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Abstract

Black holes carry more information about the microstates than just the total degeneracy. As a concrete 
example, the ZN -twined helicity trace indices for 1

4 -BPS black holes of the CHL models allow extracting 
information about the distribution of the ZN charges among the black hole microstates. The number of 
black hole microstates carrying a definite eigenvalue under the generator of the ZN twining group must be 
positive. This leads to a specific prediction for the signs of certain linear combinations of Fourier coefficients 
of Siegel modular forms. We explicitly test these predictions for low charges. In the D1-D5-P duality frame, 
we compute the appropriate hair removed partition functions and show the positivity of the appropriate 
Fourier coefficients for low charges. We present various consistency checks on our computations.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
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1. Introduction

We now have a fairly detailed understanding of the degeneracy of states that contribute to 
the entropy of 1

4 -BPS black holes in N = 4 supersymmetric string theories [1,2]. Specifically, 
the CHL models [3–6] in four dimensions provide a rich playground for studying the physics of 
BPS black holes [7–18]. Many detailed agreements between the microscopic and macroscopic 
sides have been established. In almost all these calculations, one computes an index rather than 
absolute degeneracy on the microscopic side. The index is defined so that it only receives contri-
butions from the BPS states preserving the right amount of supersymmetry. The index so-defined 
is also protected; it does not change as we vary the moduli of the theory.

In four dimensions, the ideal indices that capture the protected information are the helicity 
trace indices [1,2]. The helicity trace index relevant for 1

4 -BPS black holes in N = 4 supersym-
metric string theories is defined as

B6 = 1

6! Tr
[
(−1)2h(2h)6

]
, (1.1)

where the trace is taken over all states carrying a given set of charges, and where h is the third 
component of the angular momentum of a state in the rest frame. For spherically symmetric four-
dimensional supersymmetric black holes (−1)2h = 1 [19]. As a result, the helicity trace index 
B6 (1.1) is directly related to the absolute degeneracy.

If the theory admits an additional discrete symmetry, and if we further restrict ourselves to 
dyonic states with charges that are invariant under the action of the discrete symmetry, we can 
define twined helicity trace indices [20–22]. These indices capture more refined information 
about the black hole microstates.
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Discrete information. The twined helicity trace index is defined as

B
gN

6 = 1

6! Tr
[
gN (−1)2h(2h)6

]
, (1.2)

where gN is the generator of the discrete symmetry of order N . We will be mostly concerned 
with BgN

6 for a class of type II CHL models. We choose gN to be the generator of a geometric 
ZN acting on K3 or on one of its CHL orbifolds K3/ZM ; and require gN to commute with all 
16 unbroken supersymmetries of the ZM twisted CHL compactification. Such indices are often 
called twisted-twining indices.

It is now well understood [20–23] that such a twisted-twining index is given by the Fourier 
coefficients of the twisted-twining black hole partition function—the inverse of a Siegel modular 
form of a subgroup of Sp(2, Z). Various properties of such twisted-twining partition functions 
from both the microscopic and macroscopic sides have been studied [24–27].

In this paper, our main interest is in the index

Sa = 1

6!Tra
[
(−1)2h(2h)6

]
, (1.3)

for states carrying a definite gN eigenvalue e2πia/N with 0 ≤ a ≤ N − 1. This index is closely 
related to BgN

6 . To obtain Sa we first repeat the analysis of BgN

6 with gN replaced by (gN)b for 
any integer b. The role of N is now played by the order of (gN)b . This allows us to compute Sa

via the discrete Fourier transform,

Sa = 1

6!
1

N

N−1∑
b=0

e−2πiab/N Tr
[
(gN)b(−1)2h(2h)6

]
. (1.4)

We mentioned around (1.1) that the index B6 is directly related to the absolute degeneracy. In 
a duality frame, where hair modes are only the fermion zero modes, the exact relation is [28],

−B6 = dhor. (1.5)

All the elements that go into the argument that leads to (1.5) remain valid even with the g in-
sertion [20]: it is for the same spherically symmetric attractor geometry that the indices Bg

6 are 
being computed. Thus, Bg

6 is simply negative of the absolute degeneracy weighted with g. Since 
a degeneracy must be a positive integer, this leads to a specific prediction for the signs of linear 
combinations (1.4) of the Fourier coefficients of the Siegel modular forms that capture the in-

dices B
gb
N

6 . In this paper, we will be computing B
gb
N

6 for 0 ≤ b ≤ N − 1 for the various ZM CHL 
models with additional discrete ZN twining symmetry and study the positivity properties of Sa

for 0 ≤ a ≤ N − 1.
For example, for N = 2 we have the index S0 for states with eigenvalue +1 under g2 to be

S0 = 1

2

(
B6 + B

g2
6

)
, (1.6)

and the index S1 for states with eigenvalue −1 under g2 to be

S1 = 1

2

(
B6 − B

g2
6

)
. (1.7)

This implies, B6 = S0 + S1 and Bg2
6 = S0 − S1. Up to an overall sign, B6 simply counts the total 

number of states disregarding any information the state may carry about the Z2 charge. On the 
3
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other hand, Bg2
6 counts the number of states weighted with the Z2 charge. If the number of states 

with +1 eigenvalue and −1 eigenvalue are roughly the same, then we expect S0 ≈ S1 and the 
twined indices Bg2

6 to be smaller (positive or negative) numbers compared to B6. Indeed, we will 
see this in later sections; and is also expected from the AdS2/CFT1 interpretation of the twined 
indices [21].1

Similarly, for N = 3 we have the number of states S0 (up to an overall sign) with +1 eigen-
value under g3 to be

S0 = 1

3

(
B6 + B

g3
6 + B

g2
3

6

)
, (1.8)

and the number of states S1 and S2 with eigenvalues ω = e2πi/3 and e4πi/3 respectively under g3
to be

S1 = 1

3

(
B6 + ω−1B

g3
6 + ω−2B

g2
3

6

)
, (1.9)

S2 = 1

3

(
B6 + ω−2B

g3
6 + ω−1B

g2
3

6

)
. (1.10)

Hair removal. If two black holes have identical near-horizon geometries, they must have iden-
tical microscopic indices. There is, however, a well-studied apparent “counterexample” to this: 
the BMPV black hole in flat space [29] versus the BMPV black hole in Taub-NUT space [7,30]. 
These black holes have identical near-horizon geometries but different microscopic indices. It is 
now well understood that the key to the resolution of this puzzle is the black hole hair modes 
[16,17,31,32]: smooth, normalisable, bosonic and fermionic degrees of freedom living outside 
the horizon. For the case of K3 compactification of type IIB theory, Sen et al. constructed hair 
modes as non-linear solutions to the supergravity equations [17]. They showed that once the 
contributions of the hair modes are removed, the 4d and 5d partition functions match. This anal-
ysis was recently extended to CHL models [31,32]. Given these results, it is fairly clear that the 
twisted-twining hair removed partition functions also match in 4d and 5d.

In this paper, we also study the construction of the 4d hair removed partition functions and 
positivity properties of the corresponding Fourier coefficients. More precisely, we will construct 
the analogs of Sa from the hair removed partition functions in the D1-D5 duality frame.

Organisation. The rest of the paper is organised as follows. In section 2, we consider twining 
black hole hair removal for four-dimensional BMPV black hole. For different ZN twinings, we 
construct the 4d hair partition functions. In section 3, we study the positivity of the coefficients 
Sa defined in equation (1.4) for ZN twinings N = 2, 3, 4. These three cases are representative of 
more general cases and capture the essential ideas. We compute the appropriate Fourier coeffi-
cients from the full 4d partition functions and also from the hair removed 4d partition functions. 
In the D1-D5 frame the hair removed partition functions capture the horizon states. In a duality 
frame with no hair (other than the fermion zero modes), the full 4d partition functions capture 
the horizon states.

1 In the AdS2/CFT1 interpretation, the computation of the twisted-twining indices can be expressed as a path integral 
with a suitable AdS2 asymptotics. Twining requires a gN -twisted boundary condition on the fields in carrying out such 
a path integral. The saddle that contributes to the ZN twined partition function is a ZN orbifolds of AdS2 × S2.
4
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In section 4, we consider twisted-twining black hole hair removal. For different ZM × ZN

models, we construct the 4d hair partition functions. In section 5, we study the positivity of the 
coefficients S0 and S1 for the Z2 × Z2 CHL model. In turns out that multiple representations 
for the twisted-twining partition function for this model have been proposed in the literature, 
but the equivalence of these representations has not been formally established. We compute the 
coefficients S0 and S1 using different representations and obtain identical results. In section 6, 
we study the positivity of coefficients Sa for some other models. We close with a brief discussion 
in section 7.

