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The contribution to the muon anomalous magnetic moment from the fermion triangle loop
diagrams connected to the muon line by a photon and a Z boson is re-analyzed in both the
unitary gauge and the ’t Hooft–Feynman gauge. With use of the anomalous axial-vector Ward
identity, it is shown that the calculation in the unitary gauge exactly coincides with the one in
the ’t Hooft–Feynman gauge. The part which arises from the ordinary axial-vector Ward identity
corresponds to the contribution of the neutral Goldstone boson. For the top-quark contribution,
the one-parameter integral form is obtained up to the order of m2

μ/m2
Z . The results are compared

with those obtained by the asymptotic expansion method.
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A discrepancy of 3.3σ still remains between experiment and the standard model (SM) prediction
for the muon anomalous magnetic moment aμ ≡ (gμ − 2)/2 [1]. The calculations of two-loop
contributions to aμ due to the electroweak interactions of the SM were completed quite some time
ago [2–5] and recently the numerically evaluated results of full two-loop electroweak corrections
were presented [6]. For more references, see Ref. [1].

Two-loop electroweak corrections are relatively large and reduce the one-loop contribution
aEW
μ (1 loop) by about 21% [1]. They are expressed as the form

aEW
μ (2 loop) = 5

3

Gμm2
μ

8
√

2π2

∑
i

Ci
α

π
. (1)

A thorough study of the two-loop electroweak contributions to aEW
μ was made in Refs.[2,3], where

the asymptotic expansion method was employed and the ’t Hooft–Feynman gauge was used. Then
in Ref. [7], for a concrete illustration of the asymptotic expansion method, Czarnecki and Marciano,
coauthors of Refs.[2,3], showed in detail the calculation of the diagrams with top quark triangle
loops connected to the muon line by a photon and a Z boson. The relevant Feynman diagrams are
given in Fig. 1, where the top quark is replaced with a charged fermion f . In the case of f = top
quark, there appear two large ratios of masses, m2

t /m2
Z and m2

Z/m2
μ, which provides a good example

to study the power of the asymptotic expansion method.
Study of a specific subset of the two-loop electroweak contributions shown in Fig. 1 is also

interesting due to the fact that its fermionic triangle loop subdiagrams have the Adler–Bell–Jackiw
VVA anomaly. The analysis of this subset of diagrams was first made by Kukhto et al. [4] (KKSS).
They used a simplified version of the Zγ γ vertex function by Adler [8] and Rosenberg [9] for the
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Fig. 1. Diagrams with fermion triangle loops connected to the muon line by a photon and a Z boson. The
diagrams with a photon and a Z-boson interchanged should be added.

fermionic triangle subdiagrams and found that the loop contributions of leptons, i.e., e, μ and τ , were
enhanced by large logarithms of the form ln(mZ/mμ) or ln(mZ/mτ ). Then followed the studies of
quark loop contributions [2,5].

In Ref. [7], the result by the asymptotic expansion method for the contributions of the top quark loop
diagrams in Fig. 1 is made up of �CZ and �CG, which are given in Eqs. (9) and (10), respectively,
of the paper and are written in terms of the two ratios, m2

t /m2
Z and m2

Z/m2
μ. The calculation was

made in the ’t Hooft–Feynman gauge and �CG is the contribution generated from the neutral
Goldstone boson. If the integral representations for �CZ and �CG are obtained, they are very useful
for confirming the validity of the asymptotic expansion method. It is also interesting to see what
happens to �CG when the diagrams are calculated in a different gauge, e.g. in the unitary gauge.
These are motivations for reanalyzing the contributions to aμ from the fermion triangle loop diagrams
shown in Fig. 1.

