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1 Introduction and summary

Recently, considerable progress has been made in understanding lower dimensional physics
from compactifications of higher dimensional superconformal field theories (SCFTs). In
particular, plenty of 4D N = 2 SCFTs, called class S theories, are engineered by compacti-
fications of 6D N = (2, 0) SCFTs on punctured Riemann surfaces, and non-perturbative
physics of the 4D theories such as dualities and enhanced symmetries at infrared have been
studied in great detail through the compactifications [1, 2]. Similarly, the compactification
of the 6D SCFTs living on M5-branes wrapped around hyperbolic three-manifolds M leads
to a family of 3D N = 2 theories called 3D class R theories [3–5]. This construction allows
us to understand intricate networks of 3D dualities and also to predict new dualities based
on geometric operations on the internal 3-manifolds.

More recently, we have revisited the class R construction of 3D theories and extended
it to incorporate non-hyperbolic 3-manifolds into the construction [6]. Unlike the compacti-
fication on hyperbolic 3-manifolds, which engineers gapless phases at low energy, the 3D
field theories constructed from non-hyperbolic manifolds can give rise to a wide variety
of strongly coupled IR phases including gapped phases, SUSY-broken phases as well as
conformal phases. For example, a certain family of non-hyperbolic 3-manifolds, which
we can use in the class R construction to engineer 3D topological field theories (TFTs),
was proposed in [6]. The proposal was verified by explicitly constructing modular S- and
T-matrices for the TFTs in terms of topological invariants of the non-hyperbolic 3-manifolds,
which can be computed using various partition functions of complex SL(2,C) Chern-Simons
theories on the 3-manifolds. This establishes a new correspondence between 3D TFTs and
non-hyperbolic 3-manifolds.

Especially, when the modular data from the internal 3-manifold is non-unitary, the
infrared phase of the corresponding 3D theory is conjectured to become an SCFT embedding
a non-unitary subsector described by that modular data [6]. Additionally, this class of
IR SCFTs are believed to enjoy SUSY enhancement from N = 2 to N = 4, and they
have neither Coulomb nor Higgs branch of vacua, i.e. they are of rank-0 N = 4 SCFTs.
The subsector equipped with the non-unitary modular structure can be isolated in a
degenerate limit where supersymmetric partition functions compute contributions only from
the Coulomb or Higgs branch chiral ring operators and their descendants, which are empty
in this case since the SCFT is of rank-0. Therefore, in the degenerate limit, the relevant
physical observables are loop operators and their correlation functions, which together
define the non-unitary modular tensor category (MTC) associated with the non-unitary
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sub-sector. This novel relation between 3D N = 4 rank-0 SCFTs and non-unitary TFTs
was extensively studied in [7].

In this paper, we study the relation between topological invariants of closed non-
hyperbolic 3-manifolds and infrared phases of 3D class R theories. We focus our attention
on the non-hyperbolic 3-manifolds constructed by so-called exceptional Dehn fillings from
1-cusped hyperbolic 3-manifolds. The 3-manifolds of this class have been classified in
mathematical literature (see for instance [8]) based on the topological properties of 2-cycles
embedded in the 3-manifolds, which is summarized in figure 1. Surprisingly, we find that the
mathematical classification can be repackaged in physics as a systematic characterization of
low-energy phases of the class R theories.

Our main aim in this paper is to develop a geometric scheme to identify IR phases
of 3D class R theories in terms of topological properties of the associated non-hyperbolic
3-manifolds. As we will see, this task will also formulate a concrete dictionary between
topological invariants of the internal non-hyperbolic 3-manifolds and physical observables
in the 3D class R theories. The dictionary provides a number of criteria to characterize IR
phases of the 3D theories without detailed analysis of strongly coupled low-energy dynamics
which in general is notoriously difficult.

The main tools we will use are the 3D index and the irreducible SL(2,C) flat connections
of the non-hyperbolic 3-manifolds. These are defined as the partition function of a complex
SL(2,C) Chern-Simons (CS) theory on the non-hyperbolic 3-manifold at Chern-Simons
level k = 0 and irreducible flat connections in the complex CS theory respectively. The
convergence of the 3D index and the reality of the irreducible flat connections turn out to
capture the existence of certain topological 2-cycles (more precisely, separating essential 2-
spheres or tori), which plays a central role in the classification of 3-manifolds in mathematics.
Field theoretically, the 3D index corresponds to a supersymmetric index counting the number
of local BPS operators, and the irreducible flat connections are related to discrete vacua
(or Bethe vacua) of the 3D field theory with supersymmetric massive deformations. These
are protected under renormalization group (RG) flows by supersymmetry, so we can use
them for a systematic exploration of rich structure of low-energy phases. We first discuss
what are the possible IR phases from non-hyperbolic closed 3-manifolds via the class R
construction, and then propose geometric criteria on how to catalog the IR phases in terms
of the properties of the 3D index and irreducible flat connections of the 3-manifolds. This
will give a novel field theoretic interpretation of the mathematical classification of closed
3-manifolds. Utilizing the geometric criteria, we will identify all possible IR phases of
3D class R theories constructed from non-hyperbolic 3-manifolds obtained by exceptional
Dehn fillings on S3\41, S

3\52,m003,m006,m007 and m009. This provides a concrete
confirmation for the geometric criteria we propose.

The organization for the rest of this paper is as follows: in section 2, we review how to
obtain closed non-hyperbolic 3-manifolds by exceptional Dehn fillings. We also introduce
a mathematical classification of closed non-hyperbolic 3-manifolds, and explain how to
understand it in terms of properties of 3D indices and irreducible flat connections of the
3-manifolds. In section 3, we discuss IR phases of 3D class R theories constructed from
closed non-hyperbolic 3-manifolds. We explain how to identify precise IR phases using
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supersymmetric partition functions, which can be computed from topological data of the
associated 3-manifolds. Section 4 presents various examples of 3D class R theories and
explicit analysis of their infrared phases.

2 Space of non-hyperbolic 3-manifolds

This section provides a brief introduction to closed non-hyperbolic 3-manifolds with a focus
on the construction using exceptional Dehn fillings from 1-cusped hyperbolic 3-manifolds,
and their topological features in terms of basic properties of the 3D index and SL(2,C)
flat connections. We also give some background mathematical materials relevant to the
discussions in this paper.

2.1 Exceptional Dehn fillings on 1-cusped hyperbolic 3-manifolds

Let us first explain the notations and a method for constructing closed non-hyperbolic
3-manifolds. We start with the hyperbolic 3-manifolds with a single torus boundary, which
are often called 1-cusped hyperbolic 3-manifolds. We shall use the following notation:

N : 1-cusped hyperbolic 3-manifold ,

pA+ qB ∈ H1(∂N,Z) = Z⊕ Z : primitive boundary 1-cycle .
(2.1)

In this paper, the 1-cusped hyperbolic 3-manifold N ’s are labeled by the nomenclature used
in SnapPy [9] as

N = m003, m004, m006, . . . , (2.2)

There is no canonical basis choice for boundary 1-cycles A and B in H1(∂N,Z) of a generic
3-manifold N . We find it convenient to choose the particular basis used in SnapPy which
we denote by

ASP, BSP : a basis of H1(∂N,Z) chosen by SnapPy . (2.3)

There is however a choice of canonical basis for H1(∂N,Z), which are called meridian µ
and longitude λ, for a special type of 3-manifold N = S3/K engineered by a complement of
a knot K in S3.

µ, λ : a canonical basis of H1(∂N,Z) when N = S3\K . (2.4)

The closed 3-manifolds we are interested in can be constructed from the 1-cusped
3-manifolds using so-called Dehn fillings. Dehn filling is a natural topological operation on
a 1-cusped 3-manifold that produces a new 3-manifold without boundary. It is a simple
operation that glues a solid torus to the boundary torus in a cusped 3-manifold along a
primitive cycle pA+ qB. Here, the gluing can be performed by identifying the primitive
cycle pA+ qB with the shrinkable boundary S1 of the solid torus. So the boundary of the
1-cusped 3-manifold is closed after the operation. We denote the closed 3-manifold resulting
from the Dehn filling as

NpA+qB := (3-manifold obtained by Dehn filling on N along pA+ qB) ,
:= (N ∪ (solid-torus))/ ∼ ,

where (pA+ qB) ∼
(
shrinkable boundary S1 of solid-torus

)
.

(2.5)
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Figure 1. Two classifications of closed non-hyperbolic 3-manifolds: (Left) according to the existence
of essential 2-sphere or 2-torus and (Right) based on the properties of 3D index and SL(2,C)
irreducible flat connections on the 3-manifolds. The relation between two classifications are illustrated
in the two diagrams. The 3-manifolds of finite/complex types are always hyperbolic and thus do
not appear here. Among prime/torodial 3-manifolds, it is of finite type if all essential tori are
non-separating and of infinite type otherwise. The 3-manifolds of infinite type can be further divided
into two categories depending on whether it is real or complex but the refined division is not drawn
in the diagram. Among toroidal SFS, toroidal 3-fibered Seifert-spaces, i.e. S2((p1, q1)(p2, q2)(p3, q3))
with

∑
i
qi
pi

= 0 and
∑ 1

pi
= 1, are of finite and real while Σg>1 × S1 are of infinite type. We could

not fully identify the type of other toroidal SFS and leave them in a black color. SOL manifolds
are always finite/real/unitary while S2((p1, q1)(p2, q2)(p3, q3)) could be either finite/real/unitary or
finite/real/non-unitary as in (2.17).

The primitive cycle pA + qB (up to an overall sign) is called a slope. We remark that
according to the well-known Thurston’s hyperbolic Dehn surgery theorem, NpA+qB is always
hyperbolic except only finitely many slopes called exceptional slopes.

A slope pA+ qB ∈ H1(∂N,Z) is called exceptional if NpA+qB is non-hyperbolic. (2.6)

The exceptional Dehn fillings drastically alter geometrical structure of the 3-manifolds and
can produce a large class of closed 3-manifolds with rich geometrical/topological structures.
Actually 7 geometries among Thurston’s 8 geometries can be realized on non-hyperbolic
3-manifolds [10].

2.2 Topological types of non-hyperbolic manifolds

2.2.1 Conventional mathematical classification

The left diagram of figure 1 summarizes a conventional classification of closed non-hyperbolic
3-manifolds according to the existence of embedded essential 2-sphere or embedded essential
torus. An embedded 2-sphere is essential if it does not bound a 3-ball. See [8] for details on
the classification and related mathematical materials.

Depending on the existence of embedded essential 2-spheres, closed 3-manifolds can be
divided into two classes: reducible (if exists) or irreducible. When the essential sphere is
separating, the 3-manifold can be given as a connected sum of the two separated manifolds.
So the “connected sum” implies “reducible”. The only exceptional 3-manifold, which is
reducible but not connected sum, is S2×S1, which is regarded as a lens space L(0, 1) in this
paper. The prime 3-manifold means the 3-manifold which can not be given by a connected
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p4/q4 = 0

p1/q1 p2/q2 p3/q3

c c c

Figure 2. Dehn surgery description of 3-fibered Seifert manifold S2 ((p1, q1), (p2, q2), (p3, q3)).

sum of two manifolds neither of which is a 3-sphere S3.1 Depending on the existence of the
essential torus, 3-manifolds can further be divided into two classes: toroidal (if exists) or
atoroidal.

All hyperbolic 3-manifolds are prime and atoroidal. Among non-hyperbolic 3-manifolds,
the only prime/atoroidal manifolds are small Seifert fibered spaces (small SFS). There are
two kinds of small Seifert fibered manifolds, one is lens space and the other is 3-fibered
Seifert spaces S2 ((p1, q1)(p2, q2), (p3, q3)) over S2 which is not toroidal, i.e. ∑i

qi
pi
6= 0.

Prime/atoroidal


Hyperbolic

Small Seifert fibered

Lens space L(p,q)
S2 ((p1, q1)(p2, q2),(p3, q3))

∣∣∑
i

qi
pi
6=0 and

∑ 1
pi

=1

(2.7)

When ∑i
qi
pi

= 0, the manifold S2 ((p1, q1)(p2, q2), (p3, q3)) is toroidal and corresponds to a
Seifert-toroidal manifold. The manifold S2 ((p1, q1), (p2, q2), (p3, q3)) can be described by
a Dehn surgery along a link with 4 components depicted as in figure 2. Here, (pi, qi) are
coprime with pi > 0.

SOL manifolds refer to torus bundles T2 ×ϕ S1 with Anosov monodromy ϕ. The torus
bundles are defined with a monodromy matrix ϕ ∈ SL(2,Z) and an equivalence relation
given by

T2 ×ϕ S1 =
(
T2 × [0, 1]

)
/
(
(x, 0) ∼ (ϕ(x), 1)

)
, (2.8)

where x is a point in the two-torus T2 and ϕ(x) is the image of x under the mapping class
group element ϕ. ϕ is called a Anosov monodromy if |Tr(ϕ)| > 2.

Graph manifolds generally refer to prime non-hyperbolic 3-manifolds that do not include
hyperbolic pieces in JSJ decomposition [11, 12]. In the usual definition, the space of graph
manifolds includes all prime Seifert-fibered spaces and SOL manifolds. However, graph
manifolds in this paper refer only to graph manifolds which are neither Seifert-fibered
spaces nor SOL manifolds. Similarly, the space of SFS’s generally includes lens spaces, but
our terminology for Seifert-fibered spaces in this paper refers only to Seifert-fibered spaces
which are not lens spaces.

13-sphere can be regarded as an identity under the connect sum operation ], i.e. M]S3 = M for all M .
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2.2.2 Classification using 3D index and SL(2,C) flat connections

We shall propose a new classification scheme for closed 3-manifolds based on the basic
properties of 3D index [5, 13] and irreducible SL(2,C) flat connections as follows

• Def: Infinite/Finite/Empty

i. A closed 3-manifold M is of empty type if the 3D index vanishes, i.e. IM (q) = 0.

ii. A non-empty closed 3-manifoldM is of finite (resp. infinite) type if IM (q) converges
(diverges) as a formal Laurent series.

• Def: Complex/Real

i. A SL(2,C) flat connection ρ is

real, if Tr(ρ(a)) ∈ R for all a ∈ π1M.

complex, otherwise.

ii. A closed 3-manifold M is


real, if all irreducible flat SL(2,C) connections

are real.

complex, otherwise.

The 3D index is a 3-manifold invariant introduced as an SL(2,C) Chern-Simons partition
function with a quantized level k = 0. The invariant for 3-manifolds N with torus boundaries
was firstly studied in [5] and then generalized to cover closed 3-manifold M in [13]. The
index, IN (~m,~e; q) or IM (q), gives a formal Laurent polynomial in q1/2 for each (~m,~e) ∈ Z2n

where n is the number of boundary tori. Using a state-integral model developed in [5, 13, 14],
the index is schematically given in the following form

I(q) =
∑
~s∈ZT

I(~s; q) . (2.9)

Here T is a positive integer and we suppress the dependence on (~m,~e) for simplicity. The
I(~s; q) for each ~s ∈ ZT is qε(~s) × (power series in q1/2 starting with I0(~s) +O(q1/2)) with
ε(~s), I0(~s) ∈ Z/2. The precise definition of the 3D index and some examples will be presented
in section 2.3. We say the 3D index converges (as a formal series in q1/2) when one needs
to sum over only finitely many ~s ∈ ZT to obtain the invariant up to O(qmax

2 ) for arbitrary
max ∈ Z+.

We define the (adjoint) irreducible flat connections as follows:2

• Def: Irreducibility of flat connection

A SL(2,C) flat connection ρ ∈ Hom[π1M → SL(2,C)]/ ∼ is called irreducible if

Stab(ρ) := {g ∈ SL(2,C) : [g, ρ(a)] = 0 ∀a ∈ π1M} is a finite subgroup of SL(2,C).
2We remark that our definition of the irreducibility of the SL(2,C) flat connection is somewhat different

from the definition used in many other math literature. In the math literature, irreducible means (funda-
mental) irreducible and our irreducible flat connections are called non-Abelian flat connection. Our notion
of irreducibility is relevant in the study of SL(2,C) Chern-Simons theory and class R theories.

– 6 –
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It turns out that the only possible finite subgroup here is the Z2 center symmetry. We
also regard two homomorphisms ρ1, ρ2 ∈ Hom[π1M → SL(2,C)] as the same SL(2,C) flat
connection if their characters are all identical. Namely, we have the following equiva-
lence relation:

ρ1 ∼ ρ2 if Tr(ρ1(a)) = Tr(ρ2(a)) for all a ∈ π1M . (2.10)

We define a set of irreducible flat connections as

χ
SL(2,C)
irred (M) := {a set of inequivalent irreducible SL(2,C) flat connections on M} .

(2.11)

As we will see in the next section, this set of irreducible flat connections will play a crucial
role in the study of 3D class R theories.

We are particularly interested in the closed 3-manifolds of finite and real type since
they enjoy the correspondence with topological field theories TFT[M ] established in [6] (see
also [15] and [16]). A closed 3-manifold M of finite and real type is non-hyperbolic, and
the class R construction for two M5-branes wrapped around such 3-manifold M provides
a 3D field theory, which flows at low energy to either a unitary topological field theory
(TQFT) or a (unitary) superconformal field theory (SCFT) containing a sub-sector realizing
a non-unitary TQFT structure. The details will be discussed in the next section. We
can distinguish the non-hyperbolic 3-manifolds in terms of the TQFT structures of the
associated 3D class R theories. We define

• Def: Unitary/Non-unitary

M of finite/real type is of

unitary type, if TFT[M ] is unitary.
non-unitary type, if TFT[M ] is non-unitary.

In this definition, the TFT[M ] denotes the IR topological theory arising from the class R
theory when the 3-manifold M is of unitary type, while it means the sub-sector of the class
R theory admitting a non-unitary TQFT structure at low energy when M is of non-unitary
type. We note that unlike other properties above, the unitarity/non-unitarity is defined
only for the 3-manifolds of finite and real type.

2.2.3 Relation between two classifications

Now let us relate our new classification scheme to the conventional classification of closed
3-manifolds. The relation is summarized in figure 1.

Lens space ⇒ empty type. As we will see in section 2.3, the empty type 3-manifolds
can alternatively be characterized by the emptiness of irreducible SL(2,C) flat connections:

M is of empty type if there are no irreducible SL(2,C) flat connections on M

i.e. χ
SL(2,C)
irred (M) = ∅ .

(2.12)

Lens spaces L(p, q) are obviously of empty type since its fundamental group is Abelian,
π1(L(p 6= 0, q)) = Zp and π1(L(0, 1)) = Z, and thus all SL(2,C) flat connections
are reducible.

– 7 –
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No separating essential sphere and torus ⇒ 3D index converges (i.e. empty or
finite). The convergence of the 3D index has been extensively studied in [17, 18] using an
interesting relationship between the 3D index and the normal surface counting. The main
result of these studies is that the 3D indices for cusped 3-manifolds only converge when
the 3-manifolds are irreducible and atoroidal. These mathematical studies have focused
on 3-manifolds with torus boundaries and hence the conclusion is not directly applicable
to 3D indices for closed 3-manifolds. But as we will see in section 2.3, their basic logic
can be applicable even to closed 3-manifolds via the 3D-3D correspondence. Motivated by
these circumstantial evidences and confirmation with explicit examples in appendix A, we
claim that

If a closed 3-manifold M is irreducible/atoroidal
⇒ 3D index IM (q) converges as a formal series in q1/2 .

(2.13)

In addition to these irreducible/atoroidal 3-manifolds, we found that following reducible or
toroidal 3-manifolds have convergent 3D indices.

S2 × S1, Torus bundle T2 ×ϕ S1 and S2((p1, q1), (p2, q2), (p3, q3))|∑3
i=1 qi/pi=0

: Reducible or toroidal closed 3-manifolds having convergent 3D indices .
(2.14)

One characteristic property of these manifolds is that the essential spheres and tori in these
manifolds are non-separating. So, we naturally speculate that closed 3-manifolds with no
separating essential sphere and torus have convergent 3D indices. For S2×S1 (a lens space),
as we saw above, the index vanishes, which is trivially compatible with the above statement.

∃ separating essential sphere or torus ⇒ infinity. In the case, we expect that the
3D index diverges. We will give a physical reasoning for this in section 2.3 and confirm it
with many explicit examples in appendix A.

T2 ×ϕ S1 or S2 ((p1, q1)(p2, q2), (p3, q3)) ⇒ finite and real. Two basic examples
of finite/real 3-manifolds are S2 ((p1, q1), (p2, q2), (p3, q3)) and T2 ×ϕ S1. The fundamental
group of the 3-fibered Seifert 3-manifold is

π1
(
S2 ((p1, q1), (p2, q2), (p3, q3))

)
= 〈x1, x2, x3, h : xpii · hqi = 1 (i = 1, 2, 3), x1x2x3 = 1, h is central〉 ,

(2.15)

and that of the torus bundle is

π1(T2 ×ϕ S1) = 〈x, y, h : h−1xh = xayc, h−1yh = xbyd〉, when ϕ =
(
a b

c d

)
. (2.16)

Here (x, y) are the two generators of the fundamental group of the fiber T2 while h represents
the loop along the base S1. The relations in the fundamental group represent how the two
generators transform under the mapping class group element ϕ. For these 3-manifolds of

– 8 –



J
H
E
P
1
1
(
2
0
2
2
)
1
5
1

finite/real, it turns out to be [19]

TFT
[
S2 ((p1, q1) , (p2, q2) , (p3, q3))

]
is

unitary, qi ∈ ±1 (mod pi)
non-unitary, otherwise

and

TFT
[
T2 ×ϕ S1

]
is always unitary .

(2.17)

2.3 3D index

We now review the 3D index IM (q) in details. We introduce two seemingly unrelated
interpretations of the invariant: one is the partition function of the complex SL(2,C) Chern-
Simons theory [20, 21] and the other is weighted sum over the normal surfaces [17, 18]. As we
will see, the 3D-3D correspondence provides a unified picture for these two interpretations.

3D index as a weighted sum over surfaces. In a series of mathematical papers [17, 18],
they found intricate relation between the 3D index for cusped 3-manifolds and the normal
surfaces. In the 3D-3D correspondence, the 3D index counts BPS local operators of the 3D
class R theories. In the M-theoretic set-up of the 3D-3D correspondence, the BPS local
operators originate from BPS M2-branes wrapped on surfaces of the internal 3-manifold [22],
and it explains the mathematician’s observations. In the M-theoretical picture, essential
surfaces play special roles. M2-branes can wrap an essential surface Σ arbitrarily many
times. They correspond to the local operators OΣ, O2

Σ,O3
Σ, · · · and their contribution to

the index is of the form ∑
n(±qkΣ)n where kΣ is a half-integer determined by the topology

of Σ. It means that OΣ corresponds to 1/2 BPS chiral primary operators. From the analysis
in [17, 18], it turns out that essential surface of Euler characteristic χ contributes following
terms to the index

∑
n

(
−q1/2

)−χn (
1 +O

(
q1/2

))
: contributions from essential surface to 3D index .

(2.18)

These terms make the index diverges when the essential surface is 2-sphere (χ = 2) or
2-torus (χ = 0). Although there is no similar mathematical analysis for the 3D index of
closed 3-manifolds, the M-theoretic picture is still valid and one would expect the essential
sphere and torus in a closed 3-manifold make its index diverge. From direct computations,
we check that the index indeed diverges for all reducible or toroidal closed 3-manifolds
except for the cases when the essential spheres and tori are non-separating.

Such exceptional cases include S2×S1, T2×ϕS1 and toroidal S2((p1, q1), (p2, q2), (p3, q3))
whose 3D indices are simply 0, 1 and 1 (or 2) respectively. Note that the 3D indices for these
exceptions are q-independent. We do not have a clear understanding, but the observation
suggests that the separating essential (instead of merely essential) spheres or tori make the
index divergent for closed 3-manifold cases (unlike cupsed 3-manifold cases). We will come
back to this issue below using another physical interpretation of the 3D index.
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3D index as partition function of SL(2,C) CS theory. The 3D index for a 3-
manifold M computes the partition function of an SL(2,C) Chern-Simons theory on M at
Chern-Simons level k = 0 which takes a path-integral expression

IM (q) =
∫ [DADA]

(gauge) exp
(
πi(k + is)CS [A;M ] + πi(k − is)CS[A;M ]

)∣∣∣∣
k=0,s= 4π

log q

,

where CS[A;M ] = 1
8π2

∫
M

Tr
(
AdA+ 2

3A
3
)
,

(2.19)

where A is the SL(2,C) gauge field and s is the imaginary part of the Chern-Simons level,
which exists for a complex gauge group. The path-integral can be evaluated exactly using
so-called state-integral model based on a Dehn surgery description M = NpA+qB and an
ideal triangulation of N [20, 21].

