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Abstract In our previous work (Zhang and Shu in Eur Phys
J. C 84(3):256, 2024), we have explored quantum gravity
induced entanglement of masses (QGEM) in curved space-
time, observing entanglement formation between particles
moving along geodesics in a Schwarzschild spacetime back-
ground. We find that long interaction time induces entan-
glement, even for particles with microscopic mass, address-
ing decoherence concerns. In this work, we build upon our
previous work (Zhang and Shu 2024) by extending our
investigation to a time-dependent spacetime. Specifically, we
explore the entanglement induced by the mutual gravitation
of massive particles in the Friedmann–Lemaître–Robertson–
Walker (FLRW) universe. With the help of the phase shift and
the QGEM spectrum, our proposed scheme offers a potential
method for observing the formation of entanglement caused
by the quantum gravity of massive particles as they propagate
in the FLRW universe. Consequently, it provides insights into
the field of entanglement in cosmology.

1 Introduction

There has been a long-standing debate about whether the
gravitational field is a quantum field, and to date we still
have no effective way to give a clear answer. In the past few
years, we have gone through a boom of interest to use desk-
top experiments to explore quantum gravity effects. Many
of these experiment proposals date back to a thought exper-
iment of Feynman [1] that if one massive particle is put in
a superposition of two locations by a Stern-Gerlach device,
then gravitational field would also form a superposition state.
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Based on this idea, Bose and Marletto et al. [2,3] proposed a
plan to use quantum entanglement to detect quantum gravity
effects, which is known as quantum gravity induced entan-
glement of masses (QGEM). In the QGEM device, if these
two particles in the spatial superposition state are entangled
under the action of their gravitational fields, then it can be
inferred that the gravitational field has quantum properties
based on the principle of quantum information (see some
recent progress [4–23]). However, due to the harsh experi-
mental parameters and quantum states are highly susceptible
to decoherence, these experimental designs are difficult to
implement in practice.

Very recently, we developed an astronomical version of
QGEM in curved spacetime, focusing on the observation of
entanglement formation between pairs of particles moving
along geodesics in a Schwarzschild background [24]. We find
that the long interaction time between particles can induce
entanglement even for particles with microscopic mass, pro-
viding a possible solution of the issue of the decoherence. In
this work [24], we also found that pairs of superposed par-
ticles exhibit varying degrees of entanglement depending on
different motion parameters. Specifically, entanglement for-
mation is more likely to occur when the proper motion time
is longer, the geodesic deviation rate is appropriate, and the
mass of the galaxy is smaller.

In the previous work, we considered the QGEM in the
Schwarzschild spacetime, which is static. In this work, we
would like to investigate how QGEM evolves in a time-
dependent spacetime. To be more specific, we will inves-
tigate entanglement induced by mutual gravitation between
massive particles in the FLRW universe.

There have been some previous studies on entanglement
in cosmological background. For instance, the production
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of entanglement in quantum fields due to the expansion of
the underlying spacetime was shown in [25]. The entangle-
ment entropy of cosmological perturbations in the very early
universe has also been investigated [26]. In the realm of pho-
ton entanglement, various avenues to utilize entanglement
in order to investigate the nature of the universe have been
explored. Such as schemes using entangled photons to study
the origins of cosmic microwave background (CMB) fluctua-
tions [27–30] and investigations involving entangled photons
produced from the decay of cosmic particles to test quan-
tum mechanics [31,32]. In addition, astronomers have even
attempted to detect entangled photons that have traveled dif-
ferent paths through the cosmos and reached Earth [33].

However, investigations into the entanglement induced by
the gravitational interaction of massive particles are still lack-
ing. Our current knowledge does not include an understand-
ing of how QGEM evolves in the FLRW universe. Filling
this gap is one of our main motivations for conducting this
work. Intuitively, pairs of adjacent particles propagating in
the FLRW universe are expected to become entangled due
to their gravitational field. However, determining the spe-
cific factors influencing their entanglement requires detailed
calculations. The entanglement induced by quantum gravity,
which we will present in this article, offers a fresh perspective
for studying entanglement in cosmology.