Actually the top quark (more generally, a charged fermion) triangle loop contributions can be
calculated exactly, the results of which in the unitary gauge were already given in Eqs. (13)–(15) of
Ref. [5], in the form of rather complex parametric representation with five Feynman parameters. In
this paper I re-examine the contributions to aμ from the fermion triangle loop diagrams depicted in
Fig. 1 in both the unitary gauge and the ’t Hooft–Feynman gauge, and show that, with use of the
anomalous axial-vector Ward identity, the calculation in the unitary gauge exactly coincides with
the one in the ’t Hooft–Feynman gauge. The part which arises from the ordinary axial-vector Ward
identity corresponds to the contribution of the neutral Goldstone boson. Then, for the top-quark
contribution, the one-parameter integral form is obtained up to the order of m2

μ/m2
Z . The results are

compared with those obtained by the asymptotic expansion method.
The muon state before and after the interaction with a photon field with momentum q satisfies the

following on-shell conditions:

u(p + q)(p/ + q/) = u(p + q)mμ, p/u(p) = mμu(p), (2)

where mμ is a muon mass. In the following calculation we put q2 = 0 and then the above on-shell
conditions lead to p · q = 0. It is well-known that the contributions of VVV terms in the fermionic
triangle subdiagrams in Fig. 1(a) and (b) mutually cancel by virtue of Furry’s theorem while the VVA
terms have the Adler–Bell–Jackiw anomaly. Then we use the Zγ γ vertex function derived by Adler
[8] and Rosenberg [9] for the fermionic triangle subdiagrams, which reads in terms of the momenta
shown in Fig. 1 as
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Rμρλ(q, −k , k − q) = 1

π2

∫ 1

0
dx

∫ 1−x

0
dy

[
m2

f − x(1 − x)k2 + 2xyk · q
]−1

×
{[

x(1 − x)k2 − xy(k · q)
]
ελμρq − xy(k · q)ελμρk + xy qρελμkq

− x(1 − x)kρελμkq − y(1 − y)qμελρkq + xy kμελρkq
}

, (3)

where mf is a fermion mass in the loop and ελμρq = ελμραqα , etc. The convention ε0123 = −ε0123 =
1 is used, which agrees with Peskin and Schroeder [10,11] and not with Adler and Rosenberg [8,9]
nor with KKSS [4]. Note that the above expression is the full-version of the Zγ γ vertex function with
q2 = 0. In Ref. [4], KKSS used a simplified version of the Zγ γ vertex function obtained from the
full-version (3) by keeping, in the numerator, only the terms linear in the external photon momenta
q and discarding the k · q term in the denominator. The full version Rμρλ(q, −k , k − q) satisfies the
electromagnetic current conservation, qμRμρλ(q, −k , k −q) = 0 and kρRμρλ(q, −k , k −q) = 0, and
the anomalous axial-vector Ward identity

(k − q)λRμρλ(q, −k , k − q) = − 1

2π2 εμρkq

+ m2
f

π2

∫ 1

0
dx

∫ 1−x

0
dy

[
m2

t − x(1 − x)k2 + 2xyk · q
]−1

εμρkq . (4)

The first term is the Adler–Bell–Jackiw VVA anomaly and is independent of the fermion mass mf

in the loop, while the second term corresponds to the ordinary axial-vector Ward identity and is
proportional to m2

f .
The calculation of the lower-loop in Fig. 1 is performed by using the Z-boson propagator in the

unitary gauge,

−i

(k − q)2 − m2
Z

[
gλκ − (k − q)λ(k − q)κ

m2
Z

]
. (5)

The contraction of (k − q)λ and the Zγ γ vertex function gives the anomalous axial-vector Ward
identity in Eq. (4). The anomaly term generates a divergence in the loop integral. However, it does not
depend on the fermion and thus, in the SM, the contributions of the anomaly terms cancel out when
all the fermions in each generation are included [5]. Hence in the following we omit the anomaly
term. The calculation proceeds by making full use of an identity

iεμρνλγ
λγ5 = γμγργν − gμργν − gρνγμ + gμνγρ , (6)

and the on-shell conditions (2). Discarding the terms with γμ and picking only those with pμ and
qμ, the remaining terms are found to be proportional to (2p + q)μ. Then the y-integration and the
symmetrization in the x variable, i.e., f (x) → [f (x) + f (1 − x)]/2, are made.

