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In the framework of large-momentum effective theory at one-loop matching accuracy, we perform a
lattice calculation of the Collins-Soper kernel, which governs the rapidity evolution of transverse-
momentum-dependent (TMD) distributions. We first obtain the quasi-TMD wave functions at three
different meson momenta, on a lattice with valence clover quarks on a dynamical highly improved
staggered quark sea and lattice spacing a = 0.12 fm from the MILC Collaboration, and renormalize the
pertinent linear divergences using Wilson loops. Through one-loop matching to the light-cone wave
functions, we determine the Collins-Soper kernel with transverse separation up to 0.6 fm. We study the
systematic uncertainties from operator mixing and scale dependence, as well as the impact from higher
power corrections. Our results potentially allow for a determination of the soft function and other
transverse-momentum-dependent quantities at one-loop accuracy.
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Understanding the internal three-dimensional structure
of hadrons, such as the proton, is an important goal in
nuclear and particle physics. In this regard, the transverse
momentum-dependent (TMD) parton distribution functions
(TMDPDFs) [1,2] play an important role, as they character-
ize their intrinsic transverse partonic structure. These
distributions are also essential ingredients in the description
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of multiscale and noninclusive processes, such as Drell-Yan
production of electroweak gauge bosons, Higgs bosons, or
semi-inclusive deep-inelastic scattering with small trans-
verse momentum, in the context of QCD factorization
theorems. As a result, they have received considerable
attention in the past few decades (for a review, see Ref. [3]).
More accurate experimental measurements are expected in
the coming decades from Jefferson Laboratory 12 GeV [4]
and the electron-ion colliders in the U.S. [5,6] and
China [7].

In contrast to the TMDPDFs that encode the probability
density of parton momenta in hadrons, the transverse
momentum-dependent wave functions (TMDWFs) offer
a probability amplitude description of the partonic structure
of hadrons, from which one can potentially calculate
various quark/gluon distributions. In the QCD factorization
involving transverse momentum, they are the most impor-
tant ingredients to predict physical observables in exclusive
processes, for instance, weak decays of heavy B mesons
[8,9], which are valuable to extract the Cabibbo-Kobayashi-
Maskawa matrix element and to probe new physics beyond
the standard model. However, due to the lack of knowledge
of TMDWFs, the one-dimensional light-cone distribution
amplitudes (LCDAs) are used instead in most analyses
of B decays [8—10], resulting in uncontrollable errors. The
unprecedented precision of experimental measurements
of B decays [11] urgently requires a reliable theoretical
knowledge of TMDWFs.

A common feature of TMDPDFs and TMDWF:s is that
they depend both on the longitudinal momentum fraction x
and on the transverse spatial separation of partons.
Considerable theoretical efforts have been devoted in recent
years to determine these quantities by fitting the pertinent
experimental data [12-20], which, however, is limited by
the imprecise knowledge of the nonperturbative behavior of
TMDPDFs and TMDWFs. Thus, it is highly desirable to
develop a method to calculate them from first-principle
approaches such as lattice QCD.

This has been realized in the framework of large-
momentum effective theory [21,22], which offers a system-
atic way to calculate light-cone correlations by simulating
time-independent Euclidean correlations on the lattice.
Significant progress has been made in calculating various
parton quantities from large-momentum effective field
theory (LaMET). For recent reviews, see Refs. [23,24].

A very important result of LaMET development is that
the TMDPDFs and TMDWFs can be calculated through the
Euclidean quasi-TMDPDFs and quasi-TMDWFs, as well as
a universal soft function (factor) [25-29]. In Ref. [26], it has
been suggested that the form factor of a bilocal four-quark
operator calculable on the lattice can be factorized into
quasi-TMDWFs, a universal soft (function) factor, and the
matching kernel through QCD factorization at large-
momentum transfer, allowing for the first time calculation
of the universal soft function on the lattice. Thus, the

light-cone TMD parton distributions and wave functions
can be obtained from numerical calculations of the four-
quark form factors and quasi-TMDPDFs and TMDWFs on
the lattice [26,27]. On the other hand, one can also make use
of the QCD factorization to obtain the Collins-Soper (CS)
kernel from quasi-TMDPDFs and TMDWFs. The first
results for the CS kernel based on these proposals have
been published recently [30-35]. The quasi-TMDWFs
approach to the CS kernel requires two-point function
calculations and potentially can reach the light-cone limit
with relatively small hadron momenta.

In this work, we present a state-of-the-art calculation of
the CS kernel, based on a lattice QCD analysis of quasi-
TMDWFs with Ny = 2 + 1 + 1 valence clover fermions on
a staggered quark sea with one-loop matching accuracy. A
single ensemble with lattice spacing a ~0.12 fm, volume
n? x n, = 483 x 64, and physical sea-quark masses is used.
In order to improve the signal-to-noise ratio, we tune the
light-valence quark masses such that m, = 670 MeV. The
CS kernel is then extracted through the ratios of the quasi-
TMDWFs and the perturbative matching kernels at different
momenta, P*=2r/n;x{8,10,12} ={1.72,2.15,2.58} GeV.
This corresponds to Lorentz boost factors y = {2.57,3.21,
3.85}, respectively. This analysis improves the previous
ones [31,33] by taking into account the one-loop perturba-
tive contributions and by analyzing systematic uncertainties
from operator mixing, higher-order corrections from the
scale dependence, and higher power corrections in terms
of 1/P=.

The remainder of this paper is organized as follows. In
Sec. II, we present the theoretical framework to extract the
CS kernel from quasi-TMDWFs. Numerical results for
quasi-TMDWFs and the CS kernel are presented in Sec. I11.
A brief summary of this work is given in Sec. IV. More
details about the analysis are collected in the Appendixes.

II. THEORETICAL FRAMEWORK

In this section, we review the necessary theoretical
background for the present calculation. We present the
definitions of the CS kernel and rapidity evolution and
introduce the quasi-TMD wave functions. We then discuss
the factorization of the quasi-TMDWFs and its connection
with the CS kernel.