This paper is organized as follows. In Sect. 2, we present
the overall method for quantifying the entanglement forma-
tion induced by the QGEM mechanism in the context of
FLRW cosmology, and also study the influencing factors
of the entanglement phase. In Sect. 3, incorporating more
realistic observational scenarios, we present the character-
istic spectral lines of the entanglement witness as varying
functions of the initial motion parameters of the particle pair
and the observed kinetic energy. In Sect. 4, conclusions and
discussions are made.

Throughout this paper, we will adopt the natural units
system, c = G = 1, in order to simplify the calculations.
Except that the physical quantities with units are given in the
SI system of units.

2 Entanglement generation in FLRW spacetime

For a flat FLRW universe, the metric is

ds2 = dt2 − a(t)2(dr2 + r2dθ2 + r2sin2θd2ϕ), (1)

where a(t) is the scale factor of the FLRW universe and it
obeys

a′(t)2 = 8

3
πa(t)2ρ (t) . (2)

The general density in (2) is given by

ρ (t) = a3
0ρM0

a(t)3 + a4
0ρR0

a(t)4 + ρv0 , (3)

where

ρv0 = 3H2
0 ��

8π
, ρM0 = 3H2

0 �M

8π
, ρR0 = 3H2

0 �R

8π
. (4)

Here ��, �M and �R are the density parameters for dark
energy, matter and radiation, respectively. H0 is the Hubble
constant.

It was shown in [2,3] that nearby neutral massive parti-
cle pairs exhibit phase growth under their self-interaction of
gravity. The phase growth in general is given by [24]

δφ = −m0δτ

h̄
= m0

2

h̄

∫
1

d (τ )
dτ , (5)

where m0 and τ are, respectively, the static mass and the
proper time of the particles. d (τ ) represents the distance
between two particles and is mainly determined by the
geodesic deviation. Equation (5) shows that the key to calcu-
late phase shift is to obtain the geodesic deviation distance
d (τ ) of the particle pair.

To do this, we use the tetrad formalism and introduce the
following orthogonal normalized tetrad for the flat FLRW
universe

e(0)
μ = (∂t)μ, e(1)

μ = 1

a (t)
(∂r)μ,

e(2)
μ = 1

a (t) r
(∂θ)μ, e(3)

μ = 1

a (t) r sin θ
(∂ϕ)μ, (6)

so that they form an orthogonal base

gμνe(a)
μe(b)

ν = η(a)(b), (7)

where (a = 0, 1, 2, 3) and η(a)(b) = diag.(1,−1,−1,−1).

Recalling that the geodesic equations in terms of four-
velocity uμ(τ) is

uμ ◦ (e(a)νu
ν) + (e(b)

νu
ν)(de(b))ρσu

ρe(a)
σ = 0. (8)

After substituting Eq. (6) into Eq. (8), it reduces to

ẗ (τ ) + a2(t)H(t)ṙ(τ )2 = 0,

r̈ (τ ) + 2H(t)ṫ (τ ) ṙ (τ ) = 0, (9)

where the dot represents differentiation with respect to τ.

H(t) in Eq. (9) is defined as H ≡ da(t)/dt
a(t) , which is deter-

mined by the Friedmann equation:

H2 = H2
0

(
�� + �M

(a0

a

)3 + �R

(a0

a

)4
)

. (10)

The full geodesics of the FLRW universe can be obtained by
solving the geodesic equation (9) and the Friedmann equation
(10).