Finally, the following expressions are obtained for the triangle loop contribution of a fermion f in
rather compact integral form with four Feynman parameters,

Cγ Z(f ) = N f
c Q2

f I3f
12

5

{
Aγ Z(f ) − λf Bγ Z(f )

}
, (7)
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where

Aγ Z(f ) =
∫ 1

0
dx

∫ 1

0
dz4

∫ 1−z4

0
dz3

∫ 1−z4−z3

0
dz2

×
{

a(2 + 3z4)

aκz2
4 + az2 + λf z3

− κ
a2z3

4

[aκz2
4 + az2 + λf z3]2

}
, (8)

Bγ Z(f ) =
∫ 1

0
dx

∫ 1

0
dz4

∫ 1−z4

0
dz3

∫ 1−z4−z3

0
dz2

×
{

1 + 3z4

aκz2
4 + az2 + λf z3

− κ
az3

4

[aκz2
4 + az2 + λf z3]2

}
, (9)

with a ≡ x(1 − x), λf ≡ m2
f /m2

Z and κ ≡ m2
μ/m2

Z ; N f
c , Qf and I3f are the color factor, the

electric charge and the third component of weak isospin of the fermion f , respectively, with N f
c =

3(1) for quarks (leptons). These are exact results, and Aγ Z(λf , κ) and Bγ Z(λf , κ) are equivalent to
F[m2

f /m2
μ, M 2

Z/m2
μ] in Eq. (14) and G[m2

f /m2
μ, M 2

Z/m2
μ] in Eq. (15) of Ref. [5], respectively. Having

the expressions given in Eqs. (8) and (9), it is easy to perform further integrations with respect to
the Feynman parameters z2, z3 and z4. The term Aγ Z(f ) comes from the gλκ part of the Z-boson
propagator (5). On the other hand, the Bγ Z(f ) term arises from the ordinary axial-vector Ward
identity, and thus is multiplied by the factor λf in Eq. (7). Due to this factor, Bγ Z(f ) is only relevant
for the case f = top quark [5]. It is interesting to note that the expression of Aγ Z(f ) turns out to
be the same as the one given by KKSS in Eq. (4.10) of Ref. [4], which was derived by using the
simplified version of the Zγ γ vertex function.

Now consider the calculation of the same diagrams in Fig. 1 in the ’t Hooft–Feynman gauge. The
Z-boson propagator in the ’t Hooft–Feynman gauge is given by

−i

(k − q)2 − m2
Z

gλκ , (10)

which is the same form as the gλκ part of the Z-boson propagator in the unitary gauge in Eq. (5).
Hence the contribution generated from the Z-boson propagator in the ’t Hooft–Feynman gauge is
expressed as Aγ Z(f ) in Eq. (8). In addition, we need to consider the contribution generated from
the neutral Goldstone boson G0. The relevant diagrams are obtained from Fig. 1 (a) and (b) with
replacement of the Z-boson propagator by that of G0. Also, the axial-vector couplings of the Z-
boson are replaced by the pseudo-scalar couplings of G0 to the fermion in the loop and the muon.
The loop-integral of the fermionic triangle subdiagrams in Fig. 1 (a) and (b) where the axial-vector
vertex γ λγ5 is replaced by the pseudo-scalar vertex mf γ5 gives

m2
f

2π2

∫ 1

0
dx

∫ 1−x

0
dy

[
m2

t − x(1 − x)k2 + 2xyk · q
]−1

εμρkq , (11)

which is just one half of the second term of Eq. (4) (an ordinary axial-vector Ward identity). Now
attaching the pseudo-scalar vertex mμγ5 to the muon line, the lower-loop integral is made and the
following exact result is obtained for the contribution generated from the neutral Goldstone boson
G0:

Cγ G0(f ) = N f
c Q2

f I3f
12

5
(−λf )Bγ G0(f ) , (12)
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where

Bγ G0(f ) =
∫ 1

0
dx

∫ 1

0
dz4

∫ 1−z4

0
dz3

∫ 1−z4−z3

0
dz2

×
{

2

aκz2
4 + az2 + λf z3

− κ
2az2

4

[aκz2
4 + az2 + λf z3]2

}
. (13)

The expressions of Bγ Z(f ) and Bγ G0(f ) look different at first glance but actually are equivalent.
Take the difference and we see that it vanishes after the integration with respect to the variables z2,
z3 and z4. Now it is clear that the calculation in the unitary gauge exactly coincides with the one in
the ’t Hooft–Feynman gauge. The part which arises from the ordinary axial-vector Ward identity in
the unitary gauge corresponds to the contribution of the neutral Goldstone boson.

