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3 Department of Physics, Doǧuş University, Dudullu-Ümraniye, 34775 Istanbul, Turkey
4 Division of Optometry, School of Medical Services and Techniques, Doǧuş University, 34775 Istanbul, Turkey
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Abstract We explore the first radial excitation X∗
4c of the

fully charmed diquark-antidiquark state X4c = cccc built of
axial-vector components, and the hadronic molecule M =
χc1χc1. The masses and current couplings of these scalar
states are calculated in the context of the QCD two-point
sum rule approach. The full widths of X∗

4c and M are evalu-
ated by taking into account their kinematically allowed decay
channels. We find partial widths of these processes using the
strong couplings g∗

i and G(∗)
i at the X∗

4c(M )-conventional
mesons vertices computed by means of the QCD three-point
sum rule method. The predictions obtained for the param-
eters m = (7235 ± 75) MeV, � = (144 ± 18) MeV and
m̃ = (7180±120) MeV,˜� = (169±21) MeV of these struc-
tures, are compared with the experimental data of the CMS
and ATLAS Collaborations. In accordance to these results,
within existing errors of measurements and uncertainties
of the theoretical calculations, both the excited tetraquark
and hadronic molecule may be considered as candidates to
the resonance X (7300). Detailed analysis, however, demon-
strates that the preferable model for X (7300) is an admixture
of the molecule M and sizeable part of X∗

4c.

1 Introduction

The multiquark hadrons composed of exclusively heavy
quarks were in agenda of researches from first years of the
parton model and QCD. During past decades much was done
to investigate features of such particles, calculate their param-
eters in the context of different models, study production and
decay mechanisms of these hadrons. Reports of the LHCb,
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ATLAS and CMS Collaborations on X resonances in the 6.2–
7.3 GeV mass range became one of important experimen-
tal achievements in the physics of fully charmed four-quark
mesons [1–3]. The structures X (6200), X (6600), X (6900)

and X (7300) observed by these experiments in the di- J/ψ
and J/ψψ ′ mass distributions provide useful information
and allow one to compare numerous theoretical predictions
with the masses and widths of these states.

These discoveries generated new theoretical activities
to explain observed states, reveal their internal structures
[4–16]. The fully heavy X resonances were considered
as scalar four-quark mesons with diquark-antidiquark or
hadronic molecule organizations [4–8]. For example, the res-
onance X (6900) may be a diquark-antidiquark state with
pseudoscalar ingredients, or hadronic molecule χc0χc0 [5].
The structure X (6200) was interpreted as a ground-level
tetraquark with the spin-parities JPC = 0++ or 1+−, whereas
X (6600)− as its first radial excitation [6]. The four structures
X (6200) − X (7300) were assigned to be different excited
tetraquark states [7,8].

Alternative scenarios explain appearance of the X reso-
nances by coupled-channel effects. Thus, using this approach
the authors of Ref. [11] predicted existence of the near-
threshold state X (6200) with JPC = 0++ or 2++ in the
di-J/ψ system. Coupled-channel effects may also generate
a pole structure identified in Ref. [13] with X (6900), and
lead to emergence of a bound state X (6200), and resonances
X (6680) and X (7200), which can be classified as broad and
narrow structures, respectively.

Production mechanisms of fully heavy tetraquarks in dif-
ferent processes became topics for interesting investigations
[17,18]. Thus, inclusive production of fully charmed S -wave
four-quark mesons at the LHC energies was studied in the
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nonrelativistic QCD factorization framework in Ref. [17].
Production of fully-heavy tetraquark states in pp and pA
collisions through the double parton scattering mechanism
was considered in Ref. [18], in which it was shown that a
search for such states is feasible in the future runs of LHC
and in Future Circular Collider.

The fully heavy four-quark mesons were studied also in
our articles [19–21]. The scalar tetraquarks X4c = cccc and
X4b = bbbb built of axial-vector diquarks were explored
in Ref. [19]. It was demonstrated that X4c with the mass
(6570 ± 55) MeV and full width (110 ± 21) MeV is nice
candidate to the resonance X (6600). The fully beauty state
X4b has the mass (18540 ± 50) MeV that is smaller than
the ηbηb threshold therefore it cannot be seen in ηbηb or
ϒ(1S)ϒ(1S) mass distributions. The X4b can decay to open-
beauty mesons through bb annihilation to gluon(s) that trig-
gers X4b → B+B− and other decays [9]. Electromagnetic
decays to photons and leptons are alternative channels for
transformation of X4b to conventional particles.

The scalar tetraquarks T4c and T4b composed of pseu-
doscalar diquarks were explored in Ref. [20], in which we
computed their masses and widths. The parameters m =
(6928 ± 50) MeV and ˜�4c = (128 ± 22) MeV of T4c are in
excellent agreements with relevant CMS data, therefore we
interpreted it as the resonance X (6900). The exotic meson
T4b decays to ηbηb pairs and can be detected in the mass dis-
tribution of these mesons. It is interesting that the hadronic
molecule χc0χc0 (a brief form of χc0(1P)χc0(1P)) has sim-
ilar parameters and is another candidate to X (6900) [21].
Hence, X (6900) may be considered as a linear superposition
of the molecule χc0χc0 and diquark-antidiquark state T4c.

The lowest lying structure among X states is the reso-
nance X (6200), that may be interpreted as the molecule
ηcηc. In fact, the mass (6264 ± 50) MeV and full width
(320 ± 72) MeV of the molecule ηcηc agree with the LHCb-
ATLAS-CMS data [21].

The last position in the list of new X structures is held by
the resonance X (7300). This state was detected in both the
di-J/ψ and J/ψψ ′ mass distributions. In Ref. [19], we used
this fact to make assumptions about its nature, and argued
that X (7300) maybe is the 2S radial excitation of the exotic
meson X (6600). Another option for X (7300) is the hadronic
molecule model χc1(1P)χc1(1P) (in what follows χc1χc1)
that may have close parameters.

In the present article, we address problems connected with
the resonance X (7300) in attempts to describe its parameters
in the four-quark model. To this end, we calculate the mass
and width of the first radial excitation X∗

4c of the diquark-
antidiquark state X4c. The full width of X∗

4c is evaluated
using its kinematically allowed decays to J/ψ J/ψ , J/ψψ ′,
ηcηc, ηcηc(2 S), ηcχc1, χc0χc0, and χc1χc1 mesons. We are
also going to perform the similar analysis in the case of
the molecule M =χc1χc1. We will compare predictions for

parameters of X∗
4c and M with experimental data, and each

other to make decision about the nature of X (7300).
This article is organized in the following form: In Sect. 2,

we explore the excited tetraquark X∗
4c and compute its mass

and full width. The same analysis for the molecule M is
carried out in Sect. 3. In the last Sect. 4, we present our brief
conclusions. Appendix contains the heavy quark propagator
and some of correlation functions used in the present analysis.

