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Abstract A hairy black hole (HBH) emerges due to mat-
ter surrounding the Schwarzschild metric when using the
Extended Gravitational Decoupling (GD) approach. The
fermionic greybody factors (GFs) and quasinormal modes
(QNMs) as well as Hawking spectra and sparsity of HBH
solutions are investigated. We consider massive and massless
spin-1/2 fermions, along with massless spin-3/2 fermions.
The equations of the effective potential for fermions with dif-
ferent spins are derived in HBH spacetime. Then, the rigorous
bound method is used to calculate the fermionic spin-1/2 and
spin-3/2 GFs. With the time domain integration method at our
disposal, we illustrate the impact of additional parameters on
the ringdown waveform of the massless fermionic spin-1/2
and spin-3/2 fields and, in turn, on their quasinormal modes.
We then delve into investigating the Hawking spectra and
sparsity of the radiation emitted by an HBH. Hairy param-
eters significantly affect the sparsity of Hawking radiation
as well. We observe that the total power emitted by the BH
increases both with α and Q but decreases with l0. Our study
conclusively shows the significant impact of the additional
parameters on important astrophysical phenomena such as
quasinormal modes, Hawking spectra, and sparsity.
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1 Introduction

A fascinating prediction of Einstein’s theory of general rela-
tivity (GR) is the black hole (BH) that is entirely character-
ized by three externally observed classical parameters like
mass M , charge Q and angular momentum L [1]. Other
attributes of the BHs are exclusively determined only by
these three parameters. Information regarding matter going
into or creating the BH disappears behind its event horizon
once it has settled, making it invisible forever to outside
observers. According to the no-hair theorem, a BH should
not carry charges other than M , J , and Q. In [2], how-
ever, it was conjectured that additional charges associated
with inner gauge symmetries might exist in the BHs, and
it is now known that BHs could have soft quantum hair.
Long-term research has examined a variety of scenarios and
potential conditions for getting around the no-go theorem [3–
18]. Reference [20] has drawn much attention to studying a
fundamental scalar field. The existence of new fundamen-
tal fields that influence the structure of the BH could lead
to hairy BH solutions. Instead of examining particular fun-
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damental fields to produce hair in BH solution. Instead of
considering specific fundamental fields to generate hair in
BHs, in the paper [19], the authors assumed the presence of
a generic source in addition to the one generating the vacuum
Schwarzschild geometry. This generic source is described by
a conserved energy-momentum tensor and adopted the so-
called [19,21,22,26,27]. Einstein’s theory of GR is a well-
known and reliable theory; nevertheless, there lies a great
deal of uncertainty in estimating the precise measurement of
mass and angular momentum of the resulting BHs. So, alter-
native theories of gravity have received considerable scope
to materialize [28]. In this respect, studying different aspects
of hairy BHs has attracted significant attention.

The existence of gravitational waves originating from
the merger of two BHs [28–34] has been confirmed from
recent observation [35,36], confirming the prediction made
by the theory of GR. From an observational perspective, the
most significant phase of gravitational wave emission can be
explained in terms of proper oscillation frequencies of the
BHs, which are known as quasinormal modes (QNMs) [37–
39]. Press [40] first used the term QNMs, but Vishveshwara
[41] initially identified them in the simulations of gravita-
tional wave scattering off a Schwarzschild BH.

Perturbation of spacetime using a field is a useful tool to
accumulate precise information about the interior of the BHs.
The study of spacetime perturbation associated with various
BHs using different probes (field) has become an intrigu-
ing area of investigation after the confirmation of gravita-
tional wave detection from the observation [35,36]. There
are various ways to introduce perturbation, including scalar,
electromagnetic, and fermion fields. Many studies have been
conducted to identify QNMs using perturbation through dif-
ferent fields against diverse geometrical backgrounds. Scalar
and electromagnetic perturbation are often used in research
to find QNMs in different geometrical environments. Despite
the various scientific efforts, there needs to be more substan-
tial literature on QNMs studied through perturbation using a
fermionic field as a probe. Perturbation involving the fermion
field entails an additional level of complexity due to the pres-
ence of positive and negative energy solutions offered by the
Dirac equation, but interestingly, research has shown that at
least when it comes to Schwarzschild background, both pos-
itive and negative energy solutions produce identical QNMs.
There are numerous applications of the quasinormal modes
in GR. The study of QNMs is crucial to analyzing the clas-
sical stability of BHs against matter fields that are used as
perturbation probes. QNMs are essential for the AdS/CFT
correspondence because they define the relaxation durations
of dual-field theories [43,44]. For quark-gluon plasmas [50–
52], the QNMs of asymptotically AdS BHs play a crucial role
in the holographic description. Another remarkable possibil-
ity is raised through the fascinating conjecture made by Hod
concerning quantizing the area of BHs [45–47]. It is also

considered how QNMs and Hawking radiation are related
[48,49]. The advancements in experimental astrophysics and
the detection of gravitational waves present a fresh opportu-
nity to apply the QNM approach for verifying certain gen-
eral relativity conjectures or estimating various properties of
compact sources of gravitational field [42].

