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1 Introduction

In the Standard Model (SM), nonleptonic hyperon decays involving a change in strangeness
by two units (∆S = 2) are highly suppressed. The branching fractions (BFs) of these decays
in the SM are at the level of 10−17–10−12 [1], which is far below the existing experimental
limits. Currently, there are only two ∆S = 2 processes observed, K0−K̄0 mixing and Bs−B̄s

mixing. The ∆S = 2 nonleptonic hyperon decays may serve as probes of new physics [1–3],
where the BFs could be enhanced to the level of 10−10–10−7 when beyond the SM effects
are considered [1]. Though these BFs may still be beyond current experimental sensitivity,
it is still worthwhile to search for these decays.

Until now, there have been many searches for the ∆S = 2 decays in the spin 1/2
hyperon sector, such as B(Ξ0 → pπ−) < 8.2 × 10−6 [4], B(Ξ0 → pe−ν̄e) < 1.3 × 10−3 [5],
B(Ξ− → nπ−) < 1.9 × 10−5 [6], B(Ξ− → pπ−π−) < 4.0 × 10−4 [7], etc., which are all set
at the 90% confidence level (C. L.). However, in the spin 3/2 hyperon sector, only one
upper limit has been set, B(Ω− → Λπ−) < 2.9 × 10−6 [4]. The potential ∆S = 2 decays,
Ω− → Σ0π− and Ω− → nK−, as illustrated in figure 1, have not been explored so far.
According to ref. [1], the decay Ω− → nK− could have different new physics contributions
compared to the Ω− → Λπ− decay. Therefore, it is of interest also to experimentally search
for the decay Ω− → nK−, as well as Ω− → Σ0π−.

In this paper, based on approximately 1.7 × 105 Ω−Ω̄+ pairs [8] produced from (27.12 ±
0.14) × 108 ψ(3686) events [9] collected with the BESIII detector in 2009, 2012 and 2021,
we present the first searches for Ω− → Σ0π− and Ω− → nK− decays (the charge conjugated
decays are always implied), using a double-tag (DT) method. The single-tag (ST) Ω̄+

hyperons are reconstructed via the decay Ω̄+ → Λ̄K+. Events where a signal candidate is
reconstructed with the particles recoiling against the ST Ω̄+ hyperon are DT events. The
BF of a signal decay is determined by

Bsig = NDT · ϵST
NST · ϵDT

= NDT
NST · ϵsig

, (1.1)
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(a) (b)

Figure 1. Feynman diagrams contributing to the ∆S = 2 nonleptonic hyperon decays (a) Ω− → Σ0π−

and (b) Ω− → nK− in the SM.

where NST and NDT represent the ST and DT yields, respectively, and ϵsig = ϵDT/ϵST is
the signal efficiency in the presence of an ST Ω̄+ hyperon, where ϵST and ϵDT are the ST
and DT efficiencies, respectively.

2 BESIII detector and Monte Carlo simulation

The BESIII detector [10, 11] records symmetric e+e− collisions provided by the BEPCII
storage ring [12, 13] in the center-of-mass energy range from 2.0 to 4.95 GeV, with a peak
luminosity of 1.1 × 1033 cm−2 s−1 achieved at

√
s = 3.773 GeV. The cylindrical core of the

BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer
drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl)
electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal
magnet providing a 1.0 T (0.9 T in 2012) magnetic field. The solenoid is supported by an
octagonal flux-return yoke with resistive plate counter muon identification modules interleaved
with steel. The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the dE/dx
resolution is 6% for electrons from Bhabha scattering. The EMC measures photon energies
with a resolution of 2.5% (5%) at 1 GeV in the barrel (end cap) region. The time resolution in
the TOF barrel region is 68 ps, while that in the end cap region was 110 ps. The end cap TOF
system was upgraded in 2015 using multigap resistive plate chamber technology, providing a
time resolution of 60 ps, which benefits about 83% of the data used in this analysis [14–16].

Simulated data samples produced with the geant4-based [17] Monte Carlo (MC) soft-
ware [18] which includes the geometric description of the BESIII detector and the detector
response, are used to determine the detection efficiency and estimate the backgrounds. The
simulation includes the beam energy spread and initial state radiation (ISR) in the e+e−

annihilations modeled with the generator kkmc [19]. A sample of simulated inclusive ψ(3686)
events, which includes both the production of the ψ(3686) resonance and the continuum
processes incorporated in kkmc, is used to estimate the background events.