2 Radially excited state X∗
4c

In this section, we explore the first radial excitation X∗
4c of the

scalar tetraquark X4c built of axial-vector diquarks. The mass
and current coupling of this state are computed by means
of the QCD two-point sum rule (SR) approach [22,23]. To
evaluate partial widths of the kinematically allowed decay
channels of X∗

4c, we are going to employ the three-point sum
rule method, which is necessary to find strong couplings at
corresponding three-particle vertices. It is worth noting that
the SR methods are powerful nonperturbative tools to study
conventional hadrons, but they can also be applied for anal-
yses of multiquark particles [24–26].

2.1 Mass m and coupling f of X∗
4c

The sum rules for the mass m and current coupling f of the
tetraquark X∗

4c can be extracted from analysis of the correla-
tion function

�(p) = i
∫

d4xeipx 〈0|T {J (x)J †(0)}|0〉, (1)

where T is the time-ordered product of two currents, and
J (x) is the interpolating current for the states X4c and X∗

4c.
We model X4c and X∗

4c as tetraquarks built of the
axial-vector diquark cTCγμc and axial-vector antidiquark
cγμCcT . Then, the interpolating current is determined by
the expression

J (x) = cTa (x)Cγμcb(x)ca(x)γ
μCcTb (x), (2)

with a and b being color indices. In Eq. (2) c(x) is c-quark
fields, and C is the charge conjugation matrix. The cur-
rent J (x) describes the diquark-antidiquark states with spin-
parities JPC = 0++.

The ground-level particle with this quark content and
quantum numbers is the tetraquark X4c which was inves-
tigated in our paper [19]. We computed its mass m0 and
coupling f0 by employing the two-point SR approach. We
took into account explicitly only the ground-state term and
included all other contributions to a class of “higher res-
onances and continuum states”. We refer to this standard
treatment as “ground-state+continuum” approximation.
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To derive sum rules form and f , we express the correlation
function �(p) in terms of X4c and X∗

4c tetraquarks’ masses
and couplings. Having inserted a complete set of intermediate
states with the same content and quantum numbers of these
tetraquarks, and carried out integration over x , we get

�Phys(p) = 〈0|J |X4c(p)〉〈X4c(p)|J †|0〉
m2

0 − p2

+〈0|J |X∗
4c(p)〉〈X∗

4c(p)|J †|0〉
m2 − p2 · · · . (3)

This expression contains two terms corresponding to the
ground-state particle X4c with the mass m0 and a contribu-
tion coming from the first radially excited state, i.e., from 2S
level tetraquark X∗

4c. Here, the ellipses stand for the effects
of higher resonances and continuum states. This approach
is “ground-level+first excited state +continuum” approxima-
tion.

The �Phys(p) can be simplified using the matrix elements

〈0|J |X4c(p)〉 = f0m0, 〈0|J |X∗
4c(p)〉 = f m, (4)

where f0 and f are current couplings of the X4c and X∗
4c,

respectively. Then, we get

�Phys(p) = f 2
0 m

2
0

m2
0 − p2

+ f 2m2

m2 − p2 + · · · . (5)

This function contains only the Lorentz structure propor-
tional to I, hence the invariant amplitude �Phys(p2) neces-
sary for our analysis is defined by rhs of Eq. (5).

The QCD side of the sum rules is formed by the corre-
lation function �(p) expressed using c−quark propagators
and calculated in the operator product expansion (OPE) with
some accuracy. In the case under discussion, �OPE(p) and
corresponding amplitude �OPE(p2) were computed in Ref.
[19]. There, we also found the parameters m0 and f0 of the
ground-state particle X4c, which appear in the present anal-
ysis as input quantities.

After the Borel transformation and continuum subtraction
the SR equality takes the form

f 2m2e−m2/M2 = �(M2, s0) − f 2
0 m

2
0e

−m2
0/M2

, (6)

which in conjunction with the derivation of Eq. (6) over
d/d(−1/M2), can be utilized to find sum rules for m and f .
Here, �(M2, s0) is the amplitude �OPE(p2) after the Borel
transformation and subtraction operations, and M2 and s0 are
corresponding parameters.

The �(M2, s0) is given by the formula

�(M2, s0) =
∫ s0

16m2
c

dsρOPE(s)e−s/M2
. (7)

where ρOPE(s) is a two-point spectral density. It consists of
the perturbative contribution ρpert.(s) and the dimension-4
nonperturbative term ∼ 〈αsG2/π〉: The explicit expression
of ρpert.(s) can be found in Ref. [19].

To carry out numerical computations, one needs the gluon
vacuum condensate 〈αsG2/π〉 = (0.012±0.004) GeV4 and
c-quark mass mc = (1.27 ± 0.02) GeV. A crucial prob-
lem to be clarified is a choice of the parameters M2 and
s0. The regions in which they can be changed should meet
known restrictions of SR computations. Stated differently,
M2 and s0 have to be fixed in such a way that to ensure dom-
inance of the pole contribution (PC) and perturbative term
over a nonperturbative one. The convergence of OPE and
a stability of extracted observables against variations of the
Borel parameter M2 are also among important constraints.
Because, �(M2, s0) does not contain quark and mixed con-
densates the dominance of PC and stability of extracted quan-
tities play key role in choosing parameters M2 and s0.

In the first phase of computations, we fix the regions for
M2 and s0 in order to activate in Eq. (3) only the ground-state
term. This task was fulfilled in Ref. [19], where M2 and s0

were varied inside the regions

M2 ∈ [5.5, 7] GeV2, s0 ∈ [49, 50] GeV2. (8)

As a result, we evaluated the mass m0 and coupling f0 of the
ground-state tetraquark X4c

m0 = (6570 ± 55) MeV,

f0 = (5.61 ± 0.39) × 10−2 GeV4. (9)

At the second stage of studies, we use m0 and f0 in Eq. (6)
as input parameters and calculate the mass m and coupling
f of the excited state

m = (7235 ± 75) MeV,

f = (8.0 ± 0.9) × 10−2 GeV4. (10)

To compute Eq. (10), we use the working regions

M2 ∈ [5.5, 7] GeV2, s∗
0 ∈ [55, 56] GeV2, (11)

which obey all constraints imposed on �(M2, s0) by the SR
analysis. In fact, the pole contribution changes inside limits
0.93 ≥ PC ≥ 0.71, at the minimum of M2 = 5.5 GeV2 the
nonperturbative term is negative and constitutes only 1.4%
part of the correlation function. The extracted quantities m
and coupling f bear residual dependence on the parameters
M2 and s∗

