
Topological hydrodynamic modes and holography

Yan Liu 1,* and Ya-Wen Sun2,3,†
1Center for Gravitational Physics, Department of Space Science, Beihang University,

Beijing 100191, China
2School of physics & CAS Center for Excellence in Topological Quantum Computation,

University of Chinese Academy of Sciences, Beijing 100049, China
3Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences,

Beijing 100049, China

(Received 24 October 2021; accepted 4 April 2022; published 22 April 2022)

We study topological modes in relativistic hydrodynamics by weakly breaking the conservation of energy
momentum tensor. Several systems have been found to have topologically nontrivial crossing nodes in the
spectrum of hydrodynamic modes and some of them are only topologically nontrivial with the protection of
reflection symmetries in two directions. The nontrivial topology for all these systems is further confirmed
from a calculation of the topological invariant. Associated transport properties and second order effects have
also been studied for these systems. The nonconservation terms of the energy momentum tensor could come
from an external effective symmetric tensor matter field or a gravitational field which could be generated by a
specific noninertial reference frame transformation from the original inertial reference frame. Finally we
introduce a possible holographic realization of one of these systems. We propose a new method to calculate
the holographic Ward identities for the energy momentum tensor without calculating out all components of
the Green functions and match the Ward identities of both sides.
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I. INTRODUCTION

Topological states of quantum matter have been studied
extensively in condensed matter physics during the last
decade [1,2]. Well known topological states include
anomalous Hall effect, topological insulators, topological
superconductors, which are gapped, and various kinds of
topological semimetals, e.g., Weyl/nodal line/Dirac semi-
metals, which are gapless topological states of matter.
The earliest topological states of matter were all found

in quantum electronic systems, however, soon it was
realized that the topological property is not fundamentally
quantum but is associated with the wave property of the
system. In 2008, topological states in classical/bosonic
systems have been predicted in several systems in [3–5].
Moreover, classical topological states of matter were
realized experimentally in gyromagnetic photonic crystals
at microwave frequencies [5]. Ever since then, the study in
classical topological states of matter has been grown
rapidly, see, e.g., [6] and references therein. It has been

found that many classical systems have nontrivial topo-
logical states too, e.g., topological optical/sound systems
(see, e.g., [7–9] and references therein), which have also
been confirmed experimentally.
In a recent paper [10], we have shown that semimetal-like

topologically nontrivial modes could be found in relativistic
hydrodynamics by weakly breaking the conservation of
energy momentum. Hydrodynamics describes the classical
behavior of a system of continuum away from its local
equilibrium in the long wavelength and low frequency limit.
The dynamics of a system in the hydrodynamic limit is
governed by conservation equations of conserved currents,
including the energy momentum tensor and the conserved
charges of internal symmetries. In the simplest case with the
only conserved quantity being the energy momentum tensor,
we found that a special form of nonconservation terms of the
energy momentum tensor in the conservation equation could
deform the spectrum of hydrodynamics to a shape similar to
that of topological semimetals.
We provided an explicit example with this kind of

behavior in a 4D hydrodynamic system in [10] and in that
case, the nontrivial topology of the system requires the
protection of a special spacetime symmetry. In this paper, we
generalize the findings to more systems with similar
behavior and provide more detailed calculations on various
aspects. Besides the single 4D system found in [10], we find
several interacting hydrodynamic systems with two energy
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momentum sectors exchanging energy and momentum with
each other as well as with the environment. Besides the fact
that the crossing nodes in these systems will not become
gapped under small perturbations, we will also show
evidence of the nontrivial topology from the calculation
of topological invariants. We also calculate the second order
effects in detail in this paper for the single 4D system and
show explicitly that the dissipative second order part
contributes to an imaginary part in the dispersion relation
of the hydrodynamic modes. This imaginary part shows a
jump at the topologically nontrivial crossing node, seeming
to provide another piece of evidence that the states near the
nodes are not adiabatically connected to each other and the
crossing nodes are topologically nontrivial.
The nonconservation terms of the energy momentum

tensor could come from an appropriately chosen external
matter field or a gravitational field. In the latter case, we
could start from a flat spacetime and perform a specific
reference frame transformation. The new spacetime could
be viewed as a noninertial reference frame. This suggests
that topologically trivial hydrodynamic modes could
become topologically nontrivial viewed by an observer
accelerating in a specific way.
As hydrodynamics has been studied extensively for

strongly coupled systems in holography with many
important results [11,12], e.g., the prediction of a KSS
bound as the lower bound for the shear viscosity over
entropy ratio [13], which has been confirmed in experi-
ments, we also propose a holographic realization for the
single 4D system that have topologically nontrivial
hydrodynamic modes. We start from ordinary AdS/
CFT correspondence and perform a specific reference
frame transformation to get a noninertial reference frame
version of AdS/CFT correspondence. We develop a new
method to calculate holographic Ward identities for the
energy momentum tensor without calculating out all
components of the Green functions. Using this method
we show that the holographic Ward identities from our
new holographic setup match to the Ward identities of the
hydrodynamic systems with specific nonconservation
terms of the energy momentum tensor. This provides
the evidence that we have found a strongly coupled
holographic system which has topologically nontrivial
hydrodynamic modes.
In the rest of the paper, we will first review some basics of

relativistic hydrodynamics in Sec. II. In Sec. III, we
introduce the notion of effective Hamiltonians and show
several systems which have topologically nontrivial hydro-
dynamic modes by adding nonconservation terms of the
energy momentum tensor. In Sec. IV we show the possible
origins for the nonconservation terms of the energy momen-
tum tensor, emphasizing the role of noninertial reference
frames. The symmetry of the single 4D system is derived and
the symmetry needed for the protection of the topological
nodes is also obtained in this section with the help of the

external metric field. We calculate the nontrivial topological
invariants in Sec. V and the effects of these extra terms for
transport properties in Sec. VI. In Sec. VII, we consider
second order effects to these systems. In Sec. VIII we
introduce the holographic realization for the single 4D
system and match the Ward identities from holography to
the hydrodynamic ones. Section IX devotes to conclusions
and open questions.

II. A SHORT REVIEW OF RELATIVISTIC
HYDRODYNAMICS

Hydrodynamics is the universal low energy theory for
systems at long distance and late time. It could describe a
variety of physical systems ranging from matter at large
scales in the universe, the quark-gluon plasma [14], to Weyl
semimetals [15,16] and graphenes [17] in the laboratory. At
small momentum and frequency, perturbations of a hydro-
dynamic system away from the equilibrium would produce
sound and transverse modes [18]. These modes are gapless
whose poles are at ω ¼ k ¼ 0, which reflects the fact that
energy momentum is conserved. In this paper we focus on
the simplest hydrodynamic systems with no internal
charges whose only conserved quantity is the energy
momentum tensor.
The conservation equation for the energy momentum

tensor in dþ 1 dimensions is

∂μTμν ¼ 0: ð2:1Þ

Up to the first order in derivative, the constitutive equation
for the energy momentum tensor in the Landau frame is

Tμν¼ ϵuμuνþPΔμν−ηΔμαΔνβ

�
∂αuβþ∂βuα−

2

d
ηαβ∂σuσ

�

−ζΔμν∂αuαþOð∂2Þ;

where Δμν ¼ ημν þ uμuν, ϵ, P are the energy densities and
pressure and η, ζ are the shear and bulk viscosities. For
conformally invariant systems, the bulk viscosity ζ ¼ 0.
For d ¼ 1 conformal fluid, the first order transport coef-
ficients η and ζ are both zero.
At equilibrium the system has an energy density T00 ¼ ϵ

and pressure Tii ¼ P. With small perturbations slightly
away from equilibrium, the system would respond to
the perturbations and develop hydrodynamic modes.
The equations for perturbations of the energy momentum
tensor are

∂μδTμν ¼ 0; ð2:2Þ

where in four dimensions
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δT00 ¼ δϵ;

δT0i ¼ δTi0 ¼ ðϵþ pÞδui ¼ δπi;

δTij ¼ gijv2sδϵ −
η

ϵþ P
ð∂iδπj þ ∂jδπiÞ þ

2
3
η − ζ

ϵþ P
gij∂αδπ

α

ð2:3Þ

with vs ¼
ffiffiffiffiffi
∂P
∂ϵ

q
. We keep the momenta in all directions

nonzero for later convenience, i.e., k ¼ ðkx; ky; kzÞ in four
dimensions. After solving the conservation equation and
diagonalizing the solutions, there will be four eigenmodes of
the system. Two of them are the sound modes propagating in
the direction of k ¼ ðkx; ky; kzÞ with the dispersion relation
ω ¼ �vsk − i Γs

2
k2, where Γs ¼ ð4

3
ηþ ζÞ=ðϵþ PÞ. The

other two are transverse modes with ω ¼ −i η
ϵþP k

2. These
modes also lead to poles in the Green functions of various
components of the energy momentum tensor at low
frequency.
To the first order in k, dissipative terms disappear and the

spectrums of the four modes are real, which cross each
other at ω ¼ k ¼ 0 (see the left plot in Fig. 1).1 This
spectrum looks similar to the spectrum of Dirac semimetals
(the middle plot in Fig. 1), except that we have two flat
bands here. In the next section we will show that a gap
could also open in these hydrodynamic modes after
introducing nonconservation terms for the energy momen-
tum tensor and with more nonconservation terms, the
hydrodynamic system could develop gapless topologically
nontrivial modes similar to the Weyl semimetal states (the
right plot in Fig. 1).

III. TOPOLOGICAL HYDRODYNAMIC MODES

The spectrum of the relativistic hydrodynamic modes
crosses at ω ¼ k ¼ 0 as a consequence of energy momen-
tum conservation. To deform the spectrum of the hydro-
dynamic modes and find nontrivial topological structure in
the hydrodynamic modes, we introduce nonconservation
terms for the energy momentum tensor in (2.1) and make
sure that the nonconservation terms are small enough to
stay within the hydrodynamic limit. The nonconservation

of energy and momentum could come from a certain
external system which couples to the hydrodynamic system
that we study. We assume that the constitutive equations for
perturbations of the hydrodynamic system being consid-
ered do not change or the change does not affect the final
spectrum and the change will be discussed in Sec. IV, while
the conservation equations would change due to inter-
change of energy momentum with external systems. In this
section, we consider dissipativeless nonconservation terms
that deform the spectrum of the hydrodynamic modes.
Before that we will first introduce some basic knowledge
about topological states of matter and calculations of
topological invariants.

A. A simple introduction of topological states of matter

In this subsection, we introduce very briefly some basic
knowledge about topological states of matter, especially
gapless ones. Topological states of matter have attracted a lot
of interest among condensed matter physicists during the last
years. Topological states of matter are states that have
topologically nontrivial band structure in the momentum
space. Here we use the terminology “bands” as in electronic
systems and in fact “bands” could refer to any structure of
the spectrum from the eigenvalues of a Hamiltonian. Various
kinds of gapped and gapless topological states of matter have
been found. Gapped topological states of matter include
topological insulators, anomalous Hall effect, topological
superconductors, etc., and gapless topological states of
matter include Weyl semimetals, nodal line semimetals, etc.
In gapped topological states of matter, the bands are

separated by a nonzero energy interval and because of the
nontrivial topology of the band structure the system cannot
be adiabatically deformed to a trivial vacuum state without
closing the gap. Gapless topological states of matter have
connected conduction and valence bands in the spectrum,
and they cannot be adiabatically deformed to a trivial
gapless state, which is a state whose gap could open due to
arbitrarily small perturbations of the system. Gapless
topological states could not be gapped by an infinitesimal
perturbation of the system.
Figure 2 gives an illustration of band crossings that behave

differently in their topological properties. The left plot in
Fig. 2 shows an accidental band crossing which would be
gapped under an arbitrarily small perturbation and the right

FIG. 1. The spectrums in relativistic hydrodynamics for ω; k ≪ T (left), Dirac semimetal (middle) and Weyl semimetal (right).

1A recent study on the stability issue for the first order
hydrodyanmics can be found in [19].
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plot in Fig. 2 shows a topologically nontrivial band crossing
which is still gapless under small perturbations.
In the figure each curve with the same color denotes the

same set of eigenstates with an eigenvalue depending on k
as a continuous function E1;2ðkÞ. The same set of eigen-
states and their eigenvalues would deform continuously
under parameter change of the system. The two curves in
each figure indicate two sets of eigenstates with two
different eigenvalues E1;2ðkÞ. At certain values of
k ¼ k0, the two eigenvalues coincide with E1ðk0Þ ¼
E2ðk0Þ and we have band crossings at these k0. Then at
each of these band crossing points, there are two degenerate
eigenstates. Then in the left figure of Fig. 2, under a small
perturbation that moves the upper band up while the lower
band down, the system would immediately develop a gap,
while in the right figure, under a small perturbation that
modifies the curves slightly, the band crossings could not
vanish no matter how the two curves move. The right figure
represents a topologically nontrivial gapless state while the
left one gives a trivial gapless state.
For topologically nontrivial gapless states, the behavior

in the previous paragraph could be explained by the fact
that band crossing nodes are protected by a nontrivial
topological structure and each possesses a nontrivial
topological invariant. For example, a Weyl node is pro-
tected by a nontrivial topological monopole charge, which
could be calculated from the surrounding first Chern
number in the three dimensional momentum space. Thus
to know if a gapless state is topologically nontrivial or not,
there are two ways which should be consistent with each
other: one is to see if arbitrarily small perturbations could
gap the nodes and the other is to calculate the topological
invariant and see if it is different from the value obtained for
a trivial vacuum state. More details about calculation of
topological invariants for gapless systems in various
dimensions would be found in Sec. V.