Now let us turn to calculate the geodesic deviation vec-
tors, from which one can read off values of d(τ ), a key term
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in calculating δφ as shown in Eq. (5). We obtain these vec-
tors by solving the geodesic deviation equations in tetrad
formalism. Note that unlike the fixed tetrad used in Eq. (6)
for geodesics, the tetrad here must be parallelly transported
along the geodesics [34], namely, ẽμ

(a);νvν = 0, where vν

is the tangent vector of the geodesics. This means that the
orientations of the axes are fixed and they are non-rotating
as determined by local dynamical experiments. It turns out
that the following choice of tetrads are appropriate

ẽμ

(0) = ṫ(∂t)μ + ṙ(∂r)μ,

ẽμ

(1) = a (t) ṙ(∂t)μ + ṫ

a (t)
(∂r)μ,

ẽμ

(2) = 1

a (t) r
(∂θ)μ,

ẽμ

(3) = 1

a (t) r sin (θ)
(∂ϕ)μ. (11)

Note that in order for the above tetrad satisfying the orthog-
onal normalized condition (7), one extra condition should be
imposed

ṫ2 − a(t)2ṙ2 = 1. (12)

The geodesic deviation equation in the above frames is given
by

d2w(a)

dτ 2 + k(a)
(b)w

(b) = 0, (13)

where w(a) is geodesic deviation vector in tetrad form

w(a) = ẽ(a)
μ wμ, (14)

and

k(a)
(b) = −Rμ

νρσ ẽ
(a)
μ vνvρ ẽσ

(b). (15)

Substituting the tetrad (11) and (12) into above definition,
one finds that the nonvanishing components of k(a)

(b) are

k(1)
(1) = − 1

a(t)

dH

dt
, (16)

k(2)
(2) = − 1

a(t)

dH

dt
ṫ2 + H2ṙ2. (17)

To simplify our analysis, we assume that wμ is orthogonal
to e(0)

μ, giving us w(0) = 0. Since the background exhibits
spherical symmetry, the second and third components of w(a)

are simply symmetric angular components. Thus, we can
choose a suitable frame where the initial value of w(3) is zero.
Notably, Eq. (13) is a homogeneous equation. Consequently,
if ŵ(a) is a solution, so is κŵ(a), where κ is an arbitrary
nonzero constant. Therefore, if we initially set w(3) and its
first time derivative to zero, it will remain zero throughout.
Ultimately, we are left with two non-zero components: w(1)

and w(2).

Table 1 Sets of initial values for numerical simulationsa

Sets Redshift z r0 w
(1)
0 = w

(2)
0 ẇ

(1)
0 = ẇ

(2)
0

S1 3.94 4.5 × 1017 1
3 × 10−18 0

S2 3.94 4.5 × 1017 2
3 × 10−18 0

S3 3.94 4.5 × 1017 1
3 × 10−18 10−35

S4 3.94 4.5 × 1017 1
3 × 10−18 −10−35

aNote that this is in natural unit system. In SI system, r0, w
(i)
0 and ẇ

(i)
0

should be multiplied by c = 3 × 108 m/s. For example, for S1, we have
r0 = 1.35×1026 m, w

(1)
0 = w

(2)
0 = 10−10 m (� λc ∼ 10−15 m, where

λc is the Compton wavelength of the particle), and ẇ
(1)
0 = ẇ

(2)
0 = 0

By substituting these components into the geodesic devi-
ation equation (13) and performing numerical calculations
with specified initial conditions, one can determine the dis-
tance between the pair of particles

d(τ ) =
√

w(1)(τ )2 + w(2)(τ )2�l. (18)

The change in proper time is thus given by

δτ = −m0

∫ τ ′

0

1

d (τ )
dτ , (19)

which leads to the shift in phase δφ = −m0δτ
h̄ .

In our numerical simulations, the particle’s static mass
m0 is also set to be 10−25kg. And we adopt the following
data: �� = 0.6935, �m = 0.3065, �R = 0 and H0 =
67.6 km · s−1 ·Mpc−1 as suggested in Planck 2018 data [35].
The scale factor at present a0 is set to 1.

One point deserves mention is that solving the geodesic
deviation equations of present case needs assign both the
initial temporal coordinate t0 and the initial spatial coordinate
r0. In the following simulations, we choose four typical sets
of geodesics and their initial values which are adopted in the
following numerical simulations as can be found in Table 1.
Note that throughout the paper, z represents the redshift of
the source. It is not difficult to generalize the simulations to
the cases where w

(1)
0 �= w

(2)
0 and ẇ

(1)
0 �= ẇ

(2)
0 .