The index can be factorized into holomorphic/anti-holomorphic blocks in the follow-
ing way [23]:

IM (q) = 1
2

∑
[ρ]∈χSL(2,C)

irred (M)

Bρ
(
q

1
2
)
Bρ̄
(
q−

1
2
)
. (2.20)

Here χSL(2,C)
irred (M) is the set of irreducible SL(2,C) flat connections onM as defined in (2.11).

Bρ is the holomorphic block of the complex CS theory defined as

Bρ(q) :=
∫

Γρ

[DA]
(gauge)e

− 4π2
~ CS[A,M ] with q = e~ , (2.21)

where Γρ is the Lefschetz thimble in the functional space of A associated to the flat
connection ρ. Bρ̄ is the holomorphic block for the complex conjugate flat connection ρ̄.

The factorization formula makes sense only when the set χSL(2,C)
irred is finite, i.e. when it

contains a finite number of elements, and otherwise we expect the index to diverge. For
example, a 3-manifold given by a connected sum, which means M = M1]M2 and none
of the Mi’s is a 3-sphere, always has an infinite number of inequivalent irreducible flat
connections.3 This is compatible with the fact that 3-manifolds given by a connected sum
are always of infinite type.

Now let us try to understand the behavior of the 3D index using the partition function
representation. First, the factorization formula of the 3D index implies (2.12). For example,
the 3-manifold S2 × S1 does not admit any irreducible SL(2,C) flat connections since its
fundamental group is Z and is Abelian. This implies that χSL(2,C)

irred = ∅ and thus the 3D
index vanishes.

3It simply follows from the fact that π1(M1]M2) = π1(M1) ∗ π1(M2) where ∗ is the free product
of groups. Let ρ1 and ρ2 be (not necessarily irreducible) homomorphisms of π1(Mi) → SL(2,C) with
Im[ρi] 6= {±1} = (Center subgroup Z2). We define ρg ∈ Hom(π1M → SL(2,C)) by ρg(a) = ρ1(a) for
a ∈ π1(M1) ⊂ π1M and ρg(b) = gρ2(b)g−1 for b ∈ π1(M2) ⊂ π1M with g ∈ SL(2,C). Then the set
{ρg}g∈SL(2,C) contains infinitely many inequivalent irreducible flat SL(2,C) connections on M .
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In the Cardy limit q → 1 (or ~→ 0), the holomorphic blocks are expanded as

Bρ
(
q

1
2
) ~=log q→0−−−−−−−−−−→ exp

(
−4π2

~
CS [ρ] + . . .

)
,

Bρ̄
(
q−

1
2
) ~=log q→0−−−−−−−−−−→ exp

(
4π2

~
CS [ρ] + . . .

)
,

⇒ Bρ
(
q

1
2
)
Bρ̄
(
q−

1
2
) ~=log q→0−−−−−−−−−−→ exp

(
−8π2i

~
Im [CS [ρ]] + . . .

)
.

(2.22)

This shows that the asymptotic behavior of the 3D index essentially depends on whether
the 3-manifold is of complex or real type. A 3-manifold of complex type has a complex flat
connection ρ with non-zero Im[CS[ρ]] and this gives an exponentially growing contribution
to the index in the Cardy limit.4 On the other hand, for 3-manifolds of finite/real type, the
3D index becomes finite and ~-independent in the asymptotic limit ~→ 0 (or equivalently
q → 1) since Im[CS[ρ]] = 0. This partly explains why the 3D indices for T2 ×ϕ S1 and
S2((pi, qi))|3i=1 are finite and q-independent. Indeed these 3-manifolds have only a finite
number of irreducible SL(2,C) flat connections which are all real.

Next, the partition function for a 3-manifold Σg × S1 is expected to compute the
(q-independent) dimension of Hilbert space of the SL(2,C) Chern-Simons theory on the
genus g Riemann surface Σg. The Hilbert space can be obtained by quantizing the phase
space P (Σg) defined as

P (Σg) = χ
SL(2,C)
irred (Σg) := (set of inequivalent irreducible SL(2,C) flat connections on Σg) .

(2.23)

The phase space is empty for g = 0 since π1(Σg=0,1) is Abelian, whereas for g > 1, it is a
non-compact Kähler manifold of complex dimension (g − 1). We thus assert that

IΣg×S1(q) =

0 , for g = 0 ,
q-independent infinity , for g > 1 .

(2.24)

This behavior is expected since the 3-manifolds Σg=0×S1 do not contain separating essential
2-sphere and torus, which we will call SESg=0 and SESg=1 respectively, and they have no
irreducible SL(2,C) flat connections, while there are separating essential 2-tori and infinitely
many irreducible flat connections in Σg>1 × S1.5

4In 3-manifolds, there is always a pair of complex flat connections, ρ and ρ̄. One of them gives exponentially
growing contribution to the index in the ~ ∈ eiδR→ 0 limit unless δ = 0 or π.

5The separating essential 2-torus is given by a direct product of the S1 in S1 × Σg and a separating
non-contractible S1 in Σg. The separating non-contractible 1-cycle exists only when g > 1.
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Combining the above discussions with experimental evidences, we propose that the 3D
index of a 3-manifold M

IM (q) =



1 +O(q1/2) in q expansion ⇐⇒ No SESg=0,g=1 and Complex

0 ⇐⇒ χ
SL(2,C)
irred = ∅

| ∩ρ Inv(ρ)| ∈ {1, 2} ⇐⇒ No SESg=0,g=1 and Real

Divergent ⇐⇒ ∃ SESg=0 or SESg=1

(2.25)

We have tested this proposal for a large number of 3-manifolds by explicit calculations.
Some concrete examples will be presented below and we also refer to appendix A for more
detailed computations.

For hyperbolic 3-manifolds, we expect the 3D index to converge as a q1/2-series since
hyperbolic 3-manifolds are irreducible and atoroidal. Also, the 3D index of a hyperbolic
3-manifold should show exponentially growing behavior in the Cardy limit since it always
contains at least one complex flat connection, say ρhyp, associated with the hyperbolic
structure. For lens spaces, as explained above, we expect IM (q) = 0 since they have no
irreducible flat connection. This is not manifest at all in the actual computations of the 3D
indices using the state-integral model, but after delicate cancellations, one can see that the
3D indices vanish for these cases. For reducible or toroidal cases, the 3D index diverges if
some of essential spheres or tori are separating.

The 3-manifolds in the 3rd line of the above proposal are of finite and real type. For
these 3-manifolds, it is argued in [6] that there is an associated topological field theory
TFT[M ] and the 3D index computes the partition function of TFT[M ] on S2 × S1. Note
that for topological theories, the S2 × S1 partition function is always 1 since there are
no local excitations contributing to the partition function. However, we observe that the
index sometimes becomes 2 instead. This is puzzling, but we can understand this as
follows. Let us first introduce some mathematical definitions. The cohomology group
H1(M,Z2) = Hom(π1M → Z2) naturally acts on the elements in χSL(2,C)

irred as follows

η ∈ H1(M,Z2) : ρ ∈ χSL(2,C)
irred −→ ρ⊗ η ∈ χSL(2,C)

irred

where (ρ⊗ η)(a) := ρ(a)η(a) .
(2.26)

The invariant subgroup Inv(ρ) ⊂ H1(M,Z2) is then defined as

Inv (ρ) :=
{
η ∈ H1(M,Z2) : ρ⊗ η ∼ ρ

}
. (2.27)

Recall from equivalence (2.10) that two homomorphisms ρ1 and ρ2 are considered identical
if their characters are the same. Among finite/real 3-manifolds, we find that the following
3-fibered Seifert spaces have non-trivial ∩ρInv(ρ) as

S2((2, 1), (2, 1), (p, q)) : ∩ρInv(ρ) = Z2 . (2.28)

In [6], it is claimed that the TFT[M ] can be obtained from a progenitor TQFT, denoted as
T̃FT[M ], by gauging the 1-form symmetry H1(M,Z2). But sometimes a subgroup of the
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1-form symmetry acts trivially on all observables and thus decouples in IR. This decoupling
happens when the subgroup of H1(M,Z2) trivially acts on χSL(2,C)

irred . We note that ∩ρInv(ρ)
is a subgroup of H1(M,Z2) trivially acting on the χSL(2,C)

irred . In the case when ∩ρInv(ρ) = Z2,
the 3D index counts 2 instead of 1 since the ground state of TFT[M ] on S2 comes with
multiplicity 2. An example of this type of decoupled 1-form symmetry will be presented in
section 4.4.

Example: M = (S3\41)Pµ+Qλ. (S3\41)Pµ+Qλ denotes a closed 3-manifold obtained
by a Dehn surgery along the figure-eight knot (41) with slope P/Q. The 3D index can be
written as

I(S3\41)Pµ+Qλ

(
q
)

:=
∑

(m,e)∈Z2

K(m, e;P,Q; q) IS3\41

(
m, e; q

)
, (2.29)

where K(m, e;P,Q; q) is a kernel of SO(3) type [13] given by

K := 1
2(−1)Rm+2Se

(
δPm+2Qe,0

(
x
Rm+2Se

2 + x−
Rm+2Se

2
)
− δPm+2Qe,−2 − δPm+2Qe,2

)
.

(2.30)

Here the integers R,S ∈ Z are determined by a condition QR − PS = 1.6 The 3D index
for the figure-eight knot complement is

IS3\41(m, e; q) =
∑
e2∈Z
Ic∆(m− e2,m+ e− e2)Ic∆(e− e2,−e2) . (2.31)

Here Ic∆(m, e) is the tetrahedron index in charge basis defined as follows.

I∆(m,u) :=
∞∏
r=0

1− qr−m2 +1u−1

1− qr−m2 u
=
∑
e∈Z
Ic∆(m, e)ue . (2.32)

The index IS3\41(m, e) gets contributions from the surface in the knot complement along
the 1-cycle 2eµ+mλ at the boundary [18]. In the knot complement, there are embedded
essential once-punctured Klein bottles ending on the 1-cycle ±4µ ± λ at the boundary.
These essential surfaces can be detected by looking at the leading term of the 3D indices in
the q expansion as follows.

IS3\41(±1,±2; q) = −q1/2 + q5/2 + 4q7/2 + · · · ,
IS3\41(±2,±4; q) = q − q4 − 2q5 + · · · ,
IS3\41(±3,±6; q) = −q3/2 + q11/2 + 2q13/2 + · · · .

(2.33)

From these results, one can confirm that IS3\41(m = ±k, e = ±2k; q) starts with (−q1/2)k,
which can be identified with the contribution from a BPS M2-brane winding around the
essential surface k-times. Note that the once-punctured Klein bottle has Euler characteristic

6This condition cannot fix (R,S) uniquely. However, the index will not depend on this freedom.
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−1 which is compatible with (2.18). For comparison, one can compute the index with
(m, e) = k(±1,±1) as

IS3\41(±1,±1; q) = −q − q2 + 2q3 + · · · ,
IS3\41(±2,±2; q) = 2q3 + 2q4 + 2q5 + · · · ,
IS3\41(±3,±3; q) = −q5 − 3q6 − 4q7 + · · · .

(2.34)

One may notice that unlike the above cases, the lowest power in q1/2 is not linearly increasing.
This implies the absence of embedded essential surfaces ending on boundary 1-cycle ±2µ±λ.

After the Dehn filling, the 3D index becomes

I(S3\41)Pµ+Qλ(q) =

0 , (P,Q) = (±1, 0)
1 , P/Q = 0,±1,±2 and ± 3
(∑∞k=0 1)− 2q2 − 2q3 − 4q4 − 4q5 − 6q6 + · · · , P/Q = ±4
Power series in q1/2 starting with 1 +O(q1/2) , otherwise

(2.35)

This is indeed consistent with our proposal in (2.25) for the 3D index and with the following
topological facts [8].

(S3\41)Pµ+Qλ =



S3 , (P,Q) = (±1, 0)

T2 ×ϕ S1 with ϕ =

2 1
1 1

 , P/Q = 0

Atoroidal SFS S2((2, 1), (3, 1), (7,−6)) , P/Q = ±1

Atoroidal SFS S2((2, 1), (4, 1), (5,−4)) , P/Q = ±2

Atoroidal SFS S2((3, 1), (3, 1), (4,−3)) , P/Q = ±3

Graph , P/Q = ±4

Hyperbolic , otherwise

(2.36)

The divergent term (∑∞k=0 1) for P/Q = ±4 comes from (−q1/2)k in IS3\41(±k,±2k; q) after
the Dehn filling in (2.29). We note that this term can be regarded as contributions from
BPS M2-branes winding around the essential torus in (S3\41)±4µ+λ. Here, the essential
torus comes from the once-punctured Klein bottle in the knot complement. The puncture
is closed after the Dehn filling. Then the puncture-closed essential surface has Euler
characteristic χ = 0 and it can therefore give the divergent contribution in the 3D index as
noticed in (2.18).

3 IR phases of class R theory

In this section, we discuss low-energy phases of 3D class R theories arising from compact-
ifications of the 6d N = (2, 0) theory on M5-branes wrapped around closed 3-manifolds.
We particularly focus on the 3D theories from the A1-type 6D (2,0) theory. When the
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3-manifold M is hyperbolic, the low-energy theories become 3D N = 2 superconformal
field theories, which have been extensively studied in [4, 5]. See also [13] for more dis-
cussions. On the other hand, the low-energy phases for the 3D theories engineered by
non-hyperbolic 3-manifolds have much richer possibilities. For example, as discussed in [6],
compactifications on non-hyperbolic 3-manifolds can lead to 3D theories in gapped phases
described by TQFTs and also to SCFTs embedding a sub-sector related to a non-unitary
TQFT structure.

More specifically, we study how the IR phases of class R theories change under the
exceptional Dehn fillings, and what kinds of IR phases can appear from the class R theories
engineered by closed non-hyperbolic 3-manifolds. Interestingly, the exceptional Dehn filling
corresponds to gauging of SU(2) symmetry with a small Chern-Simons (CS) level. The
small CS level means that the theory becomes strongly coupled and thus the IR phase
can be drastically changed after the gauging due to wild non-perturbative quantum effects.
This is in a nice parallelism with the 3-manifold side story, drastic change of geometrical
structures under the exceptional Dehn filling. We will make the parallelism more precise.
We will use basic features of 3-manifolds explained in the previous section and determine
the IR phases of class R theories. The main result is summarized in (3.14). Using the
result, one can easily determine the IR phases of class R theories without analyzing the
non-perturbative quantum effects. The emergent IR phases after the exceptional gaugings
turn out to be very rich. One can find SUSY breaking phases, gapped topological phases,
gapless phases, IR phases with SUSY enhancement and etc, which is also compatible with
the mathematical fact that non-hyperbolic manifolds covers 7 geometries out of Thurston’s
8 geometries. We will provide concrete examples for these phases.

3.1 3D class R theory from 6D (2,0) theory

Let M be a closed (i.e. without boundary) 3-manifold. Then the 3D class R theory T [M ]
associated to the M is defined as follows:(

6D A1 (2,0) theory on R1,2 ×M
) size(M)→0−−−−−−−−−−−−−−→

(
3D T [M ] theory on R1,2

)
.

(3.1)

In the compactification, we perform a topological twisting along the internal 3-manifold using
a SO(3) subgroup of SO(5) R-symmetry of the 6D theory. The topological twisting preserves
4 supercharges and thus the low energy theory under the compactification becomes a 3D
N = 2 supersymmetric theory. The 3D theory has SO(2) = U(1) R-symmetry originated
from the SO(2) ⊂ SO(3)× SO(2) ⊂ SO(5) subgroup of the 6D R-symmetry preserved in
the topological twisting. For some cases, the T [M ] can have accidental Abelian flavor
symmetries and the U(1) R-symmetry can be mixed with them in IR. To distinguish it, we
denote the R-symmetry originated from the 6D theory by U(1)Rgeo and its charge by Rgeo:

U(1)Rgeo ⊂ SO(2)Rgeo × SO(3) ⊂ (SO(5) R-symmetry of the 6D theory) . (3.2)

In this paper, we consider the 3D class R theory T [M ] proposed in [4, 13], which will
be briefly reviewed in the next subsection. The theory is sometimes denoted as Tirred[M ]
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since it only sees an irreducible sub-sector of the 6D compactification [24]. So our T [M ] is
different from Tfull[M ] (which is expected to see the full sector) studied in [25–27]. Unlike
Tirred[M ], we still do not have 3D field theoretic descriptions for general Tfull[M ] theories.
It is even not sure whether Tfull[M ] for a general M (especially for a hyperbolic M) can be
described by a genuine 3D theory instead of the 6D theory compactified on M [13]. As we
will see below, Tirred[M ] for non-hyperbolic 3-manifolds have richer IR phases than Tfull[M ].
For example, the spontaneously SUSY breaking phase can not be realized in Tfull[M ] since
there always exists a Bethe-vacuum, i.e. SUSY vacuum on R2 × S1, in the theory, which
corresponds to the trivial SL(2,C) flat connection on M [28].

3.2 Field theoretic construction

We start with a brief review of the field theoretic construction of the T [M ] theory proposed
in [4, 13]. For simplicity, we focus on the 3-manifolds M given by

M = NpA+B , (3.3)

where N is a 1-cusped hyperbolic 3-manifold. Then the corresponding 3D theory T [M ]
can be obtained by gauging certain global symmetries in the 3D class R theory T [N,A;B]
associated to N

T [M = NpA+B] =


T [N,A;B]
“SO(3)”p , odd A
T [N,A;B]

SU(2)p , even A .
(3.4)

Here, T [N,A;B] is the 3D theory constructed by Dimofte-Gaiotto-Gukov [4] based on an
ideal triangulation of N (see section 2.2 of [13] for a review with some improvements).
“SO(3)”p and SU(2)p in the denominators mean particular gauging procedures which we
will now explain.

First, the 3D theory T [N,A;B] depends on the choice of the boundary 1-cycle A and
always has U(1) flavor symmetry, say U(1)A, associated to the boundary 1-cycle. The
theory can be schematically described as follows:

T [N,A;B] = (U(1)rK gauge theory coupled to S chiral multiplets of charge Q)

+

deformed by superpotential W =
S−F̃−1∑
I=1

OI

 ,
(3.5)

where K is a symmetric (r × r) matrix representing the mixed Chern-Simons levels and Q
is an (S × r) matrix representing the gauge charges of the chirial multiplets. The number of
chrial multiplets denoted by S is equal to the number of tetrahedra in the ideal triangulation.
The r, K, Q and {O}S−F̃−1

I=1 are determined by the ideal triangulation of N and choice of
the boundary 1-cycle A. Before the superpotential deformation, the Abelian gauge theory
has U(1)S flavor symmetry, which is broken to U(1)F̃+1 after the deformation. The U(1)F̃+1

always contains the U(1)A, i.e. U(1)A ⊂ U(1)F̃+1. The U(1)A symmetry is expected to exist
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from the 6D construction of T [N,A;B] theory,7 while the other symmetries are accidental
symmetry, which are not manifest in the UV 6D set-up. The existence of the additional
flavor symmetry is closely related to the existence of so-called hard internal edges [4] in the
ideal triangulation of N as pointed out in [13].

In this paper, we always choose the 1-cycle A to be a non-closable cycle defined as

A ∈ H1(∂N,Z) is called non-closable if NA is of empty type . (3.6)

It then follows that the U(1)A symmetry of T [N,A;B] is enhanced to SU(2) flavor symmetry
which we denote by SU(2)A [13]:

A is non-closable ⇒ T [N,A;B] has a SU(2)A ⊃ U(1)A flavor symmetry . (3.7)

Also, we define an oddness/evenness of the 1-cycle A ∈ H1(∂N,Z) as follows

A ∈ H1(∂N,Z) is called

even, A ∈ Ker[i∗ : H1(∂N,Z)→ H1(N,Z2)]
odd, otherwise .

(3.8)

If the cycle A is odd, the global structure of the flavor symmetry is SO(3) (i.e. all local
operators have integer spin under the SU(2)A).

The choice of the other 1-cycle B then affects the background CS level for the SU(2)
flavor symmetry. In order for the CS level to be properly quantized, we need to choose two
1-cycles (A and B) to have different oddness/evenness. For example, when N = S3\K is a
knot complement in S3 we can choose

A = µ, B = λ , for N = S3\K . (3.9)

In this case, the meridian µ is always non-closable and odd while longitude λ is always even.
In order to obtain the T [M ] theory, we gauge the SU(2)A flavor symmetry of the

T [N,A;B] theory. The gauging should be performed with a Chern-Simons coupling at level
p for the SU(2)A flavor symmetry. For even A cases, the gauging is straightforward and
one obtains the T [M ] theory as

T [NpA+B] = T [N,A;B]
SU(2)p

= (Gauging SU(2)A of T [N,A;B] with additional CS level p) .

(3.10)

For odd A cases, on the other hand, the gauging of the SU(2)A flavor symmetry is more
involved. As explained above, when A is odd, the gauge group is SO(3) rather than SU(2).
This means that the Z2 1-form symmetry coming from the Z2 center symmetry of the
SU(2) symmetry must also be gauged. However, the Z2 1-form symmetry has non-trivial ‘t
Hooft anomaly for odd p. In this case, we first need to tensor the T [N,A;B] theory with a

7For a 1-cusped hyperbolic 3-manifold N , the 6D set-up includes a codimension-two defect which gives
an SU(2)A symmetry. The SU(2)A symmetry is broken to the U(1)A symmetry for a generic choice of A due
to a symmetry breaking superpotential. The superpotential is forbidden when the cycle A is non-closable.
We shall refer to [13] for details.
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topological theory to cancel the Z2 anomaly, and then we gauge the Z2 1-form symmetry.
We thus propose for an odd A that the T [M ] theory is constructed as

T [NpA+B] = T [N,A;B]
“SO(3)”p

:=


(Gauging SU(2)A of T [N,A;B] with additional CS level p)

Z2
, even p

(Gauging SU(2)A of T [N,A;B] with additional CS level p)⊗U(1)−2
Zdiag

2
, odd p .

(3.11)

Here /Z2 denotes the gauging of the Z2 1-form symmetry. Note that when p is odd, we
tensor the theory with the U(1)−2 theory, which is a topological theory with an anomalous
Z2 1-form symmetry, such that the tensored theory has an anomaly free 1-form symmetry
Zdiag

2 , and this symmetry is finally gauged. For odd p, the above relation implies that

T [N,A;B]
SU(2)p

= T [NpA+B]⊗U(1)2 . (3.12)

After the SU(2) or “SO(3)” gauging, the final T [M ] has U(1)F flavor symmetry, which is a
subgroup of U(1)F̃ symmetry commuting with the gauged SU(2) symmetry.

3.3 IR phases (Main Proposal)

We now discuss low energy physics of the 3D field theory T [M ] for a closed 3-manifold M .
The IR phase of this theory is entirely determined by geometric data of the 3-manifold M .
We thus approach the problem of the classification of the IR phases of the class R theories
by examining the geometric properties of the corresponding 3-manifolds.

For example, the IR phases associated with 3-manifolds of type M = NpA+B at large p
can be rather easily determined. As explained in the previous subsection, the corresponding
UV field theory can be constructed by gauging the SU(2) flavor symmetry of the SCFT
T [N,A;B] with a Chern-Simons coupling at level p. When the level p is large, the quantum
effect of the gauging is suppressed at 1/|p| � 1, and this implies that the theory T [M ]
after the gauging is expected to flow to a SCFT at low energy. Indeed, the stress-energy
central charge of the T [M ] theory approaches to that of the original theory T [N,A;B] as |p|
increases. This is compatible with the Thurston’s hyperbolic Dehn surgery theorem saying
that M = NpA+B is hyperbolic for a large enough |p|. Note that T [M ] for a hyperbolic
3-manifold M always flows to a non-trivial SCFT.