A. Collins-Soper kernel and rapidity evolution

Unlike the collinear light-cone PDFs and distribution
amplitudes, the TMDPDFs and TMDWFs depend on both
the renormalization scale p and an additional rapidity
renormalization scale. The latter arises because the matrix
elements also suffer from so-called rapidity divergences that
require a dedicated regulator [1,36,37]. In TMD factoriza-
tions, the contributions of hard, i.e., highly off-shell, modes
to the tree process are usually calculated in the dimensional
regularization scheme. Collinear modes, which are related
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to highly boosted partons in distinct directions, and soft
modes, whose typical momentum are at the order Agcp,
share the same virtuality and are only distinguishable by
their rapidity. In calculations using regularization schemes
such as dimensional regularization, which only regulate
ultraviolet divergences, one will encounter additional rap-
idity divergences that arise in soft and collinear matrix
elements when integrating over rapidity and have to be
resolved using a dedicated regulator. After the later regu-
larization, TMDPDFs and TMDWFs acquire an additional
rapidity scale dependence. This dependence should cancel
in theoretical predictions for physical observables.

The CS kernel K(b,, u), known as the rapidity anoma-
lous dimension, encodes the rapidity dependence of the
TMD distributions [1,2],

d
2§d—C1nfTMD(x, byp.l)=K(bi.p), (1)

where f™DP denotes any leading twist TMDPDF or
TMDWE. The TMD distributions depend on the longi-
tudinal momentum fraction x and transverse spatial sepa-
ration b, which is the Fourier conjugate to the transverse
momentum k |, as well as the renormalization scale y and
rapidity scale £, which is related to the hadron momentum.
The p dependence of the CS kernel K (b, u) satisfies the
renormalization group equation (RGE),

d
/"zd_ﬂzK(bL’ﬂ) = _Fcusp(as)' (2)

Here Ty (@) = a,Cp/m + O(a?) is the cusp anomalous
dimension, which has been calculated in perturbation theory
up to two loops in Ref. [38] and three loops in Ref. [39]. The
solution to the RGE can be expressed as

K(byop)=—2 / . dﬂ—’f'rcus,)(as(m) LK@y (1/62). (3)

For large b, with b7! < Aqeps the CS kernel becomes
nonperturbative, which is represented by the noncusp
anomalous dimension K (a,(1/b,)) in the above equation.

In the past decades, the CS kernel has been widely
studied in global fits of TMD parton distributions [12-20].
The explicit form in the nonperturbative region can only be
parametrized by extending the perturbative expressions at
small b, which inevitably introduces systematic uncer-
tainties. A direct calculation of TMDPDFs and the relevant
CS kernel on the lattice was an almost insurmountable
hurdle until the establishment of LaMET [21,22]. A
remarkable recent development in LaMET is that these
quantities can be accessed through the corresponding
quasiobservables [25-28].

B. Quasi-TMD wave functions

As stated above, one can define the quasi-TMDWFs for a
highly boosted pseudoscalar meson along the z direction
with large momentum P? as

®*0(z,b,,P*,a,L)
V ZE(2L’ blvﬂ’ Cl) ’
(4)
where x, = x — 1. The unsubtracted quasi-TMDWF &+ is

defined as an equal-time correlator containing a nonlocal
quark bilinear operator with staple-shaped gauge link,

- . dZ 7 Z
‘Pi(x, bj_7/47§z) — Lh_{r.}o / Ze:x,zP

®*0(z,b,,P%,a,L)
= (0w (zh,/2+ b i, )T
X ZJZI,:N:L(Zﬁz/2 + bJ_ﬁJJ _Zﬁz/z)W(_Zﬁz/2>|P2>‘ (5)

For a pseudoscalar mesonic state, the Dirac structure I" can
be chosen as y°ys5 or y'ys, which approaches the leading-
twist structure y*ys in the light-cone limit. With a large but
finite P?, the deviations between y°ys and y'ys are power
suppressed. At one-loop level and leading power accuracy
in LaMET, their matching kernels are identical. So tech-
nically, one can also use a combination of them, such as
(r*vs +7'vs)/2 to minimize power corrections, and the
difference between the average and y*/’ys can be treated as
systematic uncertainties arising from higher powers. More
details can be found in Sec. III C. Various combinations
were also explored in Ref. [33]. The superscript “0” in ®*°
indicates bare quantities. The linear divergences come from
the self-energy of the gauge link,

U:I,:I:L (Zﬁz/z + bJ_ﬁJ_’ _Zﬁz/z)
= Ul(zh /2 + b i s L)U, (L = 2/2)i; br)
x U, (=zn,/2;L), (6)

and does not appear as a pole at d =4 in dimensional
regularization. The Euclidean gauge link in U-.; is
defined as

U,(¢,+L) = Pexp {—ig / = din,-ACE +nA)|, (7)
f?

where £ = —¢-n,. The = L corresponds to the farthest
position that the gauge link can reach in the positive or
negative n, direction on a finite Euclidean lattice. This is
depicted as the blue and red lines in Fig. 1.

Since the linear divergence is associated with the gauge
link, it can be removed by a similar gauge link with the same
total length. An optional choice is to make use of the Wilson
loop, denoted as Zx. The Wilson loop can be chosen as the
vacuum expectation of a flat rectangular Euclidean Wilson
loop in the z — L plane,
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FIG. 1. Tllustration of the staple-shaped gauge link included in
unsubtracted quasi-TMDWFs and the related Wilson loop. The
blue and red double lines in the upper panel represent the L-shift
direction on the Euclidean lattice, and the lower panel shows the
corresponding Wilson loop, which will subtract UV logarithmic
and linear divergences in quasi-TMDWFs.

! .
ZE(ZL, bJ_,,u,a) = N—Tr<0|UJ_(O,bJ_)UZ(bJ_nJ_,ZLHO)

(8)

Here the length of Zj is twice that of the staple-shaped

gauge link U E” in the z direction, and thus it is anticipated

that the square root of Zg(2L,b,,u) cancels the linear
divergence and heavy quark potential in the gauge link.
There are residual logarithmic divergences from the vertex
of the Wilson line and light quark, which can be renor-
malized in dimensional regularization [40]. As these log-
arithmic divergences are independent of z, b, P_, and L,
they will explicitly cancel out when the ratio of quasi-
TMDWEFs is studied.

