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1 Introduction

With the upcoming electron-ion collider (EIC) [1], it is essential to evaluate the hard-
scattering coefficients for semi-inclusive deep-inelastic scattering (SIDIS) at next-to-next-
to-leading order (NNLO) in QCD [2–5]. One type of contributions arising at NNLO are
the one-loop corrections to the next-to-leading-order processes of real gluon emission and
photon-gluon fusion. One-loop integrals such as these arise in virtually all higher-order
perturbative calculations and were thoroughly studied in the past 40 years [6–16]. Given
that tensorial loop integrals can be systematically reduced to scalar integrals using the
Passarino-Veltman technique [17], it is sufficient to evaluate scalar integrals. The case of
massless propagators is of particular interest for perturbative QCD calculations, since light
quark masses can be neglected in high-energy scattering processes and gluons are massless.
Loop integrals with vanishing internal masses generally have soft and collinear divergences,
which must be regularized. The most commonly used method is dimensional regularization,
which simultaneously serves to regularize ultraviolet and infrared divergences [18–21]. We
will work in d = 4− 2ε dimensions.

Both real and imaginary part of a loop integral do in general yield contributions to
the absolute value squared of a matrix element, hence we must know both. The imaginary
part of a loop integral arises in certain kinematic regions and will be governed by the
causal +i0 from the propagators. For massless two- and three-propagator scalar loop
integrals in general dimensions d, it is easy to keep track of this infinitesimal imaginary
part.1 Following the calculation given in ref. [16], one finds that the external momentum
invariants are essentially replaced by (pi ± pj)2 → (pi ± pj)2 + i0 in the final results. This
simple rule yields no unambiguously well-defined imaginary part for the four-propagator
box integral in general dimensions d, as we will discuss in section 2 below.

The scalar box integral with one off-shell external particle (i.e. with non-vanishing
momentum squared) is especially important since it is needed for higher order (NNLO)
perturbative calculations of processes such as SIDIS, Drell-Yan, or single inclusive annihi-
lation (SIA), which all feature a single off-shell gauge boson. In ref. [22], this integral and
its imaginary part were first given up to finite order ε0 in dimensional regularization. The
result for general dimensions d written in terms of three Gauss hypergeometric functions
was obtained in refs. [23, 24]. However, the simple prescription (pi± pj)2 → (pi± pj)2 + i0
given in ref. [24] for analytic continuation of the result to all kinematic regions only applies
to the expansion up to finite order. Ref. [23, eq. (D.4)], which was used in the calculation
of DIS structure functions at NNLO [25], does not touch on the question of analytic con-
tinuation. In [16], the box integral was expanded to all orders in ε, however the branch cut
structure was also not discussed. The causal +i0 from the propagators was systematically
kept in ref. [26], but the result was only given up to finite order in dimensional regulariza-
tion. To regularize divergences occurring in kinematic limits, however, we need the full
ε-dependence of any terms divergent in these kinematic limits.

1By dimensional analysis, massless one-propagator tadpole integrals must vanish since they depend on
no mass scale.
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Figure 1. The massless scalar box diagram with one off-shell external particle carrying momentum
q. It is p2

1 = p2
2 = p2

3 = 0 and q2 6= 0. All external momenta are taken to be incoming. Drawn with
TikZ-Feynman [27].

In this paper, we independently recalculate the massless single off-shell scalar box inte-
gral for general dimensions d. We explicitly keep the causal +i0 from the propagators, such
that our results are valid for arbitrary (real) values of the kinematic variables. This allows
us to explicitly determine real and imaginary part to all orders of the ε-expansion, which
goes beyond the finite O(ε0) results of refs. [24, 26] and the Mathematica implementation
in Package-X [14]. In section 2, we calculate the internal-massless single-off shell scalar
box integral using the well-known Feynman parametrization approach and an elegant fac-
torization which allows for a trivial reduction to one-dimensional integrals. As a limiting
case our result also includes the internal-massless box integral with on-shell massless ex-
ternal particles, which is needed for direct photon production and Compton-like scattering
processes. In section 3, we perform the ε-expansion to all orders and the explicit determi-
nation of real and imaginary parts. The special cases of vanishing Mandelstam variables,
as well as several identities for the Gauss hypergeometric function, and the definition of
single-valued polylogarithms, are collected in the appendices. Additionally, we provide an
example illustrating the need of higher orders in ε of the scalar box integral for phase space
regularization in appendix D.