B. Effective Hamiltonian

Before calculating the hydrodynamic modes in different
situations, we first review our definition of the effective
Hamiltonian in [10], which is a physical quantity parallel to
the Hamiltonian matrix of topological electronic systems

[20]. In the case of electronic systems, Dirac fermions
are four component fields, thus the Hamiltonian from
i∂tΨ ¼ HΨ is a matrix whose eigenvalues give the
spectrum of the electronic system. In hydrodynamics,
the modes that we consider are perturbations of the energy
and momentum densities, thus there are also multiple
components of fields in the equation. We could in principle
define a similar matrix of effective Hamiltonian whose
eigenvalues give the spectrum of the hydrodynamic modes.
We start from the conservation equation of energy

momentum tensor which determines the dynamics of
hydrodynamic modes. Substituting the constitutive equa-
tions for the perturbations (2.3) into ∂μδTμν ¼ 0, we could
rewrite the equations for the perturbations of energy and
momentum densities into

i∂tΨ ¼ HΨ ð3:1Þ

where we have defined

Ψ ¼

0
BBB@

δϵ

δπx

δπy

δπz

1
CCCA; H ¼

0
BBB@

0 kx ky kz

kxv2s 0 0 0

kyv2s 0 0 0

kzv2s 0 0 0

1
CCCA ð3:2Þ

at leading order in k, i.e., omitting dissipative terms
at Oðk2Þ.
In analogy to the electronic systems, in this way we have

defined an effective Hamiltonian matrix H whose eigen-
values give the spectrum of hydrodynamic modes.2 The
four eigenvalues of the matrix Hamiltonian above give the

sound modes ω ¼ �vs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
and double copies

of transverse modes ω ¼ 0. The form (3.2) is the “free”
Hamiltonian matrix for a conserved energy momentum
tensor.

FIG. 2. An accidental band crossing (left) and a topologically nontrivial band crossing (right).

2Note that this effective Hamiltonian is different from the
hydrodynamic Hamiltonian, e.g., in Sec. 2.4 of [18] in the sense
that this effective Hamiltonian matrix ΨTð−kÞHΨðkÞ gives the
“kinetic” part of the Hamiltonian while the latter only counts in
the potential part associated with the source terms.
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C. Gapping the system

With exact energy momentum conservation the hydro-
dynamic modes are “band crossed” at ω ¼ k ¼ 0.
However, when the energy momentum tensor is not
conserved, the modes might become gapped. To introduce
nontrivial topological structure into the spectrum of hydro-
dynamic modes, the first step is to generate gaps in the
modes as in electronic systems. In this section we will
directly modify the effective Hamiltonian to find terms that
we need and later in Sec. IV we will show how these terms
could arise from external fields.
We modify the conservation equation for Tμν to

∂μδTμt ¼ m1δTtx;

∂μδTμx ¼ −m2v2sδTtt;

∂μδTμy ¼ 0;

∂μδTμz ¼ 0; ð3:3Þ

where m1;2 are parameters leading to a gap in the spectrum
of the hydrodynamic modes. To stay in the hydrodynamic
limit, m1;2 has to be small compared to T. Here we have
introduced nonconservation of energy and momentum in
the x direction and this nonconservation has to be in a
specific form as indicated above. The amount of non-
conserved energy=x-direction momentum density is pro-
portional to the x-direction momentum/energy density and
the sign ofm1;2 has to be the same. This sign could be either
positive or negative indicating that the modes could either
gain or lose energy. For simplicity, in the following we will
choose m1 ¼ m2 ¼ m.
At leading order in k the effective Hamiltonian becomes

H ¼

0
BBB@

0 kx − im ky kz

ðkx þ imÞv2s 0 0 0

kyv2s 0 0 0

kzv2s 0 0 0

1
CCCA ð3:4Þ

and k2 effects will be studied in Sec. VII. The four
eigenvalues of the matrix H are now

ω ¼ �vs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z þm2

q
ð3:5Þ

and double sectors of ω ¼ 0. This shows that m terms
indeed gap the sound modes while do not change the
transverse modes. Figure 3 shows the “band structure” of
the system at nonzerom. We can see that sound modes only
exist above/below a certain frequency while transverse
modes are not affected.
Effects in the spectrum here would be the same if the

momentumm term is in the y or z direction instead of the x
direction, or if m terms in all x, y, and z directions exist.
This is important later when we need to check carefully if

the topological structure of the modes would not be
destroyed by these m terms in all directions or only in
certain directions. Here we also emphasize that gapping the
system is a first step to realize topologically nontrivial
gapless states as we need to show that these mass terms
which could gap the standard hydrodynamic system will
not gap the topologically nontrivial gapless state that we
introduce later confirming that they are indeed topologi-
cally nontrivial. However we are not saying that the gapped
state in this section is topologically nontrivial.

D. Topologically nontrivial nodes

After gapping the system, we could continue to search for
possible modifications to the effective Hamiltonian that
change the topologically trivial crossing nodes of the
hydrodynamic modes into nontrivial ones with more com-
plicated “band structures.” This procedure is similar to
introducing time reversal symmetry breaking terms in a
Dirac system to obtain a topologically nontrivial Weyl
semimetal. Here we need to find a topologically nontrivial
spectrum by introducing modifications to the effective
Hamiltonian. The possible modifications here are not arbi-
trary as most deformations of the effective Hamiltonian
would give nonmeaningful results. We have tried a lot of
possible deformations to finally find the ones that could
realize the topologically nontrivial spectrum here.
There are more than one ways to realize this and we list

several possibilities in this section, including the single 4D
hydrodynamic system found in [10], and interacting hydro-
dynamic systems with two sectors who further exchange
energy and momentum with each other.3 Further possibil-
ities and possible ways to get topologically nontrivial
gapped hydrodynamic modes will be left for future work.

FIG. 3. The spectrum of the modified hydrodynamics with
dynamical equation (3.3). Here m1 ¼ m2 ¼ m and it plays the
role to gap the spectrum of sound modes. Here and in all the
following pictures ω; k; m ≪ T.

3Hydrodynamical systems with multiple sectors of energy
momentum tensors and currents have also been studied in, e.g., [16].
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1. The single 4D hydrodynamic system

The first possibility is to take a 3þ 1D hydrodynamic
system of (3.3) and further break the translational sym-
metry in the y and z directions, as found in [10]. The
momentum in the two directions is nonconserved in a
specific form so that the resulting spectrum of the hydro-
dynamic modes would develop crossing nodes.
More precisely, the conservation equation is now

∂μδTμt ¼ m1δTtx;

∂μδTμx ¼ −m2v2sδTtt;

∂μδTμy ¼ b1vsδTtz;

∂μδTμz ¼ −b2vsδTty; ð3:6Þ

where m1;2 terms are mass terms while b1;2 terms change
the momentum position of the crossing nodes in the
spectrum. Here we have used different values of mass
and b terms in equations for generality and in the following
we will takem1 ¼ m2 ¼ m and b1 ¼ b2 ¼ b for simplicity.
Note that in the attempt to modify the effective

Hamiltonian to get topologically nontrivial hydrodynamic
modes, we have to keep the modified effective Hamiltonian
in a Hermitian form or similar to a Hermitian matrix at

order OðkÞ. The eigenvalues of H would then be real and
there would be no dissipative effects at order OðkÞ.
After substituting the constitutive equation (2.3) into the

conservation equation above, the Eq. (3.6) can be written as

i∂tΨ ¼ HΨ ð3:7Þ

where

Ψ¼

0
BBB@

δϵ

δπx

δπy

δπz

1
CCCA; H¼

0
BBB@

0 kxþ im ky kz

ðkx− imÞv2s 0 0 0

kyv2s 0 0 ibvs

kzv2s 0 −ibvs 0

1
CCCA:

ð3:8Þ

Redefine δϵ → 1
vs
δϵ, it is easy to see that H is similar to a

Hermitian matrix where vs becomes an overall scaling
factor, thus this effective H has real eigenvalues. In the
following for simplicity we will ignore the factor of vs and
when necessary it can be taken back by an inverse
redefinition of δϵ → 1

vs
δϵ.

The spectrum of the hydrodynamic modes are now

ω ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2 þm2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þm2 − b2Þ2 þ ðk2y þ k2zÞ2 þ 2ðk2y þ k2zÞðk2x þm2 þ b2Þ

qr
;

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
.

Figure 4 shows this spectrum as functions of kx for
ky ¼ kz ¼ 0 in three different situations: m < b, m ¼ b
and m > b as well as for ky > 0, kz ¼ 0 at m < b. The
effect of b terms is to lift and lower the two transverse flat
bands to symmetric positions of opposite sides of the k axis.
The effect of m terms is still to gap the two sound modes.
Now the sound and transverse modes are mixed with each
other. In this way, the modes have band crossings at
nonzero values of k for m < b.
From Fig. 4, we could see that for m < b now we have

four band crossing nodes at ky ¼ kz ¼ 0 while kx ≠ 0,
though ω ≠ 0 for these modes. Note that in condensed
matter terminology, this kind of system is called gapless as

there are band crossings in the spectrum. However, this is
different from the usual standard “hydrodynamic” defini-
tion of gapless, which means that ωðk ¼ 0Þ ¼ 0. Thus here
we do not follow the condensed matter terminology to call
this kind of system gapless. Instead, we call them band
crossings from here on. Similar to the Weyl semimetal case,
these four nodes are still points in the expanded space of ω,
kx, ky, and kz as can be seen from the fourth plot in Fig. 4.
For m ¼ b > 0, the system becomes critical with 2 nodes
and for m > b the band crossings in the system disappear
again. This behavior is qualitatively similar to the topo-
logical phase transition of a Weyl semimetal [21]. For
m < b, now there could still be band crossings though
small perturbations of these m terms could previously gap

FIG. 4. The spectrum of the modified hydrodynamics with dynamical equation (3.6). From left to right: in the first three plots we have
m < b, m ¼ b, and m > b, respectively and ky ¼ kz ¼ 0. The fourth plot is for ky > 0, kz ¼ 0 and m < b.
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the system and the gap is still there at ω ¼ 0. This property
is a defining feature of a topologically nontrivial gapless
state, which we call the topologically nontrivial band
crossing state here to avoid the conflict with terminology
in hydrodynamics. We will show later that this is in fact a
symmetry protected topological band crossing state.
Note that different from the Weyl semimetal case, here

the band crossings are not at ω ¼ 0. Similar to what
happens in condensed matter physics, the nodes do not
need to be at ω ¼ 0 for them to be topologically protected
nodes and the important ingredient is that the nodes that we
study need to be real band crossings instead of accidental
band touchings. Topologically nontrivial band crossing
states are those states that possess a spectrum with no
gap at any ω and at the same time the spectrum would not
develop a gap under small perturbations. In this sense, we
need two bands to cross so there would be band crossings
instead of all bands being fully separated in the spectrum
(again at any ω) and for the band crossings to be
topologically nontrivial we need the band crossings to
be stable under small perturbations. Also another reason
that the nodes do not need to be at ω ¼ 0 is that the absolute
value of energy is not important and we usually study
effective excitations near each of the band crossing points
so the energy at the band crossings could each be set to zero
effectively.
We also need to emphasize here that the definition of a

topologically band crossing state is a state whose band
crossings would not disappear under small perturbations.
This is because as long as a band crossing could disappear
under small perturbations, this would mean that the band
crossed state is topologically equivalent to the trivial
vacuum. Thus for a topologically nontrivial band crossing
state, by being topologically protected, we refer to the fact
that the state remains band crossed under small perturba-
tions of the system which usually could gap a system. This
indicates that the band crossing points should be singular
points in the momentum space. Being topologically inequi-
valent to the trivial vacuum, this topologically nontrivial
band crossing state should possess a nontrivial topological
invariant which takes a different value compared to the
trivial vacuum, e.g., the two nodes of a Weyl semimetal
possess nontrivial chiral charges which are different from
the trivial value of zero thus the two nodes cannot disappear
under small perturbations of the system. The topology of
states depends on the Hamiltonian or equivalently the wave
functions and is an intrinsic property of the Hamiltonian.
The m terms in (3.8) do not eliminate the four band

crossing nodes in the m < b case, however, if we have m
terms in the y or z directions, the band crossing will
disappear no matter how small the y or z mass parameters
are as shown in Fig. 5. In this situation, there are no
crossing nodes anymore. According to the definition above,
the nodes are not topologically protected as they could be
destroyed by m terms in the y or z directions. These in fact

belong to symmetry protected topologically band crossing
states, which could only endure perturbations that respect
the symmetry. Here the nodes should be topologically
nontrivial under the protection of the symmetry that forbids
the m terms in the y and z directions as will be further
confirmed in Sec. V, i.e., the symmetry that would be
broken by m terms in the y and z directions. As a rough
estimate, the symmetry that we need here should be related
to the translational symmetry in the y and z directions. This
symmetry is a restriction to the system while not the
solutions. The explicit form of this symmetry will be shown
in Sec. IV B 1 from a more accurate calculation. In this
sense, the system (3.6) experiences a symmetry protected
topological phase transition which happens at the critical
point m ¼ b.
Another thing that we need to emphasize here is that the

fact that m terms in the y and z directions would eliminate
the band crossings in the system has nothing to do with the
fact that the system has no band crossing at nonzero ky, kz
and also kx away from the node values. The notion of band
crossing only requires a band crossing in the whole
momentum space so though the system has no band
crossing at nonzero ky, kz and also kx away from the node
values, the system is still a band crossed state because of the
band crossing at ky ¼ kz ¼ 0. This latter fact is used to
show that the band crossings in this case are nodal points in
the momentum space while not nodal lines or surfaces and
this property is the same as Weyl semimetals.
Several remarks are in order:
(1) For the hydrodynamical modes ωðk ¼ 0Þ is not zero

anymore due to the nonconservation of energy, i.e.,
energy is continuously pumped into or out of the
system;

(2) In the case m < b, the crossing nodes have nonzero
ω and k. This indicates that two degenerate copies of
modes would suddenly arise at a special value of ω
and k, leading to a sudden rise in the amplitude of
sound. Besides this possible observational effect, the
effect of these energy momentum nonconservation

FIG. 5. The spectrum of the hydrodynamic equation (3.6)
modified by an extra mass term in the y or z direction or both
these two directions. This plot is for ky ¼ kz ¼ 0 andm < b. The
four nodes disappear.
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terms in transport coefficients will be shown in
Sec. VI A.