C. Factorization of quasi-TMDWFs

With the help of the soft function, the infrared contri-
butions in the subtracted quasi-TMDWFs can be properly
accounted for such that the infrared structures for the quasi-
TMDWFs and light-cone ones are matched. This implies a
multiplicative factorization theorem in the framework of
LaMET [25-28,41],

V(b 1, 8)SY (b )

= H*(G. L) exp BK(zu,u) 1n#]
+ Aoep s 1
nnd) +o(SER ). O

where the superscript £ in Eq. (9) corresponds to the
direction in the Wilson line, and P+ is the TMDWFs
defined in the infinite momentum frame. The reduced soft

function SY/ 2(b 1, u) emerges from the different soft gluon
radiation effects in P+ and ¥+ [28]. The mismatch of the
rapidity scale { and {, can be compensated by the CS kernel
K(b,,u). Both S and K are independent of the + choice.
H? is the one-loop perturbative matching kernel [28],

H*(C:.80.m)

a,Cr [ 572 1 _
=1+ 4;(—?—4+fi+fi—5(f§+fi)>, (10)
with the abbreviations ¢, = In[(={, +ie)/p?] and

£y =In[(=¢, £ie)/u?], the scales ¢. = (2xP?)?> and
¢, = (2xP%)?, and X = 1 —x. It should be noticed that
H* contains nonzero imaginary parts in #, and 7. While
the imaginary parts in #, /£, are constants, the ones in the
double logarithms #2 /#2 are momentum dependent.

A characteristic behavior of Eq. (9) is that this factori-
zation is multiplicative [24], which indicates that hard gluon
contributions are local. This is due to the fact that hard gluon
exchange between the quark and antiquark sectors in quasi-
TMDWEFs is power suppressed: if there were such a hard
gluon, the spatial separation between its attachments is much
smaller than b | , resulting in power suppression compared to
the typical hard mode contributions. Thus, at leading power,
the factorization of quasi-TMDWFs is multiplicative. This
feature is illustrated in Fig. 2, in which the collinear, soft, and
hard subdiagrams represent the pertinent contributions.
Further, ¢, arising from Lorentz-invariant combinations of
collinear momentum modes will provide the natural hard
scale of the hard subdiagram. More detailed explanations for
the factorization of quasi-TMDPDFs in LaMET are given in
the recent review in [27].

D. Collins-Soper kernel from quasi-TMDWZFs

From Eq. (9), one can see that the momentum depend-
ence in quasi-TMDWFs provides an option to determine

FIG. 2. Leading power reduced graph for pseudoscalar meson
quasi-TMDWFs. Here C and S denote the collinear and soft
sectors of the infrared structure, while H denotes the hard
contributions. Since the hard gluon exchange between the quark
and antiquark is power suppressed, the hard parts are discon-
nected with each others, and therefore the factorization of quasi-
WF amplitude is multiplicative.
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the CS kernel. This can be written in a way similar to
Eq. (1) [28],

d - 1
Znglani(vaLvﬂsgz) = K(bJ_nu) +§gi(x2¢zu“)

| 1
+§Qi(xzéz,u) +O<€—>, (11)

Z

where K (b, u) denotes the same kernel as in Eq. (1) and
does not depend on the hard scale ¢, for large P*. Unlike
TMDWFs, the quasidistributions also contain hard con-
tributions, whose rapidity dependence is represented by
the perturbative G* as a function of hard scale ¢.. From the
{. dependence of quasi-TMDWFs, we can see that, when
P? — o0, the large logarithms in P? are partially absorbed
into K(b,,pu) and the remanent is incorporated in the
perturbative matching kernel. Therefore, both the match-
ing kernel H* and an exponential of the CS kernel
K(b,,u) are needed to describe the dependence on (.,
of quasi-TMDWFs.

In order to extract the CS kernel K(b , u) explicitly, one
can make use of Eq. (9) with two different large momenta
P5 # P5> 1/b, but the same scale .. Taking a ratio of
these two quantities gives

Z

exp [K(bb,u) ln%] , (12)
2

‘i}i('x’ bL?/’t’Pi)
P (x, by, P5)

_ HE(xPi.p)
H*(xP5.p)

where the reduced soft function S,(b,,u) and TMDWFs
W= (x, b, u,¢) have been canceled in the ratio. Therefore,
the CS kernel K(b,u) can be extracted through

K(b,,u)= - (13)

1 nHi(ng,y)‘i’i(x,bJ_,,u,Pf)
In(P§/P5) " H*(xP{,u)¥* (x,b . P5)

Note that the extracted result is formally independent of x
and Py , at leading power, and both ¥+ and ¥~ can be used
to extract K (b, ). This is derived at the leading power in
the factorization scheme and might be undermined by
power corrections. Accordingly, in order to reduce the
systematic uncertainties, we take the average

1 H* (xP5, )Pt (x, b, u, P3)
PP [ H (P ) ¥ (x. by P)
H™(xP5, 1)~ (

H™(xP5, )W (

K(bJ_v /’t) = 2111(

X, bl’ /'tv
X, bJ_’ /'t’

+1In (14)

Pi)
P3)
The details will be discussed in Sec. III E.

III. NUMERICAL SIMULATIONS AND RESULTS

In this section, we present our lattice QCD results.
We start with the lattice setup, followed by results for

quasi-TMDWFs with two-point correlations. The Wilson
loop results are discussed in Sec. III C. Section III D studies
the operator mixing effects. Our main result on the CS
kernel is presented in Sec. III E. Section III F includes some
overall discussions.

A. Lattice setup

Our numerical simulations use Ny =2 + 1+ 1 valence
clover fermions on a highly improved staggered quark sea
[42] and a one-loop Symanzik improved gauge action [43],
generated by the MILC Collaboration [44] using periodic
boundary conditions. In the calculations, we use a single
ensemble with the lattice spacing a ~0.12 fm and the
volume 73 x n, = 483 x 64 at physical sea-quark masses.
In order to increase the signal-to-noise ratio, we tune the
light-valence quark masses to the strange-quark one, namely,
m® = 130 and m)* = 670 MeV, which could generate
some nonunitarity effects. On the other hand, the Collins-
Soper kernel only depends weakly on quark mass, and we
may consider that valence quarks are strangelike, namely,
the hadrons involved are kaons.