For the case m2
f � m2

μ, the integrations of Aγ Z(f ) and Bγ Z(f )(= Bγ G0(f )) with respect to the
variables z2, z3 and z4 are easily made up to O(κ). The results are

Aγ Z(f ) = Ãγ Z(f ) + κ

λf

∫ 1

0
dx a

{
5

3

a

a − λf
log

a

λf
+ 17

18
+ 5

3
log κ

}
+ O(κ2), (14)

Bγ Z(f ) = B̃γ Z(f ) + κ

λf

∫ 1

0
dx

{
4

3

a

a − λf
log

a

λf
+ 8

9
+ 4

3
log κ

}
+ O(κ2), (15)

where

Ãγ Z(f ) = 3

2

∫ 1

0
dx

a

a − λf
log

a

λf
, B̃γ Z(f ) =

∫ 1

0
dx

1

a − λf
log

a

λf
. (16)

The expression of λf B̃γ Z(f ) appeared already in the literature [7,12–14] as the integral representation
for the Barr–Zee diagrams. In the case of top quark, and thus N t

cQ2
t I3t = 2/3 and λt � 3.6, we expand

1/(a − λt) as

1

a − λt
= − 1

λt

{
1 + a

λt
+ a2

λ2
t

+ · · ·
}

, (17)

and we obtain after the x-integration

N t
cQ2

t I3t
12

5
Aγ Z(t) = 1

λt

{
2

3
+ 2

5
log λt + 1

λt

[
47

375
+ 2

25
log λt

]
+ · · ·

}
+ κ

λt

{
34

135
+ 4

9
log κ

}
+ O

(
κ

λ2
t

, κ2
)

, (18)

−N t
cQ2

t I3t
12

5
λtBγ Z(t) =

{
−16

5
− 8

5
log λt − 1

λt

[
4

9
+ 4

15
log λt

]
+ · · ·

}
− κ

{
64

45
+ 32

15
log κ

}
+ O

(
κ

λt
, κ2

)
. (19)

We see that the above equations (18) and (19) reproduce the results of the asymptotic expansion
method, �CZ and �CG, which are given in Eqs. (9) and (10) of Ref. [7]. In addition, the subleading
O(1/λ2

t ) terms and the nonleading O(κ) terms are included, respectively, in Eqs. (18) and (19),
which may serve as another check on the asymptotic expansion method.
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For the contribution of top quark Cγ Z(t), the integral form of 8/5[̃Aγ Z(t)−λt B̃γ Z(t)] gives −5.134
with λt = 3.6, while the use of the leading O(1) and subleading O(1/λt) terms in the expansions in
Eqs. (18) and (19), which is the result of the asymptotic expansion method, (�CZ + �CG), given
in Eq. (11) of Ref. [7], leads to −5.140. Agreement is excellent and we see that the asymptotic
expansion method works just fine for the case of top quark triangle loop diagrams. The integral form
of Ãγ Z(f ) in Eq. (16) is still applicable to estimate Cγ Z(f ) for the contributions from the loops of
b quark, τ lepton and c quark. Alternatively, the formula Ãγ Z(f ) ≈ (3/2)(−2 − ln λf ) can be used
since λf 	 1 for f = b, τ , c. On the other hand, for the light quarks, i.e., u, d and s quarks, there is
the issue of how to properly treat their triangle loop diagrams [5,15,16]. For the contributions to aμ

from the muon and electron triangle loop diagrams, we arrive at the same formulae given by KKSS
[Eqs. (4.11) and (4.12) of Ref. [4]], since Aγ Z(f ) in Eq. (8) is the same expression as the one derived
by them.

In summary, the two-loop electroweak contributions to aμ from fermion triangle diagrams con-
nected to the muon line by a photon and a Z-boson depicted in Fig. 1 can be calculated without
approximations. It is shown that the calculation in the unitary gauge exactly coincides with the one
in the ’t Hooft–Feynman gauge. The part generated from the ordinary axial-vector Ward identity in
the unitary gauge corresponds to the contribution of the neutral Goldstone boson in the ’t Hooft–
Feynman gauge. For the top-quark contribution, the one-parameter integral form is obtained up to
the order of m2

μ/m2
Z . The results are compared with those obtained by the asymptotic expansion

method. We see that numerically agreement is excellent. Yet, there still remains the discrepancy of
3.3σ between experiment and theory for aμ.
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