(3) These crossing nodes at m < b are dissipative when
order k2 terms are taken into account as we will see
in Sec. VII. This is different from the ω ¼ k ¼ 0

nodes which are real poles in hydrodynamics with
unbroken translational symmetries.

There is one extra point that we need to emphasize, the
new m and b terms above are not dissipative so they only
change the shape of the spectrum while do not introduce
any imaginary parts in the dispersion relation. Readers who
are interested in the difference between the two systems
could find more details in A.

2. Two 2D hydrodynamic systems

The second choice is to start from two separately
conserved hydrodynamic systems. After introducing weak
interchange of energy and momentum between the two
systems, there will be more possibilities for the existence of
topological band crossing modes.
We start from the simplest case, where we have two

1þ 1D hydrodynamic systems exchanging energy and
momentum with each other weakly. In this case, we have
two variables to solve (T00 and T0x) in each sector and four in
total. The conservation equation under consideration has the
form of

∂μδT
μt
L ¼ m1δTtx

L þ b1δTtt
R;

∂μδT
μx
L ¼ −m1v2sLδT

tt
L þ b1δTtx

R ;

∂μδT
μt
R ¼ m2δTtx

R − b2δTtt
L;

∂μδT
μx
R ¼ −m2v2sRδT

tt
R − b2δTtx

L ; ð3:9Þ

in which there are two different sectors of matter and they
can exchange both energy and momentum as well as gain or
lose energy and momentum from or to the environment.
Furthermore, we assume that the parameters m1;2; b1;2 ≪ T
to be in the hydrodynamic limit. Them terms are the same as
in the single 4D case, except that now there is only one spatial
direction. Both m and b terms involve exchange of energy
and momentum within the two sectors as well as with the
environment. For simplicity we shall focus on the case
m1 ¼ m2 ¼ m; b1 ¼ b2 ¼ b; vsL ¼ vsR ¼ vs, and vs could
be set to be 1 as shown in Sec. III D 1.
In two dimensions, the first order corrections to the ideal

fluid components of energy momentum tensors are zero.
The constitutive equations for the perturbations of energy
momentum tensors are

δT00 ¼ δϵ;

δTx0 ¼ δT0x ¼ ðϵþ pÞδux ¼ δπ;

δTxx ¼ ∂P
∂ϵ δϵ ¼ v2sδϵ; ð3:10Þ

where we have omitted the subscript L and R for simplicity.
In momentum space, the Eq. (3.9) can be written as

i∂tΨ ¼ HΨ ð3:11Þ

where

Ψ ¼

0
BBB@

δϵL

δπL

δϵR

δπR

1
CCCA; H ¼

0
BBB@

0 kx þ im ib 0

ðkx − imÞv2s 0 0 ib

−ib 0 0 kx þ im

0 −ib ðkx − imÞv2s 0

1
CCCA: ð3:12Þ

The eigenvalues of H give

ω ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2x

q
vs: ð3:13Þ

Without m and b terms there are two sets of two sound
modes and these modes will mix together when m and b
become nonzero. m is to gap the hydrodynamical modes
and b is to separate the crossing nodes of the hydrodynamic
modes, thus generating nontrivial topological structure in
the spectrum. The structure of the spectrum here looks very
similar to the band structure of the Weyl semimetal. From

Fig. 6 we can see that for m < b, the system is in the
topological phase with two crossing nodes. For m ¼ b, the
system is in the critical point where the two nodes merge
into one. As effects of m and b terms cannot cancel each
other even when m ¼ b, in this case the spectrum is not the
same as when Tμν is conserved. Form > b, the system is in
the trivial phase where no band crossing exists. More
evidence of the nontrivial topological structure from the
calculation of Berry phase will be shown in Sec. V.
Note that in this case there is only one spatial direction,

so these nodes in the topological phase will not disappear
due to new mass terms. Also as we mentioned above, there
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are no dissipative terms in 2D, so that the nodes in this case
are nondissipative at order Oðk2Þ, which is different from
the single 4D case. The same as the single 4D case, there
should be a sudden rise in amplitude of sounds at a certain
momentum form < b, however, different from the 4D case,
now the frequency is zero.

3. More possibilities with topological
hydrodynamic modes

We can generalize the 2Dþ 2D system above to higher
spatial dimensions to get more possible topological hydro-
dynamic modes. To generalize the b terms, there are several

choices. We may generalize the b terms to all spatial
dimensions or only to some of them. In the following we
show the generalization to 3Dþ 3D and 4Dþ 4D systems
with b interaction terms in some or all of the dimensions.
The spectrum is much more complicated in these cases and
we will mainly list the qualitative features of these systems
in this subsection.

3Dþ 3D=4Dþ 4D with b interaction terms not in all
directions.—For 3Dþ 3D systems, to have b interaction
terms not in all directions, the only possible effective
Hamiltonian matrix is

H3Dþ3D;I ¼

0
BBBBBBBB@

0 kx þ im ky ib 0 0

kx − im 0 0 0 ib 0

ky 0 0 0 0 0

−ib 0 0 0 kx þ im ky
0 −ib 0 kx − im 0 0

0 0 0 ky 0 0

1
CCCCCCCCA
: ð3:14Þ

For 4Dþ 4D there are two possibilities for the b terms

H4Dþ4D;I1 ¼

0
BBBBBBBBBBBBB@

0 kx þ im ky kz ib 0 0 0

kx − im 0 0 0 0 ib 0 0

ky 0 0 0 0 0 0 0

kz 0 0 0 0 0 0 0

−ib 0 0 0 0 kx þ im ky kz
0 −ib 0 0 kx − im 0 0 0

0 0 0 0 ky 0 0 0

0 0 0 0 kz 0 0 0

1
CCCCCCCCCCCCCA

; ð3:15Þ

and

FIG. 6. The spectrum of the modified hydrodynamics with dynamical equation (3.9). From left to right, m < b, m ¼ b, and m > b,
respectively.
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H4Dþ4D;I2 ¼

0
BBBBBBBBBBBBBBBB@

0 kx þ im ky þ im kz ib 0 0 0

kx − im 0 0 0 0 ib 0 0

ky − im 0 0 0 0 0 ib 0

kz 0 0 0 0 0 0 0

−ib 0 0 0 0 kx þ im ky þ im kz
0 −ib 0 0 kx − im 0 0 0

0 0 −ib 0 ky − im 0 0 0

0 0 0 0 kz 0 0 0

1
CCCCCCCCCCCCCCCCA

: ð3:16Þ

Here Ψ ¼
�Ψ1

Ψ2

�
, with Ψ1;2 denoting the 3 or 4 modes for

the first and the second systems separately and we have
ignored vs factors. For these systems, there are no simple
analytical expressions for the spectrum.
Numerically we could see that the spectrum looks similar

to that in 2Dþ 2D with slight differences. The spectrums
of H3Dþ3D;I and H4Dþ4D;I are almost the same with the
latter having two more flat bands corresponding to two
transverse modes (see Figs. 7 and 9). In the following we
list the qualitative behavior for the spectrum in all three
cases above.

H3Dþ3D;I: As shown in Fig. 7, we could see that in the
3Dþ 3D case atm < b the crossing nodes form two circles
pinned together at two opposite points in ω, kx, ky space.
With an extra m term in the y direction, the two pinned
nodes will disappear but the two circles of crossing nodes
remain. Figure 8 is an illustration in the ω, kx, ky space for
the crossing nodes only, which can be viewed as an
extended space version of the left two and right four
crossing points in Fig. 7. In the left figure the two circles of
crossing nodes are pinned by two opposite points without
m term in the y direction, while in the right plot the two
pinned points disappear with m term in the y direction and

FIG. 8. The illustration plot in the ω, kx, ky space for the crossing nodes of 3Dþ 3D hydrodynamical systems (3.14) (left) and the
crossing nodes of its generalization with an extra m term in the y direction (right).

FIG. 7. The spectrum of the modified hydrodynamics of (3.14) H3Dþ3D;I with m < b and ky ¼ 0 (left) and ky > 0 (right). The
spectrum of H3Dþ3D;I with an extra m term in the y direction at ky ¼ 0 is the same as the right plot.

YAN LIU and YA-WEN SUN PHYS. REV. D 105, 086017 (2022)

086017-10



now two circles do not intersect with each other. This
indicates that the two pinned nodes are topologically
nontrivial protected by the symmetry that forbids the m
term in the y direction while the two circles of crossing
nodes are topologically nontrivial without the need of
symmetry protection. In Sec. V we will confirm the
topological structure of these nodes from the calculation
of the Berry phase. In this case, the nodes at nonzero
frequency are supposed to be dissipative with higher order
terms considered.
H4Dþ4D;I1: As now there are three spatial dimensions,

there are two extra flat bands corresponding to two trans-
verse modes and the spectrum looks more complicated. With
all spatial dimensions taken into account, the circles in the
H3Dþ3D;I case now become spheres in the ω; kx; ky; kz
space. As there is a rotational symmetry in the y-z plane,

we can use k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
in the consideration of the

spectrum. In theω, kx, k1 space, the behavior of the spectrum
is the similar for H4Dþ4D;I to the H3Dþ3D;I case as shown in

Fig. 9. Compared to the H3Dþ3D;I case, there are four
additional crossing nodes in the ω; kx space due to two extra
flat bands in H4Dþ4D;I case, i.e., four additional circles of
crossing nodes in theω; kx; k1 space. With an extram term in
the y direction, the pinned circles will become two non-
intersecting circles, indicating the two spheric nodes in the
ω; kx; ky; kz space are topologically nontrivial without the
need of symmetry protection.
H4Dþ4D;I2: This system is much more complicated and

we only describe the qualitative behavior briefly. As could be
seen from Fig. 10, in this case the nodes form two large and
nonintersecting circles and one small circle in the middle in
the ω; kx; ky space at kz ¼ 0. For nonzero kz, the one small
circle becomes two nonintersecting circles at opposite ω,
meaning that in the ω; kx; kz space at ky ¼ 0, the nodes are
similar to the 3Dþ 3D case above, where the two small
circles are pinned at two opposite points of kx at kz ¼ 0 as in
Fig. 10. In the kx, ky, kz space, the nodes become two large
spheres and two small spheres. This behavior will not

FIG. 9. The spectrum of the modified hydrodynamics of (3.15) H4Dþ4D;I1 with m < b and k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
¼ 0 (left) and k1 > 0

(right). The spectrum of H4Dþ4D;I1 with an extra m term in the y direction at k1 ¼ 0 is the same as the right plot.

FIG. 10. The spectrum of the modified hydrodynamics (3.16) ofH4Dþ4D;I2 withm < b. We set kz ¼ 0 and increase ky from the left to
right for the first three plots. In the right plot ky ¼ 0 while a nonzero kz.

FIG. 11. The spectrum of the modified hydrodynamics with (3.17) H3Dþ3D;II at m < b and increasing from ky ¼ 0 to larger values
from left to right.
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change as long as there is nomass term in the z direction, i.e.,
m could appear in either kx or ky or both kx and ky directions.
With a mass term in the z direction, the same as in the
3Dþ 3D case with the m term in the y direction, in the
ω; kx; kz space, the two small circles in the middle which are
pinned at two points at opposite values of kx would become
two separate circles.

