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I. INTRODUCTION

Much of the recent progress in our understanding of
scattering amplitudes in perturbative quantum field theories
has stemmed from powerful new techniques to efficiently
compute amplitudes and loop-amplitude integrands at
large multiplicity and/or loop order. These techniques have
provided a rich source of theoretical “data” from which a
number of deep and important insights have been gleamed.
For example, building on analytic insights into tree
amplitudes (see e.g. [1]), the all-loop recursion relations
for loop integrands discovered in [2] led directly to a wealth
of theoretical data, against which new ideas were rapidly
developed and tested.
The recursion relations described in [2] generated loop

amplitude integrands from the “forward limits” of lower-
loop amplitude integrands; although such forward limits
are believed to be well defined for amplitudes in any
supersymmetric field theory [3], they are known to involve
considerable subtlety for less-than-maximal supersym-
metry (especially for amplitudes represented via recursion)
[4,5]; even for maximally supersymmetric Yang-Mills
theory in the planar limit (“sYM”), forward limits prove
an enormous source of computational inefficiency, greatly
limiting their effective implementation. To date, they have
been exploited for amplitudes only through two-loop
order [6–8].
In this paper, we overcome this barrier by showing how

sequences of BCFW recursions can be used to represent
any L-loop, n-particle amplitude integrand of planar sYM,
AL

n , in a form reminiscent of unitarity cuts:

ð1Þ

Here, the first term corresponds to the ordinary “BCFW
bridge,” and the second the one-loop “kermit” terms
described in [7]. At two loops, a closed formula similar
to (1) was given in the appendix of [8], but it involved two
sums over triple products of amplitudes. Despite the
similarity between (1) and unitarity cuts, the representation
we derive features surprisingly novel types of cuts at three
loops and higher.
Attached to this note, we have prepared an implementa-

tion of the representation (1) in Mathematica, which has
been checked both internally and against a number of
nontrivial examples and has been used to compute a
number of previously inaccessible loop amplitudes includ-
ing the 10-particle N3MHV amplitude at 3 loops, the
8-particle N2MHV amplitude at 4 loops, and the 5-particle
MHV amplitude at 5 loops.

II. BCFW RECURSION
IN MOMENTUM-TWISTOR SPACE

Our starting point will be the all-loop recursion of [2].
Similar to the tree-level BCFW recursion [9,10], it may
be derived by shifting a pair of external momenta by a
complex parameter while maintaining on-shell and
momentum conservation constraints. In sYM (and for
suitable helicity choices in nonsupersymmetric theories),
the amplitude vanishes at infinite momentum shift [11] and
therefore is fully determined by its poles at finite shifts. At
tree level, these poles represent factorization channels, the
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residues of which can be determined recursively as prod-
ucts of lower-point, on-shell amplitudes. For loop ampli-
tude integrands, there are also poles corresponding to
locations where internal propagators go on shell, which
can be described (if not easily computed) as a lower-loop
amplitude with two additional momenta taken in the
forward limit.
The mechanics of on-shell recursion are simplified in

momentum-twistor variables [12] which simultaneously
trivialize both momentum conservation and the on-shell
condition for massless particles. Thus, an arbitrary set of
momentum twistors za ∈ C4=GLð1Þ will encode a set of
momentum-conserving, massless four-momenta. This is
achieved using the twistor map [13] which associates the
(projective) line ða − 1aÞ ≔ spanfza−1; zag (cyclic labeling
understood) in twistor space with a point xa in spacetime.
Two points in spacetime will be lightlike separated if their
corresponding lines in twistor space intersect; as such,
the points xa and xaþ1 are manifestly lightlike separated
because the corresponding lines in twistor space ða − 1aÞ
and ðaaþ 1Þ intersect at za. The collection of pairwise,
null-separated points fxag can be used to define a set of
null momenta pa ≔ ðxaþ1 − xaÞ, for which momentum
conservation is manifest. For supersymmetric Yang-Mills
theory each twistor za can be upgraded to a projective
vector in C4jN which captures the helicity dependence of
scattering amplitudes. These variables make sYM formulas
particularly compact as they manifest its dual conformal
symmetry [14–16].
When two dual-momentum points xa and xb become