Other studies. Positivity of the Fourier coefficients without twining for CHL models was first 
explored in [28]. A proof of this positivity property for a special class of four and five dimensional 
black holes in the unorbifolded model was presented in [33]. Positivity of the Fourier coefficients 
of the hair removed partition functions without twining for CHL models was explored in [32,34,
35].

2. Twining black hole hair removal

We begin by considering type IIB string theory compactified on K3 × S1 × S̃1. In a subspace 
of the moduli space of this compactification, we identify gN to be the generator of a specific 
geometric ZN symmetry of K3 that preserves all the covariantly constant spinors of K3 and 
leaves invariant some 2-cycles of K3. In such a compactification, we consider the D1-D5-P-KK 
system preserving 4 of the 16 supersymmetries as follows [1]: a single D5 brane wrapped on 
K3 × S1, Q1 D1-branes wrapped on S1, a single KK monopole with negative charge associated 
with the circle ̃S1, left moving momentum −n along S1, and right moving momentum J along 
S̃1. Since the D5 brane wraps K3, it also carries a negative D1 charge [36]. The net D1 charge is 
therefore, Q1 − 1. For such a set-up, T-duality invariant charge bilinears are

Q2 = 2n, P 2 = 2(Q1 − 1), Q · P = J. (2.1)

We will write most of our formulae below we in terms of the T-duality invariants Q2, P 2, and 
Q · P . However, with regard to the hair removal discussions, it is best to keep the above brane 
configuration in mind.

For this set-up, in the region of the moduli space where the type IIB string coupling is small, 
the result for the twined index BgN

6 is [20]

−B
gN

6 = (−1)Q·P+1 g

(
1

2
Q2,

1

2
P 2,Q · P

)
, (2.2)

where g(l, k, j) are the coefficients of Fourier expansion of the function 1/�̃(ρ̃, ̃σ, ̃v):

1

�̃(ρ̃, σ̃ , ṽ)
=

∑
l,k,j

g(l, k, j) e2πi(l ρ̃+k σ̃+j ṽ) . (2.3)

The function2 �̃(ρ̃, ̃σ , ̃v) is:

2 The widetilde notation on modular forms and on the coordinates of the Siegel upper half space is somewhat standard 
in the CHL literature [1].
5
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�̃(ρ̃, σ̃ , ṽ) = e2πi(ρ̃+σ̃+ṽ)

×
1∏

b=0

N−1∏
r=0

∏
(k,l)∈Z,j∈2Z+b

k,l≥0,j<0 for k=l=0

{
1 − e2πir/N e2πi(kσ̃+lρ̃+j ṽ)

}∑N−1
s=0 e−2πirs/N c

(0,s)
b (4kl−j2)

,

(2.4)

where for r, s ∈ Z, 0 ≤ r, s ≤ N − 1. The infinite product is such that k, l and j are all integers, 
k ≥ 0, l ≥ 0. When k and l are positive integers, j runs over all integers. When k or l equals 0, 
j runs over all integers. When both k and l equal 0, j takes only negative integer values. The 
coefficients c(r,s) are determined from the functions

F (r,s)(τ, z) ≡ 1

N
TrRR;gr

N

(
gs

N(−1)JL+JRe2πiτL0e−2πiτ̄ L̄0e2πiJLz
)

(2.5)

=
1∑

b=0

∑
j∈2Z+b,n∈Z/N

4n−j2≥−b2

c
(r,s)
b (4n − j2)e2πinτ+2πijz . (2.6)

In expression (2.5) Tr denotes trace over all the gr
N twisted RR sector states in the (4,4) SCFT 

with K3 as its target space. L0 and L̄0 are the left and right-moving Virasoro generators and 
JL/2 and JR/2 are the generators of the U(1)L × U(1)R subgroup of the SU(2)L × SU(2)R
R-symmetry group of this SCFT. For various values of N explicit expressions for F (r,s)(τ, z)
can be found in [1]. We do not repeat the full expressions here.

For different ZN twinings, our aim is to construct the 4d hair partition functions. In section 2.1
we briefly discuss the hair modes and in section 2.2 write the 4d hair partition functions. Finally, 
using these results we write the twined hair removed black hole partition functions.

2.1. Hair modes

In [31] a detailed analysis of possible bosonic and fermionic hair modes for the D1-D5 black 
holes in CHL models was given. The results from that paper can be readily adapted to twined 
indices.

A hair mode of a black hole is a smooth and normalisable deformation that lives entirely 
outside the horizon and preserves all the supersymmetries of the black hole. We concentrate on 
the four-dimensional BMPV black hole. The four-dimensional BMPV black hole is obtained by 
placing the five-dimensional BMPV black hole at the centre of the Taub-NUT space. It is most 
convenient to describe the hair modes as six-dimensional configurations in the supergravity ob-
tained by truncating IIB supergravity on K3. Let S1 corresponds to x5 and the ̃S1 to x4. In [31], 
the Gibbons-Hawking coordinates (r, θ, φ, x4) for the Taub-NUT space along with the null coor-
dinates u = x5 − t and v = x5 + t are used to describe hair modes. The hair modes constructed in 
[31] are all characterised by periodic functions of v, i.e., they are all left moving. Three different 
types of hair modes were constructed for the 4d black holes.

Fermionic hair modes. The six-dimensional supergravity truncation is a (2, 0) theory with 16 
supersymmetries. The black hole solutions preserve 4 of these supersymmetries and hence give 
rise to 12 fermionic zero modes. Out of these 12 zero modes, four are left moving and 8 are right 
moving. The 4 left moving modes are elevated to hair modes. These hair modes are characterised 
by arbitrary functions of v preserving the supersymmetry of the original solution. We construct 
these modes by solving the linearised equations of motion for the gravitino,
6
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MNP DN�α
P − H̄ kMNP 
N
̂k

αβ�
β
P = 0, (2.7)

and then showing that the solutions of the linearised equations continue to be solutions of the 
non-linear equations. In equation (2.7) H̄ kMNP is the self-dual part of the RR form field, 
 and 

̂ represent the six-dimensional coordinate space gamma matrices and the Euclidean internal 
space gamma matrices respectively. For details see [16,17,31]. Using an ansatz for the gravitino 
�α

P , we find that the solution to this equation that corresponds to a hair is given by,

�v = ψ(r)−3/2h(v)̃η(θ,φ). (2.8)

The spinorial properties of the gravitino are completely captured by η̃(θ, φ). The number of 
independent components of the gravitino turn out to be four. Thus, we have four fermionic hair 
modes which contribute a factor of

Zfermion
hair =

∞∏
l=1

(1 − e2πilρ̃ )4 (2.9)

to the hair partition function. We note that ρ̃ is the fugacity conjugate to the momentum charge n
along the S1, cf. (2.1)–(2.3). All these modes are neutral under the gN action. These modes also 
appear for the 5d black holes. In our discussion below it will be convenient to separate out the 
Zfermion

hair factor.

Garfinkle-Vachaspati modes. The Garfinkle-Vachaspati transform [37–40] is a solution gen-
erating technique that adds wave like deformations to a known solution of the bosonic sector 
equations. Given a metric that possesses a null, hypersurface orthogonal, Killing vector kM , this 
technique deforms the original solution as,

G′
MN = GMN + eS�kMkN, (2.10)

where S is a scalar that is determined from the hypersurface orthogonality condition and � is a 
scalar (deformation) that satisfies a wave equation with respect to the undeformed metric GMN . 
The four-dimensional BMPV black hole allows for a smooth deformation in the Gvv component 
alone and is of the form [17,31]

gi(v)yi, (2.11)

where gi(v) are three periodic scalar functions that represent three left moving bosonic hair 
modes and yi are the coordinates of the three dimensional transverse space R3. These hair modes 
contribute the following to the hair partition function,

ZGV
hair =

∞∏
l=1

1

(1 − e2πilρ̃ )3 . (2.12)

All these modes are also neutral under the gN action. These modes do not appear for the 5d black 
holes.

Form field hair modes. In the six-dimensional supergravity truncation, there are nt tensor mul-
tiplets neutral under gN . In the original black hole solutions (both 4d and 5d) all these tensor 
multiplets are unexcited, i.e., set to zero. Using the harmonic 2-form ωT N of the Taub-NUT 
space these tensor multiplets can be turned on for the 4d black hole as [16,17,31],

δHs = hs(v)dv ∧ ωT N, 1 ≤ s ≤ nt . (2.13)
MNP

7
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With one deformation hs(v) for each multiplet 1 ≤ s ≤ nt , we have nt such deformations. These 
deformations are smooth and normalisable and serve as black hole hair. These nt anti-self-dual 
(asd) left moving modes contribute the following to the hair partition function,

Zasd
hair =

∞∏
l=1

1

(1 − e2πilρ̃ )nt
. (2.14)

These modes do not appear for the 5d black holes. The other details of the hair configurations 
are not essential for the analysis in this paper.