3Dþ 3D=4Dþ 4D with b interaction terms in maximal
dimensions.—The second choice is to generalize the b
terms to all the spatial directions. For the 3Dþ 3D case,
there are two choices for the m terms: to have them in both
spatial directions or only one spatial direction.
First we have m terms in both x and y directions. The

effective Hamiltonian is

H3Dþ3D;II ¼

0
BBBBBBBBBB@

0 kx þ im ky þ im ib 0 0

kx − im 0 0 0 ib 0

ky − im 0 0 0 0 ib

−ib 0 0 0 kx þ im ky þ im

0 −ib 0 kx − im 0 0

0 0 −ib ky − im 0 0

1
CCCCCCCCCCA
: ð3:17Þ

We could also have them term only in one direction, the kx direction, and the qualitative behavior for the spectrum does not
change at all. In Fig. 11 we show the spectrum for the H3Dþ3D;II case in the ω; kx space at ky ¼ 0 and ky ≠ 0. We could see
that in the ω; kx; ky space there are three circles of band crossing nodes with two large ones and one small one. All these
band crossing nodes will not disappear due to the m term in any direction. When m terms in both directions disappear, the
middle circle becomes a point.
We continue to the 4Dþ 4D case. From the 3Dþ 3D case we have seen that with maximal b terms there will still be

crossing band nodes even when m terms in all spatial directions are turned on. Thus here for simplicity we have m terms in
all spatial directions and for cases with only one or two m terms the behavior would be qualitatively the same.
The effective Hamiltonian is

H4Dþ4D;II ¼

0
BBBBBBBBBBBBB@

0 kx þ im ky þ im kz þ im ib 0 0 0

kx − im 0 0 0 0 ib 0 0

ky − im 0 0 0 0 0 ib 0

kz − im 0 0 0 0 0 0 ib

−ib 0 0 0 0 kx þ im ky þ im kz þ im

0 −ib 0 0 kx − im 0 0 0

0 0 −ib 0 ky − im 0 0 0

0 0 0 −ib kz − im 0 0 0

1
CCCCCCCCCCCCCA

:

Now there is an SO(3) symmetry in the x, y, z directions.
Again there is no analytic result for the spectrum, and
numerically we could see from Fig. 12 that for m < b, in
the ω; kx; ky space at kz ¼ 0, the crossing nodes form two
large circles at opposite values of ω and one small circle at
ω ¼ 0. In the kx, ky, kz space, the nodes become three spheres,
which are codimension 1 surfaces in the momentum space.
Though we have not written out explicitly, in all the

cases above when m and b values change, there will be
phase transitions between fully trivial spectrum (for large
enough m=b) and spectrum with crossing nodes which are
topologically nontrivial (protected by special spacetime
symmetries in certain directions in some cases). Also as
may have been noticed, all topologically nontrivial nodes

(without symmetry protection) are codimension one mani-
folds while topologically nontrivial nodes that require the
protection of spacetime symmetries in n dimensions are
codimension nþ 1 manifolds in the ω, k space.

IV. POSSIBLE ORIGIN FOR NONCONSERVATION
TERMS OF Tμν

We have added a specific set of nonconservation terms in
the effective Hamiltonian to get topologically nontrivial
hydrodynamic modes. In this section, we consider possible
origin for these m and b terms. The nonconservation of Tμν

could come from external fields that couple to the system
we are studying, i.e., the system constantly loses or gains
energy or momentum to the external fields.
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In the case of momentum dissipation terms that have
been studied extensively [22], the external fields could be
scalar fields [23,24] or vector fields [25] that break trans-
lational symmetry. However, for the m and b terms in
Sec. III D 1, it has been explicitly checked that scalar or
vector external fields cannot give this form of energy
momentum nonconservation. The simplest way to realize
such extra terms is to introduce an external rank two
symmetric tensor field fμν. This external tensor field could
either be an effective external tensor matter field that
couples to the energy momentum tensor of the system in
a specific way or could be viewed as an external gravita-
tional field. In the latter case, the nonconservation of Tμν

could even be the effect of observing in a noninertial
reference frame. In the following we show more details
implementing the two possibilities. In this section, we will
mainly focus on the 4D case of Sec. III D 1. More general
cases will be studied in future work.

A. Origin I: Effective external tensor matter field

We consider an external symmetric matter field fμν to be
the source that breaks energy momentum conservation and
it couples to the operator Oμν in the Lagrangian. This
contributes an extra fμνOμν term in the Lagrangian of the
system effectively. With this extra term the energy momen-
tum of the system will not be conserved as it can be
transferred to the external system whose energy momentum
will not be counted into the system that we study.
We could calculate the nonconservation equation for Tμν

using the method introduced in Sec. 5 of [26]. The
Lagrangian of the system is now

L ¼ L0 þ fμνOμν: ð4:1Þ
We assume that OðfμνÞ ∼OðkÞ so that the conservation of
energy momentum tensor is weakly broken. The whole
action with restored metric S ¼ R

d4x
ffiffiffiffiffiffi−gp

L is diffeomor-
phism invariant and under infinitesimal coordinate trans-
formations x0μ ¼ xμ þ ϵμ, the change in the action is

δS¼
Z

d4x

�
δð ffiffiffiffiffiffi−gp

LÞ
δgμν

δgμνþ
ffiffiffiffiffiffi
−g

p δðfαβOαβÞ
δfμν

δfμν

�
¼ 0;

ð4:2Þ

where

δgμν¼∇μϵνþ∇νϵμ; δfμν¼ ϵρ∂ρfμνþfρν∂μϵ
ρþfρμ∂νϵ

ρ:

ð4:3Þ
Note that we have used the fact that L0 does not depend on
fμν. Here only gμν and fμν are external fields while Tμν

defined as

Tμν ¼ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LÞ

δgμν
: ð4:4Þ

could be composed of internal fields whose variations
vanish due to their equations of motion. We have also
assumed that ϵμ vanishes at the boundary so all surface
terms are ignored.
Substituting (4.3) into (4.2) and omit terms at order

of Oðk2Þ or higher, we get the nonconservation equation
for Tμν

∂μTμν ¼ Oρμð∂νfρμ − 2∂μfρνÞ: ð4:5Þ
To get the nonconservation terms that we need, this Oμν in
the formula above should be Tμν and the nonzero compo-
nents of fμν are

ftt ¼ fxx ¼ mx; ftx ¼ fxt ¼
1

2
mtðv2s þ 1Þ; ð4:6Þ

fty ¼ fyt ¼ −
1

2
bvsz; ftz ¼ fzt ¼

1

2
bvsy: ð4:7Þ

Note that here when Oμν ¼ Tμν, it seems that we need
some kind of “fine-tuning” to make sure that Tμν defined
from (4.4) is the same as the operator Tμν in fμνTμν which
itself also determines the forms of the operator Tμν from
(4.4). In fact here as Oð∂fμνÞ ∼OðkÞ, the term fμνTμν in
the Lagrangian only contributes a higher order term in the
definition of Tμν thus does not contribute to the
leading order equation of the nonconservation equation
for Tμν. Therefore we could directly take Oμν ¼
Tμν
ð0Þ ¼ 2ffiffiffiffi−gp δð ffiffiffiffi−gp

L0Þ
δgμν

, which is more natural, and Tμν
ð0Þ ¼

Tμν at order Oðk0Þ. At the fundamental level, the only
possibility for fμν to have this kind of coupling is the
metric field of the next subsection, however, we could not
rule out the possibility of an effective coupling in this
form in an effective theory, e.g., in elastic theories,
though we do not have any concrete examples at hand.

FIG. 12. The spectrum of the modified hydrodynamics with H4Dþ4D;II at m < b; kz ¼ 0 and increasing from ky ¼ 0 to larger values
from left plot to right plot.
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B. Origin II: Gravitational field, noninertial
reference frame

This is a more natural and at the same time very
interesting possibility.4 As we need an external symmetric
tensor field which couples to the energy momentum tensor
in the form of fμνTμν, it is natural to consider if this external
field could be a metric field. With this possibility the
spacetime would be nontrivial and the energy momentum
tensor would not be conserved in the form of ∂μTμν ¼ 0 but
as ∇μTμν ¼ 0. In this way, when we have a nontrivial
metric field, ∂μTμν ¼ 0 will not hold anymore.
We start from the following covariant form of energy

momentum conservation equation

∇μδTμν ¼ 0: ð4:8Þ

We assume that the new spacetime metric is
gμν ¼ ημν þ hμν, thus we get

∂μδTμν¼−
1

2
∂αhδTαν−

1

2
ηνβð2∂μhαβ−∂βhμαÞδTμα: ð4:9Þ

Again, we have assumed that Oð∂hμνÞ ∼OðkÞ and only
kept leading order in k terms. To get the exact m and b
terms in the effective Hamiltonian of the single 4D system,
we could choose the components of hμν to be

htt ¼ hxx ¼ mx; htx ¼ hxt ¼
1

2
mtðv2s þ 1Þ; ð4:10Þ

hty ¼ hyt ¼ −
1

2
bvsz; htz ¼ hzt ¼

1

2
bvsy ð4:11Þ

while all the other components are zero. With this choice,
the conservation equation (4.8) reduces to (3.6).5

1. Symmetry of the single 4D system

In this subsection, we obtain the symmetry of this single
4D symmetry from the Killing vector of the new metric and
then introduce the symmetry that we need to protect the
topology of the crossing nodes, i.e., the symmetry that
would be broken by m terms in the y and z directions.
In the system of (3.6), original Poincare symmetry is

broken and new spacetime symmetries of the system could
be found from the new metric gμν ¼ ημν þ hμν. From the
covariant conservation equation ∇μTμν ¼ 0, the isometry
of gμν could keep the Eq. (3.6) unchanged. The Killing
vectors generating the isometry of the new spacetime
metric gμν ¼ ημν þ hμν are

Kμ ¼
X3
i¼0

aiχi þ
X6
i¼1

ciθi ð4:12Þ

where a0;…; a3; c1;…; c6 are constants with

χ0 ¼
�
1−

mx
2
;−

mt
2
;0;0

�
; χ1 ¼

�
mtv2s
2

;1þmx
2
;0;0

�
;

χ2 ¼
�
−
bzvs
4

;0;1;−
btvs
4

�
; χ3 ¼

�
byvs
4

;0;
btvs
4

;1

�
;

ð4:13Þ

and

θ1 ¼
�
−
mðx2 þ v2st2Þ

4
þ x;−t −

mtx
2

; 0; 0
�
;

θ2 ¼
��

1 −
mx
2

�
y;−

mty
2

;

�
−1þmx

2

�
t;
bt2vs
4

�
;

θ3 ¼
��

1 −
mx
2

�
z;−

mtz
2

;−
bt2vs
4

;

�
−1þmx

2

�
t

�
;

θ4 ¼
�
mtyv2s
2

þ bxzvs
4

;−
btzvs
4

þ y

�
1þmx

2

�
;−

mðx2 þ v2st2Þ
4

− x;
btxvs
4

�
;

θ5 ¼
�
mtzv2s
2

−
bxyvs
4

;
btyvs
4

þ z

�
1þmx

2

�
;−

btxvs
4

;−
mðx2 þ v2st2Þ

4
− x

�
;

θ6 ¼
�
−
bvsðy2 þ z2Þ

4
; 0; z;−y

�
: ð4:14Þ

4We thank Karl Landsteiner for pointing this out.
5We assume that we are working in a large but finite volume of spacetime and m, b are so small that mx; by; bz; mt ≪ 1 in the finite

volume. In fact this requiresm ≪ k so we assume thatOðk2Þ < OðmÞ < OðkÞ. In this way we still keep all terms at orderm, b and order
k so all the calculations are not affected. We ignore the boundary effects as the volume is large.
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These Killing vectors generate the isometry of the metric
gμν, i.e., with a coordinate transformation xμ → xμ þ sKμ

where s is an infinitesimal constant, the metric gμν would
not change. These coordinate transformations can be
viewed as the spacetime symmetries of the hydrodynamic
system with dynamical equation (3.6). We have ten
independent coordinate transformations which keep the
system invariant. χ0 is a combination of translation in the t
direction and a boost in the t − x directions. χ1 is a
combination of translation in the x direction as well as a
boost in the t − x directions.
Among these ten Killing vectors, the ones that forbidm

terms in the y and z directions could be chosen to be χ2
and χ3 which are combinations of translations in y and z
directions and boosts in the t-y and t-z directions. Thus, in
the single 4D case, the symmetries that protect the
topologically nontrivial band crossing modes could be
the two spacetime symmetries generated by χ2 and χ3.
We have solved the infinitesimal spacetime symmetry

of the system and besides this infinitesimal coordinate
transformation, there are other possible large symmetries
of the system that could forbid the m terms in the two
directions, e.g., reflection symmetries in the two direc-
tions. Also in symmetry protected topological states of
matter, the symmetry that is needed to protect the
topological structure does not need to be the whole
symmetry that forbids the m term. It could be that only
a subgroup of the symmetry is at work to prevent the band
crossings from being destroyed. Thus, the symmetry that
is required for the protection of the topological structure
could be a special subgroup of the whole symmetry.
Here the symmetry that we need for the protection of the
topological structure in the single 4D case is in fact the
reflection symmetry M in both y and z directions, i.e.,
M∶y → −y; z → −z. This is not an infinitesimal coordi-
nate transformation of the spacetime, but we could see
that the M symmetry forbids both m terms in the y and z
directions as these terms violate the reflection symmetry
in the y or z directions. This could be seen from the fact
that Tyt → −Tyt under the symmetry transformation and
the mass term in the y or z directions would violate the
reflection symmetry in these two directions. We will see
in the next section how this protecting symmetry could be
used to calculate the topological invariants.
Note that not all systems that were studied in Sec. III

require a protecting symmetry and some of the systems are
topologically band crossing states without requiring any
symmetry.