0 which is a main source of theoretical uncertain-
ties. These effects are equal to ±1% in the case of m, and
to ±11% for f staying within limits acceptable for the SR
computations. The behavior of the mass m under variations
of M2 and s∗

0 is shown in Fig. 1.
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Fig. 1 Mass of the tetraquark X4c∗ as a function of the Borel M2 (left), and the continuum threshold s∗
0 parameters (right)

Because we consider two terms in Eq. (5), and find param-
eters of the ground-level and radially excited tetraquarks,
there is a necessity to check a self-consistency of performed
studies. Indeed, the parameters s0 and s∗

0 separate contri-
butions of interest from ones which are modeled using the
assumption about quark-hadron duality. Therefore, in these
studies the inequalities m2

0 < s0 and s0 < m2 < s∗
0 should

be satisfied: With results of the numerical analysis at hand,
it is not difficult to verify these relations.

The prediction for the mass m = 7235 MeV of the 2S
excited tetraquark X∗

4c within uncertainties of calculations
and errors of experiments is consistent with values mATL =
7220±30+20

−30 MeV and mCMS = 7287+20
−18 ±5 MeV, respec-

tively. In our article [19] we supposed that the resonance
X (7300) is 2S excited state of X (6600). This assumption
based on the fact that the ATLAS Collaboration detected the
resonances X (6600) and X (7300) in J/ψ J/ψ and J/ψψ ′
mass distributions, respectively. Because the mass differ-
ence between mesons ψ ′ and J/ψ is around 590 MeV, and a
comparable mass splitting (600 − 735) MeV exists in the
X (7300) − X (6600) system, it is natural to assume that
X (7300) is excitation of X (6600). Our results for the masses
of X4c and X∗

4c differ by amount 665 MeV and seem support
this scenario.

2.2 The full width of X∗
4c

The mass m of the excited tetraquark X∗
4c allow us to deter-

mine its decay channels, and evaluate full width of this state.
It is clear, that decays to J/ψ J/ψ , J/ψψ ′, ηcηc, ηcηc(2 S),
ηcχc1, χc0χc0, and χc1χc1 mesons are among such allowed
channels. It is worth noting that decay X∗

4c → ηcχc1 is the
P-wave process, whereas the remaining ones are S-wave
decays.

We are going to explain in a detailed form only pro-
cesses X∗

4c → J/ψ J/ψ and X∗
4c → J/ψψ ′, and provide

final results for other channels. The partial widths of these
decays are governed by the strong couplings g∗

i at the ver-
tices X∗

4c J/ψ J/ψ , and X∗
4c J/ψψ ′. These couplings can be

evaluated using the following three-point correlation func-
tion

�μν(p, p
′) = i2

∫

d4xd4yeip
′ye−i px 〈0|T {Jψ

μ (y)

×Jψ
ν (0)J †(x)}|0〉, (12)

where Jψ
μ (x) is the interpolating current for the mesons J/ψ

and ψ ′

Jψ
μ (x) = ci (x)γμci (x), (13)

with i = 1, 2, 3 being the color indices.
We apply usual recipes of the sum rule method and express

the correlation function �μν(p, p′) in terms of physical
parameters of particles. Because the tetraquark X∗

4c decays
both to J/ψ J/ψ and J/ψψ ′ pairs, we isolate in �μν(p, p′)
contributions of the mesons J/ψ and ψ ′ from ones of higher
resonances and continuum states. But the current J (x) also
couples to the ground-state tetraquark X4c. Therefore, for the

physical side of the sum rule �
Phys
μν (p, p′), we get

�
Phys
μν (p, p′) =

∑

I=1,2

〈0|Jψ
μ |J/ψ(p′)〉
p′2 − m2

J

〈0|Jψ
ν |J/ψ(q)〉
q2 − m2

J

×〈J/ψ(p′)J/ψ(q)|X I
4c(p)〉

〈X I
4c(p)|J †|0〉
p2 − m2

I

+
∑

I=1,2

〈0|Jψ
μ |ψ(p′)〉

p′2 − m2
ψ

〈0|Jψ
ν |J/ψ(q)〉
q2 − m2

J
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×〈ψ(p′)J/ψ(q)|X I
4c(p)〉

〈X I
4c(p)|J †|0〉
p2 − m2

I

· · · , (14)

where mJ = (3096.900 ± 0.006) MeV and mψ =
(3686.10±0.06) MeV are the masses of J/ψ and ψ ′mesons
[27]. To write down �

Phys
μν (p, p′) in a compact form, we use

in Eq. (14) notations X1
4c = X4c, X2

4c = X∗
4c and m2

1 = m2
0,

m2
2 = m2.

The function �
Phys
μν (p, p′) can be expressed in terms of

mesons and tetraquarks masses and decay constants (cou-
plings). To this end, one should use the matrix elements of
the tetraquarks Eq. (4), as well as the matrix elements

〈0|Jψ
μ |J/ψ(p)〉 = f Jm J εμ(p),

〈0|Jψ
μ |ψ ′(p)〉 = fψmψ ε̃μ(p), (15)

and

〈J/ψ(p′)J/ψ(q)|X4c(p)〉 = g1(q
2)

[

q · p′ε∗(p′) · ε∗(q)

−q · ε∗(p′)p′ · ε∗(q)
]

,

〈ψ(p′)J/ψ(q)|X4c(p)〉 = g2(q
2)

[

q · p ′̃ε∗(p′) · ε∗(q)

−q · ε̃∗(p′)p′ · ε∗(q)
]

. (16)

Here, f J = (409 ± 15) MeV, fψ = (279 ± 8) MeV and
εμ, ε̃μ are the decay constants and polarization vectors of the
mesons J/ψ and ψ ′ [27,28], respectively. In the vertices
with the excited tetraquark X∗

4c(p) one should write form
factors g∗

1(q2) and g∗
2(q2).

Having used these matrix elements and carried out simple
calculations, we find for �

Phys
μν (p, p′)

�
Phys
μν (p, p′) = g1(q

2) f0m0 f
2
J m

2
J Fμν(m0,mJ )

+g∗
1(q2) f m f 2

J m
2
J Fμν(m,mJ )

+g2(q
2) f0m0 f Jm J fψmψ Fμν(m0,mψ)

+g∗
2(q2) f m f JmJ fψmψ Fμν(m,mψ) + · · · , (17)

where

Fμν(a, b) =
[(

a2 − b2 − q2
)

gμν − 2qμ p′
ν

]

2
(

p2 − a2
) (

p′2 − b2
)

(q2 − m2
J )

. (18)

As is seen, there are two structures in �
Phys
μν (p, p′) which can

be used for SR analysis. To derive the sum rules for the form
factors g(∗)

i (q2), we work with the Lorentz structure gμν , and
corresponding invariant amplitude �Phys(p2, p′2, q2).