lightlike separated, their corresponding lines in momen-
tum-twistor space ða − 1aÞ and ðb − 1bÞ intersect; this
corresponds to a situation where the four twistors
fza−1; za; zb−1; zbg span a space of rank less than four.
Defining the “four-bracket” habcdi ≔ detfza; zb; zc; zdg,
two lines intersect when ha − 1ab − 1bi ¼ 0.
For planar theories described in dual-momentum coor-

dinates, physical poles must involve the sums of consecu-
tive momenta ðxa − xbÞ2 ¼ ðpa þ paþ1 þ…þ pb−1Þ2, or
involve some internal propagator ðxli − xbÞ2 where xli
represents an internal loop momentum—to be associated
with the line ðliÞ ≔ ðAiBiÞ in momentum twistors spanned
by zAi

; zBi
.

Consider the BCFW deformation of (super)-twistors,

zn ↦ z̄nðαÞ ≔ zn þ αzn−1; ð2Þ

this deformation trivially preserves the on-shell condition
and momentum conservation. Since the only line deformed
is ðznz1Þ—corresponding to the dual point x1—this is equi-
valent to BCFW-deforming the pair of momenta pn and p1.
Although for sYM there is no pole at infinite external
momenta, there is a pole at α → ∞ corresponding to the
factorization involving a three-particle MHV amplitude
(an “inverse soft-factor” in the language of [17,18])—which,
in momentum twistor space, is simply the lower-point
amplitude involving twistors fz1;…; zn−1g.
The poles at finite values of αmust involve the vanishing

of either hn̄1j − 1ji, a factorization, or of hn̄1AiBii, a
forward limit. The locations of these poles are given by

n̂ ¼ ðn − 1nÞ ∩ ð1j − 1jÞ or n̂ ¼ ðn − 1nÞ ∩ ð1AiBiÞ;
ð3Þ

where ðabÞ ∩ ðcdeÞ ≔ zahbcdei þ zbhcdeai—or, equiva-
lently, in the parametrization (2), at the locations

α ¼ hn1j − 1ji
h1j − 1jn − 1i or α ¼ hn1AiBii

h1AiBin − 1i : ð4Þ

Residues involving “external” lines ðj − 1jÞ correspond to
factorization channels involving two lower-multiplicity
amplitude integrands involving any distribution of the total
L loop momenta between them, represented by the first
term of (1). Concretely, these terms are given by

ALT
nT ð1;…; j − 1; ĵÞB0½1ðj − 1jÞ; ðn − 1nÞ�
×ALB

nB ðĵ; j;…; n − 1; n̂Þ ð5Þ

where L ¼ LB þ LT , ĵ ≔ ðj − 1jÞ ∩ ðn − 1n1Þ. Taking (as
in [2]) the amplitudes A to be the conventional amplitude
(divided by the Parke-Taylor MHV superamplitude), the
“bridge” B0½1; ðj − 1; jÞ; ðn − 1; nÞ� ≔ R½1; j − 1; j; n −
1; n� is given by the “R-invariant” [19] in momentum-
twistor variables [12]

R½abcde� ≔ δ0j4ðηahbcdei þ ηbhcdeai þ ηchdeabi þ ηdheabci þ ηehabcdiÞ
habcdihbcdeihcdeaihdeabiheabci ;

where the η’s are Grassmann variables labeling states.
The second type of pole—that involving an internal

line ðAiBiÞ—corresponds to a one-lower-loop amplitude
involving two additional particles taken in the forward limit
as described in [2]; graphically, it corresponds to

ð6Þ
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However, the computational complexities of analy-
tically taking lower-loop amplitudes in the forward limit
have continued to stymie implementation or wide
applications.
The loop integrand obtained in this fashion, after sym-

metrizing in the loop variables xli , is a well-defined and
gauge-invariant function (as opposed to an equivalence
class modulo shifts, which it normally is in a nonplanar
theory). It is conjectured to be the canonical volume form
on the amplituhedron [20,21] and can be alternatively
computed using a Wilson loop in twistor space [22]. By
exploiting the duality between Wilson loops and scattering
amplitudes in the sYM theory (see [23–25]), it is also
equal to a correlator of null polygonal Wilson loops with
Lagrangian insertions [26] and can be obtained from the
null limit of stress-tensor multiplet correlators [27–29]. The
latter has been discussed recently for massive amplitudes
along the Coulomb branch [30], but we focus here on the
massless case where we benefit from the massless momen-
tum twistor formalism.