2. Noninertial reference frame

This graviton field hμν could come from sources of
massive matter and more intriguingly it could also come
from a coordinate transformation from the flat Minkowski
metric, where x0μ ¼ xμ þ ξμ with

ξμ ¼
�
mxt
2

;
mx2

4
þmt2

4
v2s ;−

b
4
vszt;

b
4
vsyt

�
: ð4:15Þ

This is an intriguing result as usually a nontrivial gravi-
tational field could not be transformed to a flat spacetime
globally but only locally. It could be checked that this new
metric field has all components of the Riemann tensor
vanishing at leading order, thus could be transformed to the
flat spacetime. Though equivalent to a flat spacetime, hμν
could still be viewed as a nontrivial gravitational field
according to the equivalence principle.
This result suggests that in a specific noninertial frame,

we could observe hydrodynamic modes that are topologi-
cally protected even when they are topologically trivial in
the original inertial frame. A third possible circumstance
to have this nonzero hμν could be in analog gravity
systems, where certain materials could give rise to
effective hydrodynamic equations as if there exists a
nontrivial gravitational field.
Note that in this case, with nonzero components of hμν

the constitutive equations for Tμν could also be written into
a covariant form thus leading to extra terms compared to the
original constitutive equations. However, it can be explic-
itly checked that these extra terms do not change the
spectrum at leading k ∼m, b order up to a rescaling of
parameters m, b and vs. More details could be found in the
appendix of [10].

V. TOPOLOGICAL INVARIANT

The band crossing behavior in the hydrodynamic modes
in this paper is very similar to that of the Weyl semimetal or
other types of gapless semimetals, raising the question if
these modes are indeed topologically protected modes. In
Sec. III we have shown explicitly that these band crossing
nodes would not disappear by small perturbations thus have
already shown that they should be topologically protected.
Note that in several systems we studied in Sec. III, the
perturbations need to obey certain required symmetry and
in other systems we do not require any protecting sym-
metry. In this section we further confirm that the band
crossing hydrodynamical modes are indeed topologically
nontrivial modes or symmetry protected topological modes
by the existence of nontrivial topological invariants for
different cases. Before the detailed calculation of topologi-
cal invariants in our system, we will first introduce some
basic ingredients in the calculation of topological invariants
for topological band crossing states of matter.

A. Topological invariants for band crossing
topological states

A topological invariant is a quantity that does not change
unless there is a topological phase transition from a
topologically nontrivial phase to a trivial one and the
quantity has to have different values for the topologically
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nontrivial and trivial phases. This quantity could be a
number or a property which cannot be identified with a
number. For topological band crossing modes, the crossing
node is a singular point in the momentum space which
cannot disappear due to small perturbations, thus could be
associated with a nontrivial topological invariant which is
different from the value obtained for a trivial vacuum state.
For accidental band crossing modes, the crossing node
could be disappear due to an arbitrarily small perturbation,
thus should possess trivial topological invariants.
For a Weyl semimetal, the topological charge is the

chirality charge that could be calculated from the integral of
the Berry curvature on an infinitesimal sphere enclosing the
Weyl point in the three dimensional momentum space. The
topological invariant for nontrivial Weyl nodes are either 1
or −1 in contrast to the trivial value of 0. For a nodal line
semimetal, as the nodal line spans in one momentum
direction, there are only two spatial directions left and
the topological invariant is the Berry phase accumulated
along the circle that links the nodal line [27–29]. A
nontrivial nodal line semimetal would have a Berry phase
of π in contrast to 0 for an accidental one.
Note for band crossing states, the calculation of the

topological invariant depends crucially on the dimension-
ality of the system. For band crossing states, the nodes are
momentum space singular points for Green functions and
any physical calculation has to avoid passing through this
point. Thus for a three spatial dimensional Weyl semimetal,
the topological charge is an integration of the Berry
curvature on a two dimensional sphere surrounding the
node (left figure of Fig. 13), while for a three spatial
dimensional nodal line semimetal, as the nodes form a
circle, the topological charge is an integration of the Berry
phase along a one dimensional manifold: a circle linking
the circle of the nodes (middle figure of Fig. 13).
For some systems, the topological charge has to be

calculated on an even lower dimensional manifold, i.e., on
zero dimensional manifolds. This could happen for a nodal
line semimetal in two spatial dimensions. More commonly,
this could come from symmetry protected topological state,
where the calculation of the topological invariant has to be
on a high symmetric point thus reducing the dimension of
the system to effectively zero dimension. An example is the

mirror symmetry protected topological nodal line semi-
metal (right figure of Fig. 13), where the nodes have to be
protected by a mirror symmetry, i.e., small perturbations
that violate the mirror symmetry could destroy the band
crossings of the system while perturbations that do not
violate the mirror symmetry would not. In symmetry
protected topological states, topological invariants have
to be calculated at the high symmetric points in the
momentum space, which would give a nontrivial result,
and the topological invariants calculated directly (not at the
high symmetric points in the momentum space) would give
a trivial result. The requirement of the high symmetric
points would usually reduce the dimensionality of the
system to lower dimensions.
Figure 13 shows the three typical cases where the

calculation of the topological charge is on a two/one/zero
dimensional manifold respectively. The left plot in Fig. 13
is for a typical Weyl node, where the calculation of the
topological invariant is an integration of the Berry curvature
on a two dimensional sphere (magenta sphere). The middle
plot in Fig. 13 is for a typical nodal line semimetal, where
the calculation of the topological invariant is an integration
of the Berry phase on a one dimensional circle (magenta
circle). The right plot in Fig. 13 is for a mirror symmetry
protected topological nodal line semimetal [27], where the
calculation of the topological invariant has to be on the high
symmetric plane, which reduces the dimensionality for the
calculation to zero.
Here for all the cases in this paper, the manifold

enclosing the node is zero dimensional effectively, either
because the system is symmetry protected so the calcu-
lation of the topological invariant needs to be at a high
symmetric point or because the nodes form a codimension
one surface. Compared to the sphere in three spatial
dimensions and the circle in two spatial dimensions
surrounding the singular nodes, in the cases here we only
have two points surrounding the singular nodes, as illus-
trated in the right figure of Fig. 13.
In this zero dimensional case, the calculation of the

topological invariant is very different. We first briefly
review the calculation of the topological invariant of the
mirror symmetry protected topological nodal line semi-
metal in [27] as an example here and then perform our

FIG. 13. Three typical cases where the calculation of the topological charge is on a two/one/zero dimensional manifold, respectively.
In the left figure, the crossing nodes are two points. In the right two figures blue curves indicate the crossing nodes and the spectrum at
other momenta have not been plotted.
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calculation following this calculation later in this section.
We will also show that this calculation is in fact equivalent
to the requirement of the existence of an undetermined
Berry phase.
The mirror symmetry protected topological nodal line

semimetal is illustrated in the right figure of Fig. 13. To
calculate the topological invariant, we have to perform the
calculation at the high symmetric points of the system,
which is the plane invariant under the reflection, shown in
shade in the figure. The nodal line also resides on this
plane and we pick two points on the two sides of the nodal
loop, denoted by p1 and p2 separately, e.g., we could
denote the outer point in the right figure of Fig. 13 as p1

and the inner one as p2. As in the right figure of Fig. 13
only the nodes are plotted, at each point pi, there should
be a gapped spectrum, i.e., one band above the mirror
plane and one band below the mirror plane (occupied
band), which has not been plotted out in Fig. 13 and is
shown in Fig. 14.
Then as explained in Sec. II A of [27], the topological

invariant is defined to be ξ0 ¼ N1 − N2 (Eq. (6) in [27]),
where Ni refers to the number of occupied bands that have
mirror symmetry eigenvalue of þ1 at the point pi. Here as
the mirror symmetry commutes with the Hamiltonian at
the high symmetric point, the energy eigenstates carry
their Mirror symmetry eigenvalues. Consider Fig. 14 as the
ky ¼ 0 spectrum of a nodal line semimetal and pi points are
the two inner and outer points of the left node, as shown in
Fig. 14. The two curves with different colors have the
mirror symmetry eigenvalue 1 and −1 separately as each
curve is for a set of eigenstates with the same eigenvalue
EiðkÞwhich also has the same mirror symmetry eigenvalue.
Thus if at p1, the number of occupiedþ1mirror eigenvalue
band is 1 and at the other point p2, the number of occupied
þ1 mirror eigenvalue band would be zero as could seen
from Fig. 14. Thus the topological invariants could be
calculated from the defining formula to be �1 for the two
nodes. Thus the system is a mirror symmetry protected
topologically nontrivial state. Note that in general, the
symmetry does not need to be the full symmetry of the

system, and one subgroup of the symmetry that is enough
for the calculation of the topological invariant.
In fact we could see from the calculation above that this

calculation of the topological invariant relies on the fact that
the two occupied states (states with energy lower than the
crossing nodes) at the two sides of the node belong to two
different sets of eigenstates so that they have distinct mirror
symmetry eigenvalues. The existence of a nontrivial topo-
logical invariant defined this way is also equivalent to the
fact that the band crossings cannot be destroyed by small
perturbations. This is because the two occupied states at the
two sides of the node behave differently under small
deformations of the system. When the system is perturbed
by a small perturbation, each set of eigenstates will get a
small deformation and they will still cross at some point as
long as the perturbation is small enough. However, if the
two lowest energy states at the two sides of the node belong
to the same origin of eigenstates (as the left figure of
Fig. 2), when each band gets a small perturbation, it is
possible that the band crossing would disappear, e.g., if the
upper band goes up while the lower band goes down.
Then the question becomes how do we distinguish

whether they belong to the same origin of eigenstates or
to two different sets of eigenstates. In the calculation above,
different types of eigenstates are characterized by different
eigenvalues of the mirror reflection symmetry. In fact, a
more direct way is to see if the eigenstates at the two sides
the nodes are orthogonal or equal to each other up to a
relative phase. If they are orthogonal to each other, they
surely belong to two different sets of eigenstates.
At the singular node, the effective Hamiltonian would

have two degenerate orthogonal eigenstates with the same
eigenvalue. At the left and right limits of the singular mode
in the occupied band (the band with energy lower than the
crossing nodes), the two states jn1i and jn2i should be
extremely close to one of these two degenerate eigenstates as
shown in Fig. 15. If the left and right limit states of the same
upper or lower band are two different eigenstates, i.e., if they
are orthogonal to each other, then the left and right limits
cannot be connected together by performing a small

FIG. 15. jn1i and jn2i are the left and right limiting states near
one node.

p1 p2

FIG. 14. p1 and p2 denote the outer and inner points of the
nodal loop.
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perturbation as the band crossing point is a singular point
which cannot disappear from a small perturbation. This
means that two bands cannot be separated with a small
perturbation.
Thus we could also use this fact to define a topological

invariant: if the left and right limit states of the node in the
same occupied band are orthogonal to each other (jn1i and
jn2i states in Fig. 15), the crossing node is a topologically
nontrivial one and for trivial crossing nodes, the two states
should be the same to each other up to a relative phase. The
latter case gives a topological invariant the same as the trivial
vacuum state indicating a topologically trivial state. As
mentioned above, a topological invariant could be a number
or could be a quantity/property that is not a number as long
as the property distinguishes different topological classes.
Here it provides an example of a topological invariant which
is not a number.
Thus a node would possess a nontrivial topological

invariant when an undetermined Berry phase exists, i.e., the
two left and right limit states are orthogonal, which makes
the Berry phase an undetermined one. We name this
method the undetermined Berry phase method, however,
it in fact refers to the fact of orthogonality of adjacent states
on the two sides of the nodes. This method is more useful
for systems without a protecting symmetry while the
calculation has to be on zero dimensional manifolds. In
the following, we will use the first method (a modified
version of the formula ξ0 ¼ N1 − N2) to calculate the
topological invariant of the single 4D case and show that
it is equivalent to the second method, i.e., the undetermined
Berry phase method. Then we mainly use the second
method to calculate the topological invariants for the more
complicated systems. We emphasize again that these two
methods are equivalent and they both rely on the fact that
the two lower energy states on the two sides of the singular
node belong to two different kinds of eigenstates which
behave differently under deformations of the system. More
details could also be found below for each case.
Before we proceed there is another point that we need to

emphasize: the topological structure of the systems that we
discussed above is a consequence of the spectrum while
not directly related to the modification of the effective
Hamiltonians or the modified Ward identities due to the
nonconservation terms of the energy momentum tensor.
This is similar to what happens to the Weyl semimetal: the
deformed Hamiltonian with a time reversal symmetry
breaking terms produces the spectrum of a topological
Weyl semimetal but the topological structure is not directly
related to the deformed Hamiltonian.
Finally we need to emphasize that, though the calcu-

lation of topological invariants was first done for quantum
electronic systems, in principle topological invariants are
also properties of the wave phenomenology while not
essentially associated to the quantum nature. In classical

wave systems, topological invariants could also be defined
in the same way as for quantum systems, e.g., Berry phases
are thought to be quantum quantities as they are usually
associated with quantummechanical interference, however,
it can in principle occur wherever phase interference
phenomena exist and are governed by Hermitian eigenvalue
problems, as in classical topological systems [4].