2 Calculating the massless single off-shell scalar box integral

The massless single off-shell scalar box integral is defined through the loop integral

D0 ≡
µ4−d

iπd/2
∫

ddl 1
[l2 + i0] [(l + p2)2 + i0] [(l + p2 + p3)2 + i0] [(l − p1)2 + i0] , (2.1)

where the external momenta are labelled as indicated by the Feynman diagram depicted in
figure 1. It is p2

1 = p2
2 = p2

3 = 0 and q2 = (p1 +p2 +p3)2 6= 0. Note that we take all external
momenta to be incoming. We have also explicitly kept the causal +i0 in the propagators,
which is necessary to determine the physical side of the branch cuts that appear in the
final result.2 The prefactor is chosen as in ref. [28].

2Here, i0, with 0 taken to be positive, is an infinitesimal imaginary part indicating on which side of the
branch cut a multivalued function should be evaluated.
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To evaluate this loop integral, we first combine the propagators into one generalized
propagator of higher power using the well-known Feynman parametrization [29, eq. (A.39)]

1
abcd

= 6
∫ 1

0
dx1 dx2 dx3 dx4

δ(1− x1 − x2 − x3 − x4)
[ax1 + bx2 + cx3 + dx4]4

. (2.2)

Next, we complete the square with respect to l and then shift the loop momentum in the
usual manner, which leads to

D0 = µ4−d
∫ 1

0
dx1 dx2 dx3 dx4 δ(1− x1 − x2 − x3 − x4)

× 1
iπd/2

∫
ddl′ 6

[l′2 + s1x1(x2 + x3) + s2x3(x1 + x4) + s3x1x3 + i0]4
, (2.3)

where we introduced the Mandelstam variables

s1 = (p1 + p2)2 , (2.4)
s2 = (p2 + p3)2 , (2.5)
s3 = (p1 + p3)2 . (2.6)

In the following, we treat all Mandelstam variables as real, but otherwise arbitrary.
Evaluating the loop integral on the second line of eq. (2.3) with the help of [29,

eq. (A.44)]
1

iπd/2
∫

ddl 1
[l2 −∆ + i0]α = (−1)αΓ(α− d/2)

Γ(α) (∆− i0)d/2−α (2.7)

results in

D0 = µ2ε Γ(2 + ε)
∫ 1

0

dx1 dx2 dx3 dx4 δ(1− x1 − x2 − x3 − x4)
[−s1x1(x2 + x3)− s2x3(x1 + x4)− s3x1x3 − i0]2+ε . (2.8)

Note that this expression is symmetric under exchanging s1 ↔ s2. To reflect this, we write
the scalar box integral as D0(s1, s2, q

2), where q2 = s1 + s2 + s3 is the squared momentum
of the off-shell external particle. To decouple the Feynman parameter integrals, which are
currently coupled via the delta function, we use the substitution

x1 = η1ξ1 , x4 = η1(1− ξ1) , (2.9)
x3 = η2ξ2 , x2 = η2(1− ξ2) . (2.10)

The Jacobian of this substitution, which was inspired by ref. [30, page 44], is η1η2. Through
the substitution, the η- and ξ-integrals factorize,

D0
(
s1, s2, q

2
)

= µ2ε Γ(2 + ε)
∫ 1

0
dη1

∫ 1

0
dη2 η

−ε−1
1 η−ε−1

2 δ(1− η1 − η2)

×
∫ 1

0
dξ1

∫ 1

0
dξ2 [−s1ξ1 − s2ξ2 − s3ξ1ξ2 − i0]−ε−2

= µ2ε Γ(2 + ε)Γ2(−ε)
Γ(−2ε)

∫ 1

0
dξ1

∫ 1

0
dξ2 [−s1ξ1 − s2ξ2 − s3ξ1ξ2 − i0]−ε−2 .

(2.11)
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Here, the delta function was used to evaluate one of the η-integrals. The remaining
η-integral thus became a representation of the Beta function, which was evaluated in terms
of Gamma functions,

B(a, b) ≡
∫ 1

0
dt ta−1(1− t)b−1 = Γ(a) Γ(b)

Γ(a+ b) . (2.12)

For the resulting integral to safely converge, we must take ε < 0.3 We will first evaluate the
integral in this area of convergence and subsequently analytically continue the end result
to larger ε.

