to its
form in the original � formalism that we found in [1]. In
both cases, the large-N expansion is organized into a sum
over surfaces Σ of increasing topological complexity, just
as in the standard string perturbation theory at equilibrium.
In contrast to equilibrium, however, in both representations
of nonequilibrium string perturbation theory the surfaces Σ
are found to carry a more refined structure (besides just the
genus of Σ) which is universal for all systems. It is this
additional structure that is quite different between the two
nonequilibrium representations.
In the � formalism, the world-sheet surfaces Σ exhibit a

triple decomposition, into their forward branch Σþ, a
backward branch Σ−, and the “wedge” region Σ∧ which
corresponds to the crossing from the forward to the back-
ward portion of the Schwinger-Keldysh time contour. In
contrast, in the Keldysh representation, each surface Σ
consists of a classical foundation Σ̂cl, which is further
decorated by the quantum portion Σqu of the surface.
In [1], we also studied the structure of nonequilibrium

string perturbation theory and the refinement of the world-
sheet decompositions, for closed time contours with more
than two segments, most notably for the Kadanoff-Baym
contour relevant for systems at finite temperature. Besides
the forward branch Cþ and the backward branch C−, this
time contour has a third segment CM (sometimes called the
“Matsubara” segment), which extends along the imaginary
direction by the amount β ¼ 1=T set by the temperature.
We have not generalized the results of the Keldysh rotation
to this case, simply because the status of this third segment
is different from that of C�. However, one can certainly

FIG. 13. An example a ribbon diagram that follows the rules of
the stochastic classical approximation with action (5.3). Note the
deterministic nature of the amissible paths on this diagram.
Cutting across the indicated 2n rungs and re-gluing them as in
Fig. 6 yields a ribbon diagram whose surface Σ has n handles,
while its classical foundation is still Σ̂cl ¼ S2. The non-trivial
topology is entirely contained in the quantum part Σqu, which is a
surface with n handles and one boundary.

KELDYSH ROTATION IN THE LARGE-N EXPANSION AND … PHYS. REV. D 106, 106014 (2022)

106014-15



imagine a hybrid formalism, in which the Keldysh rotation
has been performed on the fields taking values on C�,
leaving the Matsubara segment intact. Such a hybrid
formalism has indeed been used extensively in the theory
of nonequilibrium many-body systems (see [10] for a
review). The fields in this hybrid formalism would consist
of the classical and quantum fields MðtÞ and M ðtÞ that we
studied in this paper, plus the Matsubara field MMðτÞ that
we used in Sec. 3 of [1]. By combining the results of [1] and
those of the present paper, it should be possible to derive
the form of the world-sheet decomposition in this hybrid
formalism for nonequilibrium systems with a string dual.
Effectively, our analysis in [1] and in the present paper

produced a set of rules which can be viewed almost as
axioms, and which are so universal that we expect any
string theory out of equilibrium to be consistent with them:
In the � description, the instant in time where the forward
and backward contours meet is perceived from the world-
sheet perspective as topologically two-dimensional and
carries its own genus expansion; the sum over surfaces is
refined into a sum over their triple decompositions. In the
Keldysh rotated description, each part of the twofold

decomposition of the world-sheet surface into its classical
foundation and quantum embellishments carries its own
independent genus expansion. Due to their universal
nature, these axioms are arguably not very strong, and
therefore not very helpful in determining any specific
details of the world-sheet dynamics. We hope, however,
that they may at least provide some guidance in the future
search for the world-sheet description, in particular exam-
ples of interest.
It will be interesting to see which of the two representa-

tions of the string-theoretic dual description of large-N
nonequilibrium systems will be more useful from the
perspective of the world-sheet theory. Perhaps the answer
might even depend on the large-N system in question and the
kind of string theory which happens to be dual to it. We leave
these fascinating questions open for future investigations.
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[1] P. Hořava and C. J. Mogni, Large-N expansion and string
theory out of equilibrium, Phys. Rev. D 106, 106013 (2022).

[2] G. Vilkovisky, Expectation values and vacuum currents of
quantum fields, Lect. Notes Phys. 737, 729 (2008).

[3] J. Rammer, Quantum Field Theory of Non-Equilibrium
States (Cambridge University Press, Cambridge, England,
2007).

[4] A. Kamenev, Field Theory of Non-Equilibrium Systems
(Cambridge University Press, Cambridge, England, 2011).

[5] A. Kamenev, Many-body theory of non-equilibrium sys-
tems, arXiv:cond-mat/0412296.

[6] A. Kamenev and A. Levchenko, Keldysh technique and
nonlinear sigma-model: Basic principles and applications,
Adv. Phys. 58, 197 (2009).

[7] L. Keldysh, Diagram technique for nonequilibrium proc-
esses, Zh. Eksp. Teor. Fiz. 47, 1515 (1964).

[8] A. Larkin and Y. Ovchinnikov, Nonlinear conductivity of
superconductors in the mixed state, J. Exp. Theor. Phys. 41,
960 (1975).

[9] D. C. Langreth and J. W. Wilkins, Theory of spin
resonance in dilute magnetic alloys, Phys. Rev. B 6,
3189 (1972).

[10] V. Špička, B. Velický, and A. Kalvová, Electron systems out
of equilibrium: Nonequilibrium Green’s function approach,
Int. J. Mod. Phys. B 28, 1430013 (2014).

[11] D. C. Langreth, Linear and nonlinear response theory with
applications, in Linear and Nonlinear Electron Transport in
Solids, edited by J. T. Devreese and V. E. van Doren
(Plenum Press, New York, 1976).

[12] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-
Body Theory of Quantum Systems (Cambridge University
Press, Cambridge, England, 2013).

[13] M. Gell-Mann and J. B. Hartle, Classical equations for
quantum systems, Phys. Rev. D 47, 3345 (1993).

[14] R. Feynman and F. L. Vernon Jr., The theory of a general
quantum system interacting with a linear dissipative system,
Ann. Phys. (N.Y.) 24, 118 (1963).

[15] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and
Path Integrals, International Series in Pure and Applied
Physics (McGraw-Hill, New York, NY, 1965).
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J. Phys. (Paris) Colloques 37, C1 (1976).

[20] H.-K. Janssen, On a Lagrangean for classical field dynamics
and renormalization group calculations of dynamical critical
properties, Z. Phys. B Condens. Matter 23, 377 (1976).

[21] M. B. Green, J. Schwarz, and E. Witten, Superstring
Theory. Vol. 1: Introduction, Cambridge Monographs
on Mathematical Physics (Cambridge University Press,
Cambridge, England, 1988).
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