2.2. Twining hair removal

The total contribution to the hair partition function of modes neutral under gN is,

Zhair
4d (ρ̃, σ̃ , ṽ) = Zfermion

hair ZGV
hair Zasd

hair (2.15)

= Zfermion
hair

∞∏
l=1

(
1 − e2πilρ̃

)−nt−3 =
∞∏
l=1

(
1 − e2πilρ̃

)−nt+1
. (2.16)

For N �= 1 this is not the end of the story. There are additional hair modes. They come from the 
tensor multiplets charged under gN . A way to incorporate them in supergravity is to analyse the 
problem in ten-dimensions [31]. Let us schematically denote y to be the K3 directions and x to 
be the remaining six dimensions. Then, in ten-dimensions the RR four-form field schematically 
decomposes as [41],

C4(x, y) ∝
∑
γ

c
γ

2 (x) ∧ ωγ (y), (2.17)

where ωγ (y) are the self-dual and anti-self-dual (asd) harmonic forms spanning the cohomology 
H 2(K3). On the elements on this cohomology, the abelian group of order N generated by gN

acts. The number of anti-self-dual harmonic forms on K3 with eigenvalue exp {−2πis/N} under 
gN is denoted bs . The values of bs for various twining order N are listed in Table 1. These 
numbers are easily obtained from [6]; see also table 4 of [31]. These additional sectors contribute 
to the twined hair partition function as,

Zasd
hair =

N−1∏
n=0

Z(n), (2.18)

where

Z(n)(ρ̃) =
∞∏
l=1

(1 − e2πin/Ne2πilρ̃ )−(bn+2δn,0), n = 0, . . . ,N − 1. (2.19)

For various values of N , the hair partition functions are as follows. We use the notation q =
e2πiρ̃ . For N = 1,

Zhair
4d:1A = ZGV

hair Zfermion
hair Z(0) =

∞∏
n=1

(1 − qn)−20 = 1

η(ρ̃)24 e2πiρ̃ Zfermion
hair , (2.20)

where it is convenient to separate out the contribution of fermions given in (2.9). For N = 2,
8
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Table 1
Possible geometric ZN action on K3 cohomology. The num-
bers bs denote the number of anti-self-dual (1, 1) with eigen-
value exp {−2πis/N} under the gN action. We note that the 
number of gN invariant tensor multiplets in six-dimensional 
supergravity description is the number of gN invariant anti-
self-dual (1, 1) forms b0 plus 2: nt = b0 + 2. Recall that the 
plus 2 comes from the self-dual and anti-self-dual decomposi-
tion of the RR and NS-NS 2-form fields.

N b0 b1 b2 b3 b4 b5 b6 b7

1 19
2 11 8
3 7 6 6
4 5 4 6 4
5 3 4 4 4 4
6 3 2 4 4 4 2
7 1 3 3 3 3 3 3
8 1 2 3 2 4 2 3 2

Zhair
4d:2A = ZGV

hair Zfermion
hair Z(0) Z(1) (2.21)

= Zfermion
hair

∞∏
n=1

(1 − qn)−16(1 + qn)−8 (2.22)

= Zfermion
hair

∞∏
n=1

(1 − qn)−8
(
(1 − qn)(1 + qn)

)−8
(2.23)

= Zfermion
hair

∞∏
n=1

(1 − qn)−8(1 − q2n)−8 = 1

η(ρ̃)8η(2ρ̃)8 e2πiρ̃ Zfermion
hair . (2.24)

For N = 3,

Zhair
4d:3A = ZGV

hair Zfermion
hair Z(0) Z(1) Z(2) (2.25)

= Zfermion
hair

∞∏
n=1

(1 − qn)−12(1 − e2πi/3qn)−6(1 − e4πi/3qn)−6 (2.26)

= Zfermion
hair

∞∏
n=1

(1 − qn)−6
(
(1 − qn)(1 − e2πi/3qn)(1 − e4πi/3qn)

)−6
(2.27)

= Zfermion
hair

∞∏
n=1

(1 − qn)−6(1 − q3n)−6 = 1

η(ρ̃)6η(3ρ̃)6
e2πiρ̃ Zfermion

hair . (2.28)

Here, we have made use of the identity (1 − qn)(1 − ωqn)(1 − ω2qn) = (1 − q3n) with ω being 
the third root of unity. We proceed similarly for N = 4, 5, 6, 7, 8. We only write the final answers,

Zhair
4d:4B = 1

η(ρ̃)4η(2ρ̃)2η(4ρ̃)4 e2πiρ̃ Zfermion
hair , (2.29)

Zhair
4d:5A = 1

4 4 e2πiρ̃ Zfermion
hair , (2.30)
η(ρ̃) η(5ρ̃)

9
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Zhair
4d:6A = 1

η(ρ̃)2η(2ρ̃)2η(3ρ̃)2η(6ρ̃)2 e2πiρ̃ Zfermion
hair , (2.31)

Zhair
4d:7A = 1

η(ρ̃)3η(7ρ̃)3 e2πiρ̃ Zfermion
hair , (2.32)

Zhair
4d:8A = 1

η(ρ̃)2η(2ρ̃)η(4ρ̃)η(8ρ̃)2 e2πiρ̃ Zfermion
hair . (2.33)

The eta-products appearing on the right hand side directly correspond to cycle shapes for 
certain conjugacy classes of the Mathieu group M24. It is now standard in the literature to use 
these conjugacy classes to label twined partition functions. Hence the notation Zhair

4d:1A, Zhair
4d:4B , 

etc. Given the results of [31,32], it is clear that the hair removed 4d and 5d partition functions 
match. We also note that the 4d hair partition functions are closely related to the KK monopole 
partition functions. In fact, in all cases, the hair partition functions are the KK monopole partition 
functions with the additional factor e2πiρ̃ Zfermion

hair . Finally, the hair removed twining partition 
functions are,

1

Zhair
4d

1

�̃(ρ̃, σ̃ , ṽ)
. (2.34)

3. Positivity of Fourier coefficients

In this section, we study the positivity of coefficients Sa defined in equation (1.4) for the 
unorbifolded model. We focus on N = 2, 3, 4 twinings. These three cases are sufficiently non-
trivial and capture the essential ideas we wish to convey. Extension to twinings with higher N
is only computationally tedious. In section 3.1, we compute the appropriate Fourier coefficients 
from the full 4d partition functions. In a duality frame where there are no hair apart from the 
fermionic zero modes, the full 4d partition function captures the horizon states. In section 3.2, 
we compute the appropriate Fourier coefficients from the hair removed 4d partition functions in 
the D1-D5 frame. In this frame, the hair removed partition functions are expected3 to capture the 
horizon states.

3.1. Twined partition functions

The Fourier coefficients for the Siegel modular form can be extracted using the contour pre-
scription used in [28] where we first expand 1/�̃(ρ̃, ̃σ , ̃v) in powers of e2πiρ̃ and e2πiσ̃ and then 
expand each term in powers of e−2πiṽ . The contour together with the following conditions

Q · P ≥ 0, Q · P ≤ Q2, Q · P ≤ P 2, Q2,P 2, (Q2P 2 − (Q · P)2) > 0 (3.1)

ensures that the index counts microstates of a finite size single centred black hole.4

For the untwisted model, with no twining our results are presented in Table 2. This table is 
identical to table 1 of [28]. On a modern computer it takes less than a second to generate entries 
in Table 2. We only give the results for Q2 ≤ P 2 for all the tables in this section, since the results 
are symmetric under Q2 ↔ P 2.

3 We cannot rule out the existence of additional hair modes.
4 The zeros of �̃ responsible for wall crossing do not change with twining. Thus the constraints (3.1) do not change 

with twining N .
10
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Table 2
Values of the degeneracy −B6 for the untwisted, untwined model for different values of Q2, P 2 and Q ·P . The boldfaced 
entries are for charges that satisfy the constraints (3.1). This table is identical to table 1 of [28].

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −209304 50064 25353 648 327 0
(2,4) −2023536 1127472 561576 50064 8376 −648
(4,4) −16620544 32861184 18458000 3859456 561576 12800
(2,6) −15493728 16491600 8533821 1127472 130329 −15600
(4,6) −53249700 632078672 392427528 110910300 18458000 1127472
(6,6) 2857656828 16193130552 11232685725 4173501828 920577636 110910300

Table 3
Values of −B

g2
6 for Z2 twining for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that 

satisfy the constraints (3.1).