To further improve the statistical signals, we adopt
hypercubic (HYP) smeared fat links [45] for the gauge
ensembles. To access the large-momentum limit for the
CS kernel, we employ three different hadron momenta as
P* =2n/ng x {8,10,12} = {1.72,2.15,2.58} GeV cor-
responding to the boost factor y = {2.57,3.21,3.85}.

B. Quasi-TMDWFs from two-point correlators

In order to calculate the quasi-TMDWFs defined
in Eq. (4), we generate Coulomb-gauge wall-source
propagators,

Sy(x.t.0:p) =Y _S(t.%:1.5)ePTH (15)
y

where (7,¥) and (#,X) denote the space-time positions of
source and sink. Then one can construct the two-point
function related to the quasi-TMDWFs in Eq. (4),

1 B, w N
Cy(z, by, P55 p* Lot) = ;Ztre’P'Wva(xl,t,O;—p)
S Ox

XTU4 11 (X1.%,)S,,(%,1,0;p)),
(16)

with X, =X+zA./2+b A, and X, =X —zA,/2. The
quark momentum p = (6 1, p*) is along the z direction,
and each of two quarks carries half of the hadron momen-
tum. Thereby, the hadron momentum satisfies P= 2p. The
antiquark propagator can be obtained from Eq. (10) by
applying ys-hermiticity S,,(x,y) = 55,,(y,x)"ys. As men-
tioned above, the Dirac structures are chosen as I' = y?y;
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and y'ys that can be projected onto the leading-twist light-
cone contributions in the large-P* limit.

By generating the wall-source propagators with quark
momenta p* = +{4,5,6} x 2n/(nsa) and three segments
of gauge links following Eq. (6), one can construct the two-
point correlation functions on the lattice. With the help of
reduction formulas, the C5 can be parametrized as

Av(P?)A) &
PPz by, PEL
E (Z 1 )

x e E[1 + ¢o(z, b, P*, L)e 2F),
(17)

C%(Z’ bJ_9PZ;pZ9L7 t) -

where A,,(p?) is the matrix element of the pseudoscalar
meson interpolating field with Coulomb-gauge fixed
wall source and A, is the one for a point source (sink).

These terms, as well as the factor E=' = 1/1/m2 + (P?)?,
are canceled by the local two-point function

C5(0,0,P% p?,0,1) at the same time slice. Thus, the
remaining ground-state matrix element ®*° is normalized.
The ratio of nonlocal and local two-point functions can be
parametrized as

R*(z,b,,P* L,1)
_ C3(z.by, P* L, 1)
C,(0,0, P%,0,1)
= ®(z,b,, P1, L)1 + co(z, b1, P*, L)e ],  (18)

where C, in the denominator is a local correlator.

In the above parametrization, the excited-state contri-
butions are collected into the ¢, term, and AE denotes
the mass gap between the ground and first excited state.
With the increase of Euclidean time, contributions from
the excited state decay and the plateau obtained for
R* (z,b,, P*, L,t) at large times reflects the ground-state
contribution ®*°. We employ two methods to extract ®*°,
namely, the two-state fit directly using Eq. (18) and the
one-state fit by setting ¢y = 0. With a large enough
Euclidean time, Fig. 3 exhibits a comparison using two
methods for the case with small {z, b, }. From this figure,
one can see that the one-state fit result is consistent with
the two-state fit one but gives a more conservative error
estimate. The two-state fit works at ¢ € [2a, 8a| and the
one-state fit works at the plateau region ¢ € [5a,8a],
whereas the excited-state contamination would dominate
for the two-state fit in a very high precision, especially for
the cases with large {z, b, }. So with current accuracy, we
adopt the more conservative results from the one-state fit in
the following analysis. More details can be found in
Appendix A.

=]
1.05 1
1.00 B
= =]
~ 0.95 =
I3
g, Bm @
< 0.90
X
&
0.85 1
= o m
~
0.80 4
two-state fit
0.75 4 one-state fit
0 1 2 3 1 5 6 7 8

FIG. 3. Comparison of two-state fit and one-state fit to extract
®*0(z,b,, P, L). Taking {z, b, P*, L} = {0a,2a,24x/n,, 6a}
as example, we can see that the two-state fit works for ¢ €
[2a, 8a] while the one-state fit works for r € [5a, 8al. The fitted
results are consistent with each other, while the one-state fit is
more conservative.

C. Wilson loop renormalization

The unsubtracted quasi-TMDWF matrix elements
@io(z,b 1, P a, L) extracted from the joint fit of the
two-point function contain a factor e~*"L+b1) from the
linear divergence, the heavy quark effective potential factor
eV and logarithmic divergences Z,

O*0(z, b, P a, L) o eIV Z, - (19)

where Z has logarithmic dependence on lattice spacing a.

The linear divergence in e 9"(2L+b1) comes from the
self-energy of the Wilson line [46—49], where 6/ contains a
term proportional to 1/a and a nonperturbative renormalon
contribution my,

Sit = m_i(a) _

(20)
Note that the exponent of the linear divergence term is
proportional to the total length of the Wilson link, e.g.,
2L + b, for the staple link. Because of this factor, the
numerical value for a Wilson loop dramatically decreases
for small a and large L.

The heavy quark effective potential term e~ comes
from interactions between the two Wilson lines along the z
direction in the staple link. The heavy quark effective
potential V(b,) is often used to determine the lattice
spacing of an ensemble.

The logarithmic divergence Z, comes from the vertices
involving the Wilson line and light quark. The logarithmic
divergence up to leading order, resummed by the renorm-
alization group equation and matched to the MS scheme,
is [50,51]

V(by)L
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3

In[1/ (aA'Qa%D)]> P
ln[ﬂ/AI(\gAgD} ’

Zo(1/a,u) = < (21)

where Ay, is different from that in the MS scheme.
One can use both to effectively absorb higher-order
contributions [52].

