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Abstract

In systems governed by chaotic local Hamiltonians, my previous work [7] conjectured the universality of 
the average entanglement entropy of all eigenstates by proposing an exact formula for its dependence on the 
subsystem size. In this note, I extend this result to the average entanglement entropy of a constant fraction 
of eigenstates in the middle of the energy spectrum. The generalized formula is supported by numerical 
simulations of various chaotic spin chains.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In systems governed by chaotic local Hamiltonians, my previous work [7] conjectured the 
universality of eigenstate entanglement by proposing an exact formula for its dependence on the 
subsystem size. This formula was derived from an analytical argument based on an assumption 
that characterizes the chaoticity of the system, and is supported by numerical simulations.

For simplicity, Ref. [7] only considered the average entanglement entropy of all eigenstates 
explicitly. Due to the recent interest [6], in this note I extend the result to the average entan-
glement entropy of a constant fraction of eigenstates in the middle of the energy spectrum. 
The extension is straightforward and does not require any essentially new ideas beyond those 
in Ref. [7].
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For completeness and for the convenience of the reader, definitions and derivations are pre-
sented in full so that this note is technically self-contained, although this leads to substantial 
text overlap with the original paper [7]. It is not necessary to consult Ref. [7] before or during 
reading this note. However, in this note I do not discuss the conceptual aspects of the work. Such 
discussions are in Ref. [7].

I recommend related works [14,9,10], which use a similar approach to study other aspects of 
eigenstate entanglement.

The rest of this note is organized as follows. Section 2 gives basic definitions and a brief 
review of random-state entanglement. Section 3 presents the main result. Section 4 provides 
numerical evidence for this analytical result in various chaotic spin chains. The main text of this 
note should be easy to read, for most of the technical details are deferred to Appendix A.

2. Preliminaries

Definition 1 (entanglement entropy). The entanglement entropy of a bipartite pure state ρAB is 
defined as the von Neumann entropy

S(ρA) = − tr(ρA lnρA) (1)

of the reduced density matrix ρA = trB ρAB .

Theorem 1 (conjectured and partially proved by Page [11]; proved in Refs. [4,12,13]). Let ρAB

be a bipartite pure state chosen uniformly at random with respect to the Haar measure. In aver-
age,

S(ρA) =
dAdB∑

k=dB+1

1

k
− dA − 1

2dB

= lndA − dA

2dB

+ O(1/d), (2)

where dA ≤ dB are the dimensions of subsystems A and B , respectively, and d = dAdB is the 
dimension of the total Hilbert space. For an equal bipartition dA = dB ,

S(ρA) = lndA − 1/2 + O(1/d). (3)

Let γ ≈ 0.577216 be the Euler–Mascheroni constant. The second step of Eq. (2) uses the 
formula

dB∑
k=1

1

k
= lndB + γ + 1

2dB

+ O(1/d2
B). (4)

Let erf : R ∪ {±∞} → [−1, 1] be the error function

erfx := 2√
π

x∫
0

e−t2
dt. (5)

Let erf−1 : [−1, 1] → R ∪ {±∞} be the inverse error function such that both erf−1 ◦ erf and 
erf◦ erf−1 are identity maps.
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3. Universal eigenstate entanglement

Consider a chain of N spin-1/2’s governed by a local Hamiltonian

H =
N−1∑
i=1

Hi, (6)

where Hi represents the nearest-neighbor interaction between spins at positions i and i + 1. For 
concreteness, we use open boundary conditions, but our argument also applies to other boundary 
conditions. Assume without loss of generality that trHi = 0 (traceless) so that the mean energy 
of H is 0. We do not assume translational invariance. In particular, ‖Hi‖ may be site dependent 
but should be �(1) for all i.