However, on the other hand when |p| is small, the SU(2) gauging leads to strongly
interacting theories showing various interesting non-perturbative phenomena at low energy.
Thus, the analysis of the IR phases becomes much more complicated for these cases. It
turns out that T [M ] theories for generic closed 3-manifolds, which involve such strong
interactions, can flow to non-trivial IR phases other than SCFT phases.
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Based on the characteristics of BPS partition functions related to a closed 3-manifold
M , which we will explain in details in the next subsection, we propose that

Main Proposal (3.13)

T [M ] =



N = 2 SCFT, for a finite/complex type M
Spontaneous SUSY breaking phase, for an empty type M
Unitary TQFT, for a finite/real/unitary type M
N = 4 (rank-0) SCFT, for a finite/real/non-unitary type M
N = 2 SCFT + accidental sym/CPO, for an infinite type M

(3.14)

More precise statements in this proposal are as follows:

• When the closed 3-manifold M is of finite and complex type, M is hyperbolic and
the T [M ] theory flows to a N = 2 superconformal field theory.

• WhenM is of empty type, supersymmetry (SUSY) of the T [M ] theory is spontaneously
broken at low energy.

• When M is of finite, real, and unitary type, the low energy theory of T [M ] is in a
gapped phase described by a (unitary) topological field theory.

• When M is of finite, real, and non-unitary type, the T [M ] theory flows to a supercon-
formal field theory that includes sub-sectors realizing a non-unitary TQFT structure.
The IR theory also enjoys an N = 4 SUSY enhancement, but has no Coulomb and
Higgs branches, which means that it is a rank-0 theory.

• When M is of infinite type, the low energy phase of T [M ] is rather subtle. The
3D index in this case diverges, which is an unexpected behavior for a consistent IR
phase. A natural mechanism to remedy this is the emergence of an accidental flavor
symmetry at low energy. R-symmetry can mix with this accidental flavor symmetry,
and the 3D superconformal index takes an appropriate index expression, capturing a
finite degeneracy of BPS states for a given charge, only if it is computed with the
correct IR R-symmetry. The divergence of the 3D index is due to a wrong choice
of the IR superconformal R-symmetry. Geometrically, this divergence comes from
the contributions of separating essential surface Σ with a genus g ≤ 1. The essential
surface corresponds to a 1/2 BPS chiral primary operator (CPO) in T [M ] theory with
Rgeo = (g− 1). To satisfy the unitarity bound RIR (the correct IR R-charge) ≥ 1

2 , the
CPO should be charged under the accidental flavor symmetry. Since there is no such
a CPO in T [N,A;B],8 the CPO should correspond to a gauge-invariant monopole
operator of the SU(2) gauge symmetry of T [M ] in (3.4). This operator is generically
1/4 BPS operator but we expect that it becomes 1/2 BPS operator when M is of
infinite type. In summary, we propose IR phase of this type is a N = 2 SCFT with
accidental flavor symmetry, and the SU(2) monopole operators become 1/2 BPS
CPOs, which are charged under the accidental symmetry.

8Otherwise, the 3D index for a 1-cupsed hyperbolic 3-manifold N should diverge. But we know that the
3D index always converges [17].
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We will now explain how to read off the IR phases by inspecting BPS partition functions,
and then utilize it to concrete examples. This will illustrate the physics behind our proposal
and also provide supporting evidences for it.

3.4 Strategy for reading off IR phases

To verify our proposal (3.14) from the UV description of T [M ], reviewed in section 3.2,
we provide a general method to determine the IR phases using the properties of various
supersymmetric partition functions.

BPS partition functions. We consider the following three types of BPS partition
functions

Iq(ui, νi) : Superconformal index (or 3D index) ,

Z(s=±1)
Mg,p

(mi, νi) : Twisted partition function onMg,p ,

Zb(mi, νi) : Squashed 3-sphere partition function .

(3.15)

Here, mi and ui with the index i = 1, · · · , F are respectively real masses and fugacities for
the flavor symmetry U(1)F ⊂ GF of T [M ]. The UV U(1)R R-symmetry can mix, at low
energy, with the Abelian components of the flavor symmetry, and this mixing is captured
by the mixing parameters νi as

R~ν = Rνi=0 +
F∑
i=1

Jiνi , (3.16)

where Rνi=0 stands for a reference R-charge and Ji’s denote the Abelian flavor charges.
One linear combination, ~νgeo, gives the U(1)Rgeo symmetry in (3.2), i.e. R~νgeo = Rgeo.

The superconformal index is a Witten index counting supersymmetric (or BPS) lo-
cal operators in a 3D SCFT that can be defined as a trace over the Hilbert space in
radial quantization

Iq(ui, νi) = TrHrad(S2)

[
(−1)R~νq

R~ν
2 +j3

∏
i

uJii

]
. (3.17)

Here, q is the fugacity for a combination of R-charge R~ν and the angular momentum j3 com-
muting with a pair of supercharges preserved by the local operators. Via SUSY localization,
the index can be computed and the result can be expressed in the following form [29, 30]

INpq (ui, νi) =
∑
mx

∮
|ux|=1

dux
2πiux

∆(mx, ux)INq (mx, ux, ui, νi)u2pmx
x . (3.18)

Here INq (mx, ux, ui, νi) is the superconformal index for T [N,A;B] theory. (mx, ux) are
(monopole flux, fugacity) coupled to the SU(2) gauge symmetry, and (ui, νi)|Fi=1 are the (fu-
gacities, R-symmetry mixing parameters) associated with U(1)F flavor symmetry. ∆(mx, ux)
is the measure factor coming from the SU(2) vector multiplet given by

∆(mx,ux) := (−1)2mx
(
qmx/2ux−q−mx/2u−1

x

)(
qmx/2u−1

x −q−mx/2ux
)
×


1
2 , mx = 0
1, mx 6= 0

.

(3.19)
The summation range of the mx will be discussed below.
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One notices that the index at general νi can be obtained by shifting ui → (−q1/2)νiui
in the index at ~ν = 0 as

Iq(ui, νi) = Iq(ui, νi = 0)|ui→(−q1/2)νiui . (3.20)

The BPS operators of the IR SCFT can be counted correctly only if we choose the right
mixing parameters νi, which can be determined by the F-extremization in [31].

We can also tune νi’s to compute the spectrum of a sub-sector in which we are
particularly interested. For example, certain IR phases exhibit N = 4 SUSY enhancement
and contain interesting sub-sectors consisting of holomorphic functions on the Coulomb or
Higgs branch. In this case, the parameter ν for the axial R-charge JAxial of the SU(2)L ×
SU(2)R R-symmetry, which is a flavor charge from the point of view of the N = 2
superconformal algebra, can be tuned to compute the Hilbert series of the Coulomb or
Higgs branch operators as discussed in [32]. We will see some examples below.

Next, Z(s=±1)
Mg,p

is the twisted partition function on Mg,p, the S1 bundle of degree p
over genus g Riemann surface Σg [33, 34]. The s in the superscript represents the choice
of spin-structure along the S1. We choose s = +1 (s = −1) as periodic (anti-periodic)
boundary condition for fermionic fields. For odd p, only s = 1 choice is allowed while both
choices are allowed for even p. Especially for p = 0, the partition function corresponds to the
twisted index I(s)

g (ui = emi , νi) := Z(s)
Mg,p=0

(mi, ui) on a genus-g Riemann surface Σg [35–38].
The twisted index counts supersymmetric ground states with signs on a topologically

twisted surface Σg, i.e.

I(s=1)
g (ui, νi) = TrH(Σg ;R~ν)

[
(−1)2j3

∏
i

uJii

]
,

I(s=−1)
g (ui, νi) = TrH(Σg ;R~ν)

[
(−1)R~ν

∏
i

uJii

]
.

(3.21)

HereH(Σg;R~ν) is Hilbert space on Σg with a topological twisting using the U(1)R~ν symmetry.
Unlike other BPS partition functions, the mixing parameters νi in the twisted indices (with
g 6= 1) can take only discrete values satisfying the following Dirac quantization condition:

R~ν(g − 1) ∈ Z . (3.22)

The condition is always satisfied at ~ν = ~νgeo since the U(1)Rgeo is a compact subgroup of a
SO(5) symmetry as in (3.2). At g = 1, the twisted index is a (ui, νi)-independent number,
which is equal to the Witten index on 3-torus [39, 40]. When g = 0 and p = 1, the twisted
partition function is identical to the round 3-sphere partition function,

Z(s=1)
Mg=0,p=1

= Zb=1 . (3.23)

The twisted partition function can also be written as follows [33]

Z(s)
Mg,p

=
∑

a∈SBE

(
H(s)
α (mi, νi)

)g−1 (
F (s)
α (mi, νi)

)p
. (3.24)
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Here α labels so-called Bethe-vacua of the theory and H(s)
α , F (s)

α are handle-gluing/fibering
operators respectively. Note that the F (s) is only well-defined up to an overall sign factor,
i.e. only (F (s))2 is well-defined, for s = −1 since the twisted partition function is defined
only for p ∈ 2Z. Especially for p = 0, the twisted indices are given as

I(s=±1)
g (ui, νi)

∣∣
ui=emi

=
∑

a∈SBE

(
H(s)
α (mi, νi)

)g−1
. (3.25)

Lastly, Zb is the partition function of a 3D N = 2 gauge theory on a squashed three-
sphere S3

b with a squashing parameter b. Using the Coulomb branch localization in [41],
the squashed S3

b partition function for the T [N,A;B]/SU(2)p can be written as

ZNpb (mi, νi) := (Squashed 3-sphere partition function of T [N,A;B]/SU(2)p)

= 1
2

∫
Rr+1

dXdrZ

(2π~)
r+1

2
INp~

(
X, ~Z;Wi

)
|Wi=mi+(iπ+ ~

2 )νi, ~=2πib2 ,
(3.26)

where X and ~Z parametrize the Coulomb branches of the SU(2) and U(1)r vector multiplets,
see (3.5), in the theory respectively. The integrand I~ is the collection of 1-loop contributions
from the vector and the chiral multiplets on the Coulomb branch. The contribution from a
chiral multiplet is given by a special function called quantum dilogarithm [42]. The function
will be denoted by ψ~(X). We follow the convention used in [43] and refer to the paper for
the definition and some basic properties for the function.

ψ~(Z) : quantum dilogarithm function. (3.27)

Interestingly, the S3
b partition function depends only on a holomorphic combination, ~m+

(iπ + ~
2)~ν, of ~m and ~ν. As a consequence of this holomorphic property, one finds

Zb (~m,~ν) = Zb
(
~m+

(
iπ + ~

2

)
(~ν − ~ν0) , ~ν0

)
. (3.28)

This partition function has overall factor ambiguity of the following form due to the local
counter-terms,

exp

kijFFWiWj + 2kiFRWi

(
iπ + ~

2

)
+ kRR

(
iπ + ~

2

)2

2~

 ∣∣∣∣
Wi=mi+(iπ+ ~

2)νi
, (3.29)

with properly normalized mixed CS levels kFF , kFR, kRR between U(1)F flavor symmetry
and U(1)R symmetry.

The above BPS partition functions are not all independent but related to each other in
a sophisticated way. For later use, we will review the relationship between the squashed
3-sphere partition function and the twisted indices discussed in [43]. To relate the two
partition functions, we consider the following asymptotic expansion of the integrand I~ in
the limit ~→ 0

log INp~
~→0−−−−−−→ 1

~
W0

(
X, ~Z;mi, νi

)
+W1

(
X, ~Z;mi, νi

)
+ · · · . (3.30)
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The leading part W0 corresponds to the twisted superpotential. In order to compute
the perturbative series Wn, one needs to use following asymptotic expansion of the quan-
tum dilogarithm,

logψ~(X) ~→0−−−−−−→
∞∑
n=0

Bn
n! Li2−n

(
e−Z

)
~n−1 . (3.31)

Here Bn are Bernoulli numbers with B1 = +1
2 .

The Bethe vacua are the solutions to the Bethe equations that extremize the twisted
superpotential as

SBE =
{

(x, ~z)α : exp
(
∂~YW0(~Y ;mi, νi)

)∣∣∣
~Y=log ~yα

= ~1, triv. isotr.
}
/ZWeyl

2 , (3.32)

where ~Y := (X, ~Z) and ~y := (x, ~z) and α labels a Bethe vacuum. ‘triv. isotr.’ means that
the Bethe solutions invariant under the Weyl group Z2 should be discarded. The Weyl
symmetry acts on (x, ~z) as

ZWeyl
2 : (x, ~z)↔ (1/x, ~̃z) . (3.33)

In general, ~̃z is a non-trivial function of ~z. However, when the SU(2)A symmetry is manifest
in the field theory description of T [N,A;B], ~̃z is just ~z. In any case, we should always
discard Bethe-vacua with x = 1/x, i.e. x = ±1. The handle-gluing/fibering operators
H(s)
α /F (s)

α in (3.24) with s = −1 for each Bethe vacuum ~zα can be computed as

Fα (mi, νi) := F (s=−1)
α (mi, νi) = exp

(
i
Sα0 (mi, νi)−mi∂miS

α
0 (mi, νi)

2π

)
,

Hα (mi, νi) := H(s=−1)
α (mi, νi) = exp (−2Sα1 (mi, νi)) .

(3.34)

To avoid clutter, we omit the superscript (s) in Hα and Fα when s = −1. We define

Sα0 (mi, νi) =
(
W0

(
~Y ;mi, νi

)
− 2πi~nα · ~Y

)
|~Y=log ~yα ,

Sα1 (mi, νi) =
(
W1(~Y ;mi, νi)−

1
2 log det

(
∂2W0

∂~Y ∂~Y

))∣∣∣∣∣
~Y=log ~yα

,
(3.35)

with
∂~YW0(~Y ;mi, νi)|~Z=log ~yα = 2πi~nα . (3.36)

Due to the overall factor ambiguity of Zb in (3.29), the fibering/handle-gluing operators
have following overall factor ambiguities

exp
(
− i

4π
(
kijFFmimj − νiνj

)
− iπ

4
(
2kiFRνi + kRR

))
for Fα ,

exp
(
−kijFF νi (mj + iπνj)− kiFR (mi + 2iπνi)− iπkRR

)
for Hα .

(3.37)

As commented around (3.24), only (F (s=−1)
α )2 is well-defined and the above relation for Fα

should be understood as (F (s=−1)
α )2 = exp

(
iS0−m∂mS0

π

)
for general cases. But for some cases,
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the twisted partition function Z(s)
Mg,p∈2Z

does not depend on the spin-structure choices. In the
case, the above relation should be understood as F (s=+1) = F (s=−1) = exp

(
iS0−m∂mS0

2π

)
.

The partition function Zb at b = 1, which corresponds to a round 3-sphere, i.e.
Z(s=1)
M(g,p)=(1,1)

, can also be written as a sum over the Bethe-vacua,

Zb=1(~m = 0, ~ν) = Zb=1 (~m = 2πi(~ν − ~ν0), ~ν0) =
∑
α

Fα(~m = 2πi(~ν − ~ν0), ~ν0)
Hα(~m = 2πi(~ν − ~ν0), ~ν0) . (3.38)

The first equality follows from the relation in (3.28) with ~ = 2πi. Here, ~ν0 denotes a
special choice of ν satisfying the condition

R~ν0 + 2j3 ∈ 2Z , (3.39)

for all local BPS operators [43]. Namely, the superconformal index at ~ν = ~ν0 will only
contain the terms with integer power of q, which is the fugacity conjugate to R~ν

2 + j3. It is
argued in [43] that (H(s=1),F (s=1)) = (H(s=−1),F (s=−1)) at ~ν = ~ν0 for non-trivial SCFTs,
and we thus have the formula given in (3.38) in this case. The Bethe sum formula makes
it much easier to compute the round 3-sphere partition function Zb=1 than the Coulomb
branch integral formula.

The S3 partition function Zb=1 can be used to obtain the exact superconformal R-
symmetry RIR = R~νIR of IR CFT. This is the F-extremization principle in [31] which can
be summarized as

F-extremization: F (~ν) := − log |Zb=1(mi = 0, ~ν)| is extremized at ~ν = ~νIR. (3.40)

Effect of Z2 1-form symmetry gauging. So far we have studied the BPS partition
functions for T [N,A;B]/SU(2)p theory. The theory is identical to T [NpA+B ] for even A, but
the two theories are different for odd A. To study the BPS partition functions of T [NpA+B ]
theory for odd A, one needs to understand the effect of gauging 1-form Z2 symmetry on
the BPS partition functions. For this, we shall use the general formula given by

Z[T /Z2 on B] = |H
0(B,Z2)|

|H1(B,Z2)|
∑

[β2]∈H2(B,Z2)
Z[T on B; [β2]] . (3.41)

Here T is a 3D field theory with non-anomalous Z2 one-form symmetry and T /Z2 is the
theory after gauging the symmetry. B is a general curved background and Z[T on B; [β2]]
is the partition function of T on B with background flat Z2 2-form [β2] coupled to the
1-form symmetry.

By applying the formula to T = T [N,A;B]
SU(2)p and B = S3

b (squashed 3-sphere), one has

(Zb(mi, νi) for T [NpA+B] with odd A) =

2ZNpb (mi, νi) , p ∈ 2Z
√

2ZNpb (mi, νi) , p ∈ 2Z + 1
(3.42)

Here we use the fact that |H1(S3,Z2)| = |H2(S3,Z2)| = 1, |H0(S3,Z2)| = 2 and
Z[U(1)−2 on S3

b ] = 1√
2 . Since the two partition functions are related to each other by

an overall numerical factor, the gauging does not affect the F-extremization.
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Gauging the 1-form Z2 symmetry affects the summation range of mx (when A is odd)
in the superconformal index in (3.18) asmx ∈ Z≥0 , for T [N,A;B]

SU(2)p

mx ∈ 1
2Z≥0 , for T [NpA+B] = T [N,A;B]

“SO(3)”p

(3.43)

For odd A, all local operators have integer spins under the SU(2) gauge symmetry and the
Dirac quantization requires that mx ∈ Z/2 instead of mx ∈ Z. The above summation range
reflects the fact that SO(3) principle bundle on S2 admits half-integer monopole fluxes,
mx ∈ Z/2, while SU(2) bundle only admits integer monopole fluxes, mx ∈ Z.

The superconformal index is a BPS partition function on B = S2×S1 and H2(B,Z2) =
Z2 = {1,−1}. Therefore, unlike in higher dimensions, 3D superconformal index is sensitive
to the gauging of 1-form symmetry. The index obtained by summing over all mx ∈ Z≥0 can
be identified with Z[T on S2×S1; [β2] = 1] in (3.41) while the index from all mx ∈ Z≥0 + 1

2
is Z[T on S2×S1; [β2] = −1]. For odd p, the Z2 gauging does not affect the superconformal
index since there is no contribution from mx ∈ Z + 1

2 . This is indeed expect from the
relation in (3.12). For some cases, the 1-form Z2 symmetry decouples at IR. In that case,
the theory T [N,A;B]/SU(2)p is the same as T [N,A;B]/“SO(3)”p, and the index gets the
same contributions from mx ∈ Z and mx ∈ Z + 1

2 . Then, we need to sum over only mx ∈ Z
for T [NpA+B] theory, otherwise the index will start with 2 +O(q1/2).

The twisted partition function is also affected after gauging the Z2 1-form symmetry.
For odd p, using the relation in (3.12), one has(

SBE of T [N,A;B]
SU(2)p

)
=
(
SBE of T [N,A;B]

“SO(3)p”

)⊗2

,{
Hα of T [N,A;B]

SU(2)p∈2Z+1

}
=
{

2Hα of T [N,A;B]
“SO(3)”p

}
×
{

1, 1
}
,{

Fα of T [N,A;B]
SU(2)p∈2Z+1

}
=
{
Fα of T [(N)pA+B]

}
×
{

1, e
πi
2

}
.

(3.44)

This follows from that the topological theory U(1)2 theory has two simple objects (or two
Bethe-vacua) α = 0 and α = 1 with S00 = S01 = 1/

√
2 (i.e. Hα=0,1 = 2) and topological

spins hα=0 = 0 and hα=1 = 1
4 (i.e Fα=1/Fα=0 = exp(1

4 × 2πi)).
For even p, the effect of the gauging is more subtle. The Bethe-vacua in (3.32) can be

divided into two classes, SBE = S
(+1)
BE

⊔
S

(−1)
BE ,(

SQ=±1
BE of T [N,A;B]

SU(2)p

)
=
{

(x, z) ∈ SBE : exp
(1

2∂XW0

)
= Q

}
. (3.45)

Then, the Bethe-vacua for the gauged theory are (when p ∈ 2Z)(
SBE of T [NpA+B] =

(T [N,A;B]
SU(2)p

)
/Z2

)
= Suntwisted

BE
⊔
Stwisted

BE where

Suntwisted
BE =

{
(x, ~z) ∈ SQ=1

BE : x+ 1
x
6= −

(
x+ 1

x

)}
/Z1−form

2 and

Stwisted
BE =

{
(x, ~z) ∈ SQ=1

BE : x+ 1
x

= −
(
x+ 1

x

)}⊗2
.

(3.46)
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The Z2 1-form symmetry acts as9

Z1−form
2 : (x, ~z)↔ (−x, ~̃z) . (3.47)

Like the ZWeyl
2 case, the ~̃z is in general a nontrivial function of ~z. For the Bethe-vacua

invariant under the Z1−form
2 modulo the ZWeyl

2 , i.e x = ±i, we count them with multiplicity
2. For some cases, all the Bethe-vacua in SBE are invariant under the Z1−form

2 . This
implies that 1-form symmetry decouples at IR. In this case, the two theories T [NpA+B]
and T [T [N,A;B]

SU(2)p ] are identical and thus they have the same Bethe vacua. The handle-gluing
and fibering operators of the Bethe-vacua are

(Hα of T [NpA+B]p∈2Z) =


1
4 ×

(
Hα of T [N,A;B]

SU(2)p

)
, α ∈ Suntwisted

BE(
Hα of T [N,A;B]

SU(2)p

)
, α ∈ Stwisted

BE

(Fα of T [NpA+B]p∈2Z) =
(
Fα of T [N,A;B]

SU(2)p

)
.

(3.48)

For some cases, only (Fα)2 (instead of Fα) is well-defined in the T [NpA+B] theory since
the fibering operator for a Bethe-vacuum with Q = +1 can change its sign under the action
of Z1−form

2 . It implies that F (s=−1)
α 6= F (s=1)

α and the twisted partition functions Z(s)
Mg,p∈2Z

depends on the spin-structure choice.

3D-3D relations for 3D index and SBE. The 3D-3D relation tells us that the super-
symmetric partition functions of the T [M ] theory are related to the topological invariants
of the SL(2,C) Chern-Simons theory on the associated 3-manifold M . For example,

(
Iq(ui = 1, ~ν = ~νgeo) of T [M ] theory

)
=

IM (q) , ∩ρInv(ρ) = 1
1
2IM (q) , ∩ρInv(ρ) = Z2(

SBE of T [M ] theory
)

=


{
[ρ] ∈ χSL(2,C)

irred counted with multiplicity |Inv(ρ)|
}
, ∩ρInv(ρ) = 1

χ
SL(2,C)
irred , ∩ρInv(ρ) = Z2 .

(3.49)

For the case when ∩ρInv(ρ) = Z2, the corresponding T [N,A;B]/SU(2)p theory has a
decoupled Z1−form

2 symmetry and the 3D-3D relation should be treated separately as
discussed above.

Since the BPS partition functions are protected along RG-flows, they can be used to
scrutinize the physics of the low energy phases. We now explain a number of possible
scenarios for the IR phases of T [M ] captured by the BPS partition functions.