In this work, the Wilson loop renormalization method
[48,53—-56] is adopted, in which the Wilson loop Z defined
in Eq. (8) contains linear divergence and heavy quark
effective potential,

ZE(ZL, by, a) o e~ OMmAL+2by) ,=V(b1)2L (22)

According to Ref. [51], o/ in the Wilson loop is the same
as that in hadron matrix elements, and thus it is anticipated
that the linear divergence is removed when dividing by

\/ ZE(ZL, bJ_, Cl),

‘i)iO(Z, bLa PZ’ aaL)
Z:(2L.b,,a)

®*(z,b,,P*,a,L) = (23)

As shown in Fig. 4, the subtracted quasi-TMDWFs tend to
be a constant when L > 0.4 fm. We then use the subtracted
quasi-TMDWFs defined as

. &z, b, P a,L
©*(z.b., P%a) = Jim (ZZ(;L b ; ) -
— 00 E s J_’a

(24)

However, it is anticipated that there is a residual logarithmic
divergence Z,,

(i)io(z,bl,PZ,a,L) e—én‘q(zLHu)e—V(bl)LZO_Z ’s
Z:(2L.b,.a) o—OM2L+b,) ,=V(b )L — TO" (25)

In the extraction of the CS kernel, a ratio of quasi-
TMDWFs is adopted and accordingly the residual loga-
rithmic divergence Z,, is canceled.

D. Power correction effects with different operators

For a pseudoscalar meson on a Euclidean lattice, both
I' = y'y5s and y%y5 project onto the leading-twist light-cone
distribution amplitude, i.e., yTys in the large-P* limit. The
differences between them arises from power corrections in
terms of M?/(P%)%.

Figure 5 shows the comparison of the 1 = zP* depend-
ence of quasi-TMDWFs with I'=y'ys and y°ys at
P*=24r/n, ~2.58 GeV. It can be seen from the plots
that there are some differences between the two sets of
results for the real part in the small-A region. The
differences are expected to decrease with increasing P,
and the correlators with y'ys and y®ys will gradually
converge to the light-cone from opposite directions. In

08{ ¥
0.7
= = =] ] ] = m
064 H ¥
051 e - i Re[d')
0.4 4 e @ Re[‘iﬁo}
v
0.3 e v VZe
0.2 ©
0.1 1 © Z ¥
’ e
0.0
012 0:4 OTG OTS 110
L(fm)
084 V¥
0.6 1 ¥
v ~
0.4 @ Im[ef]
¥ O Im[@+)
¥ Y VZg
0.2 ¥
v
v
0.0
& e e e © © © N
B B B ®8 B B g
Oj? 0:4 Ojﬁ OjS 110

L(fm)

FIG. 4. Results for the L dependence of unsubtracted and
subtracted quasi-TMDWFs: real part (upper) and imaginary
part (lower), as well as the square root of the Wilson loop.
The cases I = y%ys and {P%,b,z} = {16x/n,,2a,2a} are used
for illustration.

addition, in light-cone coordinates, y’ and y* can be
represented by y* and y~,

Y'ys =—=" +r7)rs.

\S)

rrs = 7 (r*=r)rs. (26)

Because of the momentum along the light-cone, operators
with y~y5 correspond to higher-order terms of TMDWFs.
Therefore, power corrections arising from finite P° are
likely to be eliminated in the average of these two terms,

ot =]

=5 (D = yys) + D= =rys)].  (27)
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FIG. 5. 1 dependence of quasi-WF matrix elements with
different Dirac structures. Here we take the case of {P?, b, } =
{24x/ng, 3a} as an example; the deviation between these two
cases mainly comes from power corrections. Results for more sets

of {P%, b, } are shown in Appendix C.

For a quantitative analysis, see the appendix of [31]. In
Appendix C, we also estimate that the power correction
here reaches order 5%, which agrees with the conclusion in
Ref. [31]. We take this power correction effect as one
possible source of systematic uncertainties in the following
analysis.

According to our numerical simulations, the subtracted
quasi-TMDWFs in coordinate space <i>i(z, b,,P%) as a
function of A = zP* are complex, which is shown in Fig. 6.
The examples are the real and imaginary part of ‘i‘i(x,
b, P?) with P* = 24z /ng, b, = 2a, and 4a. To determine
quasi-TMDWFs in momentum space ‘i‘i(x, b, P?), we
use a Fourier transformation (FT),

- 1 Zmﬂx B o~
lPi()C,bJ_,PZ) _ > Z ezsz~q):t(Z7bJ_’Pz)’ (28)
T

~Zmax

where z = 47,4 (Zmax > 0) reaches the boundary of our
data. Because of the imaginary part of (i)i(z,b 1, P?),
$=(x, b, P?) also has an imaginary part. We obtain the
quasi-TMDWFs in momentum space for both real and
imaginary parts of ¥*(x,b,,P?) shown in Fig. 7 by
taking P* = 24rx/n,, b, = 2a, and 4a as examples. We
truncate the FT at —z,, and z,.. The deviation of
®* (+20x. b1, P?) from zero is a measure of the resulting
truncation error. For the largest range of z values we could
realize numerically, z,,,x = 1.44 fm, this error is still notice-
able. This brute-force truncation of the FT leads to oscil-
latory behavior of the TMDWFs. This oscillation in
<i>(x, b, P%) can be eliminated by an appropriate extrapo-
lation for &D(z, b, P*%) as a function of zP* before Fourier
transformation. While the signal-to-noise ratio of our data is
not smooth enough, the brute-force Fourier transformation is
adopted. More details can be found in Appendix D.