So far, our calculation did not differ much from the way the scalar box integral was
calculated before (see e.g. ref. [26]) and was mainly presented for pedagogical reasons
and introduction of notation. We will now deviate from the usual path by factoring the
term s1s2

s3
out of the integrand. This is of course not sensible for s1s2

s3
= 0,±∞, that is

s1, s2, s3 = 0. The special cases of one or several vanishing Mandelstam variables will be
considered in appendix A. Using the identity (compare [26, eq. (19)])

(a− i0)α = (b− i0)α
(
a

b
− i0 sgn(b)

)α
, where a ∈ R , b ∈ R\{0} , α ∈ C , (2.13)

which is not completely trivial since α is not an integer, we obtain

D0
(
s1, s2, q

2
)

= µ2ε Γ(2 + ε)Γ2(−ε)
Γ(−2ε)

(
s1s2
s3
− i0

)−ε−2

×
∫ 1

0
dξ1

∫ 1

0
dξ2

[
−s3
s2
ξ1 −

s3
s1
ξ2 −

s2
3

s1s2
ξ1ξ2 − i0 sgn

(
s3
s1s2

)]−ε−2

.

(2.14)

The i0 prescription determines on which side of the branch cut the respective factors should
be evaluated if their argument is negative. The remaining integral on the second line only
depends on the two dimensionless variables

x1 ≡ −
s3
s1
, x2 ≡ −

s3
s2
, (2.15)

which is why factoring the term s1s2
s3

out of the integrand is advantageous. By substituting
ξ1 → ζ2 = x2ξ1 and ξ2 → ζ1 = x1ξ2, all dependence on the dimensionless xi is moved into
the integration boundaries,

D0
(
s1, s2, q

2
)

= Γ(2 + ε)Γ2(−ε)
Γ(−2ε)

1
s1s2

(
s3µ

2

s1s2
+ i0

)ε
I12(x1, x2) , (2.16)

where I12(x1, x2) ≡
∫ x1

0
dζ1

∫ x2

0
dζ2 [1− (1− ζ1)(1− ζ2)− i0 sgn123]−ε−2 . (2.17)

Note that we inverted the prefactor using

(a± i0)α =
(1
a
∓ i0

)−α
, where a ∈ R\{0} . (2.18)

3In the special cases of one or two (or three) vanishing Mandelstam variables ε < −1 (ε < −2) is
required.
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Additionally, we introduced the abbreviation

sgn123 ≡ sgn
(
s3
s1s2

)
. (2.19)

And furthermore, we have written the integrand in a form suggesting the substitution
ζi → 1 − ζi. Subsequently substituting ζ2 → ζ12 = 1 − ζ1ζ2 allows us to evaluate the
resulting ζ12 integral,

I12(x1, x2) =
∫ 1−x1

1
dζ1

∫ 1−x2

1
dζ2 [1− ζ1ζ2 − i0 sgn123]−ε−2

= −
∫ 1−x1

1

dζ1
ζ1

∫ 1−ζ1(1−x2)

1−ζ1
dζ12 [ζ12 − i0 sgn123]−ε−2

= 1
1 + ε

∫ 1−x1

1

dζ1
ζ1

{
[1− ζ1(1− x2)− i0 sgn123]−ε−1 − [1− ζ1 − i0 sgn123]−ε−1

}
. (2.20)

While this integrand is finite at ζ1 = 0, we must regularize the divergence at ζ1 = 0 if
we split the integral into two separate integrals. For this, we subtract and add 1 and
subsequently substitute ζ1 → ζ = 1 − ζ1(1 − x2) in the first integral and ζ1 → ζ = 1 − ζ1
in the second integral,

I12(x1, x2) = 1
1 + ε

{∫ 1−x1

1

dζ1
ζ1

(
[1− ζ1(1− x2)− i0 sgn123]−ε−1 − 1

)
−
∫ 1−x1

1

dζ1
ζ1

(
[1− ζ1 − i0 sgn123]−ε−1 − 1

)}
= 1

1 + ε

{
−
∫ 1−(1−x1)(1−x2)

x2

dζ
1− ζ

(
[ζ − i0 sgn123]−ε−1 − 1

)
+
∫ x1

0

dζ
1− ζ

(
[ζ − i0 sgn123]−ε−1 − 1

)}
. (2.21)

Splitting the first of these integrals in two, we find that the scalar box integral is given by

D0
(
s1, s2, q

2
)

= − 1
ε

Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε)

2
s1s2

(
s3µ

2

s1s2
+ i0

)ε
×
{∫ x1

0

dζ
1− ζ

(
[ζ − i0 sgn123]−ε−1 − 1

)
+
∫ x2

0

dζ
1− ζ

(
[ζ − i0 sgn123]−ε−1 − 1

)
−
∫ 1−(1−x1)(1−x2)

0

dζ
1− ζ

(
[ζ − i0 sgn123]−ε−1 − 1

)}
. (2.22)

Note that we have rewritten the Gamma functions in the prefactor such that they become
unity in the limit ε→ 0, using Γ(z + 1) = z Γ(z).