The perturbation of the hairy BH background is interest-
ing in its own right. Here, we find an extra hair (charge).
This extra charge generated here using the ingenious tech-
nique of decoupling of energy-momentum tensor evades no-
go theorem [21,22]. On the other hand, the perturbation of
spacetime background using a fermion field [23–25] is scanty
compared to the perturbation with scalar and electromagnetic
fields. Therefore, studying fermionic greybody factors (GFs)
and QNM for a hairy BH using fermion field perturbation is
instructive and of interest. This paper focuses on one recent
solution reported in [19] among all the possible hairy BHs in
literature. The authors of Ref. [53] study the linear stability of
a BH with scalar hair under axial gravitational perturbations
and find that the BH is linearly stable under axial perturba-
tions. The QNM of Hairy BH (HBH) caused by gravitational
decoupling has been studied recently in [54]. They conclude
that for HBH, the effects of these hairy parameters on time-
domain profiles and QNM frequencies under perturbations
show similar behavior. The main objectives were to analyze
a scalar perturbation in the HBH background solution and
compare it to the ordinary Schwarzschild background solu-
tion were the main objectives [55]. Furthermore, the HBH
solution has stimulated further research in its generalization
to hairy Kerr [57].

The organization of the remaining part of the paper is as
follows. Section 2 briefly reviewed the spacetime of HBH
caused by GD. In Sect. 3, we also reviewed the equations of
motion related to the spinorial wave equations, namely the
Dirac and Rarita–Schwinger, around the HBH spacetime.
Further, we obtain the corresponding effective potentials for
each field, respectively. Section 4 is devoted to calculating
the bounds of the GFs of BH and analyzing their graphical
behavior. We obtain the GFs for massive spin-1/2 fermions,
massless spin-1/2 fermions, and massless spin-3/2 fermions,
respectively. In Sect. 5, the time-domain profiles of massless
fermionic spin-1/2 and spin-3/2 fields perturbations in HBH
spacetime are given. In Sect. 6, we examine the Hawking
spectra and sparsity of the radiation emitted by HBHs. The
conclusion is given in Sect. 7.

2 Brief review of HBH

In this section, we briefly describe the HBHs obtained by the
GD in Ref. [19] through the Minimal Geometric Deformation
(MGD) extended (for details about GD and MGD, see [56,
58–64]). The HBH spacetime is given by
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ds2 = g(r)dt2 − 1

g(r)
dr2 − r2

(
dθ2 + sin2 θdφ2

)
(1)

where

g(r) = 1 − 2M

r
+ Q2

r2 − α

(
l0 + Me−r/M

r

)
, (2)

in which, M is the mass and (α, Q, l0) are the GD HBH
parameters. We note that Q is not necessarily the electric
charge, but could be a tidal charge of extra-dimensional ori-
gin or any other charge for the Maxwell tensor. This solu-
tion is presented by using GD and dominant energy condi-
tion (DEC). It is called the “charged” HBH which extends
a Reissner–Nordström-like metric. It is readily seen that
for α = 0 and Q = 0, the metric (1) reduces to the
Schwarzschild BH. The event horizon is given by the solution
of

αl0 = rh − 2M + Q2

rh
− αMe−rh/M . (3)

For DEC to be fulfilled, rh ≥ 2M , which results in additional
restrictions to Q and l0, namely

Q2 ≥ 4α (M/e)2 and l0 ≥ M/e2. (4)

We see that from Eq. (4) the case of Q = 0 and α non-zero is
not allowed. Consequently, this case is not discussed in this
paper.

Throughout this work, we will focus on massive BH
(e−r/M << 1). As there is no analytical solution to Eq.
(3), we can expand the metric function Eq. (2) as

g(r) � 1 − 2M

r
+ Q2

r2 − α (l0 + M − r)

r
. (5)

A calculation of the horizon radius can be done as follows:

r± = 2M + αl0 + αM ±
√

(2M + αM + αl0)2 − 4 (1 + α) Q2

2(1 + α)
.

(6)

It is evident from the Eq. (6) that we must have the following
condition fulfilled for the existence of the BH

(2M + αM + αl0)
2 − 4 (1 + α) Q2 ≥ 0. (7)

Inequalities (4) and (7) together provide the parameter space
for which we have a BH. It is shown in Fig. 1.