E. Collins-Soper kernel from quasi-TMDWFs

The CS kernel governs the rapidity evolution and thus is
independent of the momentum fraction of the involved
parton. But as indicated in Eq. (9), the factorization formula
works only when xP* > Aqcp and could be invalid in the
end-point regions x — 0, 1. Power corrections are presum-
ably of the form 1/(xP?)? or 1/(xP?)? [24,28]. Therefore,
the numerical CS kernel is fitted by a function of x, P, and
P5 and is written as K (b, u, x, P}, P5),

K(bl,,u,x, P?, Pé)
_ 1 +(xPé,y)‘i‘*(x, by, P7)
2In(P{/P5) | H* (xP§, ) ¥* (x, b1, P5)

H (xP3. ) ¥ (x. by . PY)
H=(xP; )7 (x, by . P5)

H
In
H

+ In

. (29)

Here K(b, , u, x, P}, P5) are extracted from the perturbative
matching kernels and quasi-TMDWFs using one-loop
matching. They will have power corrections of the form
O(1/(xP%)?) and O(1/(xP%)?). In order to extract the
leading power contributions, we adopt the following
parametrization:

K(bl,,u,x,Pi,Pé)
1
X (1=x)*(P5)*]
(30)

1
=K(by.u)+A 2(1=x)2(P3)?

where A is the coefficient accounting for the leading higher
power contributions and can be determined through a
joint fit, which is performed by combining the lattice data
for the two different momenta in the regions not so close to
x =0, 1 for each b, .
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FIG. 6. Examples for subtracted quasi-TMDWFs in coordinate space. Here we take the cases of P* = {16, 20, 24}x/n,. According to
our results, the subtracted quasi-TMDWFs &+ (z,b,, P?) are complex, thus the real and imaginary parts both need to be investigated.
The upper four figures are for subtracted quasi-TMDWFs & (z,b,, P?) as a function of 1 = zP* after the average over the two Dirac
structures (y'ys and y%ys) is taken. The upper left figure shows the real part of ®* (z,by, P%) with b, = 2a, while the upper right one is
for ®*(z, b, P?) with b, = 4a. The lower two figures show the corresponding imaginary parts with b, = 2a and 4a.

Figure 8 presents the physical CS kernel K (b, u) with
b, ={0.12,0.24,0.36,0.48,0.60} fm. By employing
three cases of quasi-TMDWFs with P = {8, 10, 12}x
2m/ng, one can extract K(b,,u,x, P, P;) with P{/P; =
10/8 and 12/8, shown as the different colored bands.
Except for in the end-point regions (x < 0.2 or x > 0.8), the
lattice data are flat and reflect the leading power contribu-
tion, which conforms with expectations. Using the para-
metrization formula (30), the physical CS kernel K (b, u)
can be determined by fitting the data, shown as the green
band. Additionally, we have also verified the consistency of
different end-point regions, as well as parametrization
equations. More details can be found in Appendix E. As
mentioned before, at large b, the quasi-TMDWFs show
oscillations due to the truncation of the Fourier transforma-
tion, which also affects the extracted K(b_ , u, x, P}, P3), as

shown in the lower panel of Fig. 8. This oscillation effect can
be, in principle, removed once larger z data become possible,
or if one knows how to extrapolate the current data to the
larger z or A region.

Theoretically, the physical CS kernel is purely real;
however, there still exists a residual imaginary part at one-
loop matching. Based on the perturbative results given in
Ref. [28], one can notice that both the TMDWFs and
quasi-TMDWFs contain an explicit imaginary contribu-
tion. The matching kernel between them describes the
ultraviolet difference between these two quantities, and
thus the complex phase in the matching kernel arises from
the difference in the imaginary parts of TMDWFs and
quasi-TMDWFs. From the expression of the matching
kernel in Eq. (10), one can see that the imaginary parts
arise from the In(—¢, +ie) and In?(=(, + ie) terms.
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FIG.7. Examples for subtracted quasi-TMDWFs in momentum space with hadron momentum P? = 24x/n;. The subtracted quasi-
TMDWFs in momentum space ¥* (x, b , P*) are Fourier transformed from ®*(z, b, P?), which have real and imaginary parts.
Both have to be investigated. Shown in Eq. (28), a brute-force FT is used to determine P+ (x,b,, P%), where z,;, = —1.44,
Zmax = 1.44 fm. The upper left figure shows the real part for ¥* (x, b, , P?) with the b, = 2a case, while the upper right one is for
¥ (x,b,,P?) with the b, = 4a case. Correspondingly, the lower two figures show the imaginary part for W' (x, b, P?) with

b, = 2a and 4a.

The second term is momentum dependent, and thus taking
a ratio of hard kernels with different momentum will not
remove the imaginary part.

On the lattice side, we have found that the quasi-
TMDWFs are indeed complex. However, when taking
the ratio of quasi-TMDWFs with different momentum,
the imaginary parts mostly cancel. As a result, this leaves
a mismatch between the imaginary parts of the perturbative
matching kernel and quasi-TMDWFs, though both are
complex. Shown as Fig. 9, almost all of the imaginary
parts come from the ratios of perturbative kernels. This
mismatch of imaginary parts is puzzling, and we guess it
might come from lattice artifacts or missing higher power or
radiative corrections.

For now, we can only consider this imaginary part as
systematic uncertainty of our final results, and it can be
expressed as

Oys = \/K(boop) + I [K* (b, o)) = K(by). (1)

where Im[K* (b, )| represents the numerical imaginary
part of extracting K(b,,u) only by ¥*,

KE(by. ) = 1 Hi(xPé,u)‘?*(x, by, u, PY) _
In(P{/P3)  H*(xP3, u)¥P*(x, by, p, P3)
(32)
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FIG. 9. Comparison of ratios of one-loop matching kernels and
quasi-TMDWFs with P;/P; =2.58/1.72 and 2.15/1.72 GeV,
respectively. Lower: points out the sources of imaginary parts in
the CS kernel.

It should be noticed that the perturbative matching kernel
H™(zP%, i) is the complex conjugate of H~(zP%, u); that is,
the imaginary parts in these terms can cancel each other
when we employ the average of H* (zP5,u)/H " (zP5, u)
and H™(zP5, )/ H™ (zP}, u). Therefore, as the final result,
we adopt K(b,u) = [KT (b ,u) + K~ (b ,u)]|/2 to reserve
the real part and regard the imaginary contributions as our
systematic uncertainty.

F. Results and discussions

One should notice that the Wilson loop renormalized
quasi-TMDWF on the lattice [Eq. (24)] has a scale
dependence on a. If one converts it to the MS scheme
through dividing it by Z, [Eq. (21)], the scale pu is
introduced. In principle, one should convert the Wilson
loop renormalized quasi-TMDWF to the MS scheme since
our factorization formula works there. However, since Z,
has no dependence on momentum P, it cancels in the ratio

of quasi-TMDWFs, and so does the scale dependence. So,
one does not need to do the scheme and scale conversion of
the quasi-TMDWF during the extraction of the CS kernel.