III. CUTS FROM SEQUENCES OF BCFW
DEFORMATIONS

We would like to simplify the forward-limit term by
recursing it in a way that will allow us to compute it
analytically. Let us choose to label the first loop momen-
tum cut to be “l1.” As the amplitude depends only on
the line ðA1B1Þ, we may freely fix A1 to be a special point
on this line: A1 ↦ l̂1 ≔ ðA1B1Þ ∩ ðn − 1n1Þ—that is,
ðA1B1Þ ≃ ðl̂1B1Þ. Now consider a BCFW deformation
which translates B1 in the direction of n̂—preserving the
plane ðA1B11Þ ≃ ðA1B1n̂Þ.
With this deformation, physical poles will correspond to

places where the deformed line ðl̂1B1Þ intersects either an
external line ðj − 1jÞ or an internal line corresponding to
another loop momentum, say l2 ≔ ðA2B2Þ. The former
results in the second term of (1), and the latter corresponds
to a diagram with two particles taken in the forward limit

(two internal lines on shell). To resolve the latter, we repeat
this procedure by translating A2 ↦ l̂2 and deforming B2,
and so on, until all loop momenta have been exhausted—at
which point the final lL can be deformed to expose one
final “factorization” involving either an external or already-
localized internal line ðl̂a−1l̂aÞ.
This sequence of BCFW deformations and cut solutions

is illustrated in Fig. 1. Letting the ath loop momentum be
encoded by the line ðAaBaÞ in twistor space, the cut points
appearing in the q-loop bridge take the form summarized
on the right-hand side of Fig. 1.
A subtlety which will be clarified below is that the

final line cut through this process need not involve
any external momenta: the line “ðj − 1jÞ” may be
chosen from any pair of adjacent elements of the list
ðl̂q−2; l̂q−3;…; l̂1; 1;…; n − 1; n̂; l̂1; l̂2;…; l̂q−2Þ.

A. EXPLICIT FORM OF THE “BRIDGED”
AMPLITUDES RESULTING FROM RECURSION

When q internal loop momenta are cut via the sequence
of BCFW deformations described above, the resulting
residue of the loop integrand takes the form

ð7Þ

where LT þ LB ¼ L − q and the bridge factors “Bq” are
derived by performing the GL2 integrals required for the
forward limit (see [2]) within products of R invariants. The
0-loop bridge B0 was given above in (5); for q ¼ 1 it is

FIG. 1. Illustration of iterated BCFW deformations and resulting locations in momentum twistor space. In the first deformation, zn is
translated by zn−1 until it intersects the plane ðl11Þ at the point n̂ ≔ ðn − 1nÞ ∩ ðA1B11Þ (cutting the local pole hl1n1i); in this
configuration, we may translate A1 to l̂1 ≔ ðA1B1Þ ∩ ðn − 1n1Þ. After this, we perform a second BCFW deformation by translating B1

in the direction of n̂ [so as to remain in the plane ðA1B11Þ] until it intersects the line ðA2B2Þ representing l2 at the point
l̂2 ≔ ðA2B2Þ ∩ ðA1B11Þ—which cuts the internal propagator hl1l2i. In the second figure, this sequence is continued, by deforming l2

in the plane ðA2B2l̂1Þ until it intersects the line ðA3B3Þ at the point l̂3 ≔ ðA3B3Þ ∩ ðA2B2l̂1Þ, and so on.
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B1½1; ðj − 1jÞ; ðn − 1nÞ� ≔ hl1ðj − 1j1Þ ∩ ðn − 1n1Þi2
hl1j − 1jihl1j1ihl11j − 1ihl1n − 1nihl1n1ihl11n − 1i ; ð8Þ

which appears as the “kermit” of Refs. [7,31]; and for q ≥ 2 we obtain the new result