9The Bethe-vacua represents the supersymmetric vacua on two torus T2. Since the H1(T2,Z) = Z⊕Z, one
can consider two Z2 1-form symmetry charge operators, Q(1,0) and Q(0,1), supported on the two generators
of the H1(T2,Z). The set SQ=1

BE selects the Bethe-vacua with Q(0,1) = 1 while the Q(1,0) transforms a
Bethe-vacuum (x, ~z) to another Bethe-vacuum (−x, ~̃z).
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Spontaneous SUSY breaking. We start with the IR phases with spontaneously broken
supersymmetries. As explained above, the superconformal index counts local BPS operators
in radial quantization. In particular, the identity operator corresponding to a unique
supersymmetric ground state in the radially quantized theory is the leading contribution to
the index, which cannot be cancelled by other operator contributions due to the unitarity
bounds. The absence of this SUSY ground state and its index contribution therefore implies
spontaneous SUSY breaking. As a result, all the BPS states in this case are paired up to
form long multiplets and their contributions to the index are all cancelled. This means the
superconformal index becomes trivial, i.e. Iq = 0. Twisted indices Ig also vanish for all g
since there are fermionic zero modes associated to the broken SUSYs, which implies that
SBE = ∅ from (3.25). Therefore, the supersymmetry of T [M ] is spontaneously broken at
low energy if and only if

(Spontaneous SUSY breaking)⇔ (Iq = 0)⇔ (SBE = ∅) . (3.50)

The 3D-3D relation for the superconformal index in (3.49) implies that the geometric
invariant IM (q) (or 3D index) becomes trivial in this case. This means that the 3-manifold
is of empty type. On the other hand, the relation for SBE implies the 3-manifold does
not have any irreducible SL(2,C) flat connection, which is another implication that the
3-manifold is of empty type.

Gapped phase. The gapped phase is another interesting IR phase of T [M ]. One
distinguished property of the gapped phase is that it has a unique ground state on S2 and
all other local states are gapped out at low energy. From this, we assert that a 3D N = 2
gauge theory has a mass gap only if

Iq(ui, νi) = 1 . (3.51)

The IR phase in this case is described by a unitary topological field theory (TFT). This
condition can be satisfied only when M is of finite/real type. Otherwise, the index at
ui = 1 and ~ν = ~νgeo is divergent or it shows exponentially growing behavior in the Cardy
limit q → 1 according to the 3D-3D relation (3.49) and the analysis below (2.22). For a
3-manifold M of finite and real type, the superconformal index in the specialization always
becomes just 1. But it does not guarantee that the superconformal index becomes 1 at
general value of (ui, νi). For these finite/real 3-manifolds, one can assign a topological
field theory TFT[M ] to the 3-manifold as studied in [6]. Furthermore, it was claim that
the T [M ] has a mass gap only when the topological theory is unitary. In that case, the
superconformal index is (mi, νi)-independent 1, and the IR physics is described by the
unitary topological field theory TFT[M ]. For the case when the TFT[M ] is non-unitary,
the corresponding IR phase will be discussed below.

The physics of a bosonic unitary TQFT can be described by a mathematical framework
called modular tensor category (MTC). Let us provide a simple dictionary between MTC
data and BPS partition functions that we can use to identify the topological theory appearing
at IR. Firstly, simple objects (anyons) in TQFT are in one-to-one with Bethe-vacua.

α (simple objects in MTC) ↔ (xα, ~zα) ∈ SBE . (3.52)
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The modular S- and T-matrices in MTC can be computed using the handle-gluing/fibering
operators of T [M ]. We compute them as

S2
0α = (Hα(~νgeo))−1 , Tαα/T00 = Fα(~νgeo)/Fα=0(~νgeo) . (3.53)

Here α = 0 corresponds to the trivial simple object in TQFT, and the corresponding
Bethe-vacuum (xα, ~zα)α=0 is chosen to satisfy

|Zb| = S00 = 1√
Hα=0(~νgeo)

. (3.54)

For a gapped phase, the squashed 3-sphere partition function is b-independent, modulo the
local counter-terms in (3.29), and its absolute value should equal to the S00 [44]. The above
relations make sense since the handle-gluing and fibering operators for a gapped phase do
not depend on the continuous real mass parameters mi, and they satisfy

|Fα| = 1 and Hα ∈ R+ for all Bethe-vacua α (3.55)

in a proper choice of the local counter-terms (kijFF ,Ki
FR,KRR) in (3.37). The topological

spin hα ∈ R/Z of an anyon can be read off from the T-matrix as

e2πihα = Tαα/T00 . (3.56)

For some cases, as seen below (3.48), only (Fα)2 (instead of Fα) is well-defined. In that
case, the partition functions onMg,p∈2Z depend on the spin-structure choices, and thus the
topological theory is actually spin (fermionic) TQFT. For spin TQFTs, the topological spin
hα is well defined only up to mod 1/2 (instead of 1).

We can extract some constraints on the handle-gluing operators for a unitary TQFTs
from the BPS partition functions. Since there is a unique ground state in a TQFT on S2,
the twisted index at g = 0 and the handle-gluing operators must satisfy

Ig=0 =
∑
α

(Hα)−1 = 1 . (3.57)

In addition, the modular S-matrix for a unitary TQFT possess a unitarity condition
providing an inequality among the handle-gluing operators as

(Unitarity) : |S00| ≤ |S0α| ⇒ Hα=0 ≥ Hα . (3.58)

Rank-0 N = 4 SCFT phase. Interestingly, the TFT[M ] associated with finite/real
3-manifold M can be non-unitary as found in [6]. In that case, we call the 3-manifold is of
finite/real/non-unitary type. For that case, it is claimed that the T [M ] does not have a
mass gap. Instead, the theory flows to an N = 2 SCFT with a U(1) flavor symmetry, which
contains the non-unitary TQFT structure in a sub-sector. Modular S- and T-matrices for
the TQFT can be obtained using the expressions in (3.53) and (3.54). One crucial difference
with the gapped case is that i) the H, F as well as Zb depend on (m, ν) associated with the
U(1) symmetry, and the modular matrices appear only at m = 0 and ν = νgeo, and ii) the
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modular S-matrix violates the unitarity condition in (3.58). Recently, it is found that non-
unitary TQFTs appear in degenerate limits of 3D N = 4 rank-0 SCFTs [7]. The degenerate
limit is the Coulomb/Higgs branch limits studied in [32] to compute the Hilbert-series.

Motivated by these curious observations, we claim that the 3D T [M ] theory associated
with the finite/real/non-unitary 3-manifolds M flows at low energy to a rank-0 SCFT with
an enhanced N = 4 superconformal algebra.

In this case, as we will see with explicit examples below, the UV field theory constructed
by the method in section 3.2 always has a U(1) flavor symmetry, which is an accidental
flavor symmetry from the point of view of the class R theory construction. Hence, we can
turn on the real mass/fugacity m/u and the mixing parameter ν for the flavor symmetry
in the BPS partition function computations using the UV field theory description. For
convenience, we shall set the mixing parameter ν = 1 as the geometrical R-charge choice,
i.e. νgeo = 1. As we will explicitly check from the F-extremizations on various examples,
it turns out that the superconformal R-charge RνIR in the low energy theory is always at
νIR = 1± 1. Then, by a proper redefinition of the mixing parameter as ν ← 2− ν or ν ← ν,
one can always set

νIR = 0 , νgeo = 1 . (3.59)

Our claim is that the accidental U(1) flavor symmetry becomes the U(1)Axial subgroup
of the SO(4) ' SU(2)L × SU(2)R R-symmetry of the enhanced N = 4 superconformal
algebra in the low energy theory. The charge JAxial for this accidental symmetry is identified
with the axial combination of the enhanced R-charges as

JAxial =
(
J3
L − J3

R

)
∈ Z , (3.60)

where J3
L/R are the Cartan charges of SU(2)L/R normalized as J3

L/R ∈
Z
2 . The mixing

parameter ν is then

Rν =
(
J3
L + J3

R

)
+ ν

(
J3
L − J3

R

)
. (3.61)

To confirm the SUSY enhancement in the low energy theory, we first compute the
superconformal index using the R-charge of the IR N = 2 superconformal algebra. The
additional SUSY current multiplets for the enhanced N = 4 superconformal algebra contains
a 1/4 BPS operator with j3 = R = 1 and ∆ = 2 (see, for example, [45]), and this operator
contributes to the superconformal index at order q3/2. Therefore, the existence of the
enhanced SUSY ensures the following pattern of the index:

Iq(u, ν = 0) 3 −
(
u+ 1

u

)
q3/2 . (3.62)

The appearance of the above term is a strong evidence10 that the theory has a SUSY
enhancement to N = 4 and the accidental U(1) symmetry becomes the axial U(1)Axial
subgroup of the enhanced R-symmetry.

10But it can not be a proof since the term −q3/2 could also come from a chiral primary operator
with R = ∆ = 3.
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We further conjecture that the resulting IR N = 4 SCFT is a rank-0 theory having no
Higgs/Coulomb branches. The 3D N = 4 rank-0 SCFTs are extensively studied in [7] and
they propose several non-trivial relations among SUSY partition functions of the rank-0
SCFTs. We list some of the relations which we will use in the next section,

• Iq(u = 1, ν = ±1) = 1 , (3.63)

• |Fα(m, ν = ±1)| = 1, Hα(m, ν = ±1) ∈ R+ and
∑
α

(
Hα(m = 0, ν = ±1)

)−1 = 1 ,

(3.64)

• ∃ a Bethe-vacuum α = 0 such that |Zb=1(m = 0, ν = ±1)| = H−1/2
α=0 (m = 0, ν = ±1) ,

(3.65)
• |Zb=1(m = 0, ν = 0)| = minα[Hα(m = 0, ν = ±1)−1/2] . (3.66)

The 1st equation implies that the theory has no Coulomb/Higgs branches since the index
in the degenerate limit, u = 1 and ν → ±1, counts Coulomb/Higgs branch operators
and their descendants [32]. The 2nd equation implies the emergence of a pair of TQFT
structures in the degenerate limits where m = 0 and ν → ±1. This can be compared with
the relations (3.55) and (3.57) for unitary TQFTs. The 3rd one implies that the emergent
TQFT structure in the degenerate limit is of non-unitary type unlike the gapped cases
in (3.54). The emergence of non-unitary TQFT structures in the N = 4 rank-0 SCFTs was
already observed in [7] and dubbed as (rank-0 SCFT)/(non-unitary TQFT) correspondence.
The last equation is one of (and the most surprising) dictionary of the correspondence
proposed in that work. Thus, the confirmation of the above equations not only provides a
strong evidence for the emergence of 3D N = 4 rank-0 theory at IR but also non-trivial
test for the dictionary.

4 Examples

In this section, we check the our proposal in (3.14) using non-hyperbolic 3-manifolds
M obtained by exceptional Dehn fillings on five simplest 1-cusped hyperbolic manifolds
(m003,m004 = S3\41,m006,m007,m009) and m015 = S3\52.11

4.1 Example: M = (S3\41)pµ+λ = (m004)pASP+BSP

4.1.1 Field theory

K = 41 is the figure-eight knot, the twist knot with two half-twists. We denote its comple-
ment in 3-sphere by S3\41, which is a hyperbolic cusped 3-manifold. The corresponding
3D class R theory is [4]

T
[(
S3\41

)
pµ+λ

]
= T [S3\41, µ;λ]

“SO(3)”p
, with

T
[
S3\41, µ;λ

]
= (U(1)0 N = 2 gauge theory coupled to two chirals of charge +1) .

(4.1)
11Dehn fillings on m005 and m008 always yield non-hyperbolic manifolds.
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M Topological type IR phase UV theory
(S3\41)pµ+λ:0≤|p|≤3 Finite/Real/Unitary Gapped/TQFT Section 4.1.1
(S3\41)pµ+λ:|p|=4 Infinite N = 2 SCFT with CPOs

(S3\52)pµ+λ:1≤p≤3 Finite/Real/Non-unitary N = 4 rank-0 SCFT Section 4.2.1
(S3\52)pµ+λ:p=0,4 Infinite N = 2 SCFT with CPOs

(m003)pAsp+Bsp:p=1,−2 Finite/Real/Unitary Gapped/TQFT Section 4.3.1
(m003)pAsp+Bsp:p=0,−1 Empty SUSY broken

(m006)pAsp+Bsp:p=0 Empty SUSY broken Section 4.4.1
(m006)pAsp+Bsp:p=±1 Finte/Real/Unitary Gapped/TQFT
(m006)pAsp+Bsp:p=−2 Finte/Real/Non-unitary N = 4 rank-0 SCFT
(m006)pAsp+Bsp:p=−3 Infinite N = 2 SCFT with CPOs
(m007)pAsp+Bsp:p=0,2 Finte/Real/Unitary Gapped/TQFT Section 4.5.1

(m007)pAsp+Bsp:p=−2,−1,1 Finte/Real/Non-unitary N = 4 rank-0 SCFT
(m007)pAsp+Bsp:p=−3 Infinite N = 2 SCFT with CPOs

(m009)pAsp+Bsp:−2≤p≤2 Finte/Real/Unitary Gapped/TQFT Section 4.6.1
(m009)pAsp+Bsp:|p|=3 Infinite N = 2 SCFT with CPOs

Table 1. IR phases of class R theories associated to non-hyperbolic 3-manifolds obtained by
exceptional Dehn fillings on S3\41, S

3\52,m003,m006,m007 and m009.

The T [S3\41, µ;λ] has SU(2)Φ×U(1)top which is enhanced to SU(3) at IR [13, 46, 47]. The
SU(2)A subgroup in (3.7) of SU(3) we are gauging is chosen such that

(3 of SU(3)) = (adjoint of SU(2)A) . (4.2)

After gauging the “SO(3)” symmetry with CS level p, the resulting T [(S3\41)pµ+λ] is
expected not to have any continuous flavor symmetry for generic p.

4.1.2 SUSY partition functions

The UV field theory T [(S3\41)pµ+λ] above does not have any flavor symmetry, i.e.
rank(GF ) = 0, and the supersymmetric partition functions do not depend on real
masses/fugacities or R-symmetry mixing parameters.

Squashed 3-sphere partition function. Using localization, the partition function for
the theory T [S3\41,µ;λ]

SU(2)p is given as

Z(41)p
b = 1

2

∫
dXdZ

(2π~) I
(41)p
~ (X,Z) with

I(41)p
~ (X,Z) =

(
4 sinhX sinh 2πiX

~

)
ψ~(Z + 2X)ψ~(Z)

× exp
(

(2p+ 8)X2 + Z2 + 8XZ − (2πi+ ~)(2X + Z)
2~

)
.

(4.3)

Here, ψ~ is the quantum dilogarithm function in (3.27).
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Superconformal index. The index is

I(41)p
q =

∑
(mx,mz)

∮
|ux|=1

dux
2πiux

∮
|uz |=1

duz
2πiuz

∆(mx, ux)I∆
(
mz + 2mx, uzu

2
x

)
× I∆(mz, uz)u(2p+8)mx

x umzz u4mz
x u4mx

z

(
−q1/2

)−2mx−mz
.

(4.4)

Here (mz, uz) and (mx, ux) are (monopole flux, fugacity) coupled to the U(1) and SU(2)
gauge symmetry respectively. The I∆(m,u) is the tetrahedron index in (2.32) and ∆(mx, ux)
is the measure factor, given in (3.19), coming from the SU(2) vector multiplet. The
summation range of the monopole fluxes is, see (3.43),mx ∈ Z≥0, mz ∈ Z , for T [S3\41,µ λ]

SU(2)p
mx ∈ 1

2Z≥0, mz ∈ Z , for T [(S3\41)pµ+λ] = T [S3\41,µ λ]
“SO(3)”p .

(4.5)

Bethe-vacua and handle-gluing/fibering operator. Expanding the integrand
I(41)p
~ (X,Z) in the limit ~→ 0, see (3.30) and (3.31), we have

W(41)p
0 (X,Z) =Li2

(
e−Z−2X

)
+Li2

(
e−Z

)
+(p+4)X2+ 1

2Z
2+4XZ−iπ (2X+Z)±2πiX ,

W(41)p
1 (X,Z) =−1

2
(
2X+Z+log

(
1−e−2X−Z

)
+log

(
1−e−Z

))
+log(2sinhX) .

(4.6)

Here we used the following asymptotic expansion (assuming Im(~) 6= 0)

log(2 sinh(2πiX
~

)) ~→0−−−−−−→ ±2πiX
~

+ (exponentially suppressed) . (4.7)

The overall sign depends on the sign of Im(~) but this choice is not important for our
purpose. Extremizing the twisted superpotential W(41)p

0 , we have(
SBE of T

[
S3\41, µ;λ

]
SU(2)p

)

=
{

(x, z) : (xp+2z(x2z − 1))2 = 1, x
2(1− z)(x2z − 1)

z
= 1 , x2 6= 1

}
/ZWeyl

2 .

(4.8)

The Weyl Z2 acts as

ZWeyl
2 : (x, z) ↔ (1/x, z̃) . (4.9)

The handle-gluing and fibering operators are(
Hα of T [S3\41, µ;λ]

SU(2)p

)
= 2x2 ((p− 4)x2z2 − p+ 2

(
4x2 + 1

)
z − 4

)
(x2 − 1)2 z

∣∣∣∣
(x,z)=(x(α),z(α))∈SBE

,

(
Fα of T [S3\41, µ;λ]

SU(2)p

)
= exp

 i
(
W0 − 2πin(α)

x X − 2πin(α)
z Z

)
2π

 ∣∣∣∣
(X,Z)=(log x(α),log z(α))

.

(4.10)
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Two integers (n(α)
x , n

(α)
z ) for each Bethe-vacuum α are chosen such that, see (3.36),

∂X
(
W0 − 2πin(α)

x X − 2πin(α)
z Z

) ∣∣
(X,Z)=(log x(α),log z(α)) = 0 ,

∂Z
(
W0 − 2πin(α)

x X − 2πin(α)
z Z

) ∣∣
(X,Z)=(log x(α),log z(α)) = 0 .

(4.11)

The theory T [S3\41,µ;λ]
SU(2)p has 1-form Z2 symmetry originated from the Z2 center symmetry of

the gauged SU(2) symmetry.

4.1.3 IR phases

According to [8], the Dehn filled manifolds are

(S3\41)pµ+λ =



Torus bundle with ϕ =

2 1
1 1

 , p = 0

Atoroidal SFS S2((2, 1), (3, 1), (7,−6)) , p = ±1

Atoroidal SFS S2((2, 1), (4, 1), (5,−4)) , p = ±2

Atoroidal SFS S2((3, 1), (3, 1), (4,−3)) , p = ±3

Graph , p = ±4

Hyperbolic , |p| > 4 .

(4.12)

According to (2.17), the topological field theory TFT[M ] for the above Seifert fibered
manifolds are all unitary. Combined with the mathematical facts, our proposal (3.14)
predicts that

T
[(
S3\41

)
pµ+λ

]

=


Unitary TQFT , p = 0,±1,±2,±3

N = 2 SCFT with U(1) flavor symmetry and CPOs , p = ±4

N = 2 SCFT , |p| > 4 .

(4.13)

Now let us carefully check the expected IR phases using the general methods outlined in
section 3.4.

Using the formulas in (4.4) and (4.5), one can compute the superconformal index and
check that(
Iq of T

[
S3\41, µ;λ

]
SU (2)p

)
=
(
Iq of T

[
S3\41, µ;λ

]
“SO(3)”p

)

=


1 , p = 0,±1,±2,±3

(∑∞n=0 1)× q0 − q2 − q3 − 2q4 − 2q5 − 3q6 +O
(
q7) , p = ±4

Non-trivial power series in q1/2 starting with 1 +O
(
q1/2

)
, |p| > 4 .

(4.14)
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For p = ±4, the Z2 1-form symmetry decouples at IR and we need to sum over mx ∈ Z
(not mx ∈ Z/2) even for the “SO(3)” gauged theory. See the discussion below eq. (3.43).
The result is compatible with the expectation in (4.13). For the p = ±4 cases, the index
gets contribution of the form

(
1− q2mx+1 + (higher order)

)
from each mx ∈ 1

2Z≥0 and the
coefficient of q0 goes to infinity as we sum over all values of mx. The contributions are
from 1/2 BPS SO(3) monopole operators with Rgeo = 0. It implies that there should be
an emergent Abelian symmetry and the correct IR superconformal R-charge RIR is given
as a linear combination of Rgeo and the charge of the accidental U(1) and the monopole
operators satisfy the unitarity bound RIR ≥ 1

2 .

Unitary topological field theory when p = 0,±1,±2,±3. To probe the topological
field theories in p = 0,±1,±2 and ±3 cases, we compute the handle-gluing/fibering operators
given in (4.10)

For T
[
S3\41,µ;λ

]
SU(2)p=0

,
{
H−1
α

}
=
{

20−1,20−1,5−1,5−1,4−1,4−1
}

and

{Fα}= e
πi
6
{

1,1,e2πi/5,e−2πi/5,1,−1
}
,

For T
[
S3\41,µ;λ

]
SU(2)p=±1

,
{
H−1
α

}
=
{(
ζ1

5

)2
,
(
ζ2

5

)2
,
(
ζ3

5

)2
}
×{1,1} and

{Fα}= e
5πi
28
{

1,e2πi/7,e−4πi/7
}
×
{

1,e
πi
2
}
,

For T
[
S3\41,µ;λ

]
SU(2)p=±2

,
{
H−1
α

}
=
{(
ζ1

3
)2

2 ,

(
ζ1

3
)2

2 ,

(
ζ2

3
)2

2 ,

(
ζ2

3
)2

2 ,
(
ζ1

3

)2
,
(
ζ2

3

)2
}

and

{Fα}= e
23πi
120
{

1,−1,e−4πi/5,eπi/5,e5πi/8,e−7πi/40
}
,

For T
[
S3\41,µ;λ

]
SU(2)p=±3

,
{
H−1
α

}
=
{

8−1,8−1,4−1
}
×{1,1} and

{Fα}= e
17πi
24
{

1,e−3πi/2,e−7πi/8
}
×{1,e

πi
2 } . (4.15)

Here we defined

ζmk = (S0,α=m−1 of SU(2)k) =
√

2
k + 2 sin

(
πm

k + 2

)
. (4.16)

Notice that |Fα| = 1 and Hα ∈ R+ for all α, which are another evidences for emergence of
TQFT at IR, see (3.55). Furthermore, one can check that

∑
α

1
Hα

= 1 , (4.17)

which is also expected from (3.57). Using the above computations combined with the relation
in (3.53), one can determine the S2

0α and Tαα/T00 of the IR topological field theories.
Now let us compute the twisted partition functions for T [(S3\41)pµ+λ] = T [S3\41,µ;λ]

“SO(3)”p
using the relation in (3.45), (3.46) and (3.48). For odd p, the above computation is
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compatible with the general expectation in the eq. (3.44) and one can see that

For T
[
S3\41,µ;λ

]
“SO(3)”p=±1

,
{
H−1
α

}
=
{

2
(
ζ1

5

)2
,2
(
ζ2

5

)2
,2
(
ζ3

5

)2
}

and

{Fα}= e
5πi
28
{

1,e2πi/7,e−4πi/7
}
,

For T
[
S3\41,µ;λ

]
SU(2)p=±3

,
{
H−1
α

}
=
{

4−1,4−1,2−1
}

and

{Fα}= e
17πi
24
{

1,e−3πi/2,e−7πi/8
}
.

(4.18)

For even p, on the other hand, the Bethe-vacua in (4.8) can be divided into two classes,
SBE = S

(+1)
BE

⊔
S

(−1)
BE ,(

SQ=±1
BE of T [S3\41, µ;λ]

SU(2)p

)
=
{

(x, z) ∈ SBE : xp+2z(x2z − 1) = Q
}
. (4.19)

Then, using the eqs. in (3.45), (3.46), (3.48), one has

For T
[
S3\41, µ;λ

]
“SO (3) ”p=0

,
{
H−1
α

}
=
{

5−1, 5−1, 5−1, 5−1, 5−1
}

and

{Fα} = e
πi
6
{

1, e2πi/5, e2πi/5, e−2πi/5, e−2πi/5
}
,

For T
[
S3\41, µ;λ

]
SU (2)p=±2

,
{
H−1
α

}
=
{

2
(
ζ1

3

)2
, 2
(
ζ2

3

)2
}

and{
(Fα)2

}
= e

23πi
60
{

1, e2πi/5
}
.

(4.20)

For p = 0, the last 4 Beth-vacua correspond to the Stwisted. For p = 2, the Fα for
Bethe-vacua with Q = 1 changes its sign under the Z1−form

2 action, and only (Fα)2 is
well-defined after gauging the 1-form symmetry. It implies that the IR TQFT is a fermionic
(spin) TQFT.