The extracted CS kernel from the combined fit of the
ratios of quasi-TMDWFs with different momenta are shown
as the red data points in Fig. 10. In this figure, we exhibit
two kinds of errors for K(b , ), in which the smaller ones
denote statistical uncertainties, while the larger ones include
both statistical and systematical uncertainties. In the small-
b, region, the systematic uncertainties are dominant due to

= B 7
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—- 2loop $ ETMC/PKU 21 B K(b,,p
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FIG. 10. Upper: comparison of our results K(b,,u) and

Ko(b |, u) with the lattice calculations by Shanahan et al. [34],
the Lattice Parton Collaboration [31], European Twisted Mass
Collaboration/Peking University [33], and Schlemmer ef al. [32],
as well as the perturbative calculations up to three loops.
K(b,,u) denotes the CS kernel extracted through one-loop
matching, whose uncertainties correspond to the statistical errors
and the systematic ones from the nonzero imaginary part.
Ko(by,p) denotes our tree-level results, only with statistical
uncertainties. Lower: comparison of our result with phenomeno-
logical extractions: Scimemi and Vladimirov [19], Pavial9 [20],
and Sun et al. [15] give phenomenological parametrizations of
the CS kernel fitted to data from high energy collision processes
like Drell-Yan.
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the corrections from power correction effects and nonzero
imaginary parts.

As mentioned above, the imaginary parts might come
from higher-order/power corrections in the matching
kernel, and here we consider them as one possible source
of systematical uncertainties. In practice, we use the
average of K™ and K~ as our final result and estimate
the systematical uncertainties by the deviations between
the average and K*(K~). We also compare the Collins-
Soper kernel K with Re[K*] and Im[K*] in Fig. 11. As
shown in the figure, the imaginary parts are independent
of b 1-

As a comparison, we also give the tree-level matching
result for the CS kernel. With the leading order matching
kernel H(xP*, u) =1 + O(ay), Eq. (13) simplifies to the
ratio of quasi-TMDWFs ® at z =0 with momentum
P35 /P3. The blue dots in Fig. 10 denote the results obtained
for tree-level matching, for which only statistical uncer-
tainties are shown.

We compare our results with the ones from perturbative
calculations and phenomenological extractions, as well as
the lattice results determined by other collaborations.

The black solid and dashed lines in the upper panel of
Fig. 10 indicate the perturbative results up to three loops,
with a running coupling constant a,(u = 1/b,). The
perturbative calculations work well in the small-b | region
(b, < 1/Aqcp), while they will diverge with b increas-
ing. In contrast, the lattice calculation will give accurate
predictions in the nonperturbative region, whereas, due to
the power corrections, it might suffer large systematic
uncertainties in the small-b region.

Similar to this work, the results of LPC [31] and ETMC/
PKU [33] are also extracted from quasi-TMDWFs through a
tree-level matching. Adopting the one-loop matching for-
mula, as well as considering the operator mixing effects,
will help one to reduce the systematic uncertainties and

obtain more precise results. In addition, considering the
different directions of the gauge link will help us to
eliminate the contributions from the unphysical imaginary
part and then improve the accuracy of our results.

In another way, the SWZ [34] and SVZES [32] results are
obtained from quasi-TMDPDFs. Compared with the com-
plicated nucleon correlation functions, the meson ones are
much easier to obtain better signals. In addition, the wave
functions of the meson are nearly symmetric in x space,
thereby making it more convenient to parametrize the
oscillation effects and obtain the physical results in the
large-P* limit as in Fig. 8. In addition, the light meson makes
it easier to reach a larger boosted factor; as one can see from
the small-b, region, the results from quasi-TMDWFs fit
well with the perturbative calculations compared to the ones
from quasi-TMDPDFs.

The lower panel of Fig. 10 shows the comparison with
phenomenological results. SV19 [19] and SIYY15 [15] use
a parametrization with perturbative and nonperturbative
parts. However, Pavial9 [20] obtained their result with the
factorization of TMDPDFs, obtaining the CS kernel from
the rapidity derivative. In addition, they fit parameters from
the Drell-Yan data to obtain their phenomenological CS
kernel. The results from different methods exhibit obvious
inconsistency in the nonperturbative region. Our result
shows a better consistency with SV19.

IV. SUMMARY AND OUTLOOK

In this work, we have calculated the CS kernel on a MILC
lattice configuration in the large-momentum effective theory
framework. Comparing with our previous study [31], the
one-loop matching kernel has been adopted in this study,
and several hadron momenta were used to extract the CS
kernel. We found that, in the small-b | region, our results are
consistent with perturbative QCD. In the large-b | region,
our results seem consistent with other lattice calculations in
the literature within uncertainties.

For our future studies, we need to use lattice configu-
rations with multiple lattice spacing to understand the finite
lattice spacing effects. We would use a valence quark mass
consistent with the sea-quark one to reduce the nonunitarity
effects. One such effect might be the imaginary part of the
meson wave function, which seems inconsistent with
perturbative calculation at the present time. Clearly, all
these explorations will take more computational resources.
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APPENDIX A: EUCLIDEAN TIME ¢
DEPENDENCE OF NORMALIZED C,

In Sec. III B, the ratio of nonlocal and local two-point
functions is parametrized in Eq. (18),

1.02 A

two-state fit
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= 08
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A g
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R*(z,b,,P*, L, 1)
C5(z,by,P* L, 1)
C,(0,0, P%,0,1)
=®*0(z,b,, P4, L)[1 + ¢o(z, by, P%, L)e™ ).

(A1)

From the above equation, one can see that
R*(z,b,,P% L,t) decays exponentially with ¢. As dis-
cussed in Sec. III B, the one- and two-state fits are both used
to extract @io(z, by, P L). As shown in Fig. 12, for the
cases with small {z,b,} as {0a, la},{0a,3a},{2a,2a},
{2a,3a}, the two-state fit results are consistent with one-
state ones. However, for the cases with large {z, b}, the
excited-state contamination cannot be well described with
two-state parametrization. Since the excited-state contami-
nation will decrease with the Euclidean time separation
increasing, we use the plateau at large ¢ for our one-state fit.