Since the result for the internal-massless single off-shell scalar box integral is com-
monly given in terms of Gauss hypergeometric functions, we will identify them here, even
though this will introduce spurious additional branch cuts. The three integrals appearing
in eq. (2.22) are of the form

I(χ) ≡
∫ χ

0

dζ
1− ζ

(
[ζ − i0 sgn123]−ε−1 − 1

)
. (2.23)

– 5 –



J
H
E
P
0
2
(
2
0
2
3
)
1
7
7

This is trivially zero if χ = 0. All three integrals have vanishing χ for s3 = 0. As mentioned
above, this special case of vanishing Mandelstam variables will be considered separately in
appendix A. The upper boundary of the third integral,

1− (1− x1)(1− x2) = −s3q
2

s1s2
, (2.24)

also vanishes if q2 = 0. We will account for this by setting the third integral to zero in case
q2 = 0. In case χ 6= 0, we can substitute ζ → χ−1ζ,

I(χ) =
∫ 1

0

dζ
1− χζ

(
[χ− i0 sgn123]−ε ζ−ε−1 − χ

)
. (2.25)

As ζ > 0, we could factor it out of the square brackets here. To split this integral into two
separate integrals, we must regularize the divergence that occurs for ζ = 1/χ if χ > 1. We
regulate it by introducing an infinitesimal imaginary part χ→ χ+ i0̃ in the denominator,
with 0̃ taken to be positive.4 Note that the end result will not depend on the regulator i0̃,
since the original integral I(χ) was not divergent for ζ = 1/χ. Proceeding as described, we
obtain

I(χ) = [χ− i0 sgn123]−ε
∫ 1

0
dζ ζ−ε−1 (1− (χ+ i0̃)ζ

)−1 − χ

∫ 1

0
dζ 1

1− (χ+ i0̃)ζ

= −1
ε

[χ− i0 sgn123]−ε 2F1
(
1,−ε, 1− ε;χ+ i0̃

)
+ ln(1− χ− i0̃) . (2.26)

Here, the first integral became a representation of the Gauss hypergeometric function
discussed in appendix B (see eq. (B.2)), while the second integral could be elementarily
evaluated in terms of a logarithm. Both hypergeometric function and logarithm are evalu-
ated on the branch cut for χ > 1. The regulator i0̃ tells us which side of these branch cuts
to choose. Also note that the prefactor of the hypergeometric function vanishes in case
χ = 0, since we assumed ε < 0 for D0 to converge.

Applying eq. (2.26) to the term in curly braces in eq. (2.22) and using a different
regulator i0̃i for each of the three integrals gives

− 1
ε

[x1 − i0 sgn123]−ε 2F1
(
1,−ε, 1− ε;x1 + i0̃1

)
− 1
ε

[x2 − i0 sgn123]−ε 2F1
(
1,−ε, 1− ε;x2 + i0̃2

)
+ 1
ε

[1− (1− x1)(1− x2)− i0 sgn123]−ε 2F1
(
1,−ε, 1− ε; 1− (1− x1)(1− x2) + i0̃3

)
+ ln(1− x1 − i0̃1) + ln(1− x2 − i0̃2) − ln

(
(1− x1)(1− x2)− i0̃3

)
. (2.27)

4Here, we write +i0̃ as an abbreviation for iη̃ and taking the limit η̃ → +0. This slightly unusual
notation is chosen in analogy to the causal +i0 originating from the propagators, where +i0 is a common
short hand notation for iη and taking the limit η → 0. The tilde marks the new regulator as an analogous
but independent limiting process. The distinction between i0 and i0̃ allows us to explicitly check that the
end result does not depend on the regulator introduced to split I(χ) into two integrals.

– 6 –



J
H
E
P
0
2
(
2
0
2
3
)
1
7
7

Figure 2. This plot shows in which kinematic regions the respective imaginary parts i0̃i of the
three logarithms in eq. (2.28) yield a contribution.