After the double Borel transformation of the function
�Phys(p2, p′2, q2) over the variables −p2 and −p′2, we get

B�Phys(p2, p′2, q2) = g1(q
2) f0m0 f

2
J m

2
J F(m0,mJ )

+g∗
1(q2) f m f 2

J m
2
J F(m,mJ )

+g2(q
2) f0m0 f Jm J fψmψ F(m0,mψ)

+g∗
2(q2) f m f JmJ fψmψ F(m,mψ) + · · · , (19)

with F(a, b) being equal to

F(a, b) =
(

a2 − b2 − q2
)

2(q2 − m2
J )

e−a2/M2
1 e−b2/M2

2 . (20)

The second component of the sum rules is the same corre-
lation function�OPE

μν (p, p′), but calculated using the c -quark
propagators. The function �OPE

μν (p, p′) and invariant ampli-
tude �OPE(p2, p′2, q2) were computed in Ref. [19]. Having
equated B�Phys(p2, p′2, q2) and the doubly Borel transfor-
mation of the amplitude �OPE(p2, p′2, q2), and performed
the continuum subtractions, we find the sum rule equality,
right-hand side of which is determined by the function

�(M2, s0, q
2) =

∫ s0

16m2
c

ds
∫ s′0

4m2
c

ds′ρ(s, s′, q2)

×e−s/M2
1 e−s′/M2

2 . (21)

where M2 = (M2
1 , M2

2 ) and s0 = (s0, s′
0) are the Borel

and continuum threshold parameters, respectively. A spec-
tral density ρ(s, s′, q2) is found as an imaginary part of
�OPE(p2, p′2, q2). Let us note that parameters (M2

1 , s0) and
(M2

2 , s′
0) correspond to X4c − X∗

4c and J/ψ − ψ ′ channels,
respectively.

The equality Eq. (19) obtained by this way contains four
unknown form factors g(∗)

1(2)(q
2). One of possible methods

to extract them from this equality is to calculate its deriva-
tives over −1/M2

1 and −1/M2
2 . But then final expressions

for g(∗)
1(2)(q

2) become rather complicated, which may reduce
an accuracy of numerical analyses. Here, we pursue the alter-
native policy: By choosing appropriate subtraction parame-
ters in X4c − X∗

4c and J/ψ − ψ ′ channels, we include in
analysis terms from Eq. (19) one by one. These operations
change number of components in B�Phys and integration
limits in �(M2, s0, q2). At each new stage, we take into
account results obtained in previous steps, and solve subse-
quent equations with only one unknown form factor.

First of all, let us note that the form factor g1(q2) was eval-
uated in Ref. [19]. It corresponds to the vertex X4c J/ψ J/ψ
and is necessary to compute the partial width of the decay
X4c → J/ψ J/ψ . To calculate g1(q2), we fixed parameters
(M2

1 , s0) as in Eq. (8), whereas for (M2
2 , s′

0) used

M2
2 ∈ [4, 5] GeV2, s′

0 ∈ [12, 13] GeV2, (22)

where s′
0 is limited by the mass m2

ψ of the next state in the

J/ψ − ψ ′ channel, i.e., s′
0 < m2

ψ . Afterwards, we choose

(M2
1 , s0) in accordance with Eq. (11), but do not modify

(M2
2 , s′

0). By this way, we include into consideration g∗
1(q2)

and obtain the equation containing g1(q2) and g∗
1(q2). This

means that remaining terms in Eq. (19) are included in
“higher resonances and continuum states” and their effects
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are implicitly taken into account in �(M2, s0, q2) through
the quark-hadron duality. Then, using results for g1(q2), we
calculate the form factor g∗

1(q2) that determines the width of
the process X∗

4c → J/ψ J/ψ .
At the new stage of studies, we consider the equation for

the form factors g1(q2) and g2(q2). The latter corresponds
to the vertex X4c J/ψψ ′, and formally describes the channel
X4c → J/ψψ ′. This decay mode of X4c is kinematically
forbidden, because the threshold 6737 MeV for production
of the J/ψψ ′ pair exceeds the mass of the tetraquark X4c.
But g2(q2) is required to determine the form factor g∗

2(q2)

of interest. To extract g2(q2), we fix (M2
1 , s0) by means of

Eq. (8), but choose (M2
2 , s∗′

0 ) in the form

M2
2 ∈ [4, 5] GeV2, s∗′

0 ∈ [15, 16] GeV2, (23)

where s∗′
0 < m2

ψ(3S). Finally, using for the X4c − X∗
4c and

J/ψ − ψ ′ channels Eqs. (11) and (23), we calculate the last
form factor g∗

2(q2).
The SR method allows one to calculate the form fac-

tors in the deep-Euclidean region q2 < 0. All functions
g(∗)
i (q2) in the present work are calculated in the region

q2 = −(1 − 10) GeV2. But partial widths of the decays
under consideration are determined by values of these form
factors at the mass shell q2 = m2

J . To solve this problem, we
introduce a new variable Q2 = −q2 and denote the obtained
functions by g(∗)

i (Q2). Afterwards, we use a fit functions

G(∗)
i (Q2) that at momenta Q2 > 0 are equal to the SR’s

results, but can be extrapolated to the domain of Q2 < 0. In
present article, we use functions Gi (Q2)

Gi (Q2) = G0
i exp

[

c1
i
Q2

m2 + c2
i

(

Q2

m2

)2
]

, (24)

with parameters G0
i , c1

i and c2
i . It is worth noting that in the

case of g∗
1(q2) and g∗

2(q2) the parameter m in Eq. (24) is
the mass of the tetraquark X∗

4c, whereas for the intermediate
functions g1(q2) and g2(q2), we use the mass m0 of X4c.