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −5624 −1328 505 −216 55 0
(2,4) −27952 −7696 3128 −1328 488 −104
(4,4) −138240 −44544 19120 −7168 3128 −1280
(2,6) −124384 −33520 14781 −7696 3209 −848
(4,6) −615780 −188528 86232 −41316 19120 −7696
(6,6) −2761380 −723144 353853 −243612 126180 −41316

Table 4
Values of −S0 with Z2 twining for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that 
satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −107464 24368 12929 216 191 0
(2,4) −1025744 559888 282352 24368 4432 −376
(4,4) −8379392 16408320 9238560 1926144 282352 5760
(2,6) −7809056 8229040 4274301 559888 66769 −8224
(4,6) −26932740 315945072 196256880 55434492 9238560 559888
(6,6) 1427447724 8096203704 5616519789 2086629108 460351908 55434492

Z2 twining
For the untwisted model, with Z2 twining our results for −B

g2
6 are presented in Table 3. By 

taking the sum and the difference of −B6 and −B
g2
6 , we find −S0 and −S1 respectively. These 

values are presented in Table 4 and 5 respectively.

Z3 twining
For the untwisted model, with Z3 twining our results for −B

g3
6 are presented in Table 6. We 

note that the values for −B
g2

3
6 are the same as −B

g3
6 . Thus, using −B6 and −B

g3
6 we can easily 

compute −S0, −S1, and −S2. We find −S1 and −S2 are identical. The values for −S0, −S1 are 
presented in Table 7 and 8 respectively.
11
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Table 5
Values of −S1 with Z2 twining for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that 
satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers. We note that the number of states 
that contribute to the total degeneracy with eigenvalue +1 (Table 4) and −1 (this table) are approximately the same.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −101840 25696 12424 432 136 0
(2,4) −997792 567584 279224 25696 3944 −272
(4,4) −8241152 16452864 9219440 1933312 279224 7040
(2,6) −7684672 8262560 4259520 567584 63560 −7376
(4,6) −26316960 316133600 196170648 55475808 9219440 567584
(6,6) 1430209104 8096926848 5616165936 2086872720 460225728 55475808

Table 6

Values of −B
g3
6 ≡ −B

g2
3

6 for Z3 twining for different values of Q2, P 2 and Q ·P . The boldfaced entries are for charges 
that satisfy the constraints (3.1).

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −1566 −588 297 −108 30 0
(2,4) −6204 −2442 1272 −588 204 −54
(4,4) −24328 −9696 5390 −2696 1272 −448
(2,6) −21396 −8964 4998 −2442 1026 −336
(4,6) −83964 −35446 20256 −10956 5390 −2442
(6,6) −288510 −127332 76209 −42108 22545 −10956

Table 7
Values of −S0 with Z3 twining for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that 
satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −70812 16296 8649 144 129 0
(2,4) −678648 374196 188040 16296 2928 −252
(4,4) −5556400 10947264 6156260 1284688 188040 3968
(2,6) −5178840 5491224 2847939 374196 44127 −5424
(4,6) −17805876 210669260 130822680 36962796 6156260 374196
(6,6) 952359936 5397625296 3744279381 1391139204 306874242 36962796

Z4 twining
For the untwisted model, with Z4 twining our results for −B

g4
6 are presented in Table 9. We 

note that the values for −B
g2

4
6 are the same as −B

g2
6 , already presented in Table 3. Furthermore, 

we note that the values for −B
g3

4
6 are the same as −B

g4
6 . Thus, we can easily compute −Sa , 

0 ≤ a ≤ 3. We find −S1 and −S3 to be identical. The values for −S0, −S1, −S2 are presented in 
Table 10, Table 11, and Table 12 respectively.

Comment about the implementation. The above tables were constructed using Sen’s formula 
(2.4), and we verified that they match with the Cléry-Gritsenko formula [27,42,43]. Implemen-
12
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Table 8
Values of −S1 ≡ −S2 with Z3 twining for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges 
that satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers. We also note that the number of 
states that contribute to the degeneracy with eigenvalue +1 (Table 7) and eigenvalues e2πi/3 or e4πi/3 (this table) are 
approximately the same.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −69246 16884 8352 252 99 0
(2,4) −672444 376638 186768 16884 2724 −198
(4,4) −5532072 10956960 6150870 1287384 186768 4416
(2,6) −5157444 5500188 2842941 376638 43101 −5088
(4,6) −17721912 210704706 130802424 36973752 6150870 376638
(6,6) 952648446 5397752628 3744203172 1391181312 306851697 36973752

Table 9

Values of −B
g4
6 ≡ −B

g3
4

6 for Z4 twining for different values of Q2, P 2 and Q ·P . The boldfaced entries are for charges 
that satisfy the constraints (3.1).

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −560 −224 117 −48 19 0
(2,4) −1760 −768 444 −224 84 −32
(4,4) −5504 −2624 1608 −896 444 −160
(2,6) −5312 −2400 1437 −768 373 −136
(4,6) −16660 −8128 5148 −3028 1608 −768
(6,6) −50156 −24712 16117 −9828 5652 −3028

Table 10
Values of −S0 with Z4 twining for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that 
satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −54012 12072 6523 84 105 0
(2,4) −513752 279560 141398 12072 2258 −204
(4,4) −4192448 8202848 4620084 962624 141398 2800
(2,6) −3907184 4113320 2137869 279560 33571 −4180
(4,6) −13474700 157968472 98131014 27715732 4620084 279560
(6,6) 713698784 4048089496 2808267953 1043309640 230178780 27715732

tation of Cléry-Gritsenko formula is in fact easier in Mathematica and computation time is 
shorter, especially for the higher values of N . We do not present details about the Cléry-Gritsenko 
formula here.

3.2. Hair removed twined partition functions

The hair removed twining partition functions are,

Zhorizon = 1

Zhair

1

�̃(ρ̃, σ̃ , ṽ)
. (3.2)
4d

13
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Table 11
Values of −S1 and −S3 with Z4 twining for different values of Q2, P 2 and Q ·P . The boldfaced entries are for charges 
that satisfy the constraints (3.1). Note that all the boldfaced entries are positive integers.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −50920 12848 6212 216 68 0
(2,4) −498896 283792 139612 12848 1972 −136
(4,4) −4120576 8226432 4609720 966656 139612 3520
(2,6) −3842336 4131280 2129760 283792 31780 −3688
(4,6) −13158480 158066800 98085324 27737904 4609720 283792
(6,6) 715104552 4048463424 2808082968 1043436360 230112864 27737904

Table 12
Values of −S2 for Z4 twining for different values of Q2, P 2 and Q ·P . The boldfaced entries are for charges that satisfy 
the constraints (3.1). Note that all the boldfaced entries are positive integers. We also note that the number of states that 
contribute to the degeneracy with eigenvalue +1 (Table 10), eigenvalues eπi/2 or e3πi/2 (Table 11), and eigenvalue −1
(this table) are approximately the same.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −53452 12296 6406 132 86 0
(2,4) −511992 280328 140954 12296 2174 −172
(4,4) −4186944 8205472 4618476 963520 140954 2960
(2,6) −3901872 4115720 2136432 280328 33198 −4044
(4,6) −13458040 157976600 98125866 27718760 4618476 280328
(6,6) 713748940 4048114208 2808251836 1043319468 230173128 27718760

Table 13
Values of coefficients (the analog of −B6) for the hair-removed partition function without twining for different values of 
Q2, P 2 and Q ·P . The boldfaced entries are for charges that satisfy the constraints (3.1). This table is identical to table 4 
of [32].

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −7464 28944 13863 1608 327 0
(2,4) −17176 761312 406296 72424 6936 −648
(4,4) 2409376 12980224 8595680 2665376 406296 25760
(2,6) 704952 12324920 6995541 1423152 96619 −13680
(4,6) 83729820 333276712 235492308 85781820 16141380 1423152
(6,6) 2153280528 6227822652 4771720755 2158667028 572268361 85781820

The Fourier coefficients −B
g

6 :horizon can be extracted from Zhorizon using the contour prescription 
mentioned above. These coefficients are computed in Tables 13 (no twining), 14 (Z2 twining), 
15 (Z3 twining), 16 (Z4 twining). Table 13 (no twining) is identical to table 4 of [32]. In this 
section we do not present tables for degeneracy of horizon states with definite gN eigenvalues. 
These numbers can be easily constructed by taking the linear combinations of tables given. We 
have checked that positivity property holds as expected.
14
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Table 14
Values of coefficients (the analog of −B

g2
6 ) for the hair-removed partition function with Z2 twin-

ing for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that satisfy the 
constraints (3.1).

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −1608 −368 199 −152 55 0
(2,4) −7960 −1952 1032 −792 392 −104
(4,4) −21728 −10240 4640 −1248 1032 −864
(2,6) −35528 −6664 3701 −4112 2411 −720
(4,6) −96484 −39448 18132 − 6724 5332 −4112
(6,6) −301680 −4996 21523 −66060 38121 −6724

Table 15
Values of coefficients (the analog of −B

g3
6 ) for the hair-removed partition function with Z3 twin-

ing for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that satisfy the 
constraints (3.1).