All particle decays are modeled with evtgen [20, 21] using the BFs either taken from
the PDG [7], when available, or otherwise estimated with lundcharm [22, 23]. Final state
radiation from charged final state particles is incorporated using photos [24]. For the signal
decays, three signal MC samples are used. On the tag side, ψ(3686) → Ω−Ω̄+, Ω̄+ → Λ̄(→
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p̄π+)K+, which is generated according to the angular distributions measured in ref. [25], is
used to determine the ST efficiency. The signal decays, Ω− → X, Ω− → Σ0(→ X)π−, and
Ω− → nK−, are generated uniformly in phase space. The final state X indicates inclusive
decay. The first one is used to determine the ST efficiency, and the later two are used to
determine the DT efficiencies. The ST sample consists of 2.54 million events. Each of the
two DT samples contains 1.27 million events.

3 Data analysis

The decay chains of interest are ψ(3686) → Ω−Ω̄+, Ω̄+ → Λ̄(→ p̄π+)K+, Ω− → Σ0(→ X)π−

and ψ(3686) → Ω−Ω̄+, Ω̄+ → Λ̄(→ p̄π+)K+, Ω− → nK−. The ST Ω̄+ hyperons are
reconstructed via the decay Ω̄+ → Λ̄K+. The charged tracks in the MDC are required to
have a polar angle θ within the MDC acceptance |cos θ| < 0.93, where θ is defined with respect
to the z-axis (the symmetry axis of the MDC). In order to perform particle identification (PID),
the specific ionization energy loss dE/dx and the time-of-flight information are combined
to form a likelihood L(h) (h = p,K, π) for each hadron h hypothesis. Charged tracks
with L(p) > L(K), L(p) > L(π) and L(p) > 0.001 are identified as protons, and those
with L(K) > L(π) and L(K) > 0 as kaons. The remaining charged tracks are assigned
as pions by default.

The Λ̄ candidates are reconstructed from p̄π+ pairs, which are constrained to originate
from a common vertex and are required to have an invariant mass within the range of
[1.111, 1.121] GeV/c2. Vertex fits are performed to the Λ̄K+ pairs to improve the mass
resolution of the Ω̄+ candidates. If there are multiple Ω̄+ candidates, the one with the
smallest value of |∆E| = |EΩ̄+ − Ebeam| is selected for further analysis. Here, EΩ̄+ is the
energy of the reconstructed Ω̄+ candidate in the e+e− center-of-mass system and Ebeam is
the beam energy. Additionally, the invariant mass of the Λ̄K+ combination (MΛ̄K+) must
be in the Ω̄+ signal region, defined as [1.664, 1.680] GeV/c2.

To determine the ST yield, a fit is applied to the recoil-mass spectrum against the
reconstructed Ω̄+ (RMΩ̄+), as shown in figure 2. In the fit, the signal shape is described by
the MC simulated shape convolved with a Gaussian function with free parameters, where the
Gaussian function is used to account for the difference in mass resolution between data and
MC simulation. The background shape is described by a second-order Chebychev polynomial.
For the search for Ω− → Σ0π− and Ω− → nK−, the signal region of RMΩ̄+ is defined as
[1.652, 1.695] GeV/c2. The number of ST Ω̄+ hyperons in the signal region is determined to
be 25819 ± 188, and the ST efficiency is estimated to be 21.11% based on MC simulation.
Events in Ω̄+ sideband region, defined as MΛ̄K+ ∈ [1.648, 1.656] ∪ [1.688, 1.696] GeV/c2, are
used to study the backgrounds in the RMΩ̄+ signal region, and we find that the background
distribution is smooth with no peaking background.

Candidates for Ω− → Σ0π− are selected from the surviving tracks in the system recoiling
against the ST Ω̄+ hyperons. To improve the DT efficiency, only the bachelor π− (from Ω−

decay) is reconstructed in the signal side. The polar angle of the bachelor π− must satisfy
|cos θ| < 0.93. The π− candidates are identified using information measured by the MDC
(dE/dx), TOF, and EMC. The probabilities for the pion and kaon hypotheses are calculated,
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Figure 2. The distribution of RMΩ̄+ . In the top panel, the dots with error bars are data, the blue solid
line is the total fit result, and the black dashed and red dashed lines represent the fitted background
and signal shapes, respectively. The bottom panel displays the pull distribution, illustrating the
residuals between the data and the fitted model and normalized by their uncertainties.

and the pion candidate is required to satisfy L(π) > L(K) and L(π) > 0. If there is more
than one π− candidate, the one with the highest momentum is retained.