For a clear understanding of the parameter region enabling
the BH to exist, a graph of the metric function (5) is generated
in Fig. 2.

Fig. 1 Parameter space for the existence of an HBH

3 Spinorial wave equations

The aim of this section is to review Dirac and Rarita–
Schwinger equations in the background of the HBH solution.

3.1 Dirac equation

Our focus in this part is on obtaining the effective potential for
fermions propagating in HBH geometry with spin-1/2 field.
Hence, we consider the vielbein formalism for the spin-1/2
fields in curved spacetime (1), the vielbein can be defined as
follows

eμ
α̂ = diag

(
1√
g
,
√
g,

1

r
,

1

r sin θ

)
. (8)

The Dirac equation for massive spin-1/2 particles

γ μ
[(

∂μ + �μ

)+ m
]
� = 0, (9)

where, γ μ is the Dirac gamma matrix and �μ is the spin con-
nection, which can be expressed in terms of the Christoffel
symbols �

ρ
μν as follows

�μ = 1

8
eρ
α̂

(
∂μeρβ̂ − �σ

μρeσ β̂

) [
γ α̂, γ β̂

]
. (10)

Here, the Dirac gamma matrices, γ μare represented in terms
of the Pauli spin matrices σ i (i = 0, 1, 2, 3) . The solution
procedure of Dirac’s equation (9) will be ignored in this study
due to the repetition of Refs. [65,66]. We will present the final
answer as a Schrödinger-like one-dimensional wave equa-
tion with Dirac field effective potential. Thus, the effective
potentials of the massive fermionic waves having spin-1/2
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Fig. 2 The metric function (5) vs. r for different values of the BH parameters (M = 1)

and moving in the HBH geometry are,

V±1/2 = ±dW

dr∗
+ W 2, (11)

where

W =
(√

g/r
)√

λ2 + m2r2

1 + (g/2ω)
(
λm/

(
λ2 + m2r2

)) , (12)

here, λ = ( 1
2 + s

)
is the standard spherical harmonics

indices, and ω is the angular frequency of the incoming field.
Effective potentials are expressed explicitly as follows:

V±1/2 =
(
λ2 + m2r2

)5/2 √
g

D2

[√
g

r2

(
λ2 + m2r2

)1/2

±
(
g′

2r
− g

r2

)
± 3m2g

∓ g

r D

(
2m2r + (λm/2ω)g′)

]
, (13)

where

D =
(
λ2 + m2r2 + (λm/2ω) g

)
.

We can obtain the effective potential of massless Dirac fields
(fermions) propagating in this spacetime by setting m = 0
in (13) namely

V±1/2 = λ

r2

(
λg ± r

√
gg′

2
∓ g3/2

)
. (14)

3.2 Rarita–Schwinger equation

We will use the massless form of the Rarita–Schwinger equa-
tion to represent the spin-3/2 field,

γ μναD̃νψα = 0 (15)

where D̃ν is the super covariant derivative, ψα indicates the
spin-3/2 field and γ μνα is the antisymmetric of Dirac gamma
matrices given by

γ μνα = γ [μγ νγ α] = γ μγ νγ α −γ μgνα +γ νgμα −γ αgμν.

(16)

The super covariant derivative for the spin-3/2 field in our
BH spacetime can be written as

D̃ν = ∇ν + 1

4
γαF

α
ν + i

8
γναμF

αμ. (17)

The solution procedure of Dirac’s equation (15) will be
ignored in this study due to the repetition of Refs. [67,68].
We will present the final answer as a Schrödinger-like one-
dimensional wave equation with Dirac field effective poten-
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tial. Thus, the explicit forms of the effective potentials for
spin-3/2 fermions are written as

V1,2 = g
λ
(

1 − λ
2
)

r
(
g − λ

2
)
⎡
⎣λ
(

1 − λ
2
)

r
(
g − λ

2
) ±

(
rg′ − 2g

2r
√
g

)
∓

√
gg′

(
g − λ

2
)
⎤
⎦ ,

(18)

where the eigenvalue λ = (l + 1/2), and l = 3/2, 5/2,

7/2, ....

4 GFs of HBH

When attempting to formulate a general description of the
spectrum observed by an observer at infinity, it is critical to
know the transmission amplitude of the BH’s radiation or
GFs [69–79]. Our aim of this section is to examine the GFs
of HBH using the rigorous bounds and general semi-analytic
bounds. Consequently, it is possible to determine how the
potential affects the GF. The transmission probability σl (w)

is given by [78,79]

σl (w) ≥ sec h2
(∫ +∞

−∞
℘dr∗

)
, (19)

in which r∗ is the tortoise coordinate and

℘ = 1

2h

√(
dh (r∗)
dr∗

)2

+ (w2 − Vef f − h2 (r∗))2. (20)

where h(r∗) is a positive function satisfying h (−∞) =
h (+∞) = w. For more details, one can see [78]. We select
h = w. Therefore, Eq. (20)

σl (w) ≥ sec h2
(∫ +∞

rh

Vef f
2w

dr∗
)

. (21)

In this process, the metric function plays a significant role in
determining the relationship between the GFs and the effec-
tive potential. Our GF calculations will be carried out in three
cases since we have fermions with different spins. When
computing GFs, we usually focus on the study of the poten-
tial V+.