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −840 −360 210 −84 30 0
(2,4) −3352 −1492 846 −440 168 −54
(4,4) −9752 −4148 2570 −1432 846 −340
(2,6) −11574 −5404 3261 −1746 805 −288
(4,6) −33720 −14996 9108 − 5640 3210 −1746
(6,6) −90432 −43536 28440 −16722 10372 −5640

Table 16
Values of coefficients (the analog of −B

g4
6 ) for the hair-removed partition function with Z4 twin-

ing for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that satisfy the 
constraints (3.1).

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2,2) −496 −208 111 −48 19 0
(2,4) −1560 −704 420 −216 84 −32
(4,4) −4672 −2304 1440 −832 420 −160
(2,6) −4712 −2200 1341 −736 363 −136
(4,6) −14116 −7080 4596 − 2756 1512 −736
(6,6) −38032 −19412 13003 −8212 4881 −2756

4. Twisted-twining hair removal

Having discussed a class of twined partition functions of K3 compactification, we now turn 
to the twined partition functions of the CHL models. The CHL orbifolds are often called twisted 
models. Accordingly, we call the twined partition functions for these models twisted-twining 
partition functions.

We consider type IIB string theory compactified on K3 × S̃1 × S1 and mod out this theory 
by a ZM symmetry generated by 1/M shift along the S1 and an order M transformation gM on 
15
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K3. We take the radius of S1 to be M and the radius of ̃S1 to be 1. Momentum along the S1 circle 
is quantised in units of 1/M . We consider the D1-D5 system as described in detail in [1,31]. For 
such a set-up T-duality invariant charge bilinears are

Q2 = 2n/M, P 2 = 2(Q1 − 1), Q · P = J. (4.1)

In a subspace of the moduli space of this compactification, we identify gN to be the generator 
of a specific geometric ZN symmetry of K3 that preserves all the covariantly constant spinors of 
K3 and leaves invariant some 2-cycles of K3. A complete list of possible symmetries of this type 
can be found in [6,44]. From these papers we learn that there are a total of 7 cases to consider, 
they are listed in Table 17.

For this set-up, in the region of the moduli space where the type IIB string coupling is small, 
the result for the twined index BgN

6 is,

−B
gN

6 = (−1)Q·P+1 g

(
M

2
Q2,

1

2M
P 2,Q · P

)
, (4.2)

where g(l, k, j) are the coefficients of Fourier expansion of the function 1/�̃(ρ̃, ̃σ , ̃v). The func-
tion �̃(ρ̃, ̃σ, ̃v) is a modular form of a subgroup of Sp(2, Z), given by [21],

�̃(ρ̃, σ̃ , ṽ) = e2πi(̃αρ̃+γ̃ σ̃+β̃ṽ)

×
1∏

b=0

N−1∏
r=0

M−1∏
r ′=0

∏
k∈Z+ r′

M
,l∈Z,j∈2Z+b

k,l≥0,j<0 for k=l=0

[
1 − e2πir/N e2πi(kσ̃+lρ̃+j ṽ)

]a

a ≡
N−1∑
s=0

M−1∑
s′=0

e−2πi(s′l/M+rs/N)c
(0,s;r ′,s′)
b (4kl − j2) . (4.3)

Here too, the infinite product is to be understood as before. The point of distinction is in the 
fact that when r ′ �= 0, k takes fractional values. The coefficients c(r,s;r ′,s′)

b are defined via the 
equation:

F (r,s;r ′,s′)(τ, z) = 1

MN
TrRR;gr′

Mgr
N

(
gs′

Mgs
N(−1)JL+JRe2πi(τL0−τ̄ L̄0)e2πiJLz

)
(4.4)

=
1∑

b=0

∑
j∈2Z+b,n∈Z/MN

c
(r,s;r ′,s′)
b (4n − j2)e2πi(nτ+jz). (4.5)

In equation (4.4), the trace is over all the gr ′
Mgr

N twisted RR sector states in the (4,4) supercon-
formal CFT with target space K3. The coefficients ̃α, β̃ , γ̃ are given by

α̃ = 1

24M
Q0,0 − 1

2M

M−1∑
s′=1

Q0,s′
e−2πis′/M

(1 − e−2πis′/M)2
, (4.6)

β̃ = 1, (4.7)

γ̃ = 1

24M
χ(K3) = 1

24M
Q0,0 , (4.8)

where

Qr ′,s′ = MN
(
c
(0,0;r ′,s′)

(0) + 2c
(0,0;r ′,s′)

(−1)
)

, (4.9)
0 1
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Table 17
The list of ZM × ZN symmetries that can be geometrically realised in an appropriate subspace of the moduli space of 
K3.

Z2 ×Z2 Z3 ×Z3 Z2 ×Z4 Z4 ×Z2 Z4 ×Z4 Z2 ×Z6 Z6 ×Z2

and where the Euler number of K3, χ(K3) = 24.

4.1. Hair modes for the ZM × ZN models

Now we wish to discuss the hair modes relevant for the twisted-twining partition functions. As 
in section 2, there are three types of hair modes to consider: fermionic, Garfinkle-Vachaspati, and 
modes from the tensor-multiplet sectors. The fermionic and Garfinkle-Vachaspati modes are all 
neutral under the ZM × ZN action. It is only the tensor-multiplet sector that requires a detailed 
consideration.

At this stage, it is instructive to quickly recall the hair partition functions for the twisted cases, 
with no twining [31,32]. For these cases, in addition to the untwisted hair partition function 
(2.16), there are contributions from the twisted sectors. To incorporate the contributions from the 
twisted sectors, it is convenient to analyse the problem in ten-dimensions. In ten-dimensions, the 
RR four-form field schematically decomposes as (2.17),

C4(x, y) ∝
∑
γ

c
γ

2 (x) ∧ ωγ (y), (4.10)

where ωγ (y) are the self-dual and anti-self-dual harmonic forms spanning the cohomology 
H 2(K3). On these harmonic forms, the abelian orbifold group of order M acts. Since ωγ (y)

are not all gM invariant, the fields cγ

2 (x) pick up the opposite phases under the CHL orbifold 
action. The combined effect ensures that the ten-dimensional C4(x, y) is gM invariant.

Such modes contribute to the hair partition functions. In order to account for their contribu-
tions, we must know the number of tensor-multiplets transforming with eigenvalue e2πim/M for 
0 ≤ m ≤ M − 1 under gM . This data is given in Table 1. The contribution to the 4d hair partition 
function due to the such modes is of the form [31],

Z(m) =
∞∏
l=1

(1 − e−2πimρ̃e2πiMlρ̃)−(bm+2δm,0) , m = 0,1, · · ·M − 1, (4.11)

with the full 4d hair partition function given by the product,

Zhair
4d = ZGV

hair Zfermion
hair

M−1∏
m=0

Z(m), (4.12)

where

Zfermion
hair =

∞∏
l=1

(1 − e2πiMlρ̃)4, (4.13)

and

ZGV
hair =

∞∏
(1 − e2πiMlρ̃)−3. (4.14)
l=1

17
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Further details can be found in [31].
From the above discussion, it is clear that we need to know how many of the tensor multiplets 

are charged under ZM × ZN with eigenvalues e
2πim

M and e
2πin
N respectively for 0 ≤ m ≤ M − 1

and 0 ≤ n ≤ N −1. To find these numbers, we need to diagonalise the action of ZM × ZN on the 
19 anti-self-dual (1, 1) forms of K3. Let pn

m be the number of tensor-multiplets with eigenvalues 

e
2πim

M with respect to ZM action and e
2πin
N with respect to ZN action. From [6] we can work out 

these decompositions. The 19 anti-self-dual (1, 1) forms decompose as:

Z2 × Z2 : 19 = 70
0 + 41

0 + 40
1 + 41

1.

Z3 × Z3 : 19 = 30
0 + 21

0 + 22
0 + 20

1 + 21
1 + 22

1 + 20
2 + 21

2 + 22
2.

Z2 × Z4 : 19 = 30
0 + 21

0 + 42
0 + 23

0 + 20
1 + 21

1 + 22
1 + 23

1.

Z4 × Z2 : 19 = 30
0 + 21

0 + 20
1 + 21

1 + 40
2 + 21

2 + 20
3 + 21

3.

Z4 × Z4 : 19 = 10
0 + 11

0 + 22
0 + 13

0 + 10
1 + 11

1 + 12
1 + 13

1 + 20
2 + 11

2 + 22
2 + 13

2 + 10
3

+ 11
3 + 12

3 + 13
3.

Z2 × Z6 : 19 = 10
0 + 11

0 + 32
0 + 23

0 + 34
0 + 15

0 + 20
1 + 11

1 + 12
1 + 23

1 + 14
1 + 15

1.

Z6 × Z2 : 19 = 10
0 + 21

0 + 10
1 + 11

1 + 30
2 + 11

2 + 20
3 + 21

3 + 30
4 + 11

4 + 10
5 + 11

5.