4.2 Example: M = (S3\52)pµ+λ = (m015)(p−2)ASP+BSP

4.2.1 Field theory

K = 52 is the twist knot with three half-twists. The field theory is [13]

T
[(
S3\52

)
pµ+λ

]
= T

[
S3\52, µ;λ

]
“SO (3)p ”

=



(
U(1)− 1

2
×SU(2)p−4 N=2 gauge theory coupled to a chiral in (Adj)1

)
Z2

, even p(
U(1)− 1

2
×SU(2)p−4 N=2 gauge theory coupled to a chiral in (Adj)1

)
⊗U(1)−2

Zdiag
2

, odd p .

(4.21)

Adjq means that the matter field is in the adjoint representation of SU(2) and has charge
q under U(1). The theory has a U(1)top symmetry (which is an unexpected accidental
symmetry in 6D set-up (3.1)).
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4.2.2 SUSY partition functions

Squashed 3-sphere partition function. The S3
b partition function of the theory,

T [S3\52,µ;λ]
SU(2)p =

(
U(1)−1/2 × SU(2)p−4 + Φ (in Adj+1)

)
, is given by (~ := 2πib2)

Z(52)p
b

(
W = m+ (iπ + ~

2)ν
)

= 1
2

∫
dXdZ

2π~

(
4 sinh(X) sinh(2πiX

~
)
)
ψ~(Z + 2X)ψ~(Z − 2X)ψ~(Z)

× exp
(
Z2

2~ + (p− 2)X
2

~
+ Z(W − 2πi− ~)

~

)
.

(4.22)

Herem is the (rescaled) real mass, m = b×(real mass), for the U(1)top symmetry, topological
symmetry for the U(1) gauge symmetry. The real mass parameter can be identified with the
FI parameter. ν parametrizes the mixing between U(1)R and U(1)top and the R-symmetry
at ν = 1 corresponds to the geometrical R-symmetry in (3.2), i.e. Rν=1 = Rgeo.12

Superconformal index. The index is

I(52)p
q (u,ν) =

∑
(mx,mz)

∮
|ux|=1

dux
2πiux

∮
|uz |=1

duz
2πiuz

∆(mx,ux)I∆
(
mz+2mx,uzu

2
x

)
×I∆

(
mz−2mx,uz/u

2
x

)
I∆ (mz,uz)umzz u(2p−4)mx

x

(
u
(
−q1/2

)ν−2
)mz

.

(4.23)

Here (mz, uz) and (mx, ux) are (monopole flux, fugacity) coupled to the U(1) and SU(2)
gauge symmetry respectively. u is the fugacity for the U(1)top symmetry. The summation
range of the monopole fluxes is

mx ∈ Z≥0, mz ∈ Z , for T [S3\52,µ;λ]
SU(2)p

mx ∈ 1
2Z≥0, mz ∈ Z , for T [(S3\52)pµ+λ] = T [S3\52,µ;λ]

“SO(3)p” .
(4.24)

Bethe-vacua and handle-gluing/fibering operators. Expanding the integrand of
Z(52)p
b in the limit ~→ 0, see (3.30) and (3.31), we have

W(52)p
0 (X,Z;m,ν) =Li2

(
e−Z−2X

)
+Li2

(
e−Z+2X

)
+Li2

(
e−Z

)
+(p−2)X2+ 1

2Z
2

+Z (m+iπν)±2πiX ,

W(52)p
1 (X,Z;m,ν) =−1

2
(
(2−ν)Z+log

(
1−e−2X−Z

)
+log

(
1−e2X−Z

)
+log

(
1−e−Z

))
+log(2sinhX) .

12One can check that there is a Bethe-vacuum, α = (hyp), satisfying that Im[S(hyp)
0 (m = 0, ν = 1)],

defined in (3.35), of T [T [S3\52,µ;λ]
SU(2)p ] is equal to the hyperbolic volume of (S3\52)pµ+λ when the Dehn filled

manifold is hyperbolic.
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Extremizing the twisted superpotential W(52)p
0 , we have(

SBE of T [S3\52,µ;λ]
SU(2)p

)

=
{

(x,z) : x
2p−8(1−x2z)2

(x2−z)2 = 1, e
m+iπν(z−1)(1−x2z)(1−x−2z)

z2 = 1 ,x2 6= 1
}
/ZWeyl

2 .

(4.25)

The Weyl ZWeyl
2 acts as

ZWeyl
2 : (x, z) ↔ (1/x, z) . (4.26)

The handle-gluing and fibering operator are(
Hα of T [S3\52,µ;λ]

SU(2)p

)
=

2z−ν−1 (x4z(−p+2z+2)+x2 ((p−2)z3−(p−6)z+2(p−6)
)
+z(−p+2z+2)

)
(x2−1)2

∣∣∣∣
(x,z)=(x(α),z(α))

,(
Fα of T [S3\52,µ;λ]

SU(2)p

)
= exp

(
i(W(52)p

0 −2πin(α)
x X−2πin(α)

z Z−mZ)
2π

)∣∣∣∣
(X,Z)=(logx(α),logz(α))

.

(4.27)

Two integers (n(α)
x , n

(α)
z ) for each Bethe-vacuum α are chosen as in (3.36).

4.2.3 IR phases
According to [8], the Dehn filled manifolds are

(
S3\52

)
pµ+λ

=



Atoroidal SFS S2((2, 1), (3, 1), (11,−9)) , p = 1

Atoroidal SFS S2((2, 1), (4, 1), (7,−5)) , p = 2

Atoroidal SFS S2((3, 1), (1, 3), (5,−3)) , p = 3

Graph , p = 0, 4

Hyperbolic , |p− 2| > 2 .

(4.28)

According to (2.17), the topological field theory TFT[M ] for the above Seifert fibered
manifolds are all non-unitary. Combined with the mathematical facts, our proposal (3.14)
predicts that

T
[(
S3\52

)
pµ+λ

]

=


N = 4 rank-0 SCFT , p = 1, 2, 3
N = 2 SCFT with U(1) flavor symmetry and CPOs , p = 0, 4
N = 2 SCFT , |p− 2| > 2 .

(4.29)

Interestingly, the N = 2 gauge theories in (4.21) for p = 1, 2, 3 are expected to have SUSY
enhancement to N = 4. Below, we will confirm the expected IR phases using the general
methods outlined in section 3.4.
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Figure 3. |Z(52)p
b=1 (m = 0, ν)| as a function on −1.2 < ν < 1.2 for p = 1, 2, 3. The minimums are

located at ν = 0 and its values are
√

2
11 sin( π11 ),

√
1
7 sin(π7 ) and

√
1
5 sin(π5 ) for p = 1, 2, 3 respectively.

SUSY enhancement when p = 1, 2, 3. The superconformal indices, computed using
the formulae in (4.23) and (4.24), for p = 1, 2, 3 are(
Iq (u; ν = 0) of T

[
S3\52, µ;λ

]
SU (2)p=1

)
=
(
Iq (u; ν = 0) of T

[
S3\52, µ;λ

]
“SO (3) ”p=1

)

= 1− q −
(
u+ 1

u

)
q3/2 − 2q2 − uq5/2 +

(
−1 + 1

u2

)
q3 +

(1
u
− u

)
q7/2 +O

(
q9/2

)
,

(
Iq (u; ν = 0) of T

[
S3\52, µ;λ

]
SU (2)p=2

)
=
(
Iq (u; ν = 0) of T

[
S3\52, µ;λ

]
“SO (3) ”p=2

)

= 1− q −
(
u+ 1

u

)
q3/2 − 2q2 − uq5/2 +

(
−1 + 1

u2

)
q3 +

(1
u
− u

)
q7/2 + q4

u2 +O
(
q9/2

)
,

(
Iq (u; ν) of T

[
S3\52, µ;λ

]
SU (2)p=3

)
=
(
Iq (u; ν) of T

[
S3\52, µ;λ

]
“SO (3) ”p=3

)

= 1− q −
(1
u

+ u

)
q3/2 − 2q2 −

(1
u

+ u

)
q5/2 − 2q3 −

(1
u

+ u

)
q7/2 − 2q4 +O

(
q5
)
.

(4.30)

The index for general R-charge mixing ν can be obtained by the relation in (3.20). To
compute the correct IR superconformal index, one needs to determine the IR superconformal
R-symmetry, νIR, using the F-maximization in (3.40). Using the Bethe-sum formula of
round 3-sphere partition function in (3.38) along with (4.25) and (4.27), one can confirm
that (see figure 3)

|Z(52)p
b=1 (m = 0, ν = 0)| < |Z(52)p

b=1 (m = 0, ν 6= 0)| , for p = 1, 2, 3 . (4.31)

So the ν = 0 corresponds to the correct IR superconformal R-charge according to the
F-maximization, i.e. νIR = 0. Applying the formula in (3.38), one can choose arbitrary
ν0 ∈ 2Z + 1 at which the superconformal index contains only qinteger terms. Putting back
the IR superconformal R-charge choice to the superconformal index, one can confirm that
the index satisfies the necessary condition in (3.62) for the SUSY enhancement. In the
degenerate limits u = 1 and ν → ±1, the superconformal indices become trivial, i.e.

For p = 1, 2, 3,(
Iq(u = 1; ν = ±1) of T

[
S3\52, µ;λ

]
SU(2)p

and T
[
S3\52, µ;λ

]
“SO(3)”p

)
= 1 .

(4.32)
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It is a strong evidence for emergence of non-unitary TQFTs in the degenerate limits. To
probe the emergent non-unitary TQFTs, one can compute the handle-gluing and fibering
operators. For p = 1 and 3, we have({

H−1
α (m= 0,ν= +1)

}
of T

[
S3\52,µ;λ

]
SU(2)p=1

)
=
{(
ζ5

9
)2
,
(
ζ1

9
)2
,
(
ζ2

9
)2
,
(
ζ3

9
)2
,
(
ζ4

9
)2
}
×
{

1,1
}
.(

{Fα(m= 0,ν= +1)} of T
[
S3\52,µ;λ

]
SU(2)p=1

)
= e

19πi
132

{
1,e 2πi

11 ,e
10πi

11 ,e
16πi

11 ,e
20πi

11

}
×
{

1,eπi2
}
.({

H−1
α (m= 0,ν=−1)

}
of T [S3\52,µ;λ]

SU(2)p=1

)
=
{

(ζ2
9 )2,(ζ1

9 )2,(ζ3
9 )2,(ζ4

9 )2,(ζ5
9 )2
}
×
{

1,1
}
.(

{Fα(m= 0,ν=−1)} of T
[
S3\52,µ;λ

]
SU(2)p=1

)
= e

43πi
132

{
1,e 20πi

11 ,e
18πi

11 ,e
8πi
11 ,e

14πi
11 ,

}
×
{

1,eπi2
}
.({

H−1
α (m= 0,ν=±1)

}
of T

[
S3\52,µ;λ

]
SU(2)p=3

)
=
{(
ζ2

3
)2

2 ,

(
ζ2

3
)2

2 ,

(
ζ1

3
)2

2 ,

(
ζ1

3
)2

2

}
×
{

1,1
}
.(

{Fα(m= 0,ν=±1)} of T
[
S3\52,µ;λ

]
SU(2)p=3

)
= e− 3πi

10

{
1,eπi2 ,eπi10 ,e

8πi
5

}
×
{

1,eπi2
}
.

(4.33)

It is compatible with the general expectation in (3.44). For p = 2 case,({
H−1
α (m = 0, ν = +1)

}
of T

[
S3\52, µ;λ

]
SU(2)p=2

)

=
{(
ζ3

5
)2

2 ,

(
ζ3

5
)2

2 ,

(
ζ1

5
)2

2 ,

(
ζ1

5
)2

2 ,

(
ζ5

5
)2

2 ,

(
ζ5

5
)2

2 ,
(
ζ2

5

)2
,
(
ζ4

5

)2
,
(
ζ6

5

)2
}
.

(
{Fα(m = 0, ν = +1)} of T

[
S3\52, µ;λ

]
SU(2)p=2

)

= e
197πi
168

{
1, eπi, e

πi
7 , e

8πi
7 , e

5πi
7 , e

12πi
7 , e

47πi
56 , e

9πi
8 , e

15πi
56

}
,

({
H−1
α (m = 0, ν = −1)

}
of T [S3\52, µ;λ]

SU(2)p=2

)

=
{(
ζ5

5
)2

2 ,

(
ζ5

5
)2

2 ,

(
ζ1

5
)2

2 ,

(
ζ1

5
)2

2 ,

(
ζ3

5
)2

2 ,

(
ζ3

5
)2

2 ,
(
ζ2

5

)2
,
(
ζ4

5

)2
,
(
ζ6

5

)2
}
.

(
{Fα(m = 0, ν = −1)} of T

[
S3\52, µ;λ

]
SU(2)p=2

)

= e
53πi
168

{
1, eπi, e

6πi
7 , e

13πi
7 , e

4πi
7 , e

11πi
7 , e

9πi
8 , e

95πi
56 , e

111πi
56

}
.

(4.34)

One can check that the above Hα and Fα satisfy the condition in (3.64). The Bethe-vacuum
α = 0 is chosen to satisfy the following relation

|Zb(m = 0, ν = ±1)| =
∣∣∣∣∑
α

Fα(m = 0, ν = ±1)
Hα(m = 0, ν = ±1)

∣∣∣∣ = 1√
Hα=0(m = 0, ν = ±1)

. (4.35)
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Using the relation in (3.53), one can compute |S0α| for the topological field theories in the
degenerate limits and confirm that the unitarity condition (3.58) is violated. It implies that
the emergent TQFTs are indeed non-unitary. Furthermore, from figure 3 and (4.34), one
can confirm that

|Zb=1(m = 0, ν = 0)| = minα[Hα(m = 0, ν = ±1)−1/2] =



√
2
11 sin

(
π
11
)
, p = 1√

1
7 sin

(
π
7
)
, p = 2√

1
5 sin

(
π
5
)
, p = 3

,

(4.36)

which is expected from (3.66). For the case with p = 3, one can directly check the SUSY
enhancement using known IR dualities. Using a chain of dualities, one can prove that13(
T
[
M = (S3\52)pµ+λ:p=3

]
in (4.21)

)
= [(U(1)0 +X(of charge +2))⊗U(1)2]⊗U(1)−2

Zdiag
2

(using duality appetizer [48])

= (U(1)0 +X(of charge +2))⊗
(

U(1)2 ⊗U(1)−2

Zdiag
2

)
.

(4.37)

The theory in the 2nd factor is just a (trivial) topological theory and the theory in 1st
factor is actually known to have N = 4 symmetry enhancement and flows to the N = 4
SCFT of rank-0 at IR [49].

U(1) flavor symmetry and chiral primary operators when p = 0, 4. The super-
conformal indices, computed using the formulae in (4.23) and (4.24), for p = 0 and 4 are14(

Iq(u; ν = 0) of T
[
S3\52, µ;λ

]
SU(2)p=0

)

= 1 +
( 1
u2 − 1

)
q − uq3/2 +

( 1
u4 − 2

)
q2 +

(1
u
− u

)
q5/2 + q3

u6

+
(2
u
− u

)
q7/2 +

(
1 + 1

u8 −
1
u2

)
q4 +O(q9/2) ,

(
Iq(u; ν = 0) of T

[
S3\52, µ;λ

]
“SO(3)”p=0

)

= 1− q1/2

u
+
( 1
u2 − 2

)
q −

(
u+ 1

u3

)
q3/2 +

( 1
u4 − 3

)
q2

+
(2
u
− 2u− 1

u5

)
q5/2 + q3

u6 −
( 1
u7 −

4
u

+ u

)
q7/2 +O

(
q4
)
,

13Duality we are using here is IR equivalence between (SU(2)−1 + adjoint Φ) = (free chiral X)⊗U(1)2. In
the duality, the U(1)Φ flavor symmetry acting on Φ with charge +1 in SU(2) gauge theory becomes U(1)X
flavor symmetry acting on X with charge +2 in the free chiral theory. The gauge invariant Tr(Φ2) in the
SU(2) theory is mapped to X in the free chiral theory. The background CS term of CS level k for U(1)Φ in
SU(2) gauge theory is mapped to background CS level k + 1/2 for U(1)X .

14When p = 4, the UV Z2 1-form symmetry decouples at IR and we need to sum over only mx ∈ Z even
for the “SO(3)” gauging as explained below (3.43).
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ν
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|Zb=1(m=0, ν)|

0.092
0.031

Figure 4. |Z(52)p=0
b=1 (m = 0, ν)| as a function of ν ∈ (−2, 2). The minimum is located at ν ' 0.031

and its value is approximately 0.092.

(
Iq(u; ν = 0) of T

[
S3\52, µ;λ

]
SU(2)p=4

)
=
(
Iq(u; ν = 0) of T

[
S3\52, µ;λ

]
“SO(3)”p=4

)

=
( ∞∑
n=0

1
)
× q0 − q − uq3/2 − 2q2 − uq5/2 +O

(
q3
)
. (4.38)

When p = 0, the index at ν = 1 (geometrical R-charge) becomes(
Iq(u; ν = 1) of T

[
S3\52, µ;λ

]
SU(2)p=0

)
=
(
Iq(u; ν = 0) of T

[
S3\52, µ;λ

]
SU(2)p=0

) ∣∣∣∣
u→u(−q1/2)

=
( ∞∑
n=0

u−2n
)
× q0 − q +

(
u− 1

u
− 2

)
q2 +

(
u− 2

u
− 1
u2

)
q3 +O

(
q4
)
,

(
Iq(u; ν = 1) of T [(S3\52)0µ+λ] = T [S3\52, µ;λ]

“SO(3)”p=0

)

=
( ∞∑
n=0

u−n
)
× q0 − 2q +

(
u− 2

u
− 3

)
q2 +

(
2u− 4

u
− 2
u2

)
q3 +O

(
q4
)
.

(4.39)

As expected from (2.25), (3.49) and (4.28), the index diverges at ν = 1 and u = 1. The
infinity is regularized by the fugacity u. The infinity is just due to the bad choice of R-charge,
ν = 1, which is different from the correct IR superconformal R-charge. The correct R-charge
can be determined from the F-maximization principle (3.40), and we numerically find that
(See figure 4.)

νIR ' 0.031 , |Zb=1(m = 0, ν = νIR)| ' 0.0924563 . (4.40)

The term ∑∞
n=0 u

−n comes from 1/2 BPS bare monopole operators, (V( 1
2 ,−1))n, with SU(2)

monopole flux mx = n
2 and U(1) monopole flux mz = −n. The V( 1

2 ,−1) is a chiral primary
operator whose R-charge is

RνIR

(
V( 1

2 ,−1)

)
= 1− νIR ' 0.969 . (4.41)
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So, we can conclude that the theory T [(S3\52)0µ+λ] flows to a 3D N = 2 SCFT with chiral
primary operators, which is compatible with our proposal in (3.14).

When p = 4, the analysis is more subtle. Like p = 0 case, the superconformal index
diverges at ν = 1 and u = 1 as expected from (2.25), (3.49) and (4.28). In this case,
however, the infinity can not be regularized by the fugacity u since the (∑∞n=0 1) × q0

comes from 1/2 BPS bare monopole operators V(n2 ,0)(n ≥ 0) neutral under the U(1)top
symmetry. Note that the bare monopole operator is gauge-invariant when p = 4 since the
bare Chern-Simons level for SU(2) gauge symmetry is zero, see (4.21), and matter fields
are in a real representation of the SU(2), which means that there is no 1-loop CS level
shift. The only possible explanation for the infinity is that there is an additional U(1) flavor
symmetry emerging at IR under which the monopole operators are charged. So we expect
that the IR theory will be described by a N = 2 SCFT, which has at least two U(1)s as
flavor symmetry. The monopole operator becomes a chiral primary operator in the IR
SCFT. This is compatible with our proposal in (3.14).

4.3 Example: M = (m003)pASP+BSP

4.3.1 Field theory

The ASP is non-closable since (m003)ASP = L(10, 3) [8]. ASP is an even cycle while BSP is
an odd cycle. The field theory T [m003, ASP;BSP] is [13]

T [m003, ASP;BSP] = (U(1)0 N = 2 gauge theory coupled to two chirals of charge +1) .
(4.42)

The theory is actually identical to T [S3\41, µ] in (4.1). The theory has manifest SU(2)
flavor symmetry rotating the two chirals, which can be identified with the SU(2)A in (3.7).
The SU(2)A is different from the SU(2)A in (4.2) for T [S3\41, µ] case. Background CS
level for the SU(2) is +1/2. Then, the field theories associated to the Dehn filled manifolds
are (see (3.10))

T [(m003)pASP+BSP ] = T [m003, ASP;BSP]
SU(2)p

=
(
U(1)0 × SU(2)p+1/2 coupled to a chiral Φ in 21

)
.

(4.43)

The theory has U(1)top symmetry associated to the U(1)0 gauge field.

4.3.2 SUSY partition functions

Squashed 3-sphere partition function. The squashed 3-sphere partition function for
the theory T [(m003)pASP+BSP ] is

Z(m003)p
b

(
W =m+

(
iπ+ ~

2

)
ν

)
= 1

2

∫
dXdZ

(2π~)

(
4sinhX sinh 2πiX

~

)
ψ~(Z+X)ψ~(Z−X)

×exp
(

2(p+1)X2+Z2+2(W−(iπ+ ~
2))Z

2~

)
.

(4.44)
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Here m is the real mass parameter for the U(1)top symmetry, i.e. FI parameter, and the
ν parametrizes the mixing between the U(1)R symmetry and the U(1)top symmetry. The
choice ν = 1 corresponds to the geometrical U(1) R-symmetry.

Superconformal index. The superconformal index for the theory T [(m003)pASP+BSP ] is

I(m003)p
q (u,ν) =

∑
mx∈Z≥0,mz∈Z

∮
|ux|=1

dux
2πiux

∮
|uz |=1

duz
2πiuz

∆(mx,ux)

×I∆(mz+mx,uzux)I∆(mz−mx,uz/ux)u2(p+1)mx
x umzz (u(−q1/2)(ν−1))mz .

(4.45)
Here (mz, uz) and (mx, ux) are (monopole flux, fugacity) coupled to the U(1) and SU(2)
gauge symmetry respectively. u is the fugacity for the flavor U(1)top symmetry.

Bethe-vacua and handle-gluing/fibering operators. Expanding the integrand of
Z(m003)p
b in the limit in which ~→ 0, we get

W(m003)p
0 (X,Z;m, ν)

= Li2
(
e−Z−X

)
+ Li2

(
e−Z+X

)
+ (p+ 1)X2 + 1

2Z
2 + (m+ iπ (ν − 1))Z ± 2πiX ,

W(m003)p
1 (X,Z;m, ν)

= −1
2
(
log

(
1− e−Z−X

)
+ log

(
1− e−Z+X

))
+ ν − 3

2 Z + πi+ log (2 sinhX) .
(4.46)

Extremizing the twisted superpotential W(m003)p
0 , we obtain(

SBE of T [m003, ASP;BSP]
SU(2)p

)

=
{

(x, z) : x2p+1(1− xz)
x− z

= 1 , e
m+iπν(x− z)(xz − 1)

xz
= 1 , x2 6= 1

}
/ZWeyl

2 ,

(4.47)

where x = eX , z = eZ and the Weyl group ZWeyl
2 acts as

ZWeyl
2 : (x, z) ↔ (1/x, z) . (4.48)

Then, the handle-gluing and fibering operators are given by(
Hα of T [m003, ASP;BSP]

SU(2)p

)

= −xz
1−ν (x (2(p+ 1)z2 − 2p+ xz

)
+ z

)
(x2 − 1)2

∣∣∣∣∣
(x,z)=(x(α),z(α))

,

(
Fα of T [m003, ASP;BSP]

SU(2)p

)

= exp
(
i(W(m003)p

0 − 2πin(α)
x X − 2πin(α)

z Z −mZ)
2π

)∣∣∣∣∣
(X,Z)=(log x(α),log z(α))

.

(4.49)

Two integers (n(α)
x , n

(α)
z ) for each Bethe-vacuum α are chosen as in (3.36).
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4.3.3 IR phases

According to [8], the Dehn filled manifolds are

(m003)pASP+BSP =


Atoroidal SFS S2((2, 1), (3, 2), (−3, 1)) , p = −2, 1
Lens space L(5, 1) , p = −1, 0
Hyperbolic , p < −2 or p > 1 .