Bq
ðq≥2Þ

½1; ðj− 1jÞ;ðn− 1nÞ�≔ hðn− 1n1Þl̂2iðhl̂0l̂1l̂2l̂3ihl̂1l̂2l̂3l̂4i � � � hl̂q−3l̂q−2l̂q−1l̂qihl̂q−2l̂q−1l̂qĵiÞhl̂q−1l̂qðj− 1jÞi
hl1n−1nihl1n1ihl11n− 1iðhl1l2i � � � hlq−1lqiÞhlqj− 1jihlqjl̂q−1ihlql̂q−1j− 1i :

ð9Þ

Notice that the lower-loop amplitudes being bridged
have an excess R-charge of 4ð1 − qÞ, which is compensated
by the (q − 1) d4ηl̂a Grassmann integrations in (7). It is
worth emphasizing that the expression (7) is exactly dual-
conformal [although not manifest in the expression given in
(9)]: the factors of Bq carry net weight þ4 in l̂2;…; l̂q

(which is compensated by the ηl̂a -integrations) and weight
−4 in l1;…;lq.
Finally, all results must be symmetrized over the L

lines fðA1B1Þ;…ðALBLÞg.

IV. NOVELTY RELATIVE TO ORDINARY
“UNITARITY CUTS”

Although a propagator involving each loop momentum
is cut sequentially in the recursion, poles resulting from
the final BCFW deformation [of lq within the plane

ðAq−1Bq−1l̂q−2Þ] need not involve an “external” propaga-
tor: in addition to the external poles of the form
hAqBqj − 1ji, there can also be those involving the lines

ðl̂11Þ or ðn̂l̂1Þ, or even the purely “internal” poles of the
form hAqBql̂a−1l̂ai for any a ≤ ðq − 2Þ.
Examples of the first type of novelty are illustrated in the

first two figures in Fig. 2, respectively. These yield a
product of two amplitudes in which one of the factors only
contains internal lines. This is possible since, in contrast to
the Cutkosky rules [32], there is no requirement that all

energies in our complexified cuts be positive. These first
appear at three loops as all amplitudes being bridged must
involve at least four legs.
The second type of novelty is illustrated in the last two

examples of Fig. 2, where an internal propagator is cut at
the final stage of the recursion and one finds a completely
internal island on one side of the bridge. This “cut” is
unquestionably unusual and in fact involves one amplitude
with at least one pair of (necessarily nonadjacent) legs
taken in the forward limit. This may seem problematic,
since the complexity involved in evaluating forward limits
required by the recursion formula of [2] was a primary
technical obstruction motivating our present work.
Nevertheless, we find that nonadjacent forward limits are
rather benign and that any term that would require delicacy
vanishes directly upon d4ηl̂a integration. Thus, all terms
with the requisite ηl̂a support may be evaluated naively in
the forward limit.
It is interesting to count the number of terms Nðn; k; LÞ

generated by applying the recursion (1) for the n-point
NkMHV amplitude at L loops. Defining a generating
function Gðν; κ; λÞ≕ P

n;k;L Nðn; k; LÞνnκkλL with n ≥ 4,
the recursion implies that

G ¼ ν4 þ νð1þ κÞGþ
�

κ2G2

ν2κ − λ

��
�
�
�
reg
; ð10Þ

FIG. 2. Examples of novel cut sequences appearing in the recursion. The first two figures illustrate diagrams where one amplitude
involves no external momenta while the third and fourth figures illustrate terms where one side of the bridge is entirely contained within
the other.
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where the second term accounts for tree-level bridges
involving a three-point vertex of either parity, and the
quadratic term with κ2