4.1 Spin-1/2 fermions emission

In this section, we will look at the GF using rigorous bounds.
This method allows us to analyze the results qualitatively. As
a result, the potential’s effect on the greybody factor can be
calculated. The rigorous bounds on the greybody factors are
given by

σl (w) ≥ sec h2
(∫ +∞

−∞

∣∣∣∣
Vef f
2w

∣∣∣∣ dr∗
)

(22)

Substituting the effective potential (11) derived from Dirac
equations into Eq. (22), we obtain

σ+
l (w) ≥ sec h2

[
1

2w

(∫ +∞
−∞

∣∣∣∣
dW

dr∗

∣∣∣∣ dr∗ +
∫ +∞
−∞

∣∣∣W 2
∣∣∣ dr∗

)]
.

(23)

We will discuss separately the first and second integrals in
Eq. (23 ). For the first integral, we have

∫ +∞

−∞

∣∣∣∣±
dW

dr∗

∣∣∣∣ dr∗ = W
∣∣r−r+ = 0, (24)

where r+ and r− are the two horizons (6) of the BH. The
second integral can be written as

∫ r−

r+

( (
λ2 + m2r2

)2
r2
[
(λm/2k) |g| + (λ2 + m2r2

)]
)
dr, (25)

There is a considerable difference between the results of this
formulation for massless and massive instances. These two
cases are, therefore, considered separately.

4.1.1 Massless case

To compute the GFs for massless spin-1/2 fermions emission,
we choose m = 0, then the integral (25) becomes

∫ r−

r+

λ2

r2 dr = λ2
(

1

r+
− 1

r−

)
. (26)

Substituting the result of this integral in Eq. (23), the rigorous
bound can be expressed as

σ+
l (w) ≥ sec h2

(
λ2

2ω

[
1

r+
− 1

r−

])
. (27)

After putting the values of the horizons (6), the rigorous
bound of the HBH for massless fermions is calculated as
follows:

σ+
l (w) ≥ sec h2

(
λ2

2ω

[
−
√

(2M + αM + αl0)2 − 4 (1 + α) Q2

Q2

])
.

(28)

A massless spin-1/2 fermion bound in an HBH exhibits a
behavior that depends on the distance between two horizons,
as reflected in the argument of function sech. It is, therefore,

123



145 Page 6 of 16 Eur. Phys. J. C (2024) 84 :145

Fig. 3 The left panel shows the potential (14) for massless spin-1/2 field with M = 1, α = 0.5, l0 = 1 and Q = 0.7. The right panel shows the
corresponding GF bound

Fig. 4 The left panel shows the potential (14) for massless spin-1/2 field with M = 1, λ = 1, l0 = 1 and Q = 0.6. The right panel shows the
corresponding GF bound

possible to analyze the behavior of the bound by considering
how the distance between two horizons varies with the hairy
parameters. These can be illustrated in Figs. 3, 4, 5 and 6.

Using the potential shape as a starting point, we can
examine how the rigorous bound σl behaves. This can be
achieved by varying the hairy parameters, (α, Q, l0) and
angular parameter λ. By adjusting the hairy parameters, the
potential increases when λ increases, as shown in the left
panel of Fig. 3. As shown in the right panel of Fig. 3, the
GF decreases for a given value of ω because the wave is
more difficult to transmit through the higher potential. Sim-
ilar analysis can be performed for the hairy parameters (α

and l0), as shown in Figs. 4 and 5. The analysis for the hairy
parameter Q, on the other hand, is the inverse, as shown in
Fig. 6.

4.1.2 Massive case

To compute the GFs for massive spin-1/2 fermions emission,
we will write the integral (25) as

∫ r−

r+

λ2
(
1 + μ2r2

)

r2
(

1 + μg
(1+μ2r2)2w

)dr =
∫ r−

r+
Adr, (29)

where

A = λ2
(
1 + μ2r2

)

r2
(

1 + μg
(1+μ2r2)2w

) , μ = m/λ. (30)

When we consider the equation above, we can see that A is
larger than 1, since the factor 1 + μg

(1+μ2r2)2w
> 1. In this

way, we can approximate the integrand, which is given by
the following

A = λ2
(
1 + μ2r2

)

r2
(

1 + μg
(1+μ2r2)2w

) ≤ λ2

r2

(
1 + μ2r2

)
= Aapp.