For the decay Ω− → nK−, a similar approach is used, where only the bachelor K− (from
Ω− decay) is reconstructed on the signal side. The polar angle of the bachelor K− must
satisfy |cos θ| < 0.93. The K− candidates are identified using the information measured by
the MDC (dE/dx), TOF, and EMC. The probabilities for the kaon and pion hypotheses
are calculated, and the kaon candidate is required to satisfy L(K) > L(π) and L(K) > 0.
Additionally, the number of charged tracks (Ntracks) including the single and tag sides is
required to be four to further suppress background events.

The recoiling mass distribution of Ω̄+h (RMΩ̄+h) is used to extract the DT yield,
where h = π or K. Before that, potential backgrounds in the studies of Ω− → Σ0π− and
Ω− → nK− are investigated by analyzing the inclusive MC sample and the events in the
MΛ̄K+ and RMΩ̄+ sideband regions from data. The sideband regions in RMΩ̄+ are defined
as [1.718, 1.739] ∪ [1.608, 1.630] GeV/c2. For each decay, the background shape is found to
be smooth in the RMΩ̄+h spectrum. Then the number of DT events in data is obtained by
fitting the Ω̄+h distribution. In the fit, the signal shape is described by the simulated shape
derived from signal MC sample, and the background shape is described with a second-order
Chebychev polynomial. The fit result is shown in figure 3. The numbers of DT events
are −15.4+10.0

−9.1 for Ω− → Σ0π− and −8.3+5.5
−3.7 for Ω− → nK−. Since no significant signal is

observed for each decay, we set upper limits on the BFs of these two decays.

4 Systematic uncertainty

The sources of systematic uncertainties are classified into two categories, which are multi-
plicative and additive. The multiplicative systematics affect the efficiency while the additive
ones affect the signal yield.
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Figure 3. The distributions of (a) RMΩ̄+π− and (b) RMΩ̄+K− . In the top panel, the dots with error
bars are data, the blue solid and black dashed lines are the total fit result and the fitted background
shape, respectively. The red dashed line is the signal shape obtained from the signal MC with arbitrary
normalization. The bottom panels display the pull distributions, illustrating the residuals between the
data and the fitted model normalized by their uncertainties.

The multiplicative systematic uncertainties mainly stem from the imperfect modeling of
data in our simulation. Considering the differences between MC simulation and data, the
following sources are taken into account. The tracking and PID efficiencies of charged pions and
kaons are investigated using the control samples of J/ψ → pp̄π+π− and J/ψ → K0

SK
±π∓ [26–

28], respectively. The differences in tracking and PID efficiencies between data and MC
simulation are both 1.0% per charged pion on the signal side, and the uncertainties of the
tracking and PID are both 1.0% per kaon on the signal side. The systematic uncertainty due
to the signal model is studied by the control samples of Ω− → Ξ0π− and Ω− → ΛK− [29].
The differences between the efficiencies obtained from phase space MC samples and data
driven samples (re-weighted according to π−/K− transverse momentum distribution in data)
are taken as the systematic uncertainties, which are 2.2% and 6.9% for Ω− → Σ0π− and
Ω− → nK−, respectively. The uncertainty from the RMΩ̄+ signal shape for ST is estimated
by an alternative signal shape obtained from a Breit-Wigner convolved with a double Gaussian
function with all free parameters. The resultant difference in the ST yield, 2.0%, is taken
as the systematic uncertainty. Furthermore, the uncertainty due to the RMΩ̄+ background
shape for ST is studied by changing the second-order Chebychev polynomial to a first-order
and a third-order Chebychev polynomial. The larger difference in the ST yield, 0.7%, is
considered as the corresponding uncertainty. The uncertainty due to the MC statistics is
assigned by using the formula 1√

N

√
1−ϵ

ϵ , where ϵ is the DT efficiency and N is the number of
the generated signal MC events. The systematic uncertainties are both 0.2% for Ω− → Σ0π−

and Ω− → nK−. The statistical fluctuation of the ST Ω̄+ hyperons, 0.7%, is taken as
a systematic uncertainty from the ST yield estimation. The systematic uncertainty due
to the signal angular distribution is studied by the control samples of Ω− → Ξ0π− and
Ω− → ΛK− [29]. In the search for Ω− → nK−, the systematic uncertainty of the requirement
on the number of charged tracks is studied by using a control sample of ψ(3686) → Ω−Ω̄+,
Ω̄+ → Λ̄(→ p̄π+)K+, Ω− → Λ(→ pπ−)K−. This control sample, comprising six charged
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Source Ω− → Σ0π− Ω− → nK−