ν2κ−λ ¼ κ
ν2
þ λ

ν4
þ λ2

ν6κ
þ � � � accounts for

all the other bridges. The “reg.” operation removes any
terms with negative or too-large powers of κ so as to
maintain the NkMHV degree within the range
k ∈ ½0; n − 4�—terms outside this range vanish trivially
upon Grassmann integration in (7). The solution for λ ¼ 0
gives the Catalan numbers familiar from tree-level recur-
sion (see e.g. [18]), while the one-loop counting agrees
with [18]. We do not know a closed form for Nðn; k; LÞ for
L ≥ 2, but these numbers agree with the number of terms
produced by the function preAmp[] in the attached
package.
We found that a significant (and recursion-scheme-

dependent) fraction of these terms vanish upon
Grassmann integration. At three loops, for example, we
have found expressions for the 4-particle amplitude involv-
ing anywhere between 88 and 98 nonvanishing terms after
Grassmann integration (significantly fewer than the 146
terms prior to Grassmann integration). In the included
Mathematica package, we default to a recursion scheme
wherein non-cut-loop variables are preferentially chosen
for subsequent recursion, but we have also included a
function superAmpRandom[] which randomly selects
the legs to be BCFW deformed at each step of the
recursion. The agreement between the different resulting
expressions is a powerful consistency check on our
implementation of the all-loop formula (1).

V. CONCLUSIONS AND DISCUSSION

In this paper, we have used a sequence of BCFW
deformations to arrive at a novel, recursive representation
of any L-loop, n-point NkMHV amplitude in planar,
maximally supersymmetric (N ¼ 4) Yang-Mills theory
in terms of bridges between lower-loop amplitudes in
the theory. By avoiding any reference to problematic
forward limits, the formula given in (1) can be directly
used to evaluate amplitude integrands well beyond the
reach of existing, general algorithms. We have imple-
mented these tools in a relatively simple Mathematica
package, included among the Supplemental Material [33].
(These tools have been built using those included in the
works of [6–8].) We have explicitly checked that the results
for our integrands match the local expressions for four
points through five loops (see e.g. [34–38]).
It has been conjectured that all multiplicity, lower-loop

amplitudes can be determined via an n-point lightlike limit
of the 4-point correlation function at sufficiently high loops
[27–29,39–42]; in the case of 5 particles, this encoding is
explicit, giving the complete L-loop integrand in terms of

the (Lþ 2)-loop 4-point correlator [this includes an extra
loop needed to tease out the parity-odd part of the integrand
(see e.g. [28,42,43])]. We have checked this result explic-
itly through 5 loops, which can be viewed as both a check
on the correctness of the n-point projection from the 4-
point correlator and on the correlator of stress tensor itself,
as taken from [44–46].
Although transparent and relatively efficient, it is worth

noting that—unlike BCFW applied to amplitudes at tree
level—the representations that result from (1) are far from
compact, dramatically exceeding the number of terms
required in “local” integrand formulas such as those of
[7,8], for example. The four-particle integrand at 5-loop
order (before loop label symmetrization) is given by 23,072
terms by our package (using default options for how
bridged amplitudes are recursed); this is far greater than
representations of this amplitude in terms of local inte-
grands. For example, even including the dihedral images of
the 34 archetype terms of the representation of [38], the
local loop integrand representation involves a mere
193 terms.
This “inefficiency” is easy to understand: each term

appearing in (1) exposes a very specific sequence of
physical cuts whereas a single local integrand can capture
the contributions from many individual cuts simultane-
ously. This inefficiency may reflect the eventual tension
between the singularity structure of particular amplitudes
and the locality of individual Feynman integrals: our
representation should represent a triangulation of the
amplituhedron, related to a particular “d log” form [47]
in the Grassmannian; as such, it might do a better job of
exposing the analytic structure of amplitudes (or even
perhaps be easier to integrate—once IR regularization
and loop integration are understood for these expressions
[48]) than expressions involving Feynman-diagram-like
master integrands.
It would be interesting to know if a formula such as (1)

could be applied to less than maximally supersymmetric
theories, or to maximally supersymmetric theories beyond
the planar limit.
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