1.0 1
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one-state fit
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FIG. 12. Four examples for comparing two-state fit and one-state fit to extract the ®*(z,b,, P, L) from R*(z,b,,P* L,t) as
described in Sec. III B with {z, b, } = {0a, la}, {0a,3a}, {2a,2a},{2a,3a}, and {P?, L} = {24z /n,, 6a}. The fit range for two-state

fit is 7 € [2a, 8a], which for one-state fit is ¢ € [5a, 8a].
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APPENDIX B: GAUGE-LINK LENGTH L DEPENDENCE OF QUASI-TMDWFEFs

In Sec. Il C, the Wilson loop is used to renormalize quasi-TMDWFs, which removes the linear divergence. Similar to the
discussion in Sec. III C, we give results with the different {P?, b, , z} in Fig. 13 to show separately the Wilson-link length L
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Results showing the dependence on the gauge line length L of unsubtracted and subtracted quasi-TMDWFs, as well as the
Wilson loop with {P?,b,z} shown in each figure. These results are for I' = y%ys.
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dependence of the Wilson loop, unsubtracted quasi-

TMDWFs, and subtracted quasi-TMDWFs. At large L,

@10 decays at the same speed of /Z, so Wilson loop
cancels the linear divergence in unsubtracted quasi-

TMDWFs.
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APPENDIX C: POWER CORRECTION EFFECTS

N MATCHING

In Sec. III C, we show the comparison of 1 dependence
of quasi-TMDWEFs with y’y5 and y%y5. For more cases, we
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FIG. 14. Examples of comparisons for A dependence of quasi-TMDWF matrix elements with two Dirac matrices: I' = y'ys and
I' = y%ys, with {P%, b, } shown in each figure. Power corrections cause the deviation between both cases.
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the higher power corrections have been canceled.

give results with {P*, b, } = {24x/n,,2a}, {24x/n,, 4a},
and {167z/ny,3a} in Fig. 14. Based on these figures, we
anticipate that the average of y’ys and y°y5 has reduced the
higher power corrections. In order to determine this, we
make a comparison of the averaged results and the result
with T' = y'ys. To be explicit, we adopt a normalized
difference,

V" (av) =¥ (r'rs)

A= ,
¥+ (av) + ¥ (r'ys)

(C1)

to reflect the difference between these choices and accord-
ingly the magnitude of high power contaminations. As
shown in Fig. 15, this ratio barely depends on P* for
various b and deviates from zero by about 5%—10%. This
indicates the following: (1) Higher-twist effects caused by
higher powers of 1/P% are not significant. (2) There are
additional momentum-independent corrections. (3) For a
large transverse separation by, the results also deviate from
zero but uncertainties are large. We also rely on our
experience with other power corrections. Currently, we
think that understanding the origin/behavior of these power
corrections requests a detailed exploration on a finer lattice,
which we plan to do in the near future.

APPENDIX D: SOME DISCUSSIONS OF THE
BRUTE-FORCE FOURIER TRANSFORMATION

In our analysis, we adopt the brute-force Fourier trans-
formation to obtain the quasi-TMDWFs in momentum
space. In order to figure out whether the finite separation

0.3
0.2 1
N%‘z:g 0.14
e
+ |+
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PR AR S
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S|
+ |+
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~
P? =1.72GeV
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P? =2.58GeV
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X

Comparison of weight factors with P* = {1.72,2.15,2.58} GeV at b, = 0.24 and 0.48 fm. The P¢ independence indicates

and truncation will introduce some bias, we do the
following analysis.

First, in order to explicitly demonstrate the impact from
the tail at large z, we compare different z truncations of
Fourier transformation in Fig. 16. One can see that the
truncations at z,,, = {0.72,0.96,1.44} fm will lead to
overall consistent results. But when one focuses on the
extracted CS kernel, like Fig. 17, one notices that the
oscillations depend on the chosen truncation. More
interestingly, such effects are momentum dependent.
The CS kernel is defined as a combination of quasi-
TMDWFs with different momentum, and the momentum
dependence of truncation effects are also shown in
Fig. 17. In these plots, one can see that a stronger
truncation of z leads to a stronger oscillation. To deal
with the inverse problem, an analyticity-inspired extrapo-
lation in the large-z region was proposed in Ref. [49] and
realized in the analysis of LCDAs for a vector meson
from lattice QCD [57]. In this project, we did not apply
this strategy to the CS kernel, but instead have included
these effects as systematic uncertainties.

Second, we made a further exploration on the discrete-
ness of data. Using the available data, we first made an
extrapolation and then performed the Fourier transfor-
mation. The corresponding results are shown in Fig. 18,
with a comparison with a direct Fourier transformation.
As shown in this figure, the differences between the two
treatments are insignificant. This indicates that the
discreteness of data does not induce sizable effects for
the oscillation.
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FIG. 16. Quasi-TMDWFs after Fourier transformation with different z,,,,,. When z,,,, is large enough, the Fourier transformation is no

longer dependent on the truncation of z.
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APPENDIX E: JOINT-FIT DETERMINATION OF COLLINS-SOPER KERNEL

It has been indicated in the main text that different fit ranges as well as parametrization formulas might introduce some
arbitrariness into the joint fit. The end-point range can be roughly estimated by the largest attainable A as ~1/4,,,,. For all
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FIG. 19. Comparison of the jointly fitted results for the constant fit and the parametrization in Eq. (30), as well as the fit range with
(0.1, 0.9) and (0.2, 0.8). All the fitted bands are consistent with each other.
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three momentum cases from 1.72 to 2.58 GeV, the
Amax > 10, so we estimated the end-point region as
[0.1,0.9]. The fitting range dependence indicates our
incapability to describe the power corrections. Within
the fitting range, the plateau indicates that the influence
from power corrections is highly suppressed, so the fit

result of parameter A in Eq. (30) is close to 0. Figure 19
shows the comparison of the jointly fitted results for the
constant fit (naively setting A to be zero) and the para-
metrization in Eq. (30), as well as the fit range with (0.1,
0.9) and (0.2, 0.8). We can see that all these fit results are
consistent with each other.
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