Tracking 1.0 1.0
PID 1.0 1.0
ST signal shape 2.0 2.0
ST background shape 0.7 0.7
MC statistics 0.2 0.2
ST yields 0.7 0.7
Signal model 2.2 6.9
Number of charged tracks — 3.1
Total 3.4 8.0

Table 1. Multiplicative systematic uncertainties (%), where the dash (—) indicates that a systematic
effect is not applicable.

tracks, is used to evaluate the efficiencies of the Ntracks = 6 requirement for data and MC.
The efficiency difference between data and MC in the control sample, 3.1%, is taken as the
systematic uncertainty. All the multiplicative uncertainties are summarized in table 1. The
individual uncertainties are assumed to be independent and are combined in quadrature to
obtain the total multiplicative systematic uncertainty. Note that the systematic uncertainty
of the measurement of Ω− → nK− is dominated by the signal model because the kaon
reconstruction efficiency is heavily dependent on its transverse momentum.

There are two sources in the additive systematic uncertainties. One systematic uncertainty
due to the RMΩ̄+h signal shape is studied by changing the MC simulated shape to double
Johnson functions [30] sharing the same mean and width parameters determined from the fit.
The tail parameters and fractions of each signal component are fixed to values obtained from
a fit to simulated events. Another systematic uncertainty due to the RMΩ̄+h background
shape is studied by changing the Chebychev polynomial from second to third order. The
results are used to estimate the upper limits, described in the next section.

5 The upper limits on the BFs

The upper limits on the signal yields at the 90% C. L. are determined by a Bayesian method [31].
The additive uncertainties are accounted for by extracting the likelihood distributions, and
the signal shapes corresponding to the maximum upper limits among all additive items are
chosen for Ω− → Σ0π− and Ω− → nK−, respectively. The upper limits based on these
likelihood distributions and incorporating the multiplicative systematic uncertainties in the
calculation are obtained by smearing the likelihood distribution by a Gaussian function with a
mean of zero and a width equal to σϵ as described in refs. [32, 33] with the following formula,

L′(n) ∝
∫ 1

0
L

(
n
ϵ

ϵ0

)
exp

[
−(ϵ− ϵ0)2

2σ2
ϵ

]
dϵ, (5.1)

where L(n) is the likelihood distribution as a function of the yield n. ϵ0 is the signal efficiency
and σϵ is the multiplicative systematic uncertainty. The signal yield at the 90% C.L., NU.L.,

– 6 –
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Figure 4. The normalized likelihood distributions for (a) Ω− → Σ0π− and (b) Ω− → nK−. The
orange curves are obtained with incorporating both multiplicative and additive systematic uncertainties.
The black curves are the likelihood distributions without multiplicative systematic uncertainties. The
arrows point the upper limit on the BFs at the 90% C.L.

Decay mode NST ϵST (%) NU.L.
DT ϵDT (%) BU.L. (×10−4)

Ω− → Σ0π− 25819 ± 188 21.11 12 18.29 5.4
Ω− → nK− 5 16.92 2.4

Table 2. The ST yield (NST), ST efficiency (ϵST), DT yields (NU.L.
DT ), DT efficiencies (ϵDT) and the

upper limits on the BFs (BU.L.).

is obtained by integrating out to 90% of its physical region,
∫ NU.L.

0 L′(n)dn∫ ∞
0 L′(n)dn

= 0.9. Figures 4(a)
and 4(b) show the likelihood distributions incorporating the systematic uncertainties for
Ω− → Σ0π− and Ω− → nK−, respectively. The upper limits on the signal yields (NU.L.

DT )
of Ω− → Σ0π− and Ω− → nK− at the 90% C.L. are 12 and 5, respectively. With the ST
yields, and the ST and DT efficiencies obtained from the MC simulation, the upper limits
on the BFs on the signal decays at the 90% C.L. are calculated by

BU.L.
sig = NU.L.

DT /ϵDT
NST/ϵST

. (5.2)

The numerical results are shown in table 2.

6 Summary

Based on the sample of (27.12 ± 0.14) × 108 ψ(3686) events collected by the BESIII detector,
we search for the ∆S = 2 decays of Ω− → Σ0π− and Ω− → nK− for the first time. No signal
is observed. The upper limits on their decay BFs are determined to be B(Ω− → Σ0π−) <
5.4 × 10−4 and B(Ω− → nK−) < 2.4 × 10−4 at the 90% C.L. These results are consistent
with the predictions of the SM [1] and can help to constrain new physics models. In the
future, the proposed Super Tau-Charm Factories [34, 35] have the potential to improve on
the upper limits on the BFs of these decays by at least two orders of magnitude.
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