Writing the logarithms on the last line of this expression in terms of their real and imaginary
parts, we see that only the imaginary parts yield a contribution,

ln(1− x1 − i0̃1) + ln(1− x2 − i0̃2) − ln
(
(1− x1)(1− x2)− i0̃3

)
= iπ

[
− sgn

(
0̃1
)

Θ(x1 − 1) − sgn
(
0̃2
)

Θ(x2 − 1)
+ sgn

(
0̃3
)
{Θ(x1 − 1) Θ(1− x2) + Θ(1− x1) Θ(x2 − 1)}

]
. (2.28)

Here, Θ(x) is the Heaviside step function. Let us now choose the sign of the regulators
i0̃i such that the contribution of the logarithms completely cancels. The kinematic regions
in the x1x2-plane in which the respective regulators yield a contribution are depicted in
figure 2. For the right-hand side of eq. (2.28) to vanish, the regulators must satisfy

sgn
(
0̃1
) != sgn

(
0̃3
)

if x1 > 1 and x2 < 1 (yellow-green region) , (2.29)

sgn
(
0̃1
) != −sgn

(
0̃2
)

if x1 > 1 and x2 > 1 (yellow-blue region) , (2.30)

sgn
(
0̃2
) != sgn

(
0̃3
)

if x1 < 1 and x2 > 1 (blue-green region) . (2.31)

In case both x1,2 < 1 (white region), the right-hand side of eq. (2.28) vanishes independently
of the choice of regulators. Note that since these conditions only determine the relative
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signs of the regulators, we can choose the absolute sign of one regulator. Let us select
i0̃3 ≡ +i0̃ everywhere. Then, both i0̃1 and i0̃2 must change their sign in the yellow-blue
region in order to satisfy the conditions. To preserve symmetry, we let them change signs
along the dashed diagonal depicted in figure 2, such that

i0̃1 ≡ i0̃ sgn(x1 − x2) , (2.32)
i0̃2 ≡ i0̃ sgn(x2 − x1) , (2.33)
i0̃3 ≡ i0̃ . (2.34)

Combining our results, we find that the internal-massless single off-shell scalar box integral
is given by

D0
(
s1, s2, q

2
)

= 1
ε2

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s1s2

(
s3µ

2

s1s2
+ i0

)ε

×
{[
−s3
s1
− i0 sgn

(
s3
s1s2

)]−ε
2F1

(
1,−ε, 1− ε;−s3

s1
+ i0̃ sgn

(
s3
s2
− s3
s1

))

+
[
−s3
s2
− i0 sgn

(
s3
s1s2

)]−ε
2F1

(
1,−ε, 1− ε;−s3

s2
+ i0̃ sgn

(
s3
s1
− s3
s2

))

−
[
−s3q

2

s1s2
− i0 sgn

(
s3
s1s2

)]−ε
2F1

(
1,−ε, 1− ε;−s3q

2

s1s2
+ i0̃

) .
(2.35)

Remember that the term in curly braces is a function of the two variables x1 and x2 defined
in eq. (2.15). The global prefactor (. . .)ε and the prefactors [. . .]−ε of the hypergeometric
functions can be recombined by first inverting the factor in square brackets using eq. (2.18)
and subsequently applying eq. (2.13) from right to left, resulting in

D0
(
s1, s2, q

2
)

= 1
ε2

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s1s2

×
{[

µ2

−s2 − i0

]ε
2F1

(
1,−ε, 1− ε;−s3

s1
+ i0̃ sgn

(
s3
s2
− s3
s1

))

+
[

µ2

−s1 − i0

]ε
2F1

(
1,−ε, 1− ε;−s3

s2
+ i0̃ sgn

(
s3
s1
− s3
s2

))

−
[

µ2

−q2 − i0

]ε
2F1

(
1,−ε, 1− ε;−s3q

2

s1s2
+ i0̃

)}
. (2.36)

For convergence, we required ε < 0 during the calculation. For the expansion about
the physical four dimensions, the result is analytically continued to larger ε.

The result was calculated for s1, s2, s3 ∈ R\{0}. In appendix A, we will see that it
is also valid for vanishing Mandelstam variables in the sense of appropriate limits. As
discussed underneath eq. (2.24), the term on the last line vanishes for q2 = 0, since ε < 0.