4.2. Hair removed twisted-twining partition functions

The following product of various factors gives the twisted-twining 4d hair partition functions,

Zhair
4d = ZGV

hair Z
fermion
hair

N−1∏
n=0

M−1∏
m=0

Zn
m, (4.15)

where

Zn
m =

∞∏
l=1

(
1 − e

2πin
N qMl−m

)−pn
m−2δ0

mδn
0
, 0 ≤ m ≤ M −1, 0 ≤ n ≤ N −1. (4.16)

Here too, we use the standard notation q = e2πiρ̃ . For the Z2 × Z2 model, it takes the form

Zhair
4d = ZGV

hair Zfermion
hair Z0

0 Z1
0 Z0

1 Z1
1 (4.17)

= Zfermion
hair

∞∏
l=1

(
1 − q2l

)−12 (
1 + q2l

)−4 (
1 − q2l−1

)−4 (
1 + q2l−1

)−4
(4.18)

= Zfermion
hair

∞∏
l=1

(
1 − q2l

)−8 (
1 + ql

)−4 (
1 − ql

)−4
(4.19)

= Zfermion
hair

∞∏
l=1

(
1 − q2l

)−8 (
1 − q2l

)−4
(4.20)

= Zfermion
hair

∞∏
l=1

(
1 − q2l

)−12
(4.21)

= Zfermion
hair e2πiρ̃ 1

12 . (4.22)

η(2ρ̃)

18



S. Govindarajan, S. Samanta, P. Shanmugapriya et al. Nuclear Physics B 987 (2023) 116095
As before, the hair partition function is closely related to the KK monopole partition function 
for this model. Apart from the factor Zfermion

hair e2πiρ̃ it is the KK monopole partition function. 
There are multiple ways of confirming this. We show it here using the expression for the KK 
monopole partition function as given in [21],

ZKK = e−2πiα̃ρ̃

×
N−1∏
r=0

∞∏
l=1

(
1 − e2πir/Ne2πilρ̃

)−∑N−1
s=0

∑M−1
s′=0

e−2πirs/N e−2πils′/M
(
c
(0,s;0,s′)
0 (0)+2c

(0,s;0,s′)
1 (−1)

)
,

where c(0,s;0,s′)
1 (−1) = 2/MN and the coefficients c(0,s;0,s′)

0 (0) are to be found from the func-

tions F (0,s;0,s′). The variable ̃α was introduced in (4.6).
The F (0,s;0,s′) functions for the Z2 × Z2 model are as follows. The function F (0,0;0,0) is

F (0,0;0,0)(τ, z) = 2A(τ, z), (4.23)

where A(τ, z) is written in terms of the Jacobi theta functions ϑi as,

A(τ, z) =
[

ϑ2(τ, z)
2

ϑ2(τ,0)2 + ϑ3(τ, z)
2

ϑ3(τ,0)2 + ϑ4(τ, z)
2

ϑ4(τ,0)2

]
. (4.24)

For completeness, we recall that the four most common Jacobi theta functions are defined by

θ

[
a

b

]
(τ, z) =

∑
l∈Z

q̂
1
2 (l+ a

2 )2
r̂ (l+ a

2 )eiπlb, (4.25)

where a · b = (0, 1) mod 2. In this notation, ϑ1(τ, z) ≡ θ

[
1
1

]
(τ, z), ϑ2(τ, z) ≡ θ

[
1
0

]
(τ, z), 

ϑ3(τ, z) ≡ θ

[
0
0

]
(τ, z) and ϑ4(τ, z) ≡ θ

[
0
1

]
(τ, z) and where q̂ = e2πiτ and r̂ = e2πiz. Further-

more, 2F (r,s;0,0) = F (r,s) = 2F (0,0;r ′,s′), where the functions F (r,s) were introduced in (2.5). 
These functions are well known for several models [10]. We have,

F (0,0;0,1)(τ, z) = F (0,1;0,0)(τ, z) = 1
2F (0,1)(τ, z) = 2

3
A(τ, z) − 1

3
B(τ, z)E2(τ ). (4.26)

Here, B(τ, z) = η(τ)−6ϑ1(τ, z)2 and the Eisenstein series EN(τ) is defined as

EN(τ) = 12i

π(N − 1)
∂τ [lnη(τ) − lnη(Nτ)] = 1 + 24

N − 1

∑
n1,n2≥1

n1 �=0modN

n1e
2πin1n2τ . (4.27)

For the remaining functions, we rely on the SL(2, Z) transformations acting on F (r,s;r ′,s′):

F (r,s;r ′,s′)
(

aτ + b

cτ + d
,

z

cτ + d

)
= exp

(
2πi

cz2

cτ + d

)
F (cs+ar,ds+br;cs′+ar ′,ds′+br ′)(τ, z) .

(4.28)

This in turn gives F (0,1;0,1) = F (0,0;0,1).

From these expressions we find that 4c
(0,0;0,0)
0 (0) = 20 and 4c

(0,s;0,s′)
0 (0) = 4 for other val-

ues of s, s′. We find α̃ = 1 from (4.6). Inserting these values in the above formula, after some 
calculation we get
19
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ZKK(ρ̃) = 1

η(2ρ̃)12 . (4.29)

All the other cases are dealt with similarly. Of course, the calculations become more and more 
tedious. A useful and often-times simpler way to figure out the functions F (0,s;0,s′) is as follows. 
We note from (4.5) that the trace is over untwisted RR sector with the insertion gs′

Mgs
N . Since we 

know the action of gM and gN separately on the 24 dimensional cohomology of K3 we can easily 
work out the trace of gs′

Mgs
N over this 24 dimensional representation. The 24-dimensional trace 

and the order of group element gs′
Mgs

N uniquely fixes the F (0,s;0,s′)(τ, z) as an Eguchi-Ooguri-
Tachikawa (EOT) Jacobi form [45].

In all cases we find,

Zhair
4d = Zfermion

hair e2πiρ̃ ZKK, (4.30)

where ZKK for various models are as follows:

Z3 × Z3 ZKK = 1

η(3ρ̃)8 (4.31)

Z2 × Z4 ZKK = 1

η(2ρ̃)4η(4ρ̃)4 (4.32)

Z4 × Z2 ZKK = 1

η(2ρ̃)4η(4ρ̃)4 (4.33)

Z4 × Z4 ZKK = 1

η(4ρ̃)6
(4.34)

Z2 × Z6 ZKK = 1

η(2ρ̃)3η(6ρ̃)3 (4.35)

Z6 × Z2 ZKK = 1

η(2ρ̃)3η(6ρ̃)3 (4.36)

Finally, the hair removed twisted-twining partition functions are,

1

Zhair
4d

1

�̃(ρ̃, σ̃ , ṽ)
. (4.37)

5. Fourier coefficients for the Z2 × Z2 model and positivity checks

Product representation (4.3) gives Siegel modular forms describing twisted-twining partition 
functions for the ZM × ZN models. Although this formula has a clear physical interpretation, it 
is cumbersome to work with when it comes to extracting Fourier coefficients. The complexity lies 
in knowing the functions F (r,s;r ′,s′) whose Fourier coefficients c(r,s;r ′,s′) enter as exponents of the 
various factors. Fortunately, there are other representations available for some models, including 
a product representation involving genus-two theta functions [22] and a product formula using 
weak Jacobi forms [42,46]. These alternative representations allow for an easier extraction of the 
Fourier coefficients. In this section, we briefly describe these three different representations for 
the Z2 × Z2 model and extract the Fourier coefficients and check the positivity properties. As 
an important consistency check, we confirm that all these formulae give the same answers. We 
also extract the Fourier coefficients for the hair removed twisted-twining partition function in the 
D1-D5 duality frame and check the positivity properties.
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5.1. Sen’s product representation

To work with the product representation (4.3), we need eight functions F (0,s;r ′,s′) from which 
we get our c(0,s;r ′,s′). We already noted in equation (4.23) that

F (0,0;0,0)(τ, z) = 2A(τ, z), (5.1)

where A(τ, z) is written in terms of the Jacobi theta functions ϑi (4.24). As noted in section 4.2, 
some of the other F (r,s;r ′,s′) can be obtained using the property: F (r,s;0,0) = 1

2F (r,s) = F (0,0;r ′,s′), 
where the functions F (r,s) were introduced in (2.5). We have,

F (0,0;0,1)(τ, z) = F (0,1;0,0)(τ, z) = 1

2
F (0,1)(τ, z) = 2

3
A(τ, z) − 1

3
B(τ, z)E2(τ ), (5.2)

where the notations B(τ, z) and E2(τ ) are introduced around equation (4.27). Similarly, 
F (0,0;1,0) and F (0,0;1,1) can be obtained from the function F (r,rk) with r = 1 and k = 0 and 
1, respectively,

F (0,0;1,0)(τ, z) = 1

2
F (1,0)(τ, z) = 2

3
A(τ, z) + 1

6
B(τ, z)E2

(τ

2

)
, (5.3)

F (0,0;1,1)(τ, z) = 1

2
F (1,1)(τ, z) = 2

3
A(τ, z) + 1

6
B(τ, z)E2

(
τ + 1

2

)
. (5.4)

For the remaining three functions, we rely on the SL(2, Z) transformations (4.28) of 
F (r,s;r ′,s′). This gives F (0,1;0,1) = F (0,0;0,1) and F (0,1;1,1)(τ, z) = (F (0,1;1,0)|ST −1ST −1S)(τ, z), 
where S : τ → − 1

τ
and T : τ → τ + 1. Finally, from [23,47] we infer that F (0,1;1,0)(τ, z) = 0. 