Results obtained for g∗
1(q2) and g∗

2(q2) are plotted in
Fig. 2. Computations demonstrate that G0∗

1 = 0.68 GeV−1,
c1∗

1 = 3.93, and c2∗
1 = −4.33 lead to nice agreement with

the sum rule’s data for g∗
1(Q2). At the mass shell q2 = m2

J
the function G∗

1 (Q2) is equal to

g∗
1 ≡ G∗

1 (−m2
J ) = (3.1 ± 0.5) × 10−1 GeV−1. (25)

The width of the decay X∗
4c → J/ψ J/ψ can be obtained by

employing the expression

�
[

X∗
4c → J/ψ J/ψ

] = g∗2
1

λ1

8π

(

m4
J

m2 + 2λ2
1

3

)

, (26)

Fig. 2 The QCD results and fit functions for the form factors g∗
1 (Q2)

(dashed curve) and g∗
2 (Q2) (solid curve). The red diamond and green

star denote the point Q2 = −m2
J , where the strong couplings g∗

1 and
g∗

2 are evaluated

where λ1 = λ(m,mJ ,mJ ) and

λ(m1,m2,m3) =
[

m4
1 + m4

2 + m4
3

2m1

−2(m2
1m

2
2 + m2

1m
2
3 + m2

2m
2
3)

]1/2
. (27)

Then it is not difficult to find that

�
[

X∗
4c → J/ψ J/ψ

] = (30.1 ± 8.3) MeV. (28)

In the case of g∗
2(Q2), similar investigations give for the

parameters of the function G∗
2 (Q2) following results: G0∗

2 =
0.54 GeV−1, c1∗

2 = 3.28, and c2∗
2 = −4.26. The strong

coupling g∗
2 equals to

g∗
2 ≡ G∗

2 (−m2
J ) = (2.5 ± 0.5) × 10−1 GeV−1. (29)

Partial width of the process X∗
4c → J/ψψ ′ is given by the

formula

�
[

X∗
4c → J/ψψ ′] = g∗2

2
λ2

8π

(

m2
ψm

2
J

m2 + 2λ2
2

3

)

, (30)

where λ2 = λ(m,mψ,mJ ). This leads to the prediction

�
[

X∗
4c → J/ψψ ′] = (11.5 ± 3.3) MeV. (31)

The results obtained for these two decay channels are col-
lected in Table 1.

The decays X∗
4c → ηcηc and X∗

4c → ηcηc(2S) can
be explored in the context of this scheme as well. In this
case, the double Borel transformation of the amplitude
�

Phys
ηc (p2, p′2, q2) equals to

B�
Phys
ηc (p2, p′2, q2) = g3(q

2)
f0m0 f 2

ηc
m4

ηc

4m2
c

R(m0,mηc )

123
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+g∗
3(q2)

f m f 2
ηc
m4

ηc

4m2
c

R(m,mηc ) + g4(q
2)

f0m0 fηcm
2
ηc

4m2
c

× fηc(2S)m
2
ηc(2S)R

(

m0,mηc(2S)

) + g∗
4(q2)

f m fηcm
2
ηc

4m2
c

× fηc(2S)m
2
ηc(2S)R(m,mηc(2S)) + · · · , (32)

wheremηc = (2983.9±0.4) MeV, fηc = (398.1±1.0) MeV
and mηc(2 S) = (3637.5±1.1) MeV, fηc(2 S) = 331 MeV are
the spectroscopic parameters of the ηc and ηc(2 S) mesons
[27,29]. The function R(a, b) is defined by the formula

R(a, b) =
(

a2 + b2 − q2
)

2(q2 − m2
ηc

)
e−a2/M2

1 e−b2/M2
2 . (33)

The invariant amplitude �OPE
ηc

(p2, p′2, q2) was calcu-
lated in our article [19]. Here, one should take into account
that the regions (M2

2 , s′
0) and (M2

2 , s∗′
0 ) for ηc−ηc(2 S) chan-

nel are given by the expressions

M2
2 ∈ [3.5, 4.5] GeV2, s′

0 ∈ [11, 12] GeV2, (34)

and

M2
2 ∈ [3.5, 4.5] GeV2, s∗′

0 ∈ [13, 14] GeV2, (35)

respectively. In the case of g∗
3(Q2), our studies lead for the

parameters of the function G∗
3 (Q2) to predictions: G0∗

3 =
0.39 GeV−1, c1∗

3 = 4.01, and c2∗
3 = −4.99. Then the cou-

pling g∗
3 is equal to

g∗
3 ≡ G∗

3 (−m2
ηc

) = (1.7 ± 0.4) × 10−1 GeV−1. (36)

The width of the decay X∗
4c → ηcηc can be found by

means of the formula

�
[

X∗
4c → ηcηc

] = g∗2
3

m2
ηc

λ3

8π

(

1 + λ2
3

m2
ηc

)

, (37)

where λ3 = λ(m,mηc ,mηc ). Numerical computations yield

�
[

X∗
4c → ηcηc

] = (30.6 ± 10.5) MeV. (38)

For the second decay X∗
4c → ηcηc(2 S), we get

g∗
4 ≡ G∗

4 (−m2
ηc

) = (1.4 ± 0.3) × 10−1 GeV−1,

�
[

X∗
4c → ηcηc(2S)

] = (16.6 ± 5.5) MeV, (39)

where G∗
4 (Q2) is the function with parameters G0∗

4 =
0.32 GeV−1, c1∗

4 = 4.06, and c2∗
4 = −5.02.

Treatment of the channels X∗
4c → ηcχc1, χc0χc0, and

χc1χc1 is done by taking into account vertices of the
tetraquarks X4c and X∗

4c with these meson pairs. Therefore,
the physical side of the sum rules consists of two terms. In the

case of the ηcχc1 mesons, both the ground-level tetraquark
X4c and its excited state X∗

4c decays to this meson pair.
Therefore, to find the partial decay width of the process
X∗

4c → ηcχc1, we use the form factor g5(q2) studied in Ref.
[19], and extract g∗

5(q2) necessary to compute the coupling
g∗

5 at the mass shell q2 = m2
ηc

. The corresponding fit func-
tion G∗

5 (Q2) has the parameters: G0∗
5 = 3.46, c1∗

5 = 3.59,
and c2∗

5 = −4.72.
The remaining processes X∗

4c → χc0χc0 and χc1χc1 are
investigated by the same manner, the difference being that
decays of X4c to mesons χc0χc0, and χc1χc1 are not kinemati-
cally allowed channels, but we compute relevant form factors
to find strong couplings g∗

6 and g∗
7 of interests. The related

correlation functions are calculated in the present work for
the first time and given by the expressions (A.3) and (A.4).
The final results of analysis are collected in Table 1. Let us
note only that in numerical computations, we employ the SR
predictions for the decay constants fχc1 = (344 ± 27) MeV
and fχc0 = 343 MeV [30,31].

Having used results for the partial widths of the excited
X∗

4c tetraquark’s decay channels, we estimate its full width

� = (144 ± 18) MeV. (40)

3 Hadronic molecule χc1χc1

Here, we investigate the hadronic molecule M = χc1χc1

and calculate the mass and current coupling of this structure,
which will be used to determine its kinematically allowed
decay channels. Decays of the molecule M and its full width
are also studied in this section.