– 8 –



J
H
E
P
0
2
(
2
0
2
3
)
1
7
7

Remember that in dimensional regularization kinematic limits need to be taken before
analytic continuation in ε to assure consistent results.

For the kinematic variables, the causal i0 and the regulator i0̃ specify on which side
of the occurring branch cuts the respective functions are evaluated. Remember that by
construction this result does not depend on the regulator i0̃. Hence, the individually
discontinuous imaginary parts of the hypergeometric functions must cancel each other,
and the branch cuts of the hypergeometric functions are spurious. We will see that this is
indeed the case in eq. (3.19) below.

In the region where s1, s2, q
2 < 0 and all three hypergeometric functions are away from

their branch cut, our result agrees with those found in [23, eq. (D.4)] and [16, eq. (B.10)].
The result in [24, eq. (4.36)] agrees upon application of [31, eq. (15.3.4)] to the hypergeo-
metric functions.

Expanding the hypergeometric functions in ε gives a result in terms of polylogarithms
(see eq. (B.3)). As long as one avoids the branch cuts of the polylogarithms, the analytic
continuation works via s1 → s1 + i0, s2 → s2 + i0, q2 → q2 + i0 as given in [24]. However,
treating the branch cuts of the polylogarithms by this prescription leads to inconsistent
results. Remarkably, the prescription works correctly for the result expanded up to O(ε0)
if the Abel identity [32] is applied to the dilogarithms first. Also the analytic continuation
procedure introduced in [9] and put forward in [28] only applies to the dilogarithm as it
is based on the Euler identity [32]. It is worth mentioning that all these prescriptions
for analytic continuation make use of the causal +i0 and apply to each term individu-
ally. However from eq. (2.36) it is clear that the imaginary parts of the hypergeometric
functions respectively polylogarithms are determined by a distinct regulator i0̃ and are
interdependent.

3 Epsilon expansion of the scalar box integral

The scalar box integral given in eq. (2.35) can be expressed as

D0
(
s1, s2, q

2
)

= 1
ε2

Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε)

2
s1s2

∣∣∣∣∣s3µ
2

s1s2

∣∣∣∣∣
ε

× exp
[
iπεΘ

(
− s3
s1s2

)]
D0

(
ε;−s3

s1
,−s3

s2

)
, (3.1)

where D0 abbreviates the term in curly braces. By defining

F±(ε;x) ≡ (x− i0 sgn123)−ε 2F1
(
1,−ε, 1− ε;x± i0̃

)
, (3.2)

we can write

D0(ε;x1, x2) = F±(ε;x1)+ F∓(ε;x2)−F+(ε; 1− (1− x1)(1− x2)) , (3.3)

where the upper sign choice is valid for x1 ≥ x2 and else the lower sign choice. To expand
the scalar box integral around ε = 0, we need the ε-expansion of F±(ε;x), which is per-
formed in section 3.1. Using this key ingredient, we subsequently discuss the expansion
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of D0(ε;x1, x2) in section 3.2 and of D0(s1, s2, q
2) in section 3.3. Tabulated results for

the real and imaginary parts of exp
[
iπεΘ

(
− s3
s1s2

)]
D0(ε;x1, x2) in the various kinematic

regions are given in table 1 in section 3.3.

3.1 Epsilon expansion of F±(ε; x)

To perform the ε-expansion of F±(ε;x), which was defined in eq. (3.2), we observe that
(x− i0 sgn123)−ε develops an imaginary part for x < 0, while the hypergeometric function
does so for x > 1. Hence, there are 3 regions of interest:

1. x ∈ (−∞, 0), where we need to expand (x− i0 sgn123)−ε 2F1(1,−ε, 1− ε, x),

2. x ∈ (0, 1), where we need to expand x−ε 2F1(1,−ε, 1− ε, x),

3. x ∈ (1,∞), where we need to expand x−ε 2F1
(
1,−ε, 1− ε, x± i0̃

)
.