Suppose that the Hamiltonian (6) is chaotic in a sense to be made precise below. We provide 
an analytical argument for

Conjecture 1 (universal eigenstate entanglement). Assume without loss of generality that N
is even. Consider the spin chain as a bipartite quantum system A ⊗ B . Subsystem A consists 
of spins at positions 1, 2, . . . , N/2. For a constant 0 < ν ≤ 1, let � be such that H has ν2N

eigenvalues in the interval [−�, �]. The average entanglement entropy of the eigenstates in this 
energy interval is

S̄ = N − 1

2
ln 2 + 2(e−(erf−1 ν)2 − 1)

νπ
+ (e−(erf−1 ν)2 + 2ν − 2) erf−1 ν

2ν
√

π
(7)

in the thermodynamic limit N → +∞.

Remark. It is straightforward to extend Eq. (7) to the case where the subsystem size is an arbi-
trary constant fraction of the system size.

We split the Hamiltonian (6) into three parts: H = HA + H∂ + HB , where HA(B) contains 
terms acting only on subsystem A(B), and H∂ = HN/2 is the boundary term. Let {|j 〉A}2N/2

j=1

and {|k〉B}2N/2

k=1 be complete sets of eigenstates of HA and HB with corresponding eigenvalues 
{εj } and {εk}, respectively. Since HA and HB are decoupled from each other, product states 
{|j 〉A|k〉B} form a complete set of eigenstates of HA + HB with eigenvalues {εj + εk}. Due to 
the presence of H∂ , a (normalized) eigenstate |ψ〉 of H with eigenvalue E is a superposition

|ψ〉 =
2N/2∑
j,k=1

cjk|j 〉A|k〉B. (8)

The locality of H∂ implies a strong constraint stating that the population of |j 〉A|k〉B is sig-
nificant only when εj + εk is close to E.

Lemma 1. There exist constants c, � > 0 such that∑
|εj +εk−E|≥�

|cjk|2 ≤ ce−�/�. (9)

Proof. This is a direct consequence of Theorem 2.3 in Ref. [1]. �

3
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In chaotic systems, we expect

Assumption 1. The expansion (8) of a generic eigenstate |ψ〉 is a random superposition subject 
to the constraint (9).

This assumption is consistent with, but goes beyond, the semiclassical approximation Eq. (16) 
of Ref. [3].

We now show that Assumption 1 implies Conjecture 1. Consider the following simplified 
setting. Let Mj be the set of computational basis states with j spins up and N −j spins down, and 
Uj ∈ U(|Mj |) = U(

(
N
j

)
) be a Haar-random unitary on spanMj . Define M ′

j = {Uj |φ〉 : ∀|φ〉 ∈
Mj } so that M := ⋃N

j=0 M ′
j is a complete set of eigenstates of the Hamiltonian

H =
N∑

i=1

σz
i . (10)

The energy of a state in M is defined with respect to this Hamiltonian.
The set M captures the essence of Assumption 1. Every state in M satisfies∑

|εj +εk−E|≥1

|cjk|2 = 0, (11)

which is a hard version of the constraint (9). The random unitary Uj ensures that Eq. (8) is a 
random superposition. Thus, we establish Conjecture 1 by

Proposition 1. The average entanglement entropy of the ν2N states in M in the middle of the 
energy spectrum is given by Eq. (7) in the thermodynamic limit N → +∞.

4. Comparison with numerics

In this section, we compare Eq. (7) with the numerical results in the literature [15,5,6]. All 
these numerical results are obtained by exact diagonalization. They are limited to relatively small 
system sizes N ≤ 20 and suffer from non-negligible finite-size effects. Although they cannot 
confirm Conjecture 1 conclusively, they are quite suggestive: Eq. (7) is supported by numeri-
cal simulations of various (not necessarily translation-invariant) chaotic spin chains for various 
values of ν.

Sometimes an incorrect analytical formula with one or more fitting parameters can fit the 
numerical data well when the number of data points is limited. We do not need to worry about 
such false positives here, for Eq. (7) does not contain any fitting parameters.