(4.50)

According to (2.17), the TFT[M ] for the above Seifert fibered manifolds are all unitary.
From our proposal in (3.14), we expect that

T [(m003)pASP+BSP ] =


Unitary TQFT , p = −2, 1
SUSY is spontaneously broken , p = −1, 0
N = 2 SCFT , p < −2 or p > 1 .

(4.51)

When p = 0 or p = −1, one can check that

(I(m003)p
q (u, ν) in (4.45)) = 0 and (SBE in (3.32)) is an empty set . (4.52)

This implies that the theories at p = 0 or p = −1 enjoy dynamical spontaneous supersym-
metry breaking. When p = 1 or p = −2, on the other hand,

(
I(m003)p
q (u, ν) in (4.45)

)
= 1 . (4.53)

Interestingly, the dependence on (u, ν) in Iq drops off in the case. It implies that the theory
at p = 1 or p = −2 flows to a unitary topological field theory. To probe the topological field
theories in these cases, we can compute the handle-gluing/fibering operators given in (4.49)

(
H−1
α=0(m = 0, ν = 1) of T [m003, A;B]

SU(2)p=1

)
= 1 ,

(
Fα=0(m = 0, ν = 1) of T [m003, A;B]

SU(2)p=1

)
= e

πi
4 ,

(
H−1
α=0(m = 0, ν = 1) of T [m003, A;B]

SU(2)p=−2

)
= 1 ,

(
Fα=0(m = 0, ν = 1) of T [m003, A;B]

SU(2)p=−2

)
= e

πi
12 .

(4.54)

The (Hα,Fα) satisfy the conditions in (3.55) and (3.57). It is another evidence for the
emergence of TQFT at IR. The handle-gluing operators and fibering operators at arbitrary
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real m (with ν = νgeo = 1) are(
H−1
α=0(m, ν = 1) of T [m003, A;B]

SU(2)p=1

)
= e2m ,

(
Fα=0(m, ν = 1) of T [m003, A;B]

SU(2)p=1

)
= exp

[
i

(
π

4 + m2

4π

)]
,

(
H−1
α=0(m, ν = 1) of T [m003, A;B]

SU(2)p=−2

)
= 1 ,

(
Fα=0(m, ν = 1) of T [m003, A;B]

SU(2)p=−2

)
= exp

[
i

(
π

12 −
m2

4π

)]
.

(4.55)

As expected, they are independent of the continuous real mass parameter m modulo the
ambiguities (3.37) due to local counter-terms.

4.4 Example: M = (m006)pASP+BSP

4.4.1 Field theory

The ASP is non-closable since (m006)ASP = L(5, 2). Both ASP and BSP are odd cycle and we
choose A = ASP and B = ASP +BSP for the two 1-cycles to have different oddness/evenness.
In that choice, the field theory associated to the 1-cusped 3-manifold is

LT [m006,ASP;ASP+BSP]
[
~Φ, v, w;WX ,WC

]
=
∫
d4θ

(
Φ†1e−wΦ1 + Φ†2e−v+wΦ2 + Φ†3ev+wΦ3

)
+ 1

2π

∫
d4θ (ΣvWA + ΣwWC)

+ 1
4π

∫
d4θ

(
−Σvv −

3
2Σww

)
+
(∫

d2θΦ2
1Φ2Φ3 + (c.c)

)
.

(4.56)

Here {Φi}3i=1 are chiral superfields. v and w are dynamical vector multiplets while WA

and WC are background vector multiplets coupled to U(1)A × U(1)C flavor symmetry. The
theory is nothing but U(1)−1×U(1)− 3

2
gauge theory coupled to 3 chirals with gauge charges

(0,−1), (−1, 1), (1, 1) with superpotential Φ2
1Φ2Φ3. The theory has U(1)A ×U(1)C flavor

symmetries which are topological symmetries associated to the two U(1)s. Since the ASP
is non-closable, the U(1)A symmetry is expected to be enhanced to SU(2)A symmetry at
IR according to the prediction of 3D-3D correspondence in (3.7). Below, we will confirm
the symmetry enhancement from the superconformal index computation. Then, the field
theories for the Dehn filled manifolds are

T
[
(m006)pASP+BSP

]
= T [m006, ASP;ASP +BSP]

“SO(3)”p−1

=


(
T [m006,ASP;ASP+BSP]

SU(2)p−1

)
/Z2 , even (p− 1)(

T [m006,ASP;ASP+BSP]
SU(2)p−1

⊗U(1)−2
)
/Z2 , odd (p− 1) .

(4.57)
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4.4.2 SUSY partition functions

Squashed 3-sphere partition function. The S3
b partition function of the theory,

T [m006,ASP;ASP+BSP]
SU(2)p−1

, is given by (~ := 2πib2)

Z(m006)p
b

(
W =m+

(
iπ+ ~

2

)
ν

)
= 1

2

∫
dXdZ1dZ2

(2π~)3/2

(
4sinh(X)sinh

(2πiX
~

))
ψ~ (−Z2+2πi+~)ψ~ (−Z1+Z2−2πi−~)

×ψ~ (Z1+Z2)exp

(p−1)X
2

~
+

2X
(
Z1+iπ+ ~

2

)
+Z2

(
W−

(
iπ+ ~

2

))
~

 .

(4.58)

The geometrical R-charge corresponds to ν = 1.

Superconformal index. The index is given by

I(m006)p
q (u,ν) =

∑
mx

∮
|ux|=1

dux
2πiux

∆(mx,ux)u2(p−1)mx
x Im006(mx,ux;u,ν) , where

Im006(mx,ux;u,ν) =
∑

m1,m2∈Z

∮
|z1|=1

dz1
2πiz1

∮
|z2|=1

dz2
2πiz2

I∆

(
−m2,

q

z2

)
I∆

(
m2−m1,

z2
z1q

)

×I∆(m1+m2,z1z2)
(
−q1/2z1

)2mx
u2m1
x

(
u(−q1/2)ν−1

)m2
.

(4.59)

Im006(mx, ux;u, ν) is the generalized superconformal index for T [m006, ASP;ASP + BSP]
where (mx, ux) are background (monopole flux, fugacity) coupled to the U(1)A while u is
the fugacity for the U(1)C . ν parametrizes the mixing between U(1) R-symmetry and the
U(1)C . The U(1)A symmetry will be enhanced to SU(2)A at IR and cannot be mixed the
R-symmetry. To see the enhancement, we compute the index

Im006
q (mx = 0,ux;u,ν)

= 1+
(
−2−u2

x−
1
u2
x

− 1
u
− 1
uu2

x

−u
2
x

u

)
q−
(
−2− 1

u
+u+ 1

uu4
x

+u4
x

u

)
q2+O(q3)

∣∣∣∣
u→(−q1/2)νu

(4.60)

The term
(
−2− u2

x − 1
u2
x

)
q can be identified with the contributions from conserved current

multiplets for U(1)C and SU(2)A. The conserved current multiplet of the 3D N = 2 SCFT
contains a conformal primary with r = 1, j3 = 1

2 and ∆ = 3
2 . The term exists regardless of

the mixing parameter ν. Furthermore, the index respects the Weyl Z2 symmetry

Im006
q (mx, ux;u, ν) = Im006

q (−mx, 1/ux;u, ν) . (4.61)

The summation ranges of mx and m1,2 aremx ∈ Z≥0, m1,m2 ∈ Z , for T [m006,ASP;ASP+BSP]
SU(2)p−1

mx ∈ 1
2Z≥0, m1,m2 ∈ Z , for T [(m006)pASP+BSP ] = T [m006,ASP;ASP+BSP]

“SO(3)”p .
(4.62)
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Bethe-vacua and handle-gluing/fibering operators. Expanding the integrand of
Z(m006)p
b in the limit in which ~→ 0, we get

W(m006)p
0 (X,Z1,Z2;m,ν)

=Li2
(
eZ2
)

+Li2
(
eZ1−Z2

)
+Li2

(
e−Z1−Z2

)
+(p−1)X2+2X (Z1+πi)+(m+(ν−1)πi)Z2

±2πiX ,

W(m006)p
1 (X,Z1,Z2;m,ν)

= 1
2
(
log
(
1−eZ2

)
−3log

(
1−eZ1−Z2

)
−log

(
1−e−Z1−Z2

))
+X+ ν−1

2 Z2+log(2sinhX) .
(4.63)

Extremizing the twisted superpotential W(m006)p
0 , we obtain(

SBE of T [m006, ASP;ASP +BSP]
SU(2)p−1

)
=
{

(x, z1, z2) : z2
1x

2p−2 = 1 , x
2(1− z1z2)
z1(z1 − z2) = 1 ,

− em+iπν(z1 − z2)(z1z2 − 1)
z1(z2 − 1)z2

2
= 1 , x2 6= 1

}
/ZWeyl

2 .

(4.64)
Here x = eX , z1,2 = eZ1,2 , and the Weyl group ZWeyl

2 acts as

ZWeyl
2 : (x, z1, z2) ↔ (1/x, 1/z1, z2) . (4.65)

Then, the handle-gluing and fibering operators are given by(
Hα of T [m006,ASP;ASP+BSP]

SU(2)p−1

)

= 2(z1−z2)2 ((p+3)
(
z2

1 +1
)
z2

2−2z2
(
3pz1+z2

1 +1
)
+4pz1−2z1z

3
2
)
z−ν−3

2
(x2−1)2 z1 (z2−1)2

∣∣∣∣∣
(x,z1,2)=(x(α),z

(α)
1,2 )

,

(
Fα of T [m006,ASP;ASP+BSP]

SU(2)p−1

)

= exp
(
i(W(m006)p

0 −2πin(α)
x X−2πin(α)

z1 Z1−2πin(α)
z2 Z2−mZ2)

2π

)∣∣∣∣∣
(X,Z1,2)=(logx(α),logz(α)

1,2 )
.

Three integers (n(α)
x , n

(α)
z1 , n

(α)
z2 ) for each Bethe-vacuum α are chosen as in (3.36).

4.4.3 IR phases

According to [8], the Dehn filled manifolds are

(m006)pASP+BSP =



Lens space L(15, 4) , p = 0
Atoroidal SFS S2((2, 1), (2, 1), (3, 2)) , p = 1
Atoroidal SFS S2((2, 1), (3, 2), (4,−3)) , p = −1
Atoroidal SFS S2((2, 1), (3, 1), (7,−5)) , p = −2
Graph , p = −3
Hyperbolic , |p+ 1| > 2 .

(4.66)
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According to (2.17), TFT[S2((2, 1), (2, 1)(3, 2))] and TFT[S2((2, 1), (3, 2)(4,−3))] are uni-
tary while TFT[S2((2, 1), (3, 1)(7,−5))] is non-unitary. From the our proposal in (3.14), we
expect that

T [(m006)pASP+BSP ] =



SUSY is spontaneously broken , p= 0
Unitary TQFT , p=−1,1
N = 4 rank-0 SCFT , p=−2
N = 2 SCFT with U(1) flavor symmetry and CPOs , p=−3
N = 2 SCFT , |p+1|> 2 .

(4.67)

Computing the superconformal indices (4.59), (4.62), we obtain(
Iq(u; ν = 0) of T [m006, ASP;ASP +BSP]

SU(2)p−1=−1
and T [m006, ASP;ASP +BSP]

“SO(3)”p−1=−1

)
= 0 ,

(
Iq(u; ν = 0) of T [m006, ASP;ASP +BSP]

SU(2)p−1=0,−2
and T [m006, ASP;ASP +BSP]

“SO(3)”p−1=0,−2

)
= 1 ,

(
Iq(u; ν = 0) of T [m006, ASP;ASP +BSP]

SU(2)p−1=−3
and T [m006, ASP;ASP +BSP]

“SO(3)”p−1=−3

)

= 1− q −
(
u+ 1

u

)
q3/2 − 2q2 − uq5/2 +

( 1
u2 − 1

)
q3 +

(1
u
− u

)
q7/2 +O(q4) ,

(
Iq(u; ν = 0) of T [m006, ASP;ASP +BSP]

SU(2)p−1=−4

)

= 1 +
( 1
u2 − 1

)
q − uq3/2 +

( 1
u4 − 2

)
q2 +

(2
u
− u

)
q5/2 +

(
1 + 1

u6

)
q3 +O(q7/2) ,

(
Iq(u; ν = 0) of T [m006, ASP;ASP +BSP]

“SO(3)”p−1=−4

)

= 1− q1/2

u
+
( 1
u2 − 2

)
q −

(
u+ 1

u3

)
q3/2 +

( 1
u4 − 3

)
q2 +O(q5/2) .

(4.68)
The results for p = 0,±1 are compatible with our expectation in (4.67).15 For p =
−2 case, one can check that the ν = 0 corresponds to the superconformal point, i.e.
νIR = 0, from F-maximization. The superconformal index contains the term −(u +
1
u)q2/3, which is compatible with the expected SUSY enhancement, see (3.62). When
p = 0,

(
SBE of T [m006,ASP;ASP+BSP]

SU(2)p−1=−1

)
is an empty set as expected from the spontaneous

supersymmetry breaking.
Now, let us compute the handle-gluing and fibering operators to probe the topological

field theories when p = ±1,−2.
15When p = 1, the UV 1-form Z2 symmetry decouples at IR. Thus, we only need to sum over mx ∈ Z

even for the “SO(3)” gauging as explained below (3.43).
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Unitary topological field theory when p = ±1. The handle-gluing and fibering
operators are given by16({

H−1
α (m = 0, ν = ±1)

}
of T [m006, ASP;ASP +BSP]

SU(2)p−1=0

)
=
{

1
}
,(

{Fα(m = 0, ν = ±1)} of T [m006, ASP;ASP +BSP]
SU(2)p−1=0

)
=
{
e
iπ
4

}
,({

H−1
α (m = 0, ν = ±1)

}
of T [m006, ASP;ASP +BSP]

SU(2)p−1=−2

)
=
{1

4 ,
1
4 ,

1
2

}
,(

{Fα(m = 0, ν = ±1)} of T [m006, ASP;ASP +BSP]
SU(2)p−1=−2

)
=
{
e−

9iπ
8 , e−

iπ
8 , e

iπ
2
}
.

(4.69)

Further note that |Fα| = 1 and∑α(Hα)−1 = 1, which also imply the emergence of TQFT at
IR, see (3.55) and (3.57). When p = 1, there is a single Bethe-vacuum with x = ±i (modulo
the Weyl Z2) on which the 1-form Z2 symmetry trivially acts. It is another evidence that
the 1-form symmetry decouples at IR.

SUSY enhancement when p = −2. We have already observed strong evidences for
the SUSY enhancement at the superconformal R-charge ν = 0 when p = −2. Here, we shall
analyze the emergent non-unitary TQFTs in the degenerate limits. In the degenerate limits
u = 1, ν → ±1, the superconformal index becomes trivial:(
Iq(u = 1; ν = ±1) of T [m006, ASP;ASP +BSP]

SU(2)p−1=−3
and T [m006, ASP;ASP +BSP]

“SO(3)”p−1=−3

)
= 1 .

(4.70)

This is a strong evidence for emergence of the non-unitary TQFTs in the degenerate limits.
To probe the emergent non-unitary TQFTs, one may compute the handle-gluing and fibering
operators as following:({
H−1
α (m= 0,ν= 1)

}
of T [m006,ASP;ASP+BSP]

SU(2)p−1=−3

)
=
{(

ζ3
5

)2
,
(
ζ1

5

)2
,
(
ζ2

5

)2
}
×
{

1,1
}
,(

{Fα(m= 0,ν= 1)} of T [m006,ASP;ASP+BSP]
SU(2)p−1=−3

)
=
{
e−

5iπ
42 ,e−

41iπ
42 ,e−

17iπ
42
}
×
{

1,e
πi
2
}
.({

H−1
α (m= 0,ν=−1)

}
of T [m006,ASP;ASP+BSP]

SU(2)p−1=−3

)
=
{(

ζ2
5

)2
,
(
ζ1

5

)2
,
(
ζ3

5

)2
}
×
{

1,1
}
,(

{Fα(m= 0,ν=−1)} of T [m006,ASP;ASP+BSP]
SU(2)p−1=−3

)
=
{
e−

41iπ
42 ,e−

5iπ
42 ,e−

17iπ
42
}
×
{

1,e
πi
2
}
,

(4.71)

where ζmk is defined in (4.16). From the above results, one can check that (Hα,Fα) satisfy
the conditions in (3.64), which are another evidences for the emergence of non-unitary

16There is a tricky Bethe-vacuum with (z1, z2, x) = (1, 1,±i). To see it, we first deform the equation
z2

1x
2p−2 = 1 in (4.64) by z2

1x
2p−2 = eε, and obtain Bethe-vacua and their (Hα,Fα), and then take ε→ 0.
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TQFTs in the degenerate limits, m = 0 and ν → ±1. Here, the Bethe-vacuum α = 0 is
chosen to satisfy the following relation:

|Zb(m = 0, ν = ±1)| =
∣∣∣∣∑
α

Fα(m = 0, ν = ±1)
Hα(m = 0, ν = ±1)

∣∣∣∣ = 1√
Hα=0(m = 0, ν = ±1)

. (4.72)

In addition, one can obtain the value of round 3-sphere partition function at m = ν = 0
as following:

|Zb=1 (m = 0, ν = 0) | = minα
[
Hα(m = 0, ν = ±1)−1/2

]
=
√

2
7 sin

(
π

7

)
, (4.73)

which is expected from (3.66). Using the relation in (3.53), one can compute |S0α| for the
topological field theories in the degenerate limits and show that the unitarity condition (3.58)
is violated. It implies that the emergent TQFTs are indeed non-unitary.

U(1) flavor symmetry and chiral primary operators when p = −3. The super-
conformal indices (4.68) for p = −3 at geometric R-charge ν = 1 are given by

(
Iq(u; ν = 1) of T [m006, ASP;ASP +BSP]

SU(2)p−1=−4

)

=
( ∞∑
n=0

u−2n
)
× q0 − q +

(
−2− 2

u
+ u

)
q2 +

(
1− 2

u2 −
3
u

+ u

)
q3 +O

(
q4
)
,

(
Iq(u; ν = 1) of T [m006, ASP;ASP +BSP]

“SO(3)p−1=−4”

)

=
( ∞∑
n=0

u−n
)
× q0 − 2q −

(
3 + 4

u
− u

)
q2 +

(
2− 4

u2 −
6
u

+ 2u
)
q3 +O

(
q4
)
.

(4.74)

As expected, the indices diverge at ν = 1 and u = 1. The infinity is regularized by the
fugacity u. This infinity is just due to the bad choice of R-charge, ν = 1, which is different
from the correct IR superconformal R-charge. The correct R-charge should be determined
from the F-maximization principle (3.40), and we numerically find that

νIR ' −0.706 , |Zb=1(m = 0, ν = νIR)| ' 0.0642483 . (4.75)

The term ∑∞
n=0 u

−n comes from “SO(3)” monopole operators, which are chiral primaries
with Rgeo = 0.

4.5 Example: M = (m007)pASP+BSP

ASP is a non-closable cycle since (m006)ASP = L(3, 1). Both ASP and BSP are odd and we
choose A = ASP and B = ASP +BSP.

– 50 –



J
H
E
P
1
1
(
2
0
2
2
)
1
5
1

4.5.1 Field theory

The field theory is [13]

T [(m007)pASP+BSP ]

= T [m007, ASP;ASP +BSP]
“SO(3)”p−1

=


(U(1) 3

2
×SU(2)p−1 coupled to chirals Φ in (Adj)1 and M in 1−2 with Wm007)

Z2
, odd p

(U(1) 3
2
×SU(2)p−1 coupled to chirals Φ in (Adj)1 and M in 1−2 with Wm007)⊗U(1)−2

Zdiag
2

, even p

.

(4.76)

Here, 1q means neutral under SU(2) and having charge q under U(1). The superpotential
is given by

Wm007 = M × Tr(Φ2) . (4.77)

Also, the theory has a U(1)top symmetry.

4.5.2 SUSY partition function

Squashed 3-sphere partition function. The S3
b partition function of the the-

ory, T [m007,ASP;ASP+BSP]
SU(2)p−1

= U(1) 3
2
× SU(2)p−1 + Φ (in Adj+1)+M (in 1−2), is given

by (~ := 2πib2)

Z(m007)p
b

(
W =m+(iπ+ ~

2)ν
)

= 1
2

∫
dXdZ

2π~

(
4sinh(X)sinh

(2πiX
~

))
ψ~(Z+2X)ψ~(Z−2X)ψ~(Z)ψ~(−2Z+2πi+~)

×exp
(

5Z2

2~ +(p+1)X
2

~
−Z(W+2πi+~)

~
+ (2πi+~)2

4~

)
.

(4.78)

Here, m is the real mass for the U(1)top symmetry, i.e. FI parameter and ν parametrizes
the mixing between U(1)R and U(1)top. In the above expression, the R-symmetry at ν = 1
corresponds to the geometrical R-symmetry in (3.2), i.e. Rν=1 = Rgeo.

Superconformal index. The index is given by

I(m007)p
q (u, ν) =

∑
(mx,mz)

∮
|ux|=1

dux
2πiux

∮
|uz |=1

duz
2πiuz

∆ (mx, ux) I∆
(
mz + 2mx, uzu

2
x

)

× I∆
(
mz − 2mx, uzu

−2
x

)
I∆ (mz, uz)

× I∆
(
−2mz, u

−2
z q

)
u5mz
z u(2p+2)mx

x

(
u
(
−q1/2

)(ν+2)
)−mz

.

(4.79)
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Here, (mz, uz) and (mx, ux) are (monopole flux, fugacity) coupled to the U(1) and SU(2)
gauge symmetry respectively. The summation range for the monopole fluxes ismx ∈ Z≥0, mz ∈ Z , for T [m007,ASP;ASP+BSP]

SU(2)p−1

mx ∈ 1
2Z≥0, mz ∈ Z , for T [(m007)pASP+BSP ] = T [m007,ASP;ASP+BSP]

“SO(3)”p−1
.

(4.80)

Bethe-vacua and handle-gluing/fibering operators. Expanding the integrand of
Z(m007)p
b in the limit in which ~→ 0, we get

W(m007)p
0 (X,Z;m,ν)

=Li2
(
e−Z−2X

)
+Li2

(
e−Z+2X

)
+Li2

(
e−Z

)
+Li2

(
e2Z
)

+(p+1)X2+ 5
2Z

2−(m+iπ (ν+2))Z

−π2±2πiX ,

W(m007)p
1 (X,Z;m,ν)

=−1
2
(

log
(

1−e−Z−2X
)

+log
(

1−e−Z+2X
)

+log
(

1−e−Z
)
−log

(
1−e2Z

))
− ν+2

2 Z

+πi+log(2sinhX) .
(4.81)

Extremizing the twisted superpotential W(m007)p
0 , we obtain(

SBE of T [m007,ASP;ASP+BSP]
SU(2)p−1

)

=
{

(x,z) : x2p−2 (x2z−1
)2

(x2−z)2 = 1 ,−z
2e−m−iπν

(
x2−z

)(
x2z−1

)
x2(z−1)(z+1)2 = 1 , x2 6= 1

}
/ZWeyl

2 ,

(4.82)
where x = eX , z = eZ and the Weyl group Z2 acts as

ZWeyl
2 : (x, z) ↔ (1/x, z) . (4.83)

Then, the handle-gluing and fibering operators are given by(
Hα of T [m007,ASP;ASP+BSP]

SU(2)p−1

)

= 2zν−1 (x4z
(
−p(z−3)+2z2+z−5

)
+x2 (p(z4+z3−5z2+z−2

)
+z

(
z
(
z2+z−1

)
−3
)
+6
))

(x2−1)2 (z−1)(z+1)2

+ 2zν−1z
(
−p(z−3)+2z2+z−5

)
(x2−1)2 (z−1)(z+1)2

∣∣∣∣
(x,z)=(x(α),z(α))(

Fα of T [m007,ASP;ASP+BSP]
SU(2)p−1

)

= exp
(
i(W(m007)p

0 −2πin(α)
x X−2πin(α)

z Z+mZ)
2π

)∣∣∣∣∣
(X,Z)=(logx(α),logz(α))

.