First of all, let us focus on two assignments. One is that
an initial time slice (t = t0) is chosen, while particles start
at different radial coordinates r = r0 (that is, a snapshot
of different place at time t0). The other is an initial radial
coordinate r0 is fixed, while initial time coordinate is free
(i.e., focusing on one fixed place for different time). These
two series of geodesics are illustrated in Fig. 1.

Figure 2 presents a plot illustrating the phase shift of two
series of geodesics as a function of t0 (with fixed r0) or r0

(with fixed t0). In Fig. 2a, we observe that for geodesics
S1 and S2, the phase shift initially increases to a maximum
value and then gradually decreases. On the other hand, for
S3 and S4, the phase shift diminishes as the radial coordi-
nate increases, accompanied by a decrease in descent speed.
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Fig. 1 Two different assignments of initial values for r0 and t0. Solid
one represents that particles start from different time t0 for a fixed radial
coordinate r0. Dashed line represents that particles start from different
initial radial coordinates r0 at a fixed initial time slice t = t0. The black
point marked “Now” represents the spacetime point where we receive
particles

Figure 2b reveals that the phase shift initially grows with
increasing initial time coordinate, followed by a subsequent
decrease. This behavior arises due to the interplay between
increased proper time and increased separation during the
movement as the initial time coordinate increases. Further-
more, we can conclude that specific initial conditions, such
as a smaller radial coordinate and an appropriate time coor-
dinate, yield the maximum phase shift.

According to [4], strict ranges must be set for particle
mass, spacing distance, and action time. However, in our sce-
nario, the particle’s static mass can be significantly smaller,
and the spacing distance can be much larger. For instance,
when the initial time coordinate is 1.5 × 1017 and the radial
coordinate is 4.5×1017, the phase shift of particle pairs with a
static mass of 1 × 10−20 kg, separated by one meter initially,
and with no initial deviation rate, can reach a substantial
value of 0.361988. Such an experiment would be impractical
to conduct on Earth due to the extremely light particles and
the large spacing distance required. The relationship between
phase shift and initial geodesic offset distance under these
conditions is depicted in Fig. 3.

Fig. 2 Phase shift δφ as a function of t0 and r0. a δφ against r0 with t0
fixed at z = 3.94. b δφ against z (or t0) with r0 fixed at (r0 = 4.5×1017

in natural units system)

We now investigate the influence of the initial velocity of
the geodesic deviation vector on the phase shift. By keep-
ing the starting point of the particles fixed at a spacetime

Fig. 3 Phase shift δφ as a function of initial geodesic deviation w0.

Where we assume w
(1)
0 = w

(2)
0 = w0 (in natural units system)
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Fig. 4 Phase shift δφ as a function of initial geodesic deviation velocity
ẇ0. a Initial geodesic deviation velocity is positive, ẇ(1)

0 = ẇ
(2)
0 > 0. b

Initial geodesic deviation velocity is negative, ẇ(1)
0 = ẇ

(2)
0 < 0. In both

cases, we take t0 = 5×1016, r0 = 4.5×1017, w
(1)
0 = w

(2)
0 = 1

3 ×10−18

(in natural units system)

point and varying the initial velocity, we can analyze this
relationship. The specific initial conditions are provided in
the caption of the Fig. 4.

In Fig. 4a, we observe a concave phase shift curve that
indicates a decreasing rate of phase shift as the positive ini-
tial deviation velocity increases. This behavior can be easily
understood: the positive initial deviation velocity causes an
increase in the spacelike distance, as depicted in Eq. (19),
leading to a smaller phase shift.

On the other hand, Fig. 4b demonstrates that the phase
shift initially increases with a negative initial deviation veloc-
ity and then gradually decreases until it reaches nearly zero.
This can be explained by considering the following: with a
relatively small negative velocity, the two particles remain
close neighbors for most of the time. However, with a rela-
tively large negative velocity, they move apart, resulting in a
considerable separation between them by the end.