With these functions at hand, we have an explicit expression of the Siegel modular form, which 
can be programmed in Mathematica.

5.2. Product of genus two theta functions representation

Another representation of the Z2 × Z2 twisted-twining partition function is via a product 
of genus-two theta functions [22]. To introduce genus-two theta functions, we start by recalling 
that the Siegel upper half-space of genus 2, H2, is the set of 2 × 2 symmetric matrices over the 
complex numbers whose imaginary part is positive definite, i.e.,

Z =
(

τ z

z σ

)
, (5.5)

with imaginary part of Z positive definite. Genus-two theta functions on H2 are defined as,

θ

[
a
b

]
(Z) =

∑
l1, l2∈Z

q̂
1
2 (l1+ a1

2 )2
r̂ (l1+ a1

2 )(l2+ a2
2 )ŝ

1
2 (l2+ a2

2 )2
eiπ(l1b1+l2b2), (5.6)

where a =
(

a1
a2

)
, b =

(
b1
b2

)
, and where q̂ = e2πiτ , r̂ = e2πiz, and ŝ = e2πiσ .

By taking appropriate products of these functions, we can construct a class of Siegel modular 
forms. The twisted-twining partition function for the Z2 × Z2 model can be written as the 
inverse of the Siegel modular form,

�̃(Z) =
(

1

16
θ

[
0
1
0

]
(Z) θ

[
1
1
0

]
(Z) θ

[
0
1
1

]
(Z) θ

[
1
1
1

]
(Z)

)2

. (5.7)

0 0 0 1
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These expressions allow us to extract the desired Fourier coefficients in Mathematica. The 
identification with Sen’s product representation notation is,

Z =
(

τ z

z σ

)
=

(
σ̃ ṽ

ṽ ρ̃

)
. (5.8)

For some other twisted-twining partition functions too, genus two theta function product repre-
sentation is known. We will discuss one more example in section 6.

5.3. Borcherds product representation

The product representation described in [46, Theorem 2.1] gives another convenient represen-
tation for the twisted-twining partition function for the Z2 × Z2 model. Let ϕ be a weak Jacobi 
form of weight 0 and index t with integral coefficients,

ϕ(τ, z) =
∑
n,l

c(n, l)q̂nr̂ l , (5.9)

where q̂ = e2πiτ and r̂ = e2πiz. Define

A = 1

24

∑
l

c(0, l) , B = 1

2

∑
l>0

lc(0, l) , C = 1

4

∑
l

l2c(0, l) . (5.10)

Then, the Jacobi form ϕ gives a Siegel modular form via the product5

�̃(ρ̃, σ̃ , ṽ) = qArBsC
∏

(n,l,m)>0

(1 − qtnrlsm)c(nm,l) , (5.11)

where now we again denote q = e2πiρ̃ , r = e2πiṽ , and s = e2πiσ̃ with n, l and m all integers. 
The notation (n, l, m) > 0 means (n > 0, m > 0, l ∈Z) ∪ (n = 0, m > 0, l ∈Z) ∪ (n > 0, m = 0, 
l ∈ Z) ∪ (n = m = 0, l < 0). The Jacobi forms ϕ for various twisted-twining partition functions 
of our interest were given in [22]. For a more recent and more complete discussion see [26].

The index 2 weight 0 Jacobi form that gives the twisted-twining partition function for the 
Z2 × Z2 model is,

ϕ = 2ϕ
(3)
1 = 4(f 2

2 f 2
3 + f 2

3 f 2
4 + f 2

4 f 2
2 ), (5.12)

where the notation ϕ(3)
1 comes from [48], and where

fi = ϑi(τ, z)

ϑi(τ,0)
, i ∈ 2,3,4. (5.13)

With the coefficients c(nm, l) in hand, the infinite product (5.11) takes the form

�̃(ρ̃, σ̃ , ṽ) = qrs1/2
∏

(n,l,m)>0

(1 − q2nrlsm)c(nm,l). (5.14)

We expand this infinite product to get the Fourier coefficients. We also note that while computing 
coefficients A, B and C, the contribution to c(0, l) only comes from l = 0, ±1.

5 We can call this formula the “Borcherds lift” or the “exponential-lift” following [46, section 2.1]. In the following 
sections, we refer to this formula as the Borcherds product formula or the Borcherds lift.
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Table 18
Values of −B6 for the Z2 CHL orbifold model for different values of Q2, P 2 and Q · P . The 
boldfaced entries are for charges that satisfy the constraints (5.15). This table is identical to table 2 
of [28].

(Q2,P 2) Q · P
−2 0 1 2 3 4

(1,2) −5410 2164 360 −2 0 0
(1,4) −26464 18944 4352 160 0 0
(2,4) −124160 198144 67008 6912 64 0
(1,6) −114524 125860 36024 2164 52 0
(2,6) −473088 1580672 671744 101376 4352 −16
(3,6) −779104 15219528 7997655 1738664 149226 2164

Table 19
Values of −B

g2
6 for the Z2-twined partition function of the Z2 CHL model for 

different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that 
satisfy the constraints (5.15). All the boldfaced entries are very small compared 
to the corresponding entries in Table 18. Thus, it is clear that the coefficients 
−S0 and −S1 satisfy the expected positivity property.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(1,2) −290 −12 − 8 −2 0 0
(1,4) 0 0 0 0 0 0
(2,4) 0 0 0 0 0 0
(1,6) −2172 −12 −120 −12 12 0
(2,6) 0 0 0 0 0 0
(3,6) −16512 2376 −2217 −312 378 −12

5.4. Fourier coefficients

In any of the above three representations of the same function, we can extract Fourier coeffi-
cients using the contour prescription discussed in section 3.1. Since the zeros of �̃ responsible 
for wall crossing do not change with twining, the constraints on charges that ensure that the in-
dex counts single centre black hole microstates are the same as the Z2 CHL model [21]. These 
constraints are [28]:

Q · P ≥ 0, Q · P ≤ 2Q2, Q · P ≤ P 2, 3Q · P ≤ 2Q2 + P 2,

Q2,P 2, {Q2P 2 − (Q · P)2} > 0. (5.15)

Our results for the Fourier coefficients are summarised in Tables 18 and 19. We only give the 
results for 2Q2 ≤ P 2, as the indices have a symmetry under P 2 ↔ 2Q2. For the hair removed 
partition functions our results are summarised in Tables 20 and 21.

6. Positivity checks for other models

There are at least two other cases that can be dealt with as a straightforward extension of the 
techniques and results obtained so far. These are Z2 × Z4 and Z3 × Z3. We check the positivity 
properties for the indices for these models in sections 6.1 and 6.2 respectively. As noted earlier, 
23
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Table 20
Values of coefficients (the analog of −B6) for the hair removed Z2 CHL orbifold partition function 
for different values of Q2, P 2 and Q · P . The boldfaced entries are for charges that satisfy the 
constraints (5.15). This table is not identical to table 5 of [32]; although they are computing the 
same quantities. See footnote 6.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(1,2) −418 852 296 −2 0 0
(1,4) −1888 9472 3840 160 0 0
(2,4) 5632 64512 33216 5632 64 0
(1,6) −6684 73508 32680 2292 52 0
(2,6) 83808 671840 390432 83808 3936 −16
(3,6) 930352 4806056 3213211 961768 115242 2292

Table 21
Values of coefficients (the analog of −B

g2
6 ) for the hair-removed Z2-twined partition 

function of the Z2 CHL model for different values of Q2, P 2 and Q ·P . The boldfaced 
entries are for charges that satisfy the constraints (5.15). All the boldfaced entries are 
very small compared to the corresponding entries in Table 20. Thus, the hair removed 
analog of coefficients −S0 and −S1 satisfy the expected positivity property.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(1,2) −98 4 −8 −2 0 0
(1,4) 0 0 0 0 0 0
(2,4) 0 0 0 0 0 0
(1,6) −732 180 −144 −12 12 0
(2,6) 0 0 0 0 0 0
(3,6) −2736 1992 −1197 −216 282 −12

the Sen’s product representation for the twisted-twining partition functions for these models is 
fairly cumbersome. For example, for the Z3 × Z3 model, we would need F (0,s;r ′,s′) functions for 
s, r ′, s′ ∈ {0, 1, 2} (27 functions in total) in order to extract the Fourier coefficients. Fortunately, 
there are other representations available for these models, including a product representation 
involving genus-two theta functions [22]. These alternative representations allow for an easier 
extraction of the Fourier coefficients, which is what we use.