(4.84)
Two integers (n(α)

x , n
(α)
z ) for each Bethe-vacuum α are chosen as in (3.36).
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4.5.3 IR phases

According to [8], the Dehn filled manifolds are

(m007)pASP+BSP =



Atoroidal SFS S2((2, 1), (3, 2), (3,−1)) , p = 2
Atoroidal SFS S2((2, 1), (2, 1), (5,−2)) , p = 1
Atoroidal SFS S2((3, 1), (3, 1), (3,−1)) , p = 0
Atoroidal SFS S2((2, 1), (4, 1), (5,−3)) , p = −1
Atoroidal SFS S2((2, 1), (3, 1), (9,−7)) , p = −2
Graph , p = −3
Hyperbolic , p > 2 or p < −3 .

.

(4.85)

According to (2.17), the topological field theories TFT[M ] for the above Seifert fibered
manifolds are unitary when p = 0, 2 while they are non-unitary when p = 1,−1,−2.
Combined with the mathematical facts, our proposal (3.14) predicts that

T [(m007)pASP+BSP ]

=



Unitary TQFT , p = 0, 2
N = 4 rank-0 SCFT , p = 1,−1,−2
N = 2 SCFT with U(1) flavor symmetry and CPOs , p = −3
N = 2 SCFT , p > 2 or p < −3

. (4.86)

Now, we will confirm the expected IR phases using the general methods outlined in
section 3.4. From now on, we redefine ν as

ν ←
{
ν , p = 0, 1, 2
2− ν , p = −1,−2,−3 . (4.87)

Unitary topological field theory when p = 0, 2. The superconformal in-
dices (4.79), (4.80) for p = 0, 2 are given by(
Iq(u, ν) of T [m007, ASP;ASP +BSP]

SU(2)p−1=−1,1

)
=
(
Iq(u, ν) of T [m007, ASP;ASP +BSP]

“SO(3)”p−1=−1,1

)
= 1 ,

(4.88)
thus implying the gapped phase. To probe the topological field theories, let us compute the
handle-gluing and fibering operators (4.84). They are given by({

H−1
α (m = 0, ν = ±1)

}
of T [m007, ASP;ASP +BSP]

SU(2)p−1=−1

)
=
{1

4 ,
1
4 ,

1
4 ,

1
4

}
.(

{Fα(m = 0, ν = ±1)} of T [m007, ASP;ASP +BSP]
SU(2)p−1=−1

)
=
{
e
πi
3 , e−

2πi
3 , e−

πi
6 , e−

πi
6

}
.({

H−1
α (m = 0, ν = ±1)

}
of T [m007, ASP;ASP +BSP]

SU(2)p−1=1

)
=
{1

2 ,
1
2

}
.(

{Fα(m = 0, ν = ±1)} of T [m007, ASP;ASP +BSP]
SU(2)p−1=1

)
= e

πi
12

{
1, e

πi
2

}
. (4.89)
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From the above, one can check that

Hα ∈ R+,
∑
α

1
Hα

= 1 and |Fα| = 1 .

These are another evidences for the emergence of TQFTs at IR, see (3.55) and (3.57).
Turning on the real mass parameter m, we have({

H−1
α (m, ν = 1)

}
of T [m007, ASP;ASP +BSP]

SU(2)p−1=−1

)
=
{1

4 ,
1
4 ,

1
4 ,

1
4

}
,(

{Fα(m, ν = 1)} of T [m007, ASP;ASP +BSP]
SU(2)p−1=−1

)
= e

im2
8π
{
e
πi
3 , e−

2πi
3 , e−

πi
6 , e−

πi
6
}
,({

H−1
α (m, ν = 1)

}
of T [m007, ASP;ASP +BSP]

SU(2)p−1=1

)
= e−mν

{1
2 ,

1
2

}
,(

{Fα(m, ν = 1)} of T [m007, ASP;ASP +BSP]
SU(2)p−1=1

)
= e

im2
4π
{
e
πi
12 , e

7πi
12
}
. (4.90)

Note that they are independent of the continuous parameter m, modulo ambiguity in (3.37),
which also imply the emergence of TQFT at IR.

SUSY enhancement when p = 1,−1,−2. The superconformal indices (4.79), (4.80)
for p = 1,−1,−2 are given by17(
Iq(u; ν = 0) of T [m007, ASP;ASP +BSP]

SU(2)p−1=0
= T [m007, ASP;ASP +BSP]

“SO(3)”p−1=0

)

= 1− q −
(
u+ 1

u

)
q3/2 − 2q2 −

(
u+ 1

u

)
q5/2 − 2q3 −

(
u+ 1

u

)
q7/2 − 2q4 +O

(
q5
)
,

=
(
Iq(u; ν = 0) of T [m007, ASP;ASP +BSP]

SU(2)p−1=−2
and T [m007, ASP;ASP +BSP]

“SO(3)”p−1=−2

)

= 1− q −
(
u+ 1

u

)
q3/2 − 2q2 −

(
u+ 1

u

)
q5/2 − 2q3 −

(
u+ 1

u

)
q7/2 − 2q4 +O

(
q5
)
,

(
Iq(u; ν = 0) of T [m007, ASP;ASP +BSP]

SU(2)p−1=−3
and T [m007, ASP;ASP +BSP]

“SO(3)”p−1=−3

)

= 1− q −
(
u+ 1

u

)
q3/2 − 2q2 − q5/2

u
−
(
1− u2

)
q3 −

(1
u
− u

)
q7/2 +O

(
q9/2

)
.

(4.91)

The index at general R-charge mixing parameter ν can be obtained by the relation (3.20). To
compute the correct IR superconformal index, one needs to determine the IR superconformal
R-symmetry, parametrized by νIR, using the F-maximization (3.40). Utilizing the Bethe-sum
formula of the round 3-sphere partition function (3.38), one can confirm that

|Z(m007)p
b=1 (m = 0, ν = 0)| < |Z(m007)p

b=1 (m = 0, ν 6= 0)| for p = 1,−1,−2 . (4.92)
17For p = 1, the Z2 1-form symmetry of T [m007,ASP;ASP+BSP]

SU(2)p−1
decouples at IR. In this case,

T [m007,ASP;ASP+BSP]
“SO(3)”p−1=0

is identical to T [m007,ASP;ASP+BSP]
“SU(2)”p−1=0

and we only need to sum over mx ∈ Z≥0 in (4.80)
even for the “SO(3)” gauging.
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Therefore, ν = 0 corresponds to the correct IR superconformal R-charge according to the
F-maximization, i.e. νIR = 0. Then, one finds that the indices at superconformal R-charge
satisfy the necessary condition (3.62) for the SUSY enhancement:(

Iq(u, ν = 0) of T [m007, ASP;ASP +BSP]
SU(2)p−1=0,−2,−3

and T [m007, ASP;ASP +BSP]
“SO(3)”p−1=0,−2,−3

)

3 −
(
u+ 1

u

)
q3/2 .

In the degenerate limits u = 1, ν → ±1, the superconformal indices become 1, i.e.(
Iq(u = 1; ν = ±1) of T [m007, ASP;ASP +BSP]

SU(2)p−1=0,−2,−3
and T [m007, ASP;ASP +BSP]

“SO(3)”p−1=0,−2,−3

)
= 1 . (4.93)

This is a strong evidence for emergence of the non-unitary TQFTs in the degenerate limits.
To probe the emergent non-unitary TQFTs, one may compute the handle-gluing and fibering
operators as following:({

H−1
α (m= 0,ν= 1)

}
of T [m007,ASP;ASP+BSP]

SU(2)p−1=0

)
=
{

2
(
ζ2

3
)2
,2
(
ζ4

3
)2}

.(
{Fα(m= 0,ν= 1)} of T [m007,ASP;ASP+BSP]

SU(2)p−1=0

)
=
{
e

−
πi

5 ,e
πi

5

}
.({

H−1
α (m= 0,ν=−1)

}
of T [m007,ASP;ASP+BSP]

SU(2)p−1=0

)
=
{

2
(
ζ2

3
)2
,2
(
ζ4

3
)2}

.(
{Fα(m= 0,ν=−1)} of T [m007,ASP;ASP+BSP]

SU(2)p−1=0

)
=
{
e
πi

5 ,e
−
πi

5

}
.

({
H−1
α (m= 0,ν= 1)

}
of T [m007,ASP;ASP+BSP]

SU(2)p−1=−2

)
=
{(

ζ2
3
)2

2 ,

(
ζ2
3
)2

2 ,

(
ζ4
3
)2

2 ,

(
ζ4
3
)2

2 ,
(
ζ2

3
)2
,
(
ζ4

3
)2
}
.

(
{Fα(m= 0,ν= 1)} of T [m007,ASP;ASP+BSP]

SU(2)p−1=−2

)
=
{
e

−
7iπ
40 ,e

33iπ
40 ,e

−
23iπ
40 ,e

17iπ
40 ,e

−
iπ

20 ,e
−

9iπ
20

}
.

({
H−1
α (m= 0,ν=−1)

}
of T [m007,ASP;ASP+BSP]

SU(2)p−1=−2

)
=
{(

ζ2
3
)2

2 ,

(
ζ2
3
)2

2 ,

(
ζ4
3
)2

2 ,

(
ζ4
3
)2

2 ,
(
ζ2

3
)2
,
(
ζ4

3
)2
}
.

(
{Fα(m= 0,ν=−1)} of T [m007,ASP;ASP+BSP]

SU(2)p−1=−2

)
=
{
e

−
23iπ
40 ,e

17iπ
40 ,e

−
7iπ
40 ,e

33iπ
40 ,e

−
9iπ
20 ,e

−
iπ

20

}
.(

{H−1
α (m= 0,ν= 1)} of T [m007,ASP;ASP+BSP]

SU(2)p−1=−3

)
=
{(
ζ4

7
)2
,
(
ζ1

7
)2
,
(
ζ2

7
)2
,
(
ζ3

7
)2}×{1,1

}
.(

{Fα(m= 0,ν= 1)} of T [m007,ASP;ASP+BSP]
SU(2)p−1=−3

)
=
{
e

−
7iπ
36 ,e

17iπ
36 ,e

−
31iπ
36 ,e

−
5iπ
12

}
×{1,e

πi

2 } .({
H−1
α (m= 0,ν=−1)

}
of T [m007,ASP;ASP+BSP]

SU(2)p−1=−3

)
=
{(
ζ2

7
)2
,
(
ζ1

7
)2
,
(
ζ3

7
)2
,
(
ζ4

7
)2}×{1,1

}
.(

{Fα(m= 0,ν=−1)} of T [m007,ASP;ASP+BSP]
SU(2)p−1=−3

)
=
{
e

17iπ
36 ,e

−
7iπ
36 ,e

−
5iπ
12 ,e

−
31iπ
36

}
×{1,e

πi

2 } .

(4.94)
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Note that the above (Hα,Fα) satisfy the conditions in (3.64), which are another evidence
for the SUSY enhancement. Here, the Bethe-vacuum α = 0 is chosen to satisfy the
following relation:

|Zb(m = 0, ν = ±1)| =
∣∣∣∣∑
α

Fα(m = 0, ν = ±1)
Hα(m = 0, ν = ±1)

∣∣∣∣ = 1√
Hα=0(m = 0, ν = ±1)

. (4.95)

In addition, one can obtain the value of round 3-sphere partition function at m = ν = 0
as following:

|Zb=1(m = 0, ν = 0)| = minα
[
Hα(m = 0, ν = ±1)−1/2

]
=


2√
5 sin

(
4π
5

)
, p = 1

1√
5 sin

(
4π
5

)
, p = −1

√
2

3 sin
(
π
9
)
, p = −2

.

(4.96)

Note that this is compatible with (3.66). Using the relation in (3.53), one can compute
|S0α| for the topological field theories in the degenerate limits and show that the unitarity
condition (3.58) is violated. It implies that the emergent TQFTs are indeed non-unitary.

U(1) flavor symmetry and chiral primary operators when p = −3. The super-
conformal indices (4.79), (4.80) for p = −3 are given by(
Iq(u; ν = 0) of T [m007, ASP;ASP +BSP]

SU(2)p−1=−4

)

= 1−
(
1− u2

)
q − q3/2

u
−
(
2− u4

)
q2 −

(1
u
− u

)
q5/2 + u6q3 −

(1
u
− 2u

)
q7/2 +O

(
q4
)
,

(
Iq(u; ν = 0) of T [m007, ASP;ASP +BSP]

“SO(3)”p−1=−4

)

= 1− uq1/2 −
(
2− u2

)
q −

(1
u

+ u3
)
q3/2 −

(
3− u4

)
q2 −

(2
u
− 2u+ u5

)
q5/2 +O

(
q3
)
.

(4.97)

Then, the indices at ν = 1 (geometric R-charge) become(
Iq(u; ν = 1) of T [m007, ASP;ASP +BSP]

SU(2)p−1=−4

)

=
( ∞∑
n=0

u2n
)
× q0 − q −

(
2− 1

u
+ u

)
q2 +

(1
u
− 2u− 2u2

)
q3 +O

(
q4
)
,

(
Iq(u; ν = 1) of T [m007, ASP;ASP +BSP]

“SO(3)”p−1=−4

)

=
( ∞∑
n=0

un
)
× q0 − 2q −

(
3− 1

u
+ 2u

)
q2 +

(2
u
− 4u− 4u2

)
q3 +O

(
q4
)
.

(4.98)

As expected, the indices diverge at ν = 1 and u = 1. The infinity is regularized by the
fugacity u. This infinity is just due to the bad choice of R-charge, ν = 1, which is different
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U(1)gauge U(1)x U(1)Rνgeom

(Φ1,Φ2,Φ3) (+1,+1,−1) (+2,−2, 0) (0, 0,+1)
Vq − q

2 −
|q|
2 0 |q|

Table 2. Charge of elementary fields and local operators in T [m009, ASP;BSP −ASP].

from the correct IR superconformal R-charge. The correct R-charge should be determined
from the F-maximization principle (3.40), and we numerically find that

νIR ' 0.052 , |Zb=1(m = 0, ν = νIR)| ' 0.107532 . (4.99)

The term (∑∞n=0 u
n) comes from “SO(3)” monopole operators which are chiral primaries

with Rgeo = 0.

4.6 Example: M = (m009)pASP+BSP

4.6.1 Field theory

The corresponding 3D theory is given as

T [(m009)pASP+BSP ] = T [m009, ASP;BSP −ASP]
“SO(3)”p+1

,

T [m009, ASP;BSP −ASP] =
(
U(1)−1/2 + 3Φs of charge (+1,+1,−1)

)
+Wsup .

(4.100)

Both of ASP and BSp are odd cycle and we choose the B cycle as BSP − ASP. ASP is a
non-closable cycle since (m009)ASP = L(2, 1) = RP3 [8]. The superpotential is

Wsup = Φ1Φ2Φ2
3 + (V−1)2 . (4.101)

Here, Vq denotes the 1/2 BPS bare monopole operator with flux q, which is gauge-invariant
when q = −1. Charge assignment of the theory is given in table 2.

Since the ASP is a non-closable cycle, the U(1)x in T [m009, ASP;BSP−ASP] is expected
to be enhanced to SU(2) at IR. Superconformal index of the theory is

Im009(mx,ux)

=
∑
m∈Z

∮
|u|=1

du

2πiuu
4mx
x umI∆

(
m+2mx,−q1/2uu2

x

)
I∆

(
m−2mx,−q1/2 u

u2
x

)
I∆

(
−m, 1

u

)
(4.102)

(mx, ux) is the (background monopole flux, fugacity) for the U(1)x flavor symmetry. At
mx = 0, the index is given by

Im009(mx = 0, ux
)

= 1 +
(
−u2

x −
1
u2
x

− 1
)
q1/2 +

(
−u2

x −
1
u2
x

− 1
)
q +

(
−u2

x −
1
u2
x

− 2
)
q3/2 − q2 + · · · .

(4.103)
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The q1/2-term comes from the chiral primary operators

Φ1Φ3 : −q1/2u2
x , Φ2Φ3 : −q1/2u−2

x , V− : −q1/2 . (4.104)

The q1-term comes from following operators18

φ1ψ
∗
1+ − φ2ψ

∗
2+ : −q , φ1V+1 : −qu2

x , φ2V+1 : −qu−2
x . (4.105)

These operators have r = 1, j3 = 1/2 and ∆ = 3
2 , which can be regarded as conformal

primaries in conserved current multiplets. It is consistent with the expected IR symmetry
enhancement, U(1)x → SO(3). For T [(m009)pASP+BSP], we gauge the enhanced SO(3)
flavor symmetry with an additional CS level (p+ 1).

4.6.2 SUSY partition functions

Squashed 3-sphere partition function. The S3
b partition function of the theory,

T [m009,ASP;BSP−ASP]
SU(2)p+1

, is given by

Z(m009)p
b = 1

2

∫
dXdZ

(2π~)

(
4 sinh (X) sinh

(2πiX
~

))
exp

(
(p+ 3) X

2

~
+ Z2

2~

)

× ψ~

(
Z + 2X + πi+ ~

2

)
ψ~

(
Z − 2X + πi+ ~

2

)
ψ~(−Z) .

(4.106)

Superconformal index. The superconformal index is

I(m009)p
q =

∑
mx

∮
|ux|=1

dux
2πiux

∆(mx, ux)u2(p+1)mx
x Im009(mx, ux) . (4.107)

Here, (mx, ux) are (monopole flux, fugacity) for SU(2) gauge symmetry. The summation
range for the monopole flux is given bymx ∈ Z≥0 , for T [m009,ASP;BSP−ASP]

SU(2)p+1

mx ∈ 1
2Z≥0 , for T [(m009)pASP+BSP ] = T [m009,ASP;BSP−ASP]

“SO(3)”p+1
.

(4.108)

Bethe-vacua and handle-gluing/fibering operators. Expanding the integrand of
Z(m009)p
b in the limit in which ~→ 0, we get

W(m009)p
0 (X,Z) =Li2

(
−e−Z−2X

)
+Li2

(
−e−Z+2X

)
+Li2

(
eZ
)

+(p+3)X2+ 1
2Z

2±2πiX ,

W(m009)p
1 (X,Z) =−1

2 log
(
1−eZ

)
+log(2sinhX) .

(4.109)
Extremizing the twisted superpotential W(m009)p

0 , we obtain(
SBE of T [m009, ASP;BSP −ASP]

SU(2)p+1

)

=

(x, z) : x2p+2 (x2z + 1
)2

(x2 + z)2 = 1 ,

(
1
x2z + 1

) (
x2 + z

)
1− z = 1 , x2 6= 1

 /ZWeyl
2 ,

(4.110)

18Dressed monopole operators, φ1V+1 and φ2V+1, are dyonic 1/4 BPS operators and have spin j = 1/2.
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where x = eX , z = eZ , and the Weyl group Z2 acts as

ZWeyl
2 : (x, z) ↔ (1/x, z) . (4.111)

Then, the handle-gluing and fibering operators are given by(
Hα of T [m009, ASP;BSP −ASP]

SU(2)p+1

)

= 2x2 ((p− 1)x2 − (p+ 3)
(
x4 + x2 + 1

)
z2 + 2z

(
−(p− 1)x2 + x4 + 1

))
(x2 − 1)2 (x2 + z) (x2z + 1)

∣∣∣∣∣
(x,z)=(x(α),z(α))

,

(
Fα of T [m009, ASP;BSP −ASP]

SU(2)p+1

)

= exp
(
i(W(m009)p

0 − 2πin(α)
x X − 2πin(α)

z Z)
2π

)∣∣∣∣∣
(X,Z)=(log x(α),log z(α))

.

(4.112)
Three integers (n(α)

x , n
(α)
z ) for each Bethe-vacuum α are chosen as in (3.36).

4.6.3 IR phases

According to [8], the Dehn filled manifolds are

(m009)pASP+BSP =



Atoroidal SFS S2((3, 1), (3, 1), (5,−4)) , p = −2
Atoroidal SFS S2((2, 1), (4, 1), (6,−5)) , p = −1
Atoroidal SFS S2((2, 1), (3, 1), (8,−7)) , p = 0

Torus bundle with ϕ =

3 2
1 1

 , p = 1

Atoroidal SFS S2((2, 1), (4, 1), (5,−4)) , p = 2
Graph , p = ±3
Hyperbolic , |p| > 3 .

. (4.113)

According to (2.17), the topological field theories TFT[M ] for the above Seifert fibered
manifolds are all unitary. Combined with the mathematical facts, our proposal (3.14)
predicts that

T [(m009)pASP+BSP ]

=


Unitary TQFT , p = 0,±1,±2
N = 2 SCFT with U(1) flavor symmetry and CPOs , p = ±3
N = 2 SCFT , |p| > 3 .

. (4.114)

Unitary topological field theory when p = 0,±1,±2. The superconformal in-
dices (4.102), (4.107) for p = 0,±1,±2 are given by(
Iq of T [m009, ASP;BSP −ASP]

SU(2)p+1

)
=
(
Iq of

T [m009, ASP;BSP −ASP]
“SO(3)”p+1

)
= 1 , (4.115)

– 59 –



J
H
E
P
1
1
(
2
0
2
2
)
1
5
1

thus implying the gapped phase. To probe the topological field theories, let us compute the
handle-gluing and fibering operators (4.112). They are given by19({

H−1
α

}
of T [m009, ASP;BSP −ASP]

SU(2)p+1=1

)
=
{

2
(
ζ1

6

)2
, 2
(
ζ3

6

)2
}
×
{

1, 1
}
.(

{Fα} of
T [m009, ASP;BSP −ASP]

SU(2)p+1=1

)
=
{
e

43iπ
48 , e−

29iπ
48
}
×
{

1, e
πi
2

}
.({

H−1
α

}
of T [m009, ASP;BSP −ASP]

SU(2)p+1=2

)
=
{ 1

12 ,
1
12 ,

1
2 ,

1
3

}
.(

{Fα} of
T [m009, ASP;BSP −ASP]

SU(2)p+1=2

)
=
{
e

11iπ
12 , e−

iπ
12 , e

19iπ
24 ,±e

iπ
4
}
.({

H−1
α

}
of T [m009, ASP;BSP −ASP]

SU(2)p+1=0

)
=
{ 1

12 ,
1
12 ,

1
3 ,

1
2

}
.(

{Fα} of
T [m009, ASP;BSP −ASP]

SU(2)p+1=0

)
=
{
e

7iπ
8 , e

7iπ
8 , e

13iπ
24 ,±eiπ

}
.({

H−1
α

}
of T [m009, ASP;BSP −ASP]

SU(2)p+1=3

)
=
{

(ζ1
3 )2, (ζ2

3 )2
}
×
{

1, 1
}
.(

{Fα} of
T [m009, ASP;BSP −ASP]

SU(2)p+1=3

)
=
{
e

53iπ
120 , e−

43iπ
120
}{

1, e
πi
2

}
.({

H−1
α

}
of T [m009, ASP;BSP −ASP]

SU(2)p+1=−1

)
=
{

(ζ1
3 )2, (ζ2

3 )2
}
×
{

1, 1
}
.(

{Fα} of
T [m009, ASP;BSP −ASP]

SU(2)p+1=−1

)
=
{
e

7iπ
20 , e−

17iπ
20
}
×
{

1, e
πi
2

}
.

(4.116)

One can easily see that

Hα ∈ R+ ,
∑
α

1
Hα

= 1 , |Fα| = 1 , (4.117)

which also imply the emergence of TQFT at IR, see (3.55) and (3.57). For p = ±1 case, the
Fα associated with the tricky Bethe-vacuum, (x, z)α = (±i, 1), has a sign ambiguity and the
sign depends on the phase factor of the small parameter ε. It means that (Fα)2 (instead of
Fα) is well-defined and T [m009,ASP;BSP−ASP]

SU(2)p+1=0
|p=±1 actually flow to fermionic TQFTs at IR.

U(1) flavor symmetry and chiral primary operators when p = ±3. The super-
conformal indices (4.102), (4.107) for p = ±3 are given by20(

Iq of
T [m009, ASP;BSP −ASP]

SU(2)p+1
= T [m009, ASP;BSP −ASP]

“SO(3)”p+1

)

=
( ∞∑
n=0

1
)
× q0 − q3/2 − q2 − q5/2 − q3 − 2q7/2 − 2q4 − 2q9/2 +O

(
q5
)
.