3.1 Mass and current coupling

The sum rules for the mass m̃ and current coupling ˜f of the
molecule M can be extracted by exploring the correlation
function

�(p) = i
∫

d4xeipx 〈0|T {˜J (x)˜J †(0)}|0〉. (41)

Here, ˜J (x) is the interpolating current for M

˜J (x) = ca(x)γ5γμca(x)cb(x)γ5γ
μcb(x), (42)

with a, and b being the color indices. We are going to calcu-
late spectroscopic parameters of the ground-level molecule
M, therefore the physical side of the SRs is given by only
one term

�Phys(p) = ˜f 2m̃2

m̃2 − p2 + · · · . (43)

123



994 Page 8 of 12 Eur. Phys. J. C (2023) 83 :994

Table 1 Decay channels of the tetraquark X∗
4c and hadronic molecule

M, strong couplings g∗
i and G(∗)

i , and partial widths �i and ˜�i . The
couplings g∗

5 and G5 are dimensionless. For all decays of the tetraquark
X∗

4c the parameters M2
1 and s∗

0 vary in the regions [5.5, 7] GeV2 and

[55, 56] GeV2, respectively. In the case of the molecule M the param-
eters are M2

1 ∈ [6, 8] GeV2 and s0 ∈ [63, 65] GeV2 for all considered
processes

i Channels M2
2 (GeV2) s(∗)′

0 (GeV2) g∗
i × 10 (GeV−1) �i (MeV) G(∗)

i × 10 (GeV−1) ˜�i (MeV)

1 J/ψ J/ψ 4−5 12−13 3.1 ± 0.5 30.1 ± 8.3 3.5 ± 0.7 36.1 ± 10.5

2 J/ψψ ′ 4−5 15−16 2.5 ± 0.5 11.5 ± 3.3 3.2 ± 0.5 16.2 ± 5.1

3 ηcηc 3.5−4.5 11−12 1.7 ± 0.4 30.6 ± 10.5 2.0 ± 0.4 42.3 ± 12.2

4 ηcηc(2S) 3.5−4.5 13−14 1.4 ± 0.3 16.6 ± 5.5 1.3 ± 0.3 14.7 ± 5.1

5 ηcχc1 4−5 13−14 16.4 ± 3.8 11.6 ± 4.1 18.3 ± 4.1 12.8 ± 4.2

6 χc0χc0 4−5 14−14.9 2.1 ± 0.4 28.8 ± 7.9 2.3 ± 0.5 29.9 ± 9.4

7 χc1χc1 4−5 13−14 3.5 ± 0.5 14.4 ± 4.2 4.1 ± 0.8 16.5 ± 4.7

It is calculated by taking into account the matrix element

〈0|˜J |M〉 = ˜f m̃. (44)

The invariant amplitude that is required for following analy-
sis is �Phys(p2) = ˜f 2m̃2/(m̃2 − p2).

The correlation function �OPE(p) in terms of the c-quark
propagators is determined by Eq. (45)

�OPE(p) = i
∫

d4xeipx
{

Tr
[

γ5γμS
ba′
c (x)γνγ5S

a′b
c (−x)

]

×Tr
[

γ5γ
μSab

′
c (x)γ νγ5S

b′a
c (−x)

]

− Tr
[

γ5γμS
bb′
c (x)γν

×γ5S
b′a
c (−x)γ5γ

μSaa
′

c (x)γ νγ5S
a′b
c (−x)

]

− Tr
[

γ5γμ

×Sba
′

c (x)γνγ5S
a′a
c (−x)γ5γ

μSab
′

c (x)γ νγ5S
b′b
c (−x)

]

+Tr
[

γ5γμS
bb′
c (x)γνγ5S

b′b
c (−x)

]

Tr
[

γ5γ
μSaa

′
c (x)γ ν

×γ5S
a′a
c (−x)

]}

. (45)

It is convenient to denote the invariant amplitude of the QCD
side by �OPE(p2). Then, the sum rules for the mass and
current coupling take simple forms

m̃2 = �′(M2, s0)

�(M2, s0)
(46)

and

˜f 2 = em̃
2/M2

m̃2 �(M2, s0), (47)

where�′(M2, s0) = d�(M2, s0)/d(−1/M2). Here,�(M2, s0)

is the amplitude �OPE(p2) obtained after the Borel transfor-
mation and continuum subtraction operations.

Computations lead to the following constraints on the
parameters M2 and s0

M2 ∈ [6, 8] GeV2, s0 ∈ [63, 65] GeV2. (48)

It is not difficult to check that PC meets usual requirements of
SR computations. In Fig. 3, we plot dependence of the pole
contribution on the Borel parameter. It is seen, that expect
for a small region, PC is larger than 0.5. On average in s0 the
PC exceeds 0.5 for all values of M2.

The mass and current coupling of the molecule M are

m̃ = (7180 ± 120) MeV,

˜f = (1.06 ± 0.13) × 10−1 GeV4, (49)

respectively. It is worth to note that m̃ and ˜f in Eq. (49) are
mean values of the mass and current coupling averaged over
the working regions (48). It overshoots the mass 7022 MeV
of two χc1 mesons by 160 MeV and is unstable against decays
to these particles.

In Fig. 4, we plot the mass m̃ as a function of M2 and s0, in
which its residual dependence on these parameters is clear. It
is also useful to estimate a gap between the ground-state M
and excited molecules M∗. The mass m̃∗ of the state M∗
should obey the constraint m̃∗ ≥ √

s0, i.e., m̃∗ ≥ 8 GeV,
which implies an approximately 800 MeV mass splitting
between these molecules.

3.2 Width of M

Decay channels of the hadronic molecule M do not differ
from that of the tetraquark X∗

4c. A difference appears in treat-
ment of these processes. Indeed, the molecule M is ground-
state particle it its class, therefore physical side of relevant
sum rules in M channel contains terms connected only with
its decays.