(31)

The integral Eq. (29) can be evaluated by using the same
arguments as in [80] namely,
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Fig. 5 The left panel shows the potential (14) for massless spin-1/2 field with M = 1, λ = 1, α = 0.8 and Q = 0.4. The right panel shows the
corresponding GF bound

Fig. 6 The left panel shows the potential (14) for massless spin-1/2 field with M = 1, λ = 1, α = 1 and l0 = 1.4. The right panel shows the
corresponding GF bound

σ+
l (w) ≥ sec h2

(∫ r−

r+
Aappdr

)
(32)

σ+
l (w) ≥ sec h2

(
λ2

2ω

[
r− − r+
r+r−

(
1 + μ2r+r−

)])
. (33)

After putting the values of the horizons in Eq. (33), the rig-
orous bound of the HBH for massive fermions is calculated
as follows

σ+
l (w) ≥ sec h2

(
λ2

2ω

[
−
√

(2M + αM + αl0)2 − 4 (1 + α) Q2

(1 + α) Q2

(
1 + α + μ2Q2

)])
. (34)

This expression is reduced to that of the GF bound for the
massless case when μ → 0. According to (34), the bound
for the massive case is still reliant on the hairy parameters in
the same way that the bound for the massless case is. The GF
bounds for massive spin-1/2 are illustrated in Figs. 7, 8, 9,
10. It is worth to mention that according to Ref [19], HBHs
were created by demanding that they satisfy the strong energy
condition or dominant energy condition between the BH’s

horizon r ≥ 2M and infinity. As shown in [19], all of the
new HBHs solutions correspond to Schwarzschild vacuum
deformations. Therefore, the plots of the effective potential
exhibits a negative gap when the r coordinate is less than the
horizon as shown in the left panel of the Figs. 7, 8, 9, 10.

4.2 Spin-3/2 fermions emission

With general semi-analytic bounds, we can obtain the GF
for spin-3/2 fermions emission using the potential derived in
(18). Then, Eq. (21) becomes

σl (w) ≥ sec h2

⎡
⎢⎣ λ

2ω

∫ +∞
rh

⎛
⎜⎝

λ
(

1 − λ
2
)

r2
(
g − λ

2
)2

×
⎛
⎝λ
(

1 − λ
2
)

+
(
rg′ − 2g

) (
g − λ

2
)

2
√
g

− r
√
gg

⎞
⎠ dr

⎞
⎠
⎤
⎦ ,

(35)
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Fig. 7 The left panel shows the potential (13) for massive spin-1/2 field with M = 1, m = 0.5, Q = 0.7 and l0 = 0.5. The right panel shows the
corresponding GF bound

Fig. 8 The left panel shows the potential (13) for massive spin-1/2 field for varying Q with M = 1, m = 1, α = 0.4 and l0 = 1. The right panel
shows the corresponding GF bound

We will apply asymptotic series expansion to overcome the
difficulties encountered in evaluating the above complicated
integral (35). Then, the GF of massless spin-3/2 fermions is

σ+
l (w) ≥ sec h2

⎡
⎣ 1

2w

⎛
⎝λ

(
1 − λ

2
) (

2α + α2 +
(

2λ
√

1 + α − 1 − λ
2
))

(2M + α (l0 + M))

2λ
√

1 + α
(

1 + α − λ
2
)
r2
h

+
λ
(

1 − λ
2
) (

α
√

1 + α − (√1 + α − λ
) (

λ
2 − 1

))
(

1 + α − λ
2
)
rh

⎞
⎠
⎤
⎦ ,

(36)

Figure 11 shows the variation of the GF of massless spin-3/2
field with various hairy parameters. The graph shows that as
α parameter increases, GF decreases, whereas GF increases
as l0 increases.

5 Ringdown waveform

With the help of the time domain integration method [81],
we, in this section, intend to scrutinize the impact of
parameters (α,Q, l0) on the time evolution of the mass-

less fermionic spin-1/2 and spin-3/2 fields. We implement
the time domain integration method with initial conditions

ψ(r∗, t) = exp

[
− (r∗ − r̂∗)2

2σ 2

]
and ψ(r∗, t)|t<0 = 0. We

choose the values of �t and �r∗ such that the Von Neumann
stability condition, �t

�r∗ < 1, is satisfied. The time profile
helps us scrutinize the qualitative variation of the decay rate
and the frequency with the variation of parameters α,Q, l0.