4.1. ν = 1

The original paper [7] considered the case ν = 1 or the average entanglement entropy of all 
eigenstates. In this case, Eq. (7) becomes

S̄ = N − 1

2
ln 2 − 2

π
≈ N

2
ln 2 − 0.983193. (12)

This is the special case f = 1/2 of Eq. (12) in Ref. [7].
4
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Table 1
�S, defined by subtracting the right-hand side of Eq. (7) from that of Eq. (3), as a function of ν.

ν 0+ 1/16 1/8 1/4 1/2 1

�S 0.096574 0.097582 0.100563 0.112324 0.160362 0.483193

Let σx
i , σy

i , σz
i be the Pauli matrices at site i. In the spin-1/2 chain

H =
∑

i

σ z
i σ z

i+1 + gσx
i + hσz

i (13)

with (g, h) = (−1.05, 0.5) [2] and ((5 + √
5)/8, (1 + √

5)/4) [8], the average entanglement 
entropy of all eigenstates was calculated up to the system size N = 18. The numerical results 
support Eq. (12). See Fig. 1 of Ref. [7].

4.2. ν = 0+

In fact, the original paper [7] also presented the result of the case ν = 0+ or the entanglement 
entropy of the eigenstates at the mean energy of the Hamiltonian. In this case, Eq. (7) becomes

S̄ = N − 1

2
ln 2 − 1

4
≈ N

2
ln 2 − 0.596574. (14)

This is the special case J = 0 of Eq. (35) in Ref. [7], and is slightly less than random-state 
entanglement (3).1

In the spin-1/2 chain (13) with (g, h) = (0.9045, 0.8090), the entanglement entropy of the 
eigenstate with energy closest to 0 was calculated for the system size N = 20 [5]. The numerical 
result is 10 ln 2 − 0.635769,2 which is closer to Eq. (14) than to Eq. (3).

Let {hi} be a set of independent random variables uniformly distributed on the interval [−1, 1]. 
In the spin-1/2 chain

H =
∑

i

σ x
i σ x

i+1 + σ
y
i σ

y
i+1 + σz

i σ z
i+1 + 0.2σx

i + hiσ
z
i , (16)

the entanglement entropy of an eigenstate with energy close to 0 was calculated for the system 
size N = 16 [15]. The numerical result, averaged over 10 samples of {hi}, is 8 ln 2 − 0.5733 ±
0.0015, which is closer to Eq. (14) than to Eq. (3).

4.3. 0 < ν < 1

Let �S be the difference between the right-hand sides of Eqs. (3) and (7). Its values as a 
function of ν are listed in Table 1.

1 If the size of the smaller subsystem is a constant f < 1/2 fraction of the system size,

S̄ = f N ln 2 + f + ln(1 − f )

2
(15)

in the thermodynamic limit N → +∞. This is the special case J = 0 of Eq. (31) in Ref. [7].
2 We thank the authors of Ref. [5] for sharing the exact value of the data point at β = 0.0 and LA = 10 in their Fig. 3.
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Fig. 1. Difference between random-state entanglement (3) and S̄ as a function of the system size N for ν = 1/4 (blue), 
1/8 (green), 1/16 (red) in the spin chain (17). The dots are numerical results from Fig. 7 of Ref. [6]. The dashed lines are 
our model-independent theoretical results in the thermodynamic limit (Table 1). Although one cannot conclude whether 
the dots approach the dashed lines of the same color as N → +∞, the trend looks promising.

In the spin-1/2 chain

H =
∑

i

5σx
i σ x

i+1 +15σ
y
i σ

y

i+1 +9σz
i σ z

i+1 +5σx
i σ x

i+2 +15σ
y
i σ

y

i+2 +9σz
i σ z

i+2 +4σx
i +16σz

i ,

(17)

the average entanglement entropy S̄ of the ν = 1/4, 1/8, 1/16 fraction of eigenstates in the mid-
dle of the energy spectrum was calculated up to the system size N = 16 [6]. As shown in Fig. 1, 
the numerical results semi-quantitatively support Eq. (7).
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Appendix A. Proof of Proposition 1