Because the resonances under investigation were detected
in the di-J/ψ and J/ψψ ′ mass distributions, we concentrate
on the decays M → J/ψ J/ψ and M → J/ψψ ′. The
correlation function required for this analysis is given by the
formula

123
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Fig. 3 Dependence of PC on the Borel parameter M2. The horizontal
line shows the border PC = 0.5. The red triangle fix the position, where
the mass of the molecule χc1χc1 has been evaluated

˜�μν(p, p
′)

= i2
∫

d4xd4yeip
′ye−i px 〈0|T {Jψ

μ (y)

×Jψ
ν (0)˜J †(x)}|0〉. (50)

As usual, we express ˜�μν(p, p′) in terms of the physical
parameters of particles involved in the decay process. To this
end, we write it in the following form

˜�
Phys
μν (p, p′) = 〈0|Jψ

μ |J/ψ(p′)〉
p′2 − m2

J

〈0|Jψ
ν |J/ψ(q)〉
q2 − m2

J

×〈J/ψ(p′)J/ψ(q)|M(p)〉 〈M(p)|˜J †|0〉
p2 − m̃2

+〈0|Jψ
μ |ψ(p′)〉

p′2 − m2
ψ

〈0|Jψ
ν |J/ψ(q)〉
q2 − m2

J

×〈ψ(p′)J/ψ(q)|M(p)〉 〈M(p)|˜J †|0〉
p2 − m̃2 + · · · . (51)

We have already defined the matrix elements of the hadronic
moleculeM and mesons J/ψ andψ ′. The verticesMJ/ψ J/ψ
andMJ/ψψ ′ after some substitutions are given by Eq. (16).
As in previous section, we use the amplitude ˜�Phys(p2, p′2, q2)

which in ˜�
Phys
μν (p, p′) corresponds to a term proportional

to gμν . The double Borel transformation of the function
˜�Phys(p2, p′2, q2) over the variables −p2 and −p′2 is equal
to

B˜�Phys(p2, p′2, q2) = G1(q
2) ˜f m̃ f 2

J m
2
J F(m̃,mJ )

+G∗
1(q

2) ˜f m̃ f Jm J fψmψ F(m̃,mψ) + · · · . (52)

The correlation function ˜�OPE
μν (p, p′) is given by the formula

˜�OPE
μν (p, p′) = 2i2

∫

d4xd4ye−i px eip
′y

{

Tr
[

γνS
jb
c (−x)

×γ αγ5S
bj
c (x)

]

Tr
[

γμS
ia
c (y − x)γαγ5S

ai
c (x − y)

]

−Tr
[

γμS
ia
c (y − x)γαγ5S

aj
c (x)γνS

jb
c (−x)γ α

×γ5S
bi
c (x − y)

]}

. (53)

The QCD side of the sum rule and amplitude ˜�OPE(p2, p′2, q2)

are extracted from this expression. The strategy pursued in
our study of these processes repeats one used in Sect. 2 while
considering decays of the tetraquark X∗

4c. We first determine
the form factor G1(q2) utilizing the “ground-state + contin-
uum” scheme. The parameters (M2

1 , s0) are universal for all
decays of M and are presented in Eq. (48). The second pair
of the parameters (M2

2 , s′
0) corresponding to J/ψ J/ψ decay

can be found in Eq. (22 ). Once determined G1(q2), in the
second stage of computations we choose (M2

2 , s∗′
0 ) from Eq.

(23) and employ information on G1(q2) to find the form fac-
tor G∗

1(q
2), responsible for the process M → J/ψψ ′. The

functions G8(Q2) and G∗
8 (Q2) are formed by the parameters

G0
8 = 0.76 GeV−1 c1

8 = 3.32, c2
8 = −4.19,

Fig. 4 Mass m̃ of the molecule χc1χc1
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G0∗
8 = 0.68 GeV−1, c1∗

8 = 3.20, c2∗
8 = −4.11. (54)

The strong couplings G1 and G∗
1 are extracted from these

functions at the mass shells Q2 = −m2
J .

This approach is also valid for the channels M → ηcηc
and M → ηcηc(2 S). The correlation function required for
these decays is written down below

�OPE(p, p′) = 2
∫

d4xd4ye−i px eip
′y

{

Tr
[

γ5S
ia
c (y − x)

×γαγ5S
ai
c (x − y)

]

Tr
[

γ5S
jb
c (−x)γ αγ5S

bj
c (x)

]

−Tr
[

γ5S
ia
c (y − x)γαγ5S

aj
c (x)γ5S

jb
c (−x)γ α

× γ5S
bi
c (x − y)

]}

. (55)

The functions G9(Q2) and G∗
9 (Q2) needed to extrapolate

the form factors G2(q2) and G∗
2(q

2) are determined by the
parameters: G0

9 = 0.46 GeV−1 c1
9 = 3.93, c2

9 = −4.83
and G0∗

9 = 0.30 GeV−1, c1∗
9 = 3.90, c2∗

9 = −4.81. These
functions at the mass shells Q2 = −m2

J fix the couplings G2

and G∗
2, respectively.

The decays M → ηcχc1, χc0χc0, and χc1χc1 are inves-
tigated directly in the context of the “ground-state + con-
tinuum” approach. Corresponding functions �OPE

μ (p, p′),
�OPE(p, p′) and ̂�OPE

μν (p, p′) can found in Appendix as
Eqs. (A.5)–(A.7). Predictions obtained for the partial widths
of different modes of the hadronic molecule M, strong cou-
plings and related parameters are presented in Table 1. It
should be noted that, to collect results obtained in this work
in the framework of a single Table, the couplings G∗

1, G2 and
G∗

2 are placed there under numbers G∗
2, G3 and G∗

4, respec-
tively.

For the full width of the hadronic molecule, we get

˜� = (169 ± 21) MeV, (56)

which characterizes it as a wide structure.

4 Summing up

In the present work, we have explored radially excited
tetraquark X∗

4c and hadronic molecule M = χc1χc1. We
have computed their masses and full widths using the QCD
sum rule method and interpolating currents J (x) and ˜J (x).
Obtained results have been confronted with available data of
the ATLAS-CMS Collaborations on the heaviest resonance
X (7300).

The LHCb fixed this state at 7.2 GeV, but did not provide
other information. The CMS measured parameters of this
resonance and found that

mCMS = 7287+20
−18 ± 5 MeV,

�CMS = 95+59
−40 ± 19 MeV. (57)

The ATLAS Collaboration observed X (7300) in the J/ψψ ′
mass distribution and also reported the mass and width of
this state

mATL = 7220 ± 30+20
−30 MeV,

�ATL = 100+130+60
−70−50 MeV. (58)

As is seen, experimental data suffer from big errors: only in
the case of Eq. (57) they are relatively small.

Comparing our findings m = (7235 ± 75) MeV and m̃ =
(7180±120) MeV with corresponding experimental data and
taking into account errors of calculations and measurements,
we conclude that masses of the excited tetraquark X∗

4c and
hadronic molecule M are compatible with mCMS and mATL.
In other words, at this phase of analysis, it is difficult to make
assignment for the resonance X (7300).