In Fig. 12, we show the ringdown waveform for a mass-
less spin-1/2 perturbation field, and in Fig. 13, we provide the
waveform for a massless spin-3/2 field. From Figs. 12a, 13a,
we observe that the decay rate as well the frequency increases
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Fig. 9 The left panel shows the potential (13) for massive spin-1/2 field with M = 1, m = 1, Q = 0.4 and α = 1. The right panel shows the GFs
of massive spin-1/2 field for varying l0

Fig. 10 The left panel shows the potential (13) for massive spin-1/2 field with M = 1, m = 1, l0 = 1 and α = 1. The right panel shows the GFs
of massive spin-1/2 field for varying Q

Fig. 11 The GFs of massless spin-3/2 field for varying α (left panel) and l0 (right panel) with M = 1, m = 0.5, Q = 0.7 and l0 = 0.5

with an increase in α for both the perturbations. The param-
eter l0 influences quasinormal modes in such a way that the
decay rate, as well as the frequency, first decreases and then
increases with an increase in l0. The impact of Q can be
inferred from Figs. 12c, 13c. We can conclude that the decay
rate decreases and the frequency increases with Q.

To compare the ringdown waveforms of massless and mas-
sive spin-1/2 perturbations, we plot them for massless and
massive perturbations in Fig. 14. It clearly shows that the fre-
quency and decay rate for massive perturbation is less than
those for massless perturbation.
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Fig. 12 Time profile of massless fermionic spin-1/2 perturbation. Here, we have taken λ = 3

Our study in this section conclusively illustrates the impact
of parameters (α, Q, l0) on the time evolution of perturbation
fields and enriches our understanding of this very important
aspect of BH physics.

6 Hawking spectra and sparsity

The Hawking spectra and the sparsity of radiation emitted
by HBH are investigated in this section. The power emitted
per unit frequency in the lth mode is [82,83]

Pl (ω) = A

8π2 σ+
l

ω3

eω/TH − 1
, (37)

where A is taken to be the horizon area [82]. TH is the Hawk-
ing temperature given by

TH = 1

4π

dg

dr
|r=r+

= H1

H2
where

H1 = (α + 1)2
(
α2 (l0 + M) 2

+2M
(√

(α (l0 + M) + 2M) 2 − 4(α + 1)Q2 + 2M
)

+α (l0 + M)
(√

(α (l0 + M) + 2M) 2 − 4(α + 1)Q2 + 4M
)

−4αQ2 − 4Q2
)

,

H2 = π
(
α (l0 + M) +

√
(αl0+(α+2)M) 2−4(α+1)Q2 + 2M

)
3.

(38)

The total power emitted in the lth mode is given by

Ptot =
∫ ∞

0
Pl (ω) dω. (39)

Combining Eqs. (37, 38) we analyze the qualitative variation
of Pl with respect to ω for different scenarios in Figs. 15,
16. From Fig. 15a we observe that the total power emitted
by the BH increases with α, and the position of the peak
shifts towards the right. Figure 15b, c also reveal that the
total emitted power decreases with l0 but increases with Q,
whereas the peak of the spectrum shifts towards the right
for an increase in l0 and towards the left for an increase in
Q. These observations are for a massive fermionic spin-1/2
field. Now, for a massless spin-3/2 field, we turn our attention
towards Fig. 16. From Fig. 16a, we observe that the peak of
the power spectrum first increases with α and then decreases,
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Fig. 13 Time profile of massless fermionic spin-3/2 perturbation. Here, we have taken λ = 3

Fig. 14 Time profile of massless and massive fermionic spin-1/2 per-
turbations. Here, we have taken λ = 2

whereas the position of the peak always shifts to the right.
It is also observed that the total power emitted by the BH
increases with α. It is evident from Fig. 16b, c that the total
power emitted by the BH increases with l0 and decreases
with Q.

To have a quantitative measure of the radiation emitted
by the BH, we introduce sparsity, a dimensionless quantity,

defined as [82–86]

η = τgap

τemission
. (40)

Here, τgap and τemission are the time that is taken by a
radiation quantum for emissions and the average time gap
between two successive radiation quanta, respectively. These
are defined by

τgap = ωmax

Ptot
τemission ≥ τlocalisation = 2π

ωmax
, . (41)

where τlocalisation is the time period of the emitted wave
of frequency ωmax . For η � 1, we will have a continu-
ous flow of Hawking radiation, whereas a large value of η

implies a sparse Hawking radiation. Quantitative values of
ωmax , Pmax , Ptot , and η are given in Tables 1, 2, 3 for a
massive spin-1/2 field and in Tables 4, 5, 6 for a massless
spin-3/2 field. These tables reinforce our conclusions drawn
from Figs. 15, 16. Additionally, we can also observe the effect
of various parameters on the sparsity. From Tables 1, 2, 3 we
see that the sparsity of the radiation decreases with α and Q
but increases with l0 for a massive spin-1/2 field. It can be
observed from the Table 4 that the sparsity initially decreases
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Fig. 15 Power spectrum of massive fermionic spin-1/2 field. Here, we have taken λ = 2 and μ = 0.25

and then increases with α having critical value at α = 0.871.
On the other hand, η decreases with l0 and increases with Q
as evident from Tables 5, 6.