3.1.1 Expansion for x ∈ (−∞, 0)

For x < 0, F±(ε;x) reads

F±(ε;x) = (x− i0 sgn123)−ε 2F1(1,−ε, 1− ε, x)

= eiπε sgn123 |x|−ε
(

1−
∞∑
n=1

εn Lin(x)
)

= eiπε sgn123

[
|x|−ε −

∞∑
k=0

(−ε)k

k! lnk |x|
∞∑
n=1

εn Lin(x)
]
, (3.4)

where the ε-expansion of the hypergeometric function given in eq. (B.3) was used in the
first step. Next, we substitute n→ N = n+ k and then interchange the N - and k-sum,

F±(ε;x) = eiπε sgn123

[
|x|−ε −

∞∑
N=1

εN
N−1∑
k=0

(−1)k lnk |x|
k! LiN−k(x)

]
. (3.5)

For N ≥ 2, we now introduce the single-valued polylogarithms Ln(x) discussed in ap-
pendix C by adding and subtracting (−1)N−1

N ! lnN−1 |x| ln |1− x| in the sum. This yields

F±(ε;x) = eiπε sgn123

[
|x|−ε − εLi1(x)

−
∞∑
N=2

εN
(
LN (x)− (−1)N−1

N ! lnN−1 |x| ln |1− x|
)]

= eiπε sgn123

[
1 + ln x

x− 1

∞∑
n=1

(−ε)n

n! lnn−1 |x| −
∞∑
n=2

εnLn(x)
]
. (3.6)

Note that since the single-valued polylogarithms are bounded on R, any divergences in the
kinematic variable x are explicitly contained in the logarithms.
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3.1.2 Expansion for x ∈ (0, 1)

In the area where 0 < x < 1, neither (x− i0 sgn123)−ε nor 2F1
(
1,−ε, 1− ε;x± i0̃

)
develop

an imaginary part. Following the same steps as before, we find

F±(ε;x) = x−ε 2F1(1,−ε, 1− ε, x)

= |x|−ε
(

1−
∞∑
n=1

εn Lin(x)
)

= |x|−ε − εLi1(x)−
∞∑
n=2

εn
(
Ln(x)− (−1)n−1

n! lnn−1 |x| ln |1− x|
)

= 1 + ln x

1− x

∞∑
n=1

(−ε)n

n! lnn−1 |x| −
∞∑
n=2

εnLn(x) . (3.7)

Again, any divergences in the kinematic variable are contained in the logarithms since the
single-valued polylogarithms are bounded on R.

3.1.3 Expansion for x ∈ (1,∞)

In the area where x > 1, the hypergeometric function 2F1
(
1,−ε, 1− ε, x± i0̃

)
develops an

imaginary part. To make it explicit, we employ the inversion formula given in eq. (B.11),

F±(ε;x) = x−ε2F1
(
1,−ε, 1− ε, x± i0̃

)
= |x|−ε

[
−2F1

(
1, ε, 1 + ε; 1

x

)
+ 1 + (−x∓ i0̃)ε πε

sin(πε)

]
. (3.8)

By replacing ε → −ε, we can use the ε-expansion from eq. (B.3) for the resulting hyper-
geometric function. Additionally writing the last term in terms of its real and imaginary
part, we obtain

F±(x; ε) = |x|−ε
∞∑
n=1

(−ε)n Lin
(1
x

)
+ πε cot(πε) ∓ iπε . (3.9)

The ε-expansion of the cotangent term is given by [31, eqs. (4.3.70) & (23.1.18)]

πε cot(πε) = 1− 2
∞∑
n=1

ζ2n ε
2n = 1−

∞∑
n=2

[1 + (−1)n] ζnεn , (3.10)

where ζn = ζ(n) =
∑∞
k=1 k

−n are the integer values of the Riemann zeta function. Addi-
tionally expanding |x|−ε and collecting orders of ε yields

F±(ε;x)=1− εLi1
(1
x

)
∓ iπε

−
∞∑
n=2

εn
[
(−1)n−1

n−1∑
k=0

(−1)k

k! lnk
∣∣∣∣1x
∣∣∣∣ Lin−k

(1
x

)
+ [1 + (−1)n]ζn

]
. (3.11)

Upon adding and subtracting the term (−1)n−1

n! lnn−1
∣∣∣ 1x ∣∣∣ ln ∣∣∣1− 1

x

∣∣∣, we can identify the

single-valued polylogarithms Ln
(

1
x

)
, as defined in eq. (C.6). Inverting them with the
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help of eq. (C.7), we find

F±(ε;x)= 1− εLin
(1
x

)
∓ iπε−

∞∑
n=2

εn
[
Ln(x)− (−1)n−1

n! lnn−1 |x| ln
∣∣∣∣x− 1
x

∣∣∣∣
]
. (3.12)

Organizing this expression in terms of logarithms and single-valued polylogarithms yields

F±(ε;x)= 1 + ln x

x− 1

∞∑
n=1

(−ε)n

n! lnn−1 |x| −
∞∑
n=2

εnLn(x) ∓ iπε . (3.13)