There are two other cases that can also be dealt with using our techniques straightforwardly, 
namely Z4 × Z2 and Z4 × Z4. However, to the best of our knowledge, the precise conditions 
on the charge vectors to describe the single centred black holes have not been worked out. Thus, 
although we can easily obtain the Fourier coefficients, the interpretation as indices of single 
centre black holes is not fully clear. For this reason, we do not present results for these other 
models.

6.1. Z2 × Z4

The twisted-twining partition function for Z2 × Z4 model is �̃(Z)−1 where [22]

�̃(Z) =
(

1

4
θ

[ 0
1
1

]
(Z) θ

[ 1
1
1

]
(Z)

)2

. (6.1)

0 1
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Table 22
Values of −B

g4
6 for the Z4-twined partition function of the Z2 CHL model 

for different values of Q2, P 2 and Q · P . The boldfaced entries are for 
charges that satisfy the constraints (5.15).

(Q2,P 2) Q · P
−2 0 1 2 3 4

(1,2) −34 −12 8 −2 0 0
(1,4) 0 0 0 0 0 0
(2,4) 0 0 0 0 0 0
(1,6) −156 −60 24 −12 4 0
(2,6) 0 0 0 0 0 0
(3,6) −672 −184 87 −24 10 −12

Table 23
Values of −B6 for the Z3 CHL model for different values of Q2, P 2 and Q · P . The 
boldfaced entries are for charges that satisfy the constraints to ensure that the index counts 
microstates of a finite sized single centred black hole. The constraints are given in [28]. 
We only give the results for 3Q2 ≤ P 2, since the index has a symmetry under P 2 ↔ 3Q2. 
This table is identical to table 3 of [28].

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2/3,2) −1458 540 27 0 0 0
(2/3,4) −5616 3294 378 0 0 0
(4/3,4) −21496 23008 4912 136 0 0
(2/3,6) −18900 16200 2646 54 0 0
(4/3,6) −70524 128706 37422 2484 6 0
(2,6) −208584 820404 318267 37818 801 0

This product can be programmed in Mathematica, where we recall the dictionary (5.8) be-
tween the genus two theta function notation and our previous notation. We find Fourier coeffi-
cients as listed in Table 22. Together with previously obtained Tables 18 and 19 for the Z2 CHL 
model, we can easily check that the positivity properties are satisfied for −S0, −S1, −S2, −S3. 
Although it is expected on physical grounds, it is quite remarkable that various things conspire 
to give −S0, −S1, −S2, −S3 positive integers.

6.2. Z3 × Z3

The Z3 × Z3 model is another example that can be dealt with in a straightforward manner. 
Values of −B6 for the Z3 CHL model (with no twining) for different values of Q2, P 2 and Q ·P
are given in Table 23. The Borcherds product formula (5.11) with the index 3 weight 0 Jacobi 
form,

ϕ = 2φ
(4)
1 = 8f 2

2 f 2
3 f 2

4 (6.2)

gives the Z3 × Z3 twisted-twining partition function [26]. The exponents in (5.11) turn out to 
be A = B = 1, C = 1/3. This product can be programmed in Mathematica. We find Fourier 
coefficients as listed in Table 24. Using Tables 23 and 24 it is easy to check that the expected 
positivity properties are satisfied. Once again, it is quite remarkable (almost a miracle, if you 
wish) that −S0, −S1, −S2 all turn out to be positive integers.
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Table 24
Values of −B

g3
6 for the Z3-twined partition function of the 

Z3 CHL model for different values of Q2, P 2 and Q · P . The 
boldfaced entries are for charges that satisfy the constraints to 
ensure that the index counts microstates of a finite size single 
centred black hole. We only give the results for 3Q2 ≤ P 2, the 
index has a symmetry under P 2 ↔ 3Q2.

(Q2,P 2) Q · P
−2 0 1 2 3 4

(2/3,2) 0 0 0 0 0 0
(2/3,4) 0 0 0 0 0 0
(4/3,4) −124 −8 −8 4 0 0
(2/3,6) 0 0 0 0 0 0
(4/3,6) 0 0 0 0 0 0
(2,6) 0 0 0 0 0 0

We end this section with a comment about the asymptotic growth of Fourier coefficients and 
the corresponding logarithmic correction to the black hole entropy. In [49], the authors identified 
a class of Siegel modular forms that could serve as “candidates for other types of black holes” by 
looking at the asymptotic growth of the Fourier coefficients of the various Siegel modular forms. 
Two of the examples they identified are the Borcherds lift (5.11) of index 2 and 3, weight 0 Jacobi 
forms, as discussed above. The CHL interpretation of these modular forms is known (though, not 
well appreciated) as the Z2 × Z2 and Z3 × Z3 twisted-twining partition functions, respectively 
[22,26]. Logarithmic corrections for the corresponding black holes on the gravity side have not 
been studied. We do expect the logarithmic corrections coefficients to match with the analysis 
of [49]. A proof of the equivalence of the various product representations of the twisted-twining 
partition functions for the Z2 × Z2 and Z3 × Z3 models has also not been written down.

7. Conclusions

In this paper, we have studied indices counting the number of black hole microstates with 
definite eigenvalue under the ZN twining generator for a class of ZM CHL models. Our study 
of course, forces the K3 moduli to lie in a subspace of the full moduli space, where such a 
symmetry is geometrically realised. The number of black hole microstates in a ZM CHL model 
with definite eigenvalue under a ZN twining generator must be positive. This leads to a specific 
prediction for the signs of certain linear combinations of Fourier coefficients of Siegel modular 
forms. We explicitly tested these predictions for low charges. We studied these indices in a pos-
sible duality frames where the black holes do not admit more hair other than the fermionic zero 
modes associated to broken supersymmetries. We also studied these indices for a sub-class of 
models in the D1-D5 duality frame. In the D1-D5 duality frame, we computed the appropriate 
hair removed partition functions and showed the positivity of the appropriate Fourier coeffi-
cients for low charges. We emphasise that ours is the first ever systematic study of the numerical 
computation of twined indices. Many of the subtle points that we have pointed out have not 
been appreciated in the literature, e.g., the nature of the attractor chamber constraints on the 
charges.

For large charges, the twining indices for the twining generator of order N are known to grow 
as [20],
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± exp

[
SBH

N

]
, (7.1)

where SBH is the entropy of a black hole carrying the same set of charges. On the other hand the 
untwined indices grow as,

+ exp [SBH ] . (7.2)

Numbers (7.1) are exponentially small compared to (7.2). Clearly, the sum or difference of num-
bers (7.1) and (7.2), as in (1.4), will not change the positivity property of the large numbers (7.2). 
Thus, for large charges our results are nothing more than a consistency check. However, for low 
charges our results are fairly non-trivial. We have shown that in all the cases that we analysed, 
the positivity and integer property continues to hold. These results are expected from the black 
hole side, but are quite intriguing from the modular form side, as linear combinations of Siegel 
Modular forms of different Sp(2, Z) weights are involved.

Our results offer several opportunities for future research. In a series of papers, Chattopad-
hyaya and David [32,34,35] have pointed out that the sign of the indices for T4 models violates 
the positivity conjecture of [28]. In their most recent paper [32],6 they have proposed a “ten-
tative resolution” of this puzzle. Their resolution is essentially based on the study of Fourier 
coefficients, where they argue that 4 of the fermion zero modes for the 1

4 -BPS black holes for 
T4 models are not hair modes.7 A proper justification of this claim is still missing. Clearly, these 
models require further investigation. It will be interesting to explore the positivity property of the 
twisted-twining indices for the T4 models. At the very least, such a study will provide a more 
refined version of the puzzle.

We implemented Sen’s product representation (4.3) only for the Z2 × Z2 twisted-twining 
partition function. This representation is perhaps physically the most transparent, though fairly 
cumbersome to implement when it comes to extracting the Fourier coefficients. We found it 
much easier to implement other representations, namely product of genus two theta functions, 
and the Borcherds lift (5.11). For other twisted-twining partition functions we only implemented 
the product of genus two theta functions representation and the Borcherds lift. It will be useful to 
confirm these results using Sen’s product representation (4.3).8 More broadly, it will be useful to 
work out proofs showing the equivalence of the various product representations of the twisted-
twining partition functions. Some work in this direction has already been done in [23]. We note 
that, for twining partition functions (no twisting) these proofs have been recently completed [27,
43]. We hope to return to some of the above problems in our future work.
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