(4.118)

19For p = ±1, there is a tricky Bethe-vacuum with (x, z) = (±i, 1). The solution is visible only after

deforming the Bethe-vacua equation, x
2p+2(x2z+1)2

(x2+z)2 = 1, by x2p+2(x2z+1)2

(x2+z)2 = eε with arbitrary small (but

non-zero) ε.
20In this case, the UV Z2 1-form symmetry decouples at IR. Thus, we only need to sum over mx ∈ Z

even for the “SO(3)" gauging as discussed below (3.43).
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As expected, the index diverges. The term (∑∞n=0 1) comes from “SO(3)” monopole
operators, which are chiral primaries with Rgeo = 0. This strongly suggests that there is an
accidental symmetry at IR and the correct superconformal R-symmetry is a mixing between
the U(1)geo and the accidental symmetry. Under the correct IR R-symmetry, the unitarity
bound RIR > 1

2 should be met for the 1/2 BPS monopole operators.
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A 3D indices for M = NPASP+QBSP with N = m003,m004, . . .

In the appendix A, we test our proposals given in figure 1 and eq. (2.25) for the 3D index for
a large number of (179) closed non-hyperbolic 3-manifolds by explicit computations. Our
examples cover all non-hyperbolic 3-manifolds constructed by exceptional Dehn fillings from
1-cusped hyperbolic manifolds whose number of tetrahedra in the ideal triangulation equals
2 (m003, m004), and 3 (m006, m007, m009, m010, m011, m015, m016, m017, m019). Several
examples with 4 (m022, m023, m026, m027, m029, m030, m036, m043, m130, m135, m136,
m160, m207), 5 (m247, m249, m294, m410), and 7 (v2050, v2051, v2099, v2274, v2334)
ideal tetrahedra will also be carried out to construct the atoroidal connected sum (such as
RP3 ]RP3), toroidal SFS, and hyperbolic piece in JSJ, in the left of figure 1, by exceptional
Dehn fillings. We will not analyze the toroidal connected sum, such as T3 ] L(3, 1), here.
All these non-hyperbolic 3-manifolds and their topological types, corresponding IR phases
based on our proposal in (3.14) are listed in table 3. For simplicity, we shall only compute
the 3D index. According to the 3D-3D relation in (3.49), this invariant is equal to (possibly
with an overall factor 2) the superconformal index of class R theory at geometric R-charge
with all the flavor fugacities turned off.

M Topological type IR phase
m003−2,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m003−1,1 Empty (lens space) SUSY broken
m0030,1 Empty (lens space) SUSY broken
m0031,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0031,0 Empty (lens space) SUSY broken
m003−3,2 Infinite (graph) N = 2 SCFT with CPOs
m003−1,2 Finite/Real/Unitary (SOL) Gapped/TQFT
m0031,2 Infinite (graph) N = 2 SCFT with CPOs
m004±4,1 Infinite (graph) N = 2 SCFT with CPOs
m004±3,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m004±2,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m004±1,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0040,1 Finite/Real/Unitary (SOL) Gapped/TQFT
m0041,0 Empty (lens space S3 ∼= L(1, 1)) SUSY broken
m006−3,1 Infinite (graph) N = 2 SCFT with CPOs
m006−2,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m006−1,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0060,1 Empty (lens space) SUSY broken
m0061,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0061,0 Empty (lens space) SUSY broken
m0061,2 Infinite (graph) N = 2 SCFT with CPOs

Table 3. Topological types of non-hyperbolic 3-manifolds obtained by exceptional Dehn fillings
and the IR phases for the associated class R theories. Here NP,Q denotes the 3-manifold M =
NPASP+QBSP . Refer to [8] for the topological types of the non-hyperbolic 3-manifolds in the
conventional mathematical classification scheme (continues).
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M Topological type IR phase
m007−3,1 Infinite (graph) N = 2 SCFT with CPOs
m007−2,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m007−1,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0070,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0071,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0072,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0071,0 Empty (lens space) SUSY broken
m009−3,1 Infinite (graph) N = 2 SCFT with CPOs
m009−2,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m009−1,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0090,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0091,1 Finite/Real/Unitary (SOL) Gapped/TQFT
m0092,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0093,1 Infinite (graph) N = 2 SCFT with CPOs
m0091,0 Empty (lens space RP3 ∼= L(2, 1)) SUSY broken
m010−2,1 Finite/Real/Unitary (SOL) Gapped/TQFT
m010−1,1 Infinite (atoroidal connected sum) N = 2 SCFT with CPOs
m0100,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0101,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0102,1 Infinite (graph) N = 2 SCFT with CPOs
m0101,0 Empty (lens space) SUSY broken
m011−1,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0110,1 Empty (lens space) SUSY broken
m0111,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0112,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0111,0 Empty (lens space) SUSY broken
m011−1,2 Infinite (graph) N = 2 SCFT with CPOs
m015−2,1 Infinite (graph) N = 2 SCFT with CPOs
m015−1,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0150,0 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0151,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0152,1 Infinite (graph) N = 2 SCFT with CPOs
m0151,0 Empty (lens space S3 ∼= L(1, 1)) SUSY broken
m016−2,1 Infinite (graph) N = 2 SCFT with CPOs
m016−1,1 Empty (lens space) SUSY broken
m0160,1 Empty (lens space) SUSY broken
m0161,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0162,1 Infinite (graph) N = 2 SCFT with CPOs
m0161,0 Empty (lens space S3 ∼= L(1, 1)) SUSY broken
m016−1,2 Infinite (graph) N = 2 SCFT with CPOs

Table 3. Topological types of non-hyperbolic 3-manifolds obtained by exceptional Dehn fillings
and the IR phases for the associated class R theories. Here NP,Q denotes the 3-manifold M =
NPASP+QBSP . Refer to [8] for the topological types of the non-hyperbolic 3-manifolds in the
conventional mathematical classification scheme (continues).
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M Topological type IR phase
m017−2,1 Infinite (graph) N = 2 SCFT with CPOs
m017−1,1 Empty (lens space) SUSY broken
m0170,1 Empty (lens space) SUSY broken
m0171,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0172,1 Infinite (graph) N = 2 SCFT with CPOs
m0171,0 Empty (lens space) SUSY broken
m017−1,2 Infinite (graph) N = 2 SCFT with CPOs
m019−2,1 Infinite (graph) N = 2 SCFT with CPOs
m019−1,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0190,1 Empty (lens space) SUSY broken
m0191,1 Empty (lens space) SUSY broken
m0191,0 Empty (lens space) SUSY broken
m0191,2 Infinite (graph) N = 2 SCFT with CPOs
m022−2,1 Infinite (graph) N = 2 SCFT with CPOs
m022−1,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0220,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0221,1 Empty (lens space) SUSY broken
m0222,1 Finite/Real/Unitary (SOL) Gapped/TQFT
m0221,0 Empty (lens space) SUSY broken
m023−2,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m023−1,1 Finite/Real/Unitary (SOL) Gapped/TQFT
m0230,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0231,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0232,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0233,1 Infinite (graph) N = 2 SCFT with CPOs
m0231,0 Empty (lens space) SUSY broken
m026−2,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m026−1,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0260,1 Empty (lens space) SUSY broken
m0261,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0261,0 Empty (lens space) SUSY broken
m0261,2 Infinite (graph) N = 2 SCFT with CPOs
m027−1,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0270,1 Empty (lens space) SUSY broken
m0271,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0272,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0271,0 Empty (lens space) SUSY broken
m027−1,2 Infinite (graph) N = 2 SCFT with CPOs

Table 3. Topological types of non-hyperbolic 3-manifolds obtained by exceptional Dehn fillings
and the IR phases for the associated class R theories. Here NP,Q denotes the 3-manifold M =
NPASP+QBSP . Refer to [8] for the topological types of the non-hyperbolic 3-manifolds in the
conventional mathematical classification scheme (continues).
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M Topological type IR phase
m029−1,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0290,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0291,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0292,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0293,1 Infinite (graph) N = 2 SCFT with CPOs
m0291,0 Empty (lens space) SUSY broken
m030−2,1 Infinite (graph) N = 2 SCFT with CPOs
m030−1,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0300,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0301,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0302,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0301,0 Empty (lens space) SUSY broken
m036−2,1 Infinite (toroidal SFS) N = 2 SCFT with CPOs
m036−1,1 Empty (lens space) SUSY broken
m0360,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m0361,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0362,1 Infinite (graph) N = 2 SCFT with CPOs
m0361,0 Empty (lens space) SUSY broken
m043−1,1 Empty (lens space) SUSY broken
m0430,1 Empty (lens space) SUSY broken
m0431,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m0432,1 Infinite (graph) N = 2 SCFT with CPOs
m0431,0 Empty (lens space S2 × S1 ∼= L(0, 1)) SUSY broken
m043−1,2 Infinite (graph) N = 2 SCFT with CPOs
m130−2,1 Infinite (graph) N = 2 SCFT with CPOs
m130−1,1 Infinite (toroidal SFS) N = 2 SCFT with CPOs
m1300,1 Empty (lens space) SUSY broken
m1301,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m1301,0 Empty (lens space) SUSY broken
m1301,2 Infinite (graph) N = 2 SCFT with CPOs
m135−1,1 Finite/Real/Unitary (SOL) Gapped/TQFT
m1350,1 Infinite (atoroidal connected sum) N = 2 SCFT with CPOs
m1351,1 Infinite (graph) N = 2 SCFT with CPOs
m1351,0 Infinite (atoroidal connected sum) N = 2 SCFT with CPOs
m136±2,1 Infinite (graph) N = 2 SCFT with CPOs
m136±1,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m1360,1 Finite/Real/Unitary (SOL) Gapped/TQFT
m1361,0 Infinite (atoroidal connected sum RP3 ]RP3) N = 2 SCFT with CPOs

Table 3. Topological types of non-hyperbolic 3-manifolds obtained by exceptional Dehn fillings
and the IR phases for the associated class R theories. Here NP,Q denotes the 3-manifold M =
NPASP+QBSP . Refer to [8] for the topological types of the non-hyperbolic 3-manifolds in the
conventional mathematical classification scheme (continues).
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M Topological type IR phase
m160−2,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m160−1,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m1600,1 Infinite (atoroidal connected sum) N = 2 SCFT with CPOs
m1601,0 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m207−1,1 Finite/Real/Unitary (SOL) Gapped/TQFT
m2070,1 Infinite (atoroidal connected sum) N = 2 SCFT with CPOs
m2071,0 Infinite (atoroidal connected sum) N = 2 SCFT with CPOs
m247−1,1 Infinite (toroidal SFS) N = 2 SCFT with CPOs
m2470,1 Empty (lens space) SUSY broken
m2471,0 Infinite (atoroidal connected sum) N = 2 SCFT with CPOs
m249−1,1 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
m2490,1 Infinite (toroidal SFS) N = 2 SCFT with CPOs
m2491,0 Empty (lens space) SUSY broken
m2940,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m2941,1 Finite/Real/Unitary (toroidal SFS) Gapped/TQFT
m2941,0 Infinite (atoroidal connected sum) N = 2 SCFT with CPOs
m2941,2 Infinite (graph) N = 2 SCFT with CPOs
m4100,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
m4101,1 Infinite (graph) N = 2 SCFT with CPOs
m4101,0 Infinite (atoroidal connected sum RP3 ] S2 × S1) N = 2 SCFT with CPOs
v2050−2,1 Infinite (hyperbolic piece in JSJ) N = 2 SCFT with CPOs
v20501,0 Empty (lens space) SUSY broken
v2051−2,1 Infinite (hyperbolic piece in JSJ) N = 2 SCFT with CPOs
v20511,1 Infinite (graph) N = 2 SCFT with CPOs
v20511,0 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
v2099−2,1 Infinite (hyperbolic piece in JSJ) N = 2 SCFT with CPOs
v20990,1 Infinite (graph) N = 2 SCFT with CPOs
v20991,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
v20991,0 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
v2274−2,1 Infinite (hyperbolic piece in JSJ) N = 2 SCFT with CPOs
v22742,1 Infinite (hyperbolic piece in JSJ) N = 2 SCFT with CPOs
v22741,0 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT
v2334−2,1 Infinite (hyperbolic piece in JSJ) N = 2 SCFT with CPOs
v23340,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
v23341,1 Finite/Real/Non-unitary (atoroidal SFS) N = 4 rank-0 SCFT
v23341,0 Finite/Real/Unitary (atoroidal SFS) Gapped/TQFT

Table 3. Topological types of non-hyperbolic 3-manifolds obtained by exceptional Dehn fillings
and the IR phases for the associated class R theories. Here NP,Q denotes the 3-manifold M =
NPASP+QBSP . Refer to [8] for the topological types of the non-hyperbolic 3-manifolds in the
conventional mathematical classification scheme.
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The 3D indices for the class R theories associated to non-hyperbolic 3-manifolds
listed in table 3 are given as follows. Below, Iq(NP,Q) denotes the 3D index IM (q) for
M = NPASP+QBSP .

Iq(m003−2,1) = 1 , (A.1)
Iq(m003−1,1) = 0 ,
Iq(m0030,1) = 0 ,
Iq(m0031,1) = 1 ,
Iq(m0031,0) = 0 ,
Iq(m003−3,2) =∞×q0−2q−4q2+O(q3) ,
Iq(m003−1,2) = 1 ,
Iq(m0031,2) =∞×q0−2q−4q2+O(q3) ,
Iq(m004−4,1) =∞×q0−2q2−2q3−4q4−4q5−6q6+O(q7) ,
Iq(m004−3,1) = 1 ,
Iq(m004−2,1) = 1 ,
Iq(m004−1,1) = 1 ,
Iq(m0040,1) = 1 ,
Iq(m0041,1) = 1 ,
Iq(m0042,1) = 1 ,
Iq(m0043,1) = 1 ,
Iq(m0044,1) =∞×q0−2q2−2q3−4q4−4q5−6q6+O(q7) ,
Iq(m0041,0) = 0 ,
Iq(m006−3,1) =∞×q0−2q−6q2−6q3+O(q4) ,
Iq(m006−2,1) = 1 ,
Iq(m006−1,1) = 1 ,
Iq(m0060,1) = 0 ,
Iq(m0061,1) = 2 ,
Iq(m0061,0) = 0 ,
Iq(m0061,2) =∞×q0−2q−4q2+O(q3) ,
Iq(m007−3,1) =∞×q0−2q−4q2−6q3+O(q4) ,
Iq(m007−2,1) = 1 ,
Iq(m007−1,1) = 1 ,
Iq(m0070,1) = 1 ,
Iq(m0071,1) = 2 ,
Iq(m0072,1) = 1 ,
Iq(m0071,0) = 0 ,
Iq(m009−3,1) =∞×q0−2q3/2−2q2−2q5/2−2q3−4q7/2−4q4−4q9/2+O(q5) ,
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Iq(m009−2,1) = 1 ,
Iq(m009−1,1) = 1 ,
Iq(m0090,1) = 1 ,
Iq(m0091,1) = 1 ,
Iq(m0092,1) = 1 ,
Iq(m0093,1) =∞×q0−2q3/2−2q2−2q5/2−2q3−4q7/2−4q4−4q9/2+O(q5) ,
Iq(m0091,0) = 0 ,
Iq(m010−2,1) = 1 ,
Iq(m010−1,1) = · · ·+q−2−q−3/2+q−1−q−1/2+1−q1/2+q−q3/2+q2+O(q5/2) ,
Iq(m0100,1) = 2 ,
Iq(m0101,1) = 1 ,
Iq(m0102,1) =∞×q0−q1/2−q−2q3/2−3q2−2q5/2−2q3−2q7/2−5q4+O(q9/2) ,
Iq(m0101,0) = 0 ,
Iq(m011−1,1) = 1 ,
Iq(m0110,1) = 0 ,
Iq(m0111,1) = 2 ,
Iq(m0112,1) = 1 ,
Iq(m0111,0) = 0 ,
Iq(m011−1,2) =∞×q0−q−3q2+O(q3) ,
Iq(m015−2,1) =∞×q0−2q−4q2−4q3+O(q4) ,
Iq(m015−1,1) = 1 ,
Iq(m0150,1) = 1 ,
Iq(m0151,1) = 1 ,
Iq(m0152,1) =∞×q0−2q−4q2−4q3+O(q4) ,
Iq(m0151,0) = 0 ,
Iq(m016−2,1) =∞×q0−2q−4q2−4q3−6q4−4q5−8q6−4q7+O(q8) ,
Iq(m016−1,1) = 0 ,
Iq(m0160,1) = 0 ,
Iq(m0161,1) = 1 ,
Iq(m0162,1) =∞×q0−4q−6q2−4q3−8q4−4q5−12q6−4q7+O(q8) ,
Iq(m0161,0) = 0 ,
Iq(m016−1,2) =∞×q0−2q−4q2+O(q3) ,
Iq(m017−2,1) =∞×q0−2q−4q2−4q3−6q4−4q5−8q6−4q7+O(q8) ,
Iq(m017−1,1) = 0 ,
Iq(m0170,1) = 0 ,
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Iq(m0171,1) = 1 ,
Iq(m0172,1) =∞×q0−4q−6q2−4q3−8q4−4q5+O(q6) ,
Iq(m0171,0) = 0 ,
Iq(m017−1,2) =∞×q0−2q−4q2+O(q3) ,
Iq(m019−2,1) =∞×q0−2q−3q2−3q3−5q4−3q5−4q6+O(q7) ,
Iq(m019−1,1) = 1 ,
Iq(m0190,1) = 0 ,
Iq(m0191,1) = 0 ,
Iq(m0191,0) = 0 ,
Iq(m0191,2) =∞×q0−2q−4q2+O(q3) ,
Iq(m022−2,1) =∞×q0−q−3q2−3q3+O(q4) ,
Iq(m022−1,1) = 1 ,
Iq(m0220,1) = 1 ,
Iq(m0221,1) = 0 ,
Iq(m0222,1) = 1 ,
Iq(m0221,0) = 0 ,
Iq(m023−2,1) = 1 ,
Iq(m023−1,1) = 1 ,
Iq(m0230,1) = 1 ,
Iq(m0231,1) = 1 ,
Iq(m0232,1) = 1 ,
Iq(m0233,1) =∞×q0−2q2−2q3+O(q4) ,
Iq(m0231,0) = 0 ,
Iq(m026−2,1) = 1 ,
Iq(m026−1,1) = 1 ,
Iq(m0260,1) = 0 ,
Iq(m0261,1) = 1 ,
Iq(m0261,0) = 0 ,
Iq(m0261,2) =∞×q0−q1/2−q−2q3/2−3q2+O(q5/2) ,
Iq(m027−1,1) = 1 ,
Iq(m0270,1) = 0 ,
Iq(m0271,1) = 1 ,
Iq(m0272,1) = 1 ,
Iq(m0271,0) = 0 ,
Iq(m027−1,2) =∞×q0−q−q3/2−3q2−q5/2+O(q3) ,
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Iq(m029−1,1) = 2 ,
Iq(m0290,1) = 1 ,
Iq(m0291,1) = 1 ,
Iq(m0292,1) = 1 ,
Iq(m0293,1) =∞×q0−2q−4q2+O(q3) ,
Iq(m0291,0) = 0 ,
Iq(m030−2,1) =∞×q0−2q−4q2−6q3+O(q4) ,
Iq(m030−1,1) = 1 ,
Iq(m0300,1) = 1 ,
Iq(m0301,1) = 1 ,
Iq(m0302,1) = 2 ,
Iq(m0301,0) = 0 ,
Iq(m036−2,1) =∞×q0 ,

Iq(m036−1,1) = 0 ,
Iq(m0360,1) = 1 ,
Iq(m0361,1) = 1 ,
Iq(m0362,1) =∞×q0−4q−8q2−6q3+O(q4) ,
Iq(m0361,0) = 0 ,
Iq(m043−1,1) = 0 ,
Iq(m0430,1) = 0 ,
Iq(m0431,1) = 1 ,
Iq(m0432,1) =∞×q0−2q−3q2+O(q3) ,
Iq(m0431,0) = 0 ,
Iq(m043−1,2) =∞×q0−q1/2−q−2q3/2−3q2+O(q5/2) ,
Iq(m130−2,1) =∞×q0−4q−6q2+O(q3) ,
Iq(m130−1,1) =∞×q0 ,

Iq(m1300,1) = 0 ,
Iq(m1301,1) = 1 ,
Iq(m1301,0) = 0 ,
Iq(m1301,2) =∞×q0−2q−6q2+O(q3) ,
Iq(m135−1,1) = 1 ,
Iq(m1350,1) = · · ·+q−1−q−1/2+1−q1/2+q+O(q3/2) ,
Iq(m1351,1) =∞×q0 ,

Iq(m1351,0) = · · ·+q−1−q−1/2+1−q1/2+q+O(q3/2) ,
Iq(m136−2,1) =∞×q0−2q−4q3/2−4q2+O(q5/2) ,
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Iq(m136−1,1) = 1 ,
Iq(m1360,1) = 1 ,
Iq(m1361,1) = 1 ,
Iq(m1362,1) =∞×q0−2q−4q3/2−4q2+O(q5/2) ,
Iq(m1361,0) = · · ·+2q−1−2q−1/2+2−2q1/2+O(q) ,
Iq(m160−2,1) = 1 ,
Iq(m160−1,1) = 2 ,
Iq(m1600,1) = · · ·+q−3+q−2+q−1+1+O(q) ,
Iq(m1601,0) = 1 ,
Iq(m207−1,1) = 1 ,
Iq(m2070,1) = · · ·+q−3+q−2+q−1+1+O(q) ,
Iq(m2071,0) = · · ·+q−3+q−2+q−1+1+O(q) ,
Iq(m247−1,1) =∞×q0+2q+O(q2) ,
Iq(m2470,1) = 0 ,
Iq(m2471,0) = · · ·+q−2+q−1+1+O(q) ,
Iq(m249−1,1) = 1 ,
Iq(m2490,1) =∞×q0+2q2+O(q3) ,
Iq(m2491,0) = 0 ,
Iq(m2940,1) = 2 ,
Iq(m2941,1) = 1 ,
Iq(m2941,0) = · · ·+q−2+q−1+1+O(q) ,
Iq(m2941,2) =∞×q0−4q+O(q2) ,
Iq(m4100,1) = 1 ,
Iq(m4101,1) =∞×q0−q1/2−2q3/2−2q2−2q5/2−2q3+O(q7/2) ,
Iq(m4101,0) = · · ·−∞×q−1/2+∞×q0−∞×q1/2+· · · ,
Iq(v2050−2,1) =∞×q0−∞×q1+· · · ,
Iq(v20501,0) = 0 ,
Iq(v2051−2,1) =∞×q0−∞×q1+· · · ,
Iq(v20511,1) =∞×q0−2q−2q2+O(q3) ,
Iq(v20511,0) = 1 ,
Iq(v2099−2,1) =∞×q0−2q1/2−∞×q+· · · ,
Iq(v20990,1) =∞×q0−2q1/2−6q3/2+O(q2) ,
Iq(v20991,1) = 1 ,
Iq(v20991,0) = 1 ,
Iq(v2274−2,1) =∞×q0−∞×q1+· · · ,
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Iq(v22742,1) =∞×q0−∞×q1+· · · ,
Iq(v22741,0) = 2 ,
Iq(v2334−2,1) =∞×q0−∞×q1+· · · ,
Iq(v23340,1) = 1 ,
Iq(v23341,1) = 1 ,
Iq(v23341,0) = 1 .

Comparing table 3 and the above 3D indices, one can indeed see that our proposals
in figure 1 (along with (2.25)) and (3.14) for the 3D index and IR phase are consistent
for all the above closed non-hyperbolic 3-manifolds. Among the above atoroidal Seifert
fibered spaces, followings have non-trivial ∩ρInv(ρ) = Z2 and thus their 3D indices become
2 instead of 1 as discussed around (2.28).

m0061,1 = S2((2, 1), (2, 1), (3, 2)) , m0071,1 = S2((2, 1), (2, 1), (5,−2)) ,
m0100,1 = S2((2, 1), (2, 1), (4,−1)) , m0111,1 = S2((2, 1), (2, 1), (3,−2)) ,
m029−1,1 = S2((2, 1), (2, 1), (7,−2)) , m0302,1 = S2((2, 1), (2, 1), (5, 2)) ,
m160−1,1 = S2((2, 1), (2, 1), (7,−4)) , m2940,1 = S2((2, 1), (2, 1), (10,−7)) ,
v22741,0 = S2((2, 1), (2, 1), (3,−2)) . (A.2)
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