Let Lj (Rj ) be the set of computational basis states of subsystem A (B) with j spins up and 
N/2 − j spins down so that

|Lj | = |Rj | =
(

N/2

j

)
, Mj =

min{N/2,j}⋃
k=max{0,j−N/2}

Lk × Rj−k. (18)

Thus, any (normalized) state |ψ〉 in M ′
j can be decomposed as

|ψ〉 =
min{N/2,j}∑

k=max{0,j−N/2}
ck|φk〉, (19)

where |φk〉 is a normalized state in spanLk ⊗ spanRj−k . Let ρA and σk,A be the reduced density 
matrices of |ψ〉 and |φk〉 for A, respectively. It is easy to see

ρA =
min{N/2,j}⊕

k=max{0,j−N/2}
|ck|2σk,A =⇒ S(ρA) =

min{N/2,j}∑
k=max{0,j−N/2}

|ck|2S(σk,A) − |ck|2 ln |ck|2.

(20)

Since |ψ〉 is a random state in spanMj , each |φk〉 is a (Haar-)random state in spanLk ⊗
spanRj−k . Theorem 1 implies that in average,

S(σk,A) = ln min{|Lk|, |Rj−k|} − min{|Lk|, |Rj−k|}
2 max{|Lk|, |Rj−k|} . (21)

In average, the population |ck|2 is proportional to the dimension of spanLk ⊗ spanRj−k :

|ck|2 = |Lk||Rj−k|/|Mj |. (22)

The deviation of |ck|2 (from the mean) for a typical state |ψ〉 ∈ spanMj is exponentially small. 
In the thermodynamic limit, j, k can be promoted to continuous real variables so that |Mj |, |Lk|
follow normal distributions with means N/2, N/4 and variances N/4, N/8, respectively. Let

J := j/
√

N − √
N/2, K := k/

√
N − √

N/4. (23)

We have

|Lk| = 2N/2+1e−4K2
/
√

πN, |Rj−k| = 2N/2+1e−4(J−K)2
/
√

πN, (24)

|Mj | = 2(N+1)/2e−2J 2
/
√

πN, |ck|2 = √
8e2J 2−4K2−4(J−K)2

/
√

πN. (25)

Consider the case that j ≤ N/2 and k ≤ j/2 (i.e., J ≤ 0 and K ≤ J/2) so that |Lk| ≤ |Rj−k|. 
Hence,

S(σk,A) =
(

N

2
+ 1

)
ln 2 − ln(πN)

2
− 4K2 − e4J 2−8JK

2
. (26)

Substituting Eqs. (25), (26) into Eq. (20),
7
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S(ρA) = 2

j/2∫
−∞

|ck|2S(σk,A)dk −
+∞∫

−∞
|ck|2 ln |ck|2 dk

=
(

N

2
+ 1

)
ln 2 − ln(πN)

2
− 1

4
+ J

√
2

π
− J 2 − e2J 2(

1 − erf(−√
2J )

)
2

+ 1 + ln(πN/8)

2

= N − 1

2
ln 2 + 1

4
+ J

√
2

π
− J 2 − e2J 2(

1 − erf(−√
2J )

)
2

. (27)

This is the average entanglement entropy of a random state in spanMj for j ≤ N/2. For j >

N/2, Eq. (27) remains valid upon replacing J by −J . We determine the energy cutoff � such 
that ν2N states in M have energies in the interval [−�, �]:

2

√
2

π

0∫
−�

e−2J 2
dJ = ν =⇒ � = erf−1 ν√

2
. (28)

Averaging over these ν2N states in M ,

S̄ = N − 1

2
ln 2 + 2

ν

√
2

π

0∫
−�

e−2J 2

⎛
⎝1

4
+ J

√
2

π
− J 2 −

e2J 2
(

1 − erf(−√
2J )

)
2

⎞
⎠dJ

= N − 1

2
ln 2 + 2(e−(erf−1 ν)2 − 1)

νπ
+ (e−(erf−1 ν)2 + 2ν − 2) erf−1 ν

2ν
√

π
. (29)
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