B. The single 4D system

For the single 4D system in Sec. III D 1, there are four
nodes for m < b when the y and z directions have no m
terms. The nodes disappear with m terms in the y and z
directions, thus the nodes should be topologically nontrivial
ones protected by the special spacetime symmetry in the y
and z directions shown in Sec. IV B. Here we first review
the calculation of the topological invariant for this system
as in [10].
The calculation of the topological invariant for a sym-

metry protected state is different from the calculation for
an ordinary topological state. For systems protected by a
certain symmetry, we could calculate the topological
invariant at a high symmetric point in the momentum
space. The same to the case of mirror symmetry protected
nodal line semimetals discussed in [27], at the high
symmetric point the protecting symmetry M commutes
with the effective Hamiltonian and the eigenstates would
each have an eigenvalue of the reflection symmetry M in
our system: M∶y → −y; z → −z. We have to find the
eigenvalues of the states under this symmetry.
The high symmetric point here should be ky ¼ kz ¼ 0,

which is invariant under the reflection symmetry trans-
formationM. Note that the high symmetric point is the one
whose wave function is invariant under the protecting
symmetry and here the high symmetric point being ky ¼
kz ¼ 0 is not related to the fact that the system has no band
crossing at nonzero ky and kz. Also the existence of a high
symmetric point does not mean that the symmetry of the
system requires ky ¼ kz ¼ 0: the symmetry is a restriction
to the system while not the solutions and we only need
ky ¼ kz ¼ 0 for the calculation of the topological invariant
for a symmetry protected topological state.
The solutions are symmetric for ω → −ω and we could

focus on the lower two nodes in Fig. 16. In the figure, the
different two eigenstates of the effective Hamiltonian are
denoted in different colors. In the language of the first
method of the topological invariant calculation, the two
eigenstates have two different eigenvalues under the
symmetry M. Now we calculate the topological invariant
using this method in detail.
The formula for the topological invariant should be

ξ ¼ N1 − N2, where in our case here, Ni is the number of
occupied bands at point pi with eigenvalue of the reflection
symmetry M to be 1. In Fig. 16, jni > is the occupied
state at point pi and we have jn1i ¼ 1ffiffi

2
p ð0; 0;−i; 1Þ and
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jn2i ¼ 1ffiffiffiffiffiffiffi
1

v2s
−1

q � ffiffiffiffiffiffiffiffiffiffi
m2þk2x

p
vsðmþikxÞ ; i; 0; 0

�
. As already shown in

Sec. IV B 1, the protecting symmetry required here is the
reflection symmetry in both y and z directions. Under this
symmetry, the state jn1i has eigenvalue −1 and the state
jn2i has eigenvalue 1. Thus from the formula ξ ¼ N1 − N2,
the topological invariant at each node is ξ ¼ 1 or ξ ¼ −1,
which is a nontrivial value in contrast to the trivial value
of 0, confirming that the nodes are protected by a nontrivial
topological charge.
Now we calculate the topological invariant using the

second method, i.e., the fact of jnii being orthogonal to
each other. For the left node at kx ¼ k1, the green solutions
at the left limit kx → k1− and the right limit kx → k1þ are
denoted as jn1i and jn2i separately. If the node is an
accidental crossing which is not topologically protected,
the two bands should easily be separated by a gap and the
two solutions jn1i and jn2i should be equal to each other or
at most differ by a relative phase. If the node is indeed a
topologically protected one, the two solutions should be
different indicating that there exists a singular point in
between the two states at kx ¼ k1. In all the systems that we
study here we could still use a Berry phase between the two
states e−iα ¼ hn1jn2i

jhn1jn2ij to denote the topological invariant here
where when the Berry phase is an undetermined one, i.e.,
the two states are orthogonal to each other, the system is
topologically nontrivial as the two states can not be
connected without passing a singularity.
In this single 4D case, jn1i ¼ 1ffiffi

2
p ð0; 0;−i; 1Þ and

jn2i ¼ 1ffiffiffiffiffiffiffi
1

v2s
−1

q � ffiffiffiffiffiffiffiffiffiffi
m2þk2x

p
vsðmþikxÞ ; i; 0; 0

�
. We could easily see that

hn1jn2i ¼ 0, which means that the Berry phase is

undetermined and the two states cannot connect together
smoothly without passing through a singular point in
between. Thus the two bands cannot be separated easily
by a gap without going through a topological phase tran-
sition. Similar behavior of an undetermined Berry phase has
also happened for the holographic nodal line semimet-
als [29,30].
This result confirms that the four nodes in this case are

topologically nontrivial protected by the special spacetime
symmetry in the y and z directions. At the same time, the
Berry phase accumulated through the whole circle around
this node would be trivial indicating that it is indeed
topologically trivial without the special spacetime sym-
metries in the y and z directions.

C. The 2D+ 2D system

This is a topological band crossing state without the
protection of a symmetry. For the 2Dþ 2D case, there is
only one spatial direction, i.e., the x direction. As shown in
Fig. 17 different bands are plotted in different colors. There
are two nodes when m < b. Again, we denote the two
solutions of the same blue band on the two sides of the
singular node as jn1i and jn2i. Similar to the 4D case, we
have hn1jn2i ¼ 0 from numerical calculations, which means
that the Berry phase is undetermined. This proves that the two
nodes are topologically nontrivial as the two bands cannot
separate without passing through a topological phase tran-
sition, and in this case it does not require the existence of any
symmetry.

D. The 3D+ 3D=4D+ 4D case I

The structure of the spectrum in this case has been
described in Sec. III D 3. Here we calculate the Berry phase
numerically and confirm the topological structure in that
section. In the 3Dþ 3D case, as shown in the left plot of
Fig. 18, for m < b there are two nodes in the ω; kx plane at
ky ¼ 0 which look qualitatively the same as in the 2Dþ 2D
case. In this 3Dþ 3D case, the two nodes in fact form two
circles with the extra ky direction. Again, we use jn1i and

FIG. 17. The left and right limits of eigenstates jn1i and jn2i at
the crossing point of the modified hydrodynamics with dynami-
cal equation (3.9).

FIG. 16. The left and right limit of the eigenstates jn1i and jn2i
at the crossing point of the modified hydrodynamics with
dynamical equation (3.6). Note that in this figure, different from
some of the previous illustration figures, each color denotes a
separate band, which, however, may come from different types of
eigenstates of the system as we use the fact wether the value of the
energy is larger or lower than the crossing node to distinguish
between different bands while we use the continuous functions of
eigenvalues to distinguish between different sets of eigenstates of
the system.

TOPOLOGICAL HYDRODYNAMIC MODES AND HOLOGRAPHY PHYS. REV. D 105, 086017 (2022)

086017-19



jn2i to denote the two states from the same band at the left
and right limits of the node kx ¼ k1. At the high symmetric
point ky ¼ 0 we have checked numerically that hn1jn2i ¼ 0,
which again gives undetermined Berry phase, meaning that
the two nodes in this case are topologically nontrivial
protected by the special spacetime symmetry that forbids
the m term in the y direction. This symmetry should be
similar to the one of the single 4D case and the explicit form
of this symmetry will be left for future work.
Besides these two nodes, we have shown that with anm

term in the y direction, the two nodes disappear and form
four nodes as shown in the right plot of Fig. 18, and now
we have two separated circles with the extra spatial
dimension. We have checked explicitly by numerical
calculations of the Berry phase that these new four circles
are still topologically nontrivial, which do not require any
protection of symmetry for the 3Dþ 3D case. We
summarize this behavior in Fig. 8. where we can see
that two circles of nodes are pinned together at two nodes.
The two nodes are topologically nontrivial under the
protection of a special spacetime symmetry in the y
direction and the two circles are topologically nontrivial
without the need of any symmetry.
For the 4Dþ 4D case, as we have two more spatial

directions, depending on the existence of one or two extra
mass terms, the topological structure would be more
complicated. However, qualitatively the behavior is the
same as the 3Dþ 3D case above and we skip the
details here.

E. The 3D+ 3D=4D+ 4D systems with maximal b terms

In fact the 2Dþ 2D case above also belongs to this
category, i.e., it has maximal b terms in its spatial direction:
the kx direction. These three cases are qualitatively the same
which are topologically nontrivial without protection of any
symmetry and have crossing nodes forming codimension 1
surfaces in the momentum space. Thus in all three cases, the
results for the Berry phase are also similar. As the nodes form
a codimension 1 surface, there is only one extra independent

direction left: the two sides of the surface. To check whether
these nodes are topologically nontrivial we only need to
check if the two states on the two sides of the surface could be
the same or not.
It has been checked numerically that the at the two sides

of the crossing nodes, the eigenvectors of the effective
Hamiltonians are orthogonal to each other in the limit close
to the nodes, meaning that the Berry phase is undetermined
and the two states cannot be the same by small deforma-
tions. Thus the codimension 1 nodes in these cases are
topologically nontrivial and it does not require the protec-
tion of any symmetry.
In summary, in all cases of this section we have unde-

termined Berry phase, which makes the nature of all these
cases qualitatively the same. The nodes are either topologi-
cally nontrivial (when the nodes form codimension 1
surfaces) or topologically nontrivial under protection of
certain spacetime symmetries of extra spatial dimensions
(when the nodes form surfaces with codimension larger
than 1).

VI. TRANSPORT PROPERTIES

In this section we show how the extra energy momen-
tum nonconservation terms affect the transport properties
of the systems besides changing the spectrum of the
hydrodynamic modes. Without other conserved currents,
the most interesting transport coefficient in these systems
is the heat transport. In the following we provide details
for the calculation of the heat transport for the single 4D
case in [10]. and generalize to the 2Dþ 2D case, while
other cases would have qualitatively similar properties.

A. Single 4D heat transport

Heat transport can be computed from the linear
response theory. We will follow the calculations in
[18,31] for the momentum dissipative hydrodynamics
system to compute the heat transport for our new hydro-
dynamical system.

FIG. 18. The left and right limit of the eigenstates jn1i and jn2i at the crossing point of the modified hydrodynamics with
dynamical equation (3.14). The left plot is for the case of a singlem term while the right plot is for the case withm terms in both x and y
directions.
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We first consider the single 4D system studied in [10] and in Sec. III D 1. We focus on the case with m1 ¼ m2 ¼ m and
b1 ¼ b2 ¼ b. Perturbing the system of (3.6) by the fluctuations ðδT=T; δux; δuy; δuzÞ which couple to ðδϵ; δπx; δπy; δπzÞ in
the conservation equation (3.6), and performing Laplace and Fourier transformations in time and spatial directions respectively
we obtain

ðωδϵ − iδϵð0ÞÞ − ðkxδπx þ kyδπy þ kzδπzÞ − imδπx ¼ 0;

ðωδπx − iδπð0Þx Þ − v2skxδϵ −
iη

ϵþ P
k⃗2δπx þ

ið1
3
ηþ ζÞ
ϵþ P

kxkiδπi þ imv2sδϵ ¼ 0;

ðωδπy − iδπð0Þy Þ − v2skyδϵ −
iη

ϵþ P
k⃗2δπy þ

ið1
3
ηþ ζÞ
ϵþ P

kykiδπi − ibvsδπz ¼ 0;

ðωδπz − iδπð0Þz Þ − v2skzδϵ −
iη

ϵþ P
k⃗2δπz þ

ið1
3
ηþ ζÞ
ϵþ P

kzkiδπi þ ibvsδπy ¼ 0; ð6:1Þ

where kiδπi ¼ kxδπx þ kyδπy þ kzδπz and ϵð0Þ; δπð0Þi are the perturbations at initial time.
Solving these equations and following [18,31] we obtain the Green function at ky ¼ kz ¼ 0

Gπxπxðω; kxÞ ¼ −ðϵþ PÞ ðk2x þm2Þv2s þ i η
ϵþPωk

2
x

ðk2x þm2Þv2s þ i η
ϵþPωk

2
x − ω2

;

Gπyπyðω; kxÞ ¼ Gπzπzðω; kxÞ ¼ −ðϵþ PÞ b
2v2s þ k2x

η
ϵþP ðk2x η

ϵþP þ iωÞ
b2v2s þ ðiωþ η

ϵþP k
2
xÞ2

;

Gπyπzðω; kxÞ ¼ −Gπzπyðω; kxÞ ¼
iωðϵþ PÞdvs

b2v2s þ ðiωþ η
ϵþP k

2
xÞ2

: ð6:2Þ

From the Kubo formula

κðω; kxÞ ¼
i
ωT

ðGR
ππðω; kxÞ −GR

ππð0; kxÞÞ ð6:3Þ

we have

κxxðω;kxÞ¼−
iωðϵþPÞ

Tððk2xþm2Þv2sþ i η
ϵþPωk

2
x−ω2Þ;

κyyðω;kxÞ¼ κzzðω;kxÞ¼−
k2xηþ iωðϵþPÞ

Tðb2v2sþðiωþ η
ϵþPk

2
xÞ2Þ

;

κyzðω;kxÞ¼−κzyðω;kxÞ¼
ðϵþPÞbvs

Tðb2v2sþðiωþ η
ϵþPk

2
xÞ2Þ

: ð6:4Þ

From the above formulas, it is easy to see that when
m ¼ b ¼ 0, all components of the dc heat transport
diverge. For generic m and b, we have vanishing dc
heat transport κxxð0; 0Þ; κyyð0; 0Þ and κzzð0; 0Þ while
κyzð0; 0Þ ¼ −κzyð0; 0Þ ¼ ϵþP

Tbvs
. These m and b terms elimi-

nate the unphysical divergence of dc heat transports and
lead to interesting vanishing dc heat transport behavior.