The entanglement phase is closely related to the cosmo-
logical model we assume, and using different cosmological
models will lead to different entanglement curves. For exam-
ple, the Brans–Dicke (BD) theory is a well studied scalar-
tensor theory of gravity. The Lagrangian of BD theory is

LBD = √−g

[
φ2R

8w
− 1

2
∇μφ∇μφ + LM (ϕ)

]
, (20)

where w is an arbitrary constant. The present limits of the
constant w based on time delay experiments [36] require
w > 104. The BD theory approaches General Relativity
(GR) in the limit w → ∞ [37].

The field equation for flat FLRW cosmology in BD theory
is [37]:

H2 = 8πρ

3φ
− H

φ̇

φ
+ ω

6

φ̇2

φ2 , (21)

φ̈

φ
= 8π

φ

(ρ − 3P)

(2ω + 3)
− 3H

φ̇

φ
, (22)

where φ is the scalar field and H is the Hubble constant that
evolves over time in BD theory. In deriving (21) and (22),
we have assumed that φ does not couple to the matter field
LM and we are considering the classical perfect fluid in the
matter field.

Following the algorithm in the previous section, we also
calculated the phase shift of the two series of geodesics in
Fig. 2 and compared them with those in GR. Unlike GR,
here the Newton’s constant is a variable: G (t) = 2w+4

(2w+3)φ(t) .

In Fig. 5 we plot the difference �φ ≡ δφBD − δφGR as a
function of initial value of r0 and redshift, for a set of different
w.

Our results demonstrate a consistent alignment between a
smaller value of w and a more pronounced phase shift, which
aligns with theoretical expectations. Notably, when the initial
values of r0 are relatively small and z is relatively large, the
phase shift difference between BD theory and GR become
more prominent. Leveraging these distinctions in entangle-
ment phase variations, the QGEM mechanism emerges as
a promising observational approach for discerning between
gravity theories and cosmological models.

3 Characteristic spectrum

Entanglement between particle pairs might have been gen-
erated before geodesic motion starts. Therefore, it becomes
crucial to determine whether gravity induces entanglement
or if other physical processes are involved. To address this
challenge, we propose that QGEM during geodesic motion
will exhibit a characteristic spectrum as phase shifts occur
in a series of geodesic lines. By analyzing the entangled pat-
terns formed by different geodesics, we can infer whether
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Fig. 5 Phase shift difference �φ between BD theory and GR as a
function of t0 and r0. The �φ is defined as �φ = δφBD − δφGR . a
�φ against r0 with t0 fixed at z = 3.94. b �φ against z (or t0) with
r0 fixed at (r0 = 4.5 × 1017). In both cases, we take w

(1)
0 = w

(2)
0 =

1
3 × 10−18(≈ 10−10 m), ẇ

(1)
0 = ẇ

(2)
0 = 0 (in natural units system)

the entanglement originates from the gravitational field of
nearby particles or from alternative sources.

Phase itself is not directly observable. We often use entan-
glement witness W as an experimental indicator to detect
entanglement formation. The definition of entanglement wit-
ness is

W = ∣∣〈σ1x ⊗ σ2z

〉 + 〈
σ1y ⊗ σ2y

〉∣∣ . (23)

When it is greater than 1, we can infer that there is entangle-
ment between the two particles.

Similar to the case of [24], the entanglement witness W
exhibits oscillatory variations with different initial motion
parameters. Again, let us take two series of geodesics as men-
tioned in Fig. 1 for example. In Fig. 6, we have converted dif-
ferent initial parameters r0 into corresponding initial velocity
uμ(0). While the initial values of four velocity, uμ(0), can
be further transformed to the orthogonal frame form as:

uμ(τ = 0) = γ e(0)
μ − γ v0e(1)

μ, (24)

Fig. 6 Variation of entanglement witness W as a function of v0 in
FLRW universe. Other initial parameters are set to the same as S1 in
Table 1

Fig. 7 Variation of entanglement witnessW as a function of z in FLRW
universe. Other initial parameters are set to the same as S1 in Table 1

where γ = 1√
1−v2

0

and v0 is the initial velocity of the parti-

cle with which we replace r0. It shows v0 increases with r0

increases and W oscillates faster in the larger area of v0.