7 Conclusion

We begin the assessment of how the rigorous bound σl
behaves, comprehending the potential shape of the poten-
tial associated with fulminic perturbation. The shape of
the potential depends crucially on the hairy parameters,
(α, Q, l0), as well as on the angular parameter λ. According
to the findings, the left panel of Fig. 3 displays that the poten-
tial rises with the increase in the parameter λ for particular
hairy parameters. The right panel of Fig. 3, however, shows
that the GF decreases with λ for a given value of ω because the
wave is more difficult to transmit through the higher poten-
tial. Similar analysis follows for the hairy parameters (α and
l0) as it is transparent from the Figs. 4 and 5. Figure 6 displays
that the action of the hairy parameter Q, on the other hand,
is entirely the inverse of what was found for the parameter
(α and l0).

Using the argument [80] leads us to find out the GFs
bounds for both massive and massless cases. As per (34), the

massive case’s bound depends on the hairy parameters, just
as the bound for the massless case. The GFs bounds for mas-
sive spin-1/2 fermion are depicted in Figs. 7, 8, 9, 10. Along
with the spin-1/2 fermion, we have considered the spin-3/2
fermion in our study, where Dirac equation is replaced by
the Schwinger–Dyson equation. Figure 11 shows the varia-
tion of the GF of massless spin-3/2 fermion with various hairy
parameters. The graph indicates that while GF increases as
l0 increases, it drops as α parameter increases.

Our study includes the ringdown waveform due to the
perturbation of massless spin-1/2 and spin-3/2 fields. Fig-
ure 12 displays the ringdown waveform for a massless spin-
1/2 The perturbation field in which Fig. 13 displays the same
due to the perturbation of spin-3/2 field. From Figs. 12a,
13a we observe that the decay rate, as well as the frequency,
increases with an increase in α for both the perturbations
caused by both of the fields having the odd integral spin 1/2
and 3/2. The influences of the parameter l0 on the quasi-
normal modes are as follows. Both the decay rate and the
frequency of oscillation decrease, to begin with, and then
increase with an increase in l0. The impact of Q can be
inferred from Figs. 12c, 13c. It is found that the decay rate
decreases, whereas the frequency increases when the value
of Q enhances.

123



Eur. Phys. J. C (2024) 84 :145 Page 13 of 16 145

Fig. 16 Power spectrum of massless fermionic spin-3/2 field. Here, we have taken λ = 2

Table 1 Numerical values of ωmax , Pmax , Ptot , and η for massive spin-1/2 perturbation for various values of α with l0 = 0.2, Q = 1, λ = 2, and
μ = 0.25

α 0.2 0.4 0.6 0.8 1.0

ωmax 0.217541 0.335618 0.445538 0.552871 0.656921

Pmax 1.63372 × 10−7 5.0177 × 10−7 1.0799 × 10−6 1.96344 × 10−6 3.21797 × 10−6

Ptot 2.58744 × 10−8 1.22075 × 10−7 3.47708 × 10−7 7.82162 × 10−7 1.524 × 10−6

η 2.91094 × 105 1.46853 × 105 9.08604 × 104 6.21972 × 104 4.50672 × 104

Table 2 Numerical values of ωmax , Pmax , Ptot , and η for massive spin-1/2 perturbation for various values of l0 with α = 0.2, Q = 1, λ = 2 and
μ = 0.25

l0 0.2 0.4 0.6 0.8 1.0

ωmax 0.217541 0.268992 0.304746 0.331781 0.359994

Pmax 1.63372 × 10−7 1.32654 × 10−7 9.29835 × 10−8 6.21794 × 10−8 4.05768 × 10−8

Ptot 2.58744 × 10−8 2.51919 × 10−8 1.94188 × 10−8 1.37758 × 10−8 9.41305 × 10−9

η 2.91094 × 105 4.57127 × 105 7.61159 × 105 1.27176 × 106 2.19119 × 106
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Table 3 Numerical values of ωmax , Pmax , Ptot , and η for massive spin-1/2 perturbation for various values of Q with α = 0.2, l0 = 0.2, λ = 2 and
μ = 0.25