B. 2D+ 2D heat transport

We continue to the calculations of 2Dþ 2D heat trans-
ports using the linear response theory. Perturbing the
system of (3.9) by the fluctuations ðδT=T; δuxÞL;R which
couple to ðδϵ; δπÞL;R in the conservation equation (3.9), and
performing Laplace and Fourier transformations in time
and spatial directions respectively we obtain

ωδϵL − iδϵð0ÞL ¼ ðkx þ im1ÞδπL þ ib1δϵR;

ωδπL − iδπð0ÞL ¼ ðkx − im1Þv2sLδϵL þ ib1δπR;

ωδϵR − iδϵð0ÞR ¼ ðkx þ im2ÞδπR − ib2δϵL;

ωδπR − iδπð0ÞR ¼ ðkx − im2Þv2sRδϵR − ib2δπL: ð6:5Þ

We consider the simplest case with the assumption
that these two 2D systems L- and R- sectors have the
same constitutive equations and m1 ¼ m2 ¼ m; b1 ¼
b2 ¼ b and vsL ¼ vsR ¼ vs. With Eqs. (6.5) one can
obtain the Green function following the linear response
theory [18,31]
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GπLπLðω; kxÞ ¼ GπRπRðω; kxÞ ¼
ðϵþ PÞðω2ðb2 þ ðm2 þ k2xÞv2sÞ − ðb2 − ðm2 þ k2xÞv2sÞ2Þ

ððk2x þm2Þv2s − ω2 − b2Þ2 − 4b2ω2
;

GπLπRðω; kxÞ ¼ −GπRπLðω; kxÞ ¼
−ibωðϵþ PÞðb2 − ðm2 þ k2xÞv2s − ω2Þ
ððk2 þm2Þv2s − ω2 − b2Þ2 − 4b2ω2

: ð6:6Þ

From Kubo formula (6.3) we obtain

κLLðω; kxÞ ¼ κRRðω; kxÞ ¼ −
iωðϵþ PÞðb2 þ ðk2x þm2Þv2s − ω2Þ

Tðb4 þ ððk2x þm2Þv2s − ω2Þ2 − 2b2ððk2x þm2Þv2s þ ω2ÞÞ ;

κLRðω; kxÞ ¼ −κRLðω; kxÞ ¼
ðϵþ PÞðb2 − ðk2x þm2Þv2s − ω2Þ

Tðb4 þ ððk2x þm2Þv2s − ω2Þ2 − 2b2ððk2x þm2Þv2s þ ω2ÞÞ :

When m ¼ b ¼ 0, we have divergent dc heat transports
κLLð0; 0Þ; κRRð0; 0Þ. For general m and b, we have vanish-
ing dc heat transport. The poles of heat transports are
exactly the same as the spectrum of the effective
Hamiltonian (3.12) in Sec. III D 2. This is due to the fact
that there are no dissipation terms at the first derivative
term in the constitutive equation. It is easy to check that
when close to the poles (3.13), the heat transports diverge.

VII. Oðk2Þ EFFECTS
Up to now we have focused on the first order in k

effect, where energy momentum nonconservation terms

change the spectrum of the modes, while there are no
dissipative terms at leading order. In this section, we
consider Oðk2Þ effects, which in original hydrodynamics
provide dissipative effects and lead to imaginary parts in
the poles.
As an example, we consider the single 4D case studied

in Sec. III D 1. We take into account all the second order in
k terms in the constitutive equations. The effective
Hamiltonian up to Oðk2Þ becomes

H ¼

0
BBBBBBB@

0 kx þ im ky kz

ðkx − imÞv2s −iηk2−iðη
3
þζÞk2x

ϵþP −i ð
η
3
þζÞkxky
ϵþP −i ð

η
3
þζÞkxkz
ϵþP

kyv2s −i ð
η
3
þζÞkxky
ϵþP

−iηk2−iðη
3
þζÞk2y

ϵþP −i ð
η
3
þζÞkykz
ϵþP þ ibvs

kzv2s −i ð
η
3
þζÞkxkz
ϵþP −i ð

η
3
þζÞkykz
ϵþP − ibvs

−iηk2−iðη
3
þζÞk2z

ϵþP

1
CCCCCCCA
: ð7:1Þ

The k2 terms are dissipative as we can see that they make
the effective Hamiltonian matrix non-Hermitian. Here we
still keep terms at m ∼ b order while not m2 ∼ b2 order
assuming that m ∼ k2 in this part.
From the eigenvalues of (7.1) we find that the real part

has not changed while imaginary parts appear. At the four
nodes, the imaginary parts are not zero indicating that the
four nodes are dissipative in comparison to nondissipative
nodes at ω ¼ 0 in the usual hydrodynamics.
As we could see from Fig. 19, the imaginary part for

each of the band has a jump at the crossing nodes at ky ¼ 0

in the kx axis, i.e., the imaginary parts of the same band are
different at the left and right limits of the singular node.
This behavior is similar to the behavior of the eigenstates
when calculating the Berry phase and this provides

another piece of evidence of the existence of a symmetry
protected topological singular node.
For the 2Dþ 2D case, there are no dissipative terms and

for other cases the results are similar which we skip here.
Note that the Berry phase results would not be affected by
k2 terms as these at most change the zero result of jhn1jn2ij
to a small number proportional to k2 and this suggests that
the two states are still far from being equivalent for
which jhn1jn2ij ¼ 1.

VIII. WARD IDENTITIES AND HOLOGRAPHIC
REALIZATION

The physics of hydrodynamics has been studied exten-
sively in holography for strongly coupled systems [11,12].
Many interesting results have been obtained, e.g., the

YAN LIU and YA-WEN SUN PHYS. REV. D 105, 086017 (2022)

086017-22



famous KSS bound for the shear viscosity over entropy
density ratio [13]. In this section we focus on the holo-
graphic realization of the topological hydrodynamic modes
above. As a first step, we need to have a holographic system
with the same nonconservation equations for the energy
momentum tensor. In holography, to break translational
symmetry, we could either introduce external fields into the
system or start from massive gravity [32] which breaks
diffeomorphism itself. In this paper, we choose to view hμν
as the gravitational field that comes from a reference frame
transformation from the original inertial reference frame.
We will start from an ordinary holographic system and
perform a reference frame transformation to obtain a
holographic system whose ward identities for the energy
momentum tensor have the same form as those from the
nonconservation equations in previous sections.
Here we focus on the single 4D case with only one energy

momentum tensor. Wewill first derive theWard identities for
the energy momentum tensor for the hydrodynamic system
with nonconservation terms from Sec. III D 1. Then we
show how in holography we could get these general Ward
identities without calculating out all the Green function
components.

A. Ward identities

For conserved energy momentum tensor, the Ward
identities are [33]

kμðGμνλρ − ηνλhTμρi− ηνρhTμλi− ηλρhTμνiþ ημνhTλρiÞ ¼ 0;

ð8:1Þ

where Gμνλρ is the Green function for the energy momen-
tum tensor. This Ward identity could easily be checked
holographically by calculating out all components of Green
functions for Tμν.
Now we calculate the Ward identities for the single 4D

system with nonconservation terms of Tμν. In the case that
these nonconservation terms come from a gravitational
field, we could start from the covariant conservation
equation ∇μTμν ¼ 0 and differentiate it with respect to
gλρ, we obtain the Ward identities in the momentum space

kμ½−Gμν;λρðkÞþ gλρhTμνiþ gνλhTμρiþ gνρhTμλi− gμνhTλρi�
− i½ðgμρΓλ

αμþ gμλΓρ
αμÞhTανiþ ðgνρΓλ

αμþ gνλΓρ
αμÞhTαμi�

− i½Γμ
μαGαν;λρðkÞþΓν

μαGμα;λρðkÞ� ¼ 0; ð8:2Þ

where Γν
μα is the Christoffel tensor for the metric

gμν ¼ ημν þ hμν. To the first order in hμν we could rewrite
the Ward identities above as

kμGμν;λρðkÞ þ i½Γð1Þμ
μα Gαν;λρðkÞ þ Γð1Þν

μα Gμα;λρðkÞ�
þ contact terms ¼ 0; ð8:3Þ

where the explicit form of the contact terms is omitted.

With nonzero hμν several components of Γð1Þν
μα would be

nonzero and contribute extra terms to the Ward identities
compared to the ones in hydrodynamics systems with
conserved Tμν.
Note that we could as well choose to treat hμν as an

external effective matter field as in Sec. IVA. We start
from the nonconservation equation (4.5) and perform the
same procedure as above. The final result is exactly the
same as (8.3).

B. Holographic realization

In this section, we show that the Ward identities obtained
in the previous subsection could be reproduced from a
holographic system whose boundary theory lives in a
noninertial frame,6 i.e., we start from the usual AdS
Schwartzchild black hole and perform coordinate trans-
formations so that the boundary metric becomes
gμν ¼ ημν þ hμν. In this way, we get a noninertial reference
frame version of AdS/CFT correspondence and obtain a
holographic realization of the nonconservation equations for
Tμν introduced in the single 4D hydrodynamic system. More
evidence, e.g., direct calculations of hydrodynamic modes
and Green functions as well as holographic realizations for
other systems in Sec. III will be provided in future work.

FIG. 19. The real and imaginary parts for the lower two bands of the modified hydrodynamics with (7.1) in the left plot of Fig. 4. The
same color in the two plots corresponds to the same band.

6Previous studies on holography for field theories on curved
spacetime could be found in, e.g., [34].
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In the rest of this section we will first show how to derive
Ward identities for an ordinary holographic system without
calculating out all components of the Green functions.
Then we use the same procedure to get the Ward identities
for the holographic noninertial reference frame system and
show that they are exactly the same as (8.3).

1. Prescription for holographic Ward identities

To calculate Green functions for the energy momentum
tensor in holography, we switch on perturbations of the
metric field and solve all the fields from their equations of
motion. Then we substitute the solutions into the action to
get the on-shell action and differentiate the on-shell action
with the source terms to get corresponding Green functions.
For holographic systems with simple gravity backgrounds,
this calculation is simple, however, with hμν fields turned
on and kx, ky, kz all nonzero, the on-shell action and the
solutions would be much more complicated. Here we show
that we do not need the details of the on-shell action and
could still get the Ward identities for the energy momentum
tensor.
For the purpose of calculating the Green functions for

Tμν we have ten independent fields of δgμν, which are the
tt; tx; ty; tz; xx; xy; xz; yy; yz; zz components. Here for sim-
plicity we could denote these ten fields as ϕi, i ∈ f1.::; 10g.
δgrμ could also be nonzero but will finally be eliminated
from the on-shell action using its equation of motion.
The action of δgμνðk⃗Þ could be written as

S ⊃
Z

drd4k
ð2πÞ4 ðW

ij
1 ϕ

00
i ð−k⃗Þϕjðk⃗Þ þWij

2 ϕ
0
ið−k⃗Þϕ0

jðk⃗Þ

þWij
3 ϕ

0
ið−k⃗Þϕjðk⃗Þ þWij

4 ϕið−k⃗Þϕjðk⃗ÞÞ;

where ϕiðk⃗Þ are functions of r only and here k⃗ ¼
ðω; kx; ky; kzÞ andWij

1;2;3;4 are functions of r whose explicit
form depends on the system. Equations of motion could be
derived from this action and after substituting the solutions
into this action, the on-shell action that is relevant to the
Green functions becomes

Son−shell ⊃
Z

d4k
ð2πÞ4W

ij
2 ϕ

0
ið−k⃗Þϕjðk⃗Þjrbrh þ � � � ; ð8:4Þ

where � � � are terms that are only related to the contact terms
and ϕiðk⃗Þ in the above formula have to be substituted by
their on-shell solutions. rh and rb denote the horizon and the
boundary separately. For AdS Wij

1;2;3;4 could be calculated
for all components, however, we show in the following that
we are still able to derive the Ward identities without the
explicit form of these terms, which manifest the physical
origin of the Ward identities more clearly.
Due to the diffeomorphism invariance of the gravity

system, the action has to be invariant under coordinate

transformations. Under coordinate transformations gener-
ated by ϵμðt; x; y; zÞ, fields transform as

δgμν ¼ ∇μϵν þ∇νϵμ; ð8:5Þ

where ∇ is performed with respect to the background AdS
metric. In this way each component δgμν cannot be
invariant under general coordinate transformations, while
some combinations of several components of δgμν could be
a gauge invariant and the action must be written into sums
of gauge invariant combinations due to its diffeomorphism
invariance.
We choose the nonzero components of ϵμ to be ϵt;x;y;zðk⃗Þ

with dependence on momenta in all directions and r
dependence does not affect the calculations. From (8.5)
six independent gauge invariants Zi; i ¼ 1;…; 6 under
these general gauge transformations could be found in
total and all possible sums of these gauge invariants are also
gauge invariants. The six independent gauge invariants are

Z1 ¼
δgxx
2k2x

þ δgtx
ωkx

þ δgtt
2ω2

; Z2 ¼
δgyy
2k2y

þ δgty
ωky

þ δgtt
2ω2

;

Z3 ¼
δgzz
2k2z

þ δgtz
ωkz

þ δgtt
2ω2

; Z4 ¼
δgxx
2k2x

−
δgxy
kxky

þ δgyy
2k2y

;

Z5 ¼
δgxx
2k2x

−
δgxz
kxkz

þ δgzz
2k2z

; Z6 ¼
δgyy
2k2y

−
δgyz
kykx

þ δgzz
2k2z

: ð8:6Þ

The most general form of the on-shell action could be
written as

S ⊃
Z

d4k
ð2πÞ4GijðrÞZ0

ið−k⃗ÞZjðk⃗Þjrbrh ; ð8:7Þ

where Gij is a real and symmetric function matrix with
Gij ¼ Gji, i; j ¼ 1;…; 6. The Green functions could be
calculated from the on-shell action above as functions of
the variables Gij, for example,

Gtt;tt ¼
δ2S

δðδgbttÞδðδgbttÞ
¼ 1

2ω4
ðG11 þ 2G12 þ 2G13 þG22 þ 2G23 þ G33Þ;

ð8:8Þ

and

Gtx;tx ¼
1

4

δ2S
δðδgbtxÞδðδgbtxÞ

¼ 1

2k2xω2
G11; ð8:9Þ

where δgbμν denotes the boundary value of these fields.
Green functions have 55 independent components while

Gij have 21 independent variables. Expressing all Green
function components using Gij and eliminating Gij from
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these expressions, we are left with 34 identities. In this
system, the Ward identity we see from the field theory
derivation has 40 identities, 6 of which are independent that
could be derived from other 34 identities. Thus the number
of total independent Ward identities are the same from the
two sides. We have checked through tedious calculations
that after eliminating Gij the remaining 34 Ward identities
are exactly the Ward identities (8.3).
Note that the appearance of any kμ in the expression of the

action indicates that a derivative is taken in that direction.
From the combinations, it seems that the total derivatives
including the r derivatives may exceed two which should be
the highest order of derivatives in Einstein gravity. This is
because the on-shell action is obtained from solving the
constraint equations of δgrμ and substituting the expressions
of δgrμ into the action, which brings higher orders into the
action.