W oscillates very unevenly as a function of r0. Only when
r0 falls in some certain intervals, the entanglement phase that
gives a positive answer to whether to be entangled can be
reached. This forces us to limit the particle source to a rea-
sonable spacetime region in order to ensure that entangled
particles can be observed when using the entanglement wit-
ness (23).

Figure 7 shows the entanglement witness as a function of
the redshift z. From where we find that due to the convexity
of the phase transition curve S1 in Fig. 2b, the entanglement
witness curve has a valley in the middle of z that is insufficient
to confirm entanglement. At both ends of z,W oscillates fast
enough to reach the threshold, 1, confirming entanglement.

Compared to the initial conditions, particle’s energy is
an important observable. In observer’s frame, each particle
emitted at different r0, t0 will have a specific geodesic, and
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Fig. 8 Variation of entanglement witness W as a function of Ekin
with t0 fixed at z = 3.94 in FLRW universe. The other kinematic initial
conditions are consistent with that in Fig. 6, and each v0 corresponds
to each Ekin of this figure

Fig. 9 Variation of entanglement witness W as a function of Ekin with
fixed r0 at 4.5×1017 in FLRW universe. The kinematic initial conditions
are consistent with that in Fig. 7, and each z corresponds to each abscissa
Ekin of this figure

every instantaneous observer on the geodesic will measure a
corresponding kinetic energy.

We use the kinetic energy of the particles measured by
observer on Earth to label each particle. The observed kinetic
energy for particles emitted from different initial spacetime
location is calculated as follows:

Ekin = za p
a − m, (25)

where za is the four-velocity of an observer on Earth, pa is the
four-velocity of a particle upon reaching Earth. The variation
of W with respect to Ekin is plotted in Figs. 8 and 9. From
these two figures, we observe that for both cases,W oscillates
faster in the low kinetic energy Ekin region than in the high
kinetic energy region. Observing low-energy particle pairs
will be more helpful for us to detect entanglement.

4 Conclusions

In this paper, we generalize the QGEM proposal to be car-
ried out in FLRW cosmological spacetimes along with the
static spherically symmetric case as discussed in [24]. Just
like in Schwarzschild spacetime, particle pairs propagating
in FLRW cosmological spacetime can become entangled as
a result of the gravitational field’s influence, thus verifying
quantum gravity. The entanglement phase is also influenced
by variations in its motion parameters, such as the initial
launch point position, initial geodesic deviation and its rate.
Moreover, the dependence between entanglement curves and
cosmological models provides an alternative way to verify
different gravity theories or cosmological models.

Since the entangled phase cannot be directly observed,
in order to connect it more closely with actual cosmologi-
cal observations, we drew the entanglement witness-energy
diagram. Similar to [24], there is a characteristic spectrum
of QGEM. So we could distinguish whether the observed
entanglement arises from the quantum gravity effect of par-
ticle pairs or from other process (e.g, the emission stage at
the source as suggested by the Hawking radiation of black
holes).

In addition to verifying the quantum gravity effect, our
solution provides a possibility to verify the extended equiv-
alence principle in the spacetime background of FLRW cos-
mology [38]. It also provides a new perspective for the obser-
vation of cosmic rays, enriching the content of entanglement
detection in cosmology. The present work provides a new
possible source of entanglement formation in cosmology.

In the future, it is of interest to further study the impact
of different cosmological models on the quantum entangle-
ment induced by the QGEM mechanism. The entanglement
induced in this way under different cosmological models
is very likely to have significantly different characteristics,
which will provide a new way for us to observe and study
the universe. Moreover, in addition to inducing entangle-
ment between physical particles, it is also possible to quan-
tum gravity can also induce entanglement between quantum
fields, such as scalar fields, vector fields, and spinor fields,
thus affecting the overall entangled structure of the universe.
This could be explored further in the future.
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