Q 0.35 0.48 0.61 0.74 0.87

ωmax 1.38934 0.9631 0.862479 0.599048 0.436239

Pmax 1.65373 × 10−22 2.06223 × 10−16 6.96079 × 10−13 1.84607 × 10−10 1.0156 × 10−8

Ptot 8.17937 × 10−23 9.30337 × 10−17 2.95924 × 10−13 6.21224 × 10−11 2.96887 × 10−9

η 3.75593 × 1021 1.5868 × 1015 4.00071 × 1011 9.19382 × 108 1.02018 × 107

Table 4 Numerical values of ωmax , Pmax , Ptot , and η for massless spin-3/2 perturbation for various values of α with l0 = 0.2, Q = 1, λ = 2

α 0.2 0.4 0.6 0.8 1.0

ωmax 0.436239 0.599048 0.862479 0.9631 1.12591

Pmax 2.75106 × 10−13 1.56319 × 10−11 6.72487 × 10−11 1.27798 × 10−10 1.09201 × 10−10

Ptot 5.93889 × 10−14 4.91794 × 10−12 3.09834 × 10−11 6.46398 × 10−11 6.82237 × 10−11

η 5.09993 × 1011 1.16134 × 1010 3.82109 × 109 2.28383 × 109 2.95727 × 109

Table 5 Numerical values of ωmax , Pmax , Ptot , and η for massless spin-3/2 perturbation for various values of l0 with α = 0.2, Q = 1, λ = 2

l0 0.2 0.4 0.6 0.8 1.0

ωmax 0.436239 0.436239 0.436239 0.436239 0.436239

Pmax 2.75106 × 10−13 5.64809 × 10−12 2.68204 × 10−11 7.27206 × 10−11 1.47412 × 10−10

Ptot 5.93889 × 10−14 1.45152 × 10−12 7.46322 × 10−12 2.07892 × 10−11 4.21614 × 10−11

η 5.09993 × 1011 2.08664 × 1010 4.0583 × 109 1.45691 × 109 7.18382 × 108

When the study of the emissive power of Hawking radia-
tion is carried out, we analyze the qualitative variation of Pl
with respect to ω for different scenarios in Figs. 15, 16. Com-
bining Eqs. (37, 38) we became able to study the qualitative
behavior of the variation of Pl with respect to ω. According
to Fig. 15a, the overall power emission rises with α, and the
location of the peak of the spectra moves to the right. Fig-
ure 15b, c reveal that the total emitted power decreases with l0
but increases with Q, whereas the peak of the spectra acquire
a right shift and left shift, respectively, for an increase in l0
and Q. These findings pertain to the perturbation when it is
caused due to the massive fermionic field having spin-1/2.
For the perturbation due to the massless spin-3/2 fermionic
field, let us focus on Fig. 16. Figure 16a shows that the peak
of the power spectrum increases with α, to begin with, and
then is followed by a drop, whereas the position of the peak

of the spectra always shifts to the right. It is also observed
that the total power emitted by the BH increases with α. The
Fig. 16b, c exhibit that the total power emitted by the BH
enhances with l0; however, it drops off with Q.

For a quantitative idea, we compute the numerical values
of ωmax , Pmax , Ptot , and η which are displayed in Tables
1, 2, and 3 for a massive spin-1/2 fermionic field, and for
a massless spin-3/2 field, the corresponding quantities are
presented in Tables 4, 5, and 6. These tables reinforce our
conclusions drawn from Figs. 15, and 16. Additionally, we
can observe the effect of various parameters on the sparsity
of the Hawking radiation. From Tables 1, 2, and 3, we see
that the sparsity of the radiation expands with α and Q but
shrinks with l0 for a massive spin-1/2 field. Table 4 furnishes
that the sparsity initially diminishes and then enhances with
α. Conversely, η falls off with l0 and grows with Q according

Table 6 Numerical values of ωmax , Pmax , Ptot , and η for massless spin-3/2 perturbation for various values of Q with α = 0.2, l0 = 0.2, λ = 2

Q 0.35 0.48 0.61 0.74 0.87

ωmax 0.536861 0.536861 0.536861 0.536861 0.536861

Pmax 1.86991 × 10−8 1.50416 × 10−8 1.03636 × 10−8 5.23738 × 10−9 1.13655 × 10−9

Ptot 6.08023 × 10−9 4.85163 × 10−9 3.30778 × 10−9 1.64503 × 10−9 3.43338 × 10−10

η 7.54438 × 106 9.45489 × 106 1.38678 × 107 2.78849 × 107 1.33605 × 108
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to the numerical information of the Tables 5 and 6. According
to our study, hairy parameters have significant effects on GFs,
QNMs, Hawking spectra, and sparsity. These findings will
enhance our understanding of hairy black holes and their
astrophysical significance.
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