2. Ward identities in holographic noninertial
frame systems

Now let us come to the system with energy momentum
nonconservation as in Sec. III D 1. To obtain the deformed
metric in the bulk after a reference frame transformation to
the noninertial frame, we first choose the reference frame
transformation ξμ to be the same as in the field theory part.
The AdS background now becomes gbulkμν ¼ gAdSμν þ hbulkμν ,
where hbulkμν ¼∇μξνþ∇νξμ with ∇μ performed with respect
to the bulk background metric.
At leading order inm and b, only nonzero components of

hbulkμν at the boundary are

hbulktt ¼ mxgbulktt ; hbulktx ¼ 1

2
mð1þ v2sÞgbulktt ;

hbulkxx ¼ mxgbulkxx ; hbulkty ¼ −
1

2
bvszgbulktt ;

hbulktz ¼ 1

2
bvsygbulktt : ð8:10Þ

Note that in the bulk the expressions for these fields would
be more complicated, but we only need the boundary
expressions in deriving the Green functions.
With the new metric, the form of the on-shell action

would be different from the AdS one, nevertheless, it can
still be written as sums of gauge invariant terms. However,
now the combinations (8.6) are not gauge invariant under
coordinate transformations anymore. We need to derive the
new gauge invariant combinations in this new background.
We choose ϵμ to be ϵμðt; x; y; zÞ, where μ ¼ t, x, y, z. As

the background metric now depends on t, x, y, z, we keep
the t, x, y, z dependence of ϵμ. We could write out the
transformations of all components of δgμν under this
general coordinate transformation and look for all inde-
pendent combinations of the components which remain
unchanged under this coordinate transformation. After we

find out the gauge invariant combinations we can transform
to the k space as the background metric only has con-
tributions at k ¼ 0 though it has nontrivial dependence on
the coordinates. Up to leading order in m and b, the new
gauge invariant combinations could be found to be

Z1 ¼
δgxx
2k2x

þ δgtx
ωkx

þ δgtt
2ω2

−
imδgtt
4kxω2

þ imδgtx
2k2xω

−
imv2sδgxx
4kxω2

;

Z2 ¼
δgyy
2k2y

þ δgty
ωky

þ δgtt
2ω2

−
imv2sδgxx
4kxω2

−
ibvsδgzz
4kykzω

;

Z3 ¼
δgzz
2k2z

þ δgtz
ωkz

þ δgtt
2ω2

−
imv2sδgxx
4kxω2

þ ibvsδgyy
4kykzω

;

Z4 ¼
δgxx
2k2x

−
δgxy
kxky

þ δgyy
2k2y

−
imδgxx
4k3x

;

Z5 ¼
δgxx
2k2x

−
δgxz
kxkz

þ δgzz
2k2z

;

Z6 ¼
δgyy
2k2y

−
δgyz
kykx

þ δgzz
2k2z

−
imδgxx
4k3x

: ð8:11Þ

The on-shell action at the boundary is now

S ⊃
Z

d4k
ð2πÞ4GijðrÞZ0

ið−k⃗ÞZjðk⃗Þjrb þ � � � ; ð8:12Þ

where � � � terms are horizon contributions and contact terms
related parts. Gij is still a real and symmetric function
matrix, while the values should be different from the AdS
ones. Now the Green functions could again be obtained
from the on-shell action. As an example we write out two of
the components here

Gtt;tt ¼
δ2S

δðδgbttÞδðδgbttÞ
¼ 1

2ω4
ðG11 þ 2G12 þ 2G13 þG22 þ 2G23 þ G33Þ

−
im
kxω4

ðG12 þ G13 þG22 þ 2G23 þ G33Þ; ð8:13Þ

and

Gtx;tx ¼
1

4

δ2S
δðδgbtxÞδðδgbtxÞ

¼ 1

2k2xω2
G11 −

im
2

�
−
G11v2s
kxω4

−
G12v2s
kxω4

−
G13v2s
kxω4

þ G11

k3xω2
−

G14

k3xω2
−

G15

k3xω2

�
: ð8:14Þ

There are extra m and b terms in the expressions for the
Green functions now. Again we could eliminate all Gij and
get the resulting Ward identities. Here we take a simpler
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method: by substituting the resulting Green functions which
are functions of Gij into the field theory Ward identities, we
could see that all the Gij cancel out in the Ward identities
leaving only components of the Green functions and the field
theory Ward identities indeed hold in holography ignoring
all contact term contributions. This confirms that the holo-
graphic setup indeed gives the holographic system of the
hydrodynamic system with topological modes.
Note that the Ward identities in the new noninertial

reference frame come from covariance of the energy
momentum conservation. Here in holography, the on-shell
action would still transform back to the AdS one after a
backward reference frame transformation. The difference in
the Ward identities reflects noninertial effects.
More details about Green functions and the hydrody-

namic modes from Green functions would be reported in a
future work. We will also consider other possibilities of
holographic realizations, e.g., viewing hμν as external fields
while not gravitons from reference frame transformations
or from massive gravities. Holographic systems for other
dimensions and for systems with gapped hydrodynamic
topological modes will be looked at, too.

IX. CONCLUSIONS AND DISCUSSIONS

We have studied topological hydrodynamic modes in
relativistic hydrodynamics by introducing nonconservation
terms for the energy momentum tensor. There are several
systems where we could get topologically nontrivial hydro-
dynamic modes. Depending on different forms of the Tμν

nonconservation terms, the resulting crossing nodes in the
spectrum of hydrodynamic modes could either be topologi-
cally nontrivial under the protection of special spacetime
symmetries in certain dimensions or directly topologically
nontrivial. We confirm their nontrivial topology from the
calculation of nontrivial topological invariants for all these
systems. We also studied the dissipative Oðk2Þ effects and
show that different from the original ω ¼ k ¼ 0 crossing
nodes for relativistic hydrodynamics, the crossing nodes in
these systems are mostly dissipative. The discontinuous
imaginary parts for the hydrodynamicmodes provides another
piece of evidence of the nontrivial topology of the cross-
ing nodes.
The nonconservation terms for Tμν could come from an

effective external rank two symmetric matter field or from
a gravitational field. In the latter case, the system could be
viewed as to be in a noninertial reference frame indicating
that topologically nontrivial modes could arise from
trivial modes by transforming to a specific noninertial
reference frame. We propose a holographic realization of
one of these system, starting from ordinary AdS/CFT
correspondence and perform a transformation to a non-
inertial frame. We derive the Ward identities for the
nonconserved equation of Tμν and match them to the
holographic realization of this system.

There are many open questions and possible general-
izations at this moment which we hopefully will address in
the future. The following is an incomplete list of them.

(i) We have focused on band crossing hydrodynamic
modes. Is it possible to also find topologically non-
trivial modes without band crossings in a classical
relativistic hydrodynamic system?

(ii) What would be possible experimental observable
effects besides the transport coefficients discussed in
this paper and the sudden increase of amplitude at
the crossing node? Would the graphene system be a
possible arena for the test of the theoretical pre-
dictions in this paper?

(iii) Is it possible to have similar topological modes in
nonrelativistic hydrodynamics7 in a noninertial
frame, which might be easier for laboratory tests?

(iv) We have shown that topologically trivial hydro-
dynamic modes could turn into nontrivial ones in a
noninertial reference frame. Would this behavior
also hold for other topological states of matter, e.g.,
topological electronic systems? If yes, could this
property be tested in a laboratory resting in a
noninertial reference frame?

(v) Is it possible to find a similar hμν field from analog
gravity systems, i.e., from certain materials?

(vi) We have focused on hydrodynamic systems without
any other conserved charges except the energy
momentum tensor. Would the structure be more
complicated with more conserved charges?

(vii) Is it possible to find other holographic realizations of
the single 4D system, e.g., from external matter
field, or massive gravity [36]?

(viii) What are possible holographic setups for the
2Dþ 2D systems? Possibly a bimetric gravita-
tional theory [37] in the bulk could provide us a
holographic example.

(ix) All the effective Hamiltonians studied in this paper
are similar to Hermitian matrices. In our search for
effective Hamiltonians that could give rise to inter-
esting spectrum that we need, we focused on
Hermitian matrices as most non-Hermitian matrices
would give complex eigenvalues. This raises the
interesting question if non-Hermitian matrices
with PT symmetry could be found which also give
similar while real spectrum and topological states
here. Could we also have similar holographic non-
Hermitian physics as in [38]?

(x) Though we have shown that the holographic set-up
indeed reproduces the Ward identities for the system
withm and b terms, what is the topological structure

7Similar topological modes with deformed effective Hamil-
tonians in a nonrelativistic system has been studied in [35] for
Lamb waves/ acoustic-gravity waves in earth physics. We thank
Karl Landsteiner for bringing this reference to us.
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in the bulk? Is this related to some new global
properties of spacetime?

(xi) In holography, hydrodynamic modes on the boun-
dary corresponds to gravitational field in the bulk.
What would the work in this paper imply for the
physics of gravitational waves in asymptotically flat
spacetime? Is it possible to find possible topological
modes in gravitational waves?

(xii) It would be interesting to study the effect field theory
description of hydrodynamics with nontrivial topo-
logical modes along the lines developed in [39–41].
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APPENDIX: HYDRODYNAMICS WITH
MOMENTUM DISSIPATION

In this Appendix we show the effects of momentum
dissipation terms in the dispersions of hydrodynamic modes
for comparison. In contrast to the single 4D topological
system in the main text, momentum dissipation terms that
have been studied extensively in hydrodynamics and holog-
raphy [22,31,42,43], contribute to imaginary parts of the
spectrum, thus indicating that they are dissipative terms,
different from the terms for topological modes above. Note
that we added this Appendix only for readers not to mix our
system with the momentum dissipation systems which have
been studied a lot in holography. In the system in this
Appendix, momentum dissipation could be caused by
external fields as well as broken diffeomorphism invariance
and in all cases that have been studied Γ is real while not
imaginary. Even if the spectrum in that case could be real,

that has no relation to topology, at least not any that we could
directly see. Our system has a nontrivial topological structure
not because their spectrum is real, i.e., we are not trying to
find a real spectrum in hydrodynamics and claim that this is
topologically nontrivial because it has real spectrum. Real
spectrum is a very basic and necessary requirement for us to
analyze the topological structure of the system but it does not
mean that as long as we have real spectrum, wewould have a
nontrivial topological structure. Whether the system has a
nontrivial topological structure depends on the structure
of the effective Hamiltonian or equivalently the structure of
the spectrum.
For relativistic hydrodynamics with weak momentum

dissipation, the conservation equations change to [22,31,42]

∂μδTμt ¼ 0;

∂μδTμi ¼ ΓδTti;

where Γ ≪ 1=T. The momentum is almost conserved and
weakly broken.
Up to the first order in derivatives, the four dimensional

conservation equation can be written as

i∂tΨ ¼ HΨ ðA1Þ

where

Ψ¼

0
BBB@

δϵL

δπL

δϵR

δπR

1
CCCA; H¼

0
BBBBB@

0 kx ky kz

v2skx −iΓ 0 0

v2sky 0 −iΓ 0

v2skz 0 0 −iΓ

1
CCCCCA
: ðA2Þ

It is easy to see that H is not Hermitian and the spectrum is

ω ¼
�
−iΓ;−iΓ;

1

2

�
−iΓ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2sk2 − Γ2

q �
;

1

2

�
−iΓþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2sk2 − Γ2

q ��
: ðA3Þ

These terms contribute to imaginary parts of the spec-
trum, indicating that they are dissipative terms, different
from the terms for topological modes studied in this paper.
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