The full widths of the structures X∗
4c and M provide very

important information for this purpose. It is interesting that
X (7300) is narrowest fully charmed state detected by the
ATLAS and CMS experiments provided one ignores errors
of measurements. The four-quark structures X∗

4c andM have
the widths � = (144 ± 18) MeV and ˜� = (169 ± 21) MeV,
respectively. As is seen, within uncertainties of theoretical
analysis they agree with results of measurements. Because
masses of these structures are also consistent with existing
data, both the excited tetraquark X∗

4c and hadronic molecule
M may be considered as natural candidates to the observed
state X (7300).

For more strong conclusions about internal organization
of X (7300), it is useful to examine an overlap of the currents
J (x) and ˜J (x) with the physical state X (7300) modeled as
the structures X∗

4c or M. This information is encoded in the
matrix element

〈0|J |X (7300)〉 = �J . (59)

By employing Eqs. (10) and (49) obtained for the diquark-
antidiquark and molecule currents, we find that the matrix
element in Eq. (59) equals to �J ≈ 0.58 GeV5 and �

˜J ≈
0.76 GeV5, respectively. This means, that the fully charmed
resonance X (7300) couples with a larger strength to χc1χc1

molecule current than to the current from Eq. (2). But from
the ratio �J /�˜J ≈ 0.76 it also becomes clear that X (7300)

can not be interpreted as a pure molecule state. Indeed, the
diquark-antidiquark current J (x) through Fierz transforma-
tions can be expressed as a weighted sum of ˜J (x) and other
currents. Then if X (7300) had a pure molecule structure,
the ratio �J /�˜J would be equal to a weight of the molecule
component in J (x), and considerably smaller than 0.76 [24].
Because this is not a case, we can conclude that X (7300)

contains a sizeable X∗
4c component. As a result, a preferable
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model for the resonance X (7300) is the admixture of the
molecule M with considerable piece of the tetraquark X∗

4c.
Parameters of such mixing depend on precision of the

mass and width of the resonance X (7300) measured by
experimental groups. Accuracy of the theoretical results are
also important. In the sum rule method physical observables
are evaluated with some accuracy and contain uncertainties
which can be kept under control. The ambiguities in the
masses and widths of the structures X∗

4c and M are typical
for such kind of investigations, and can hardly be reduced.
Therefore, for quantitative analysis of the M−X∗

4c mixing
phenomenon one needs more precise experimental data. This
is true not only for X (7300), but also for other fully charmed
X resonances.
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Appendix: Heavy quark propagator and different corre-
lation functions

In the present paper, for the heavy quark propagator SabQ (x)
(Q = c, b), we employ the following expression

SabQ (x) = i
∫

d4k

(2π)4 e
−ikx

{

δab
(

/k + mQ
)

k2 − m2
Q

−gsG
αβ
ab

4

σαβ

(

/k + mQ
) + (

/k + mQ
)

σαβ

(k2 − m2
Q)2

+g2
s G

2

12
δabmQ

k2 + mQ/k

(k2 − m2
Q)4

+ · · ·
}

. (A.1)

Here, we have introduced the notations

Gαβ
ab ≡ Gαβ

A λA
ab/2, G2 = GA

αβG
αβ
A , (A.2)

with Gαβ
A being the gluon field-strength tensor, and λA–Gell-

Mann matrices. The index A varies in the range 1 − 8.

This Appendix also contains expressions of correlation
functions, which are employed to calculate some of the strong
couplings. In the case of the decay X∗

4c → χc0χc0 the corre-
lation function �OPE(p, p′) is given by the formula

�OPE(p, p′)

= 2i2
∫

d4xd4ye−i px eip
′y

×
{

Tr
[

Siac (y − x)γμ
˜S jb
c (−x)˜Sbjc (x)γ μSaic (x − y)

]

−Tr
[

Siac (y − x)γμ
˜S jb
c (−x)˜Sajc (x)γ μSbic (x − y)

]}

,

(A.3)

where ˜Sc(x) = CSc(x)C, and C is the charge conjugation
operator. The fit function G∗

6 (Q2) used to find the strong
coupling g∗

6 is fixed by the parameters G0∗
6 = 0.51 GeV−1,

c1∗
6 = 3.11, and c2∗

6 = −3.57.
For the decay X∗

4c → χc1χc1 the function �OPE
μν (p, p′)

has the following form:

�OPE
μν (p, p′)

= 2i2
∫

d4xd4ye−i px eip
′ y

×
{

Tr
[

γμγ5S
ia
c (y − x)γα

˜S jb
c (−x)γ5γν

˜Sajc (x)γ αSbic (x − y)
]

−Tr
[

γμγ5S
ia
c (y − x)γα

˜S jb
c (−x)γ5γν

˜Sbjc (x)γ αSaic (x − y)
]}

.

(A.4)

In this case, the function G∗
7 (Q2) has the parameters: G0∗

7 =
0.74 GeV−1, c1∗

7 = 2.48, and c2∗
7 = −3.01.

The correlation functions for the decays of the hadronic
molecule M and functions to calculate the relevant strong
couplings:

Decay M → ηcχc1

�OPE
μ (p, p′)

= 2i3
∫

d4xd4ye−i px eip
′y

×
{

Tr
[

γμγ5S
ia
c (y − x)γαγ5S

ai
c (x − y)

]

× Tr
[

γ5S
jb
c (−x)γ αγ5S

bj
c (x)

]

−Tr
[

γμγ5S
ia
c (y − x)γαγ5S

aj
c (x)γ5S

jb
c

× (−x)γ αγ5S
bi
c (x − y)

]}

, (A.5)

and the fit function G10(Q2) for G5(Q2): G0
10 = 3.85, c1

10 =
3.51, and c2

10 = −4.56.
Decay M → χc0χc0

�OPE(p, p′)

= −2i2
∫

d4xd4ye−i px eip
′ y

×Tr
[

Siac (y − x)γαγ5S
aj
c (x)S jb

c (−x)γ αγ5S
bi
c (x − y)

]

,

123
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(A.6)

and G6(Q2): G0
11 = 0.55 GeV−1, c1

11 = 3.06, and c2
11 =

−3.46.
Decay M → χc1χc1

̂�OPE
μν (p, p′)

= 2i2
∫

d4xd4ye−i px eip
′y

×
{

Tr
[

γμγ5S
ia
c (y − x)γαγ5S

ai
c (x − y)

]

× Tr
[

γνγ5S
jb
c (−x)γ αγ5S

bj
c (x)

]

−Tr
[

γμγ5S
ia
c (y − x)γαγ5S

aj
c (x)γνγ5S

jb
c (−x)

× γ αγ5S
bi
c (x − y)

]}

, (A.7)

and the parameters G0
12 = 0.86 GeV−1, c1

12 = 2.41, and
c2

12 = −2.89 to compute G7(Q2).
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