3.1.4 Representation of the expansion of F±(ε; x) on the entire real axis

Combining the results found in eqs. (3.6), (3.7), and (3.13), we can give a representation
for the ε-expansion of F±(ε;x) valid for the entire domain of x ∈ R,

F±(ε;x)= eiπε sgn123Θ(−x)F(ε;x)∓ iπεΘ(x− 1), (3.14)

where F(ε;x) ≡ 1 + ln
∣∣∣∣ x

x− 1

∣∣∣∣ ∞∑
n=1

(−ε)n

n! lnn−1 |x| −
∞∑
n=2

εnLn(x) . (3.15)

This compact expression is well suited to be used for the ε-expansion of the complete
box integral. The imaginary part is made explicit and all functions of the real variable
x are manifestly real. The complex exponential stems from (x− i0 sgn123)−ε, while the
imaginary part πεΘ(x− 1) originates from the hypergeometric function.

An important feature of the expansion of F as given in eq. (3.15) is that it is finite in
the limit x→ ±∞ in every order in ε. Using the limits of the single-valued polylogarithms
given in appendix C, we obtain

lim
x→∞

F(ε;x) = 1− 2
∞∑
n=1

ε2nζ2n , (3.16)

lim
x→−∞

F(ε;x) = 1− 2
∞∑
n=1

ε2n(21−2n − 1)ζ2n . (3.17)

By collecting the log |x| terms we can cast eq. (3.15) into the alternative form

F(ε;x) = |x|−ε + ε log |1− x| −
∞∑
n=2

εn
[

(−1)n log |1− x| logn−1 |x|
n! + Ln(x)

]
. (3.18)

From this we can read off that F(ε;x) behaves like |x|−ε near x = 0 and it diverges
logarithmically like ε ln |1 − x| near x = 1 . In the complete box integral the log |1 − x|
divergences always cancels.

3.2 Epsilon expansion of D0(ε; x1, x2)

By plugging the ε-expansion of F±(ε;x) from eq. (3.14) into eq. (3.3), it is straightforward
to obtain the ε-expansion of D0(ε;x1, x2). We must consider seven areas corresponding to
different kinematics, which are depicted in figure 3. Since D0(ε;x1, x2) is symmetric under
exchanging x1 ↔ x2, only five of these areas are distinct. There are
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Figure 3. Physical interpretation of the kinematic regions to be considered for the ε-expansion of
D0(ε;x1, x2). For DIS and Drell-Yan, the Mandelstam variables are s > 0, t < 0, and u < 0. In
the case of SIA, all Mandelstam variables are positive. The virtuality q2 of the off-shell particle is
negative for DIS and positive for both Drell-Yan and SIA.

1. DIS kinematics with x1 and x2 both positive,

2. DIS kinematics where x1 and x2 have different signs,

3. Drell-Yan kinematics with x1 and x2 both positive,

4. Drell-Yan kinematics where x1 and x2 have different signs,

5. SIA kinematics with x1 and x2 both negative.

Observing that

iπε [− sgn(x1 − x2) Θ(x1 − 1)− sgn(x2 − x1) Θ(x2 − 1) + Θ(−(1− x1)(1− x2))] = 0 ,
(3.19)

we see that the imaginary parts originating from the hypergeometric functions cancel in
all kinematic regions, as they should by construction. Hence, we obtain

D0(ε;x1, x2) =eiπε sgn123Θ(−x1)F(ε;x1) + eiπε sgn123Θ(−x2)F(ε;x2)

− eiπε sgn123Θ(−x1−x2+x1x2)F(ε;x1 + x2 − x1x2) . (3.20)
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The ε-expansion of D0 in the first region, where none of the three parts develops an
imaginary part, is purely real. The logarithmic poles at x1,2 = 1 cancel between the three
F-functions, such that

D0(ε;x1, x2) = F(ε;x1) + F(ε;x2)− F(ε;x1 + x2 − x1x2)

= 1− ε ln
∣∣∣∣ x1x2
x1 + x2 − x1x2

∣∣∣∣+ ∞∑
n=2

(−ε)n

n!

[
ln
∣∣∣∣ x1
x1 − 1

∣∣∣∣ lnn−1 |x1|

+ ln
∣∣∣∣ x2
x2 − 1

∣∣∣∣ lnn−1 |x2| − ln
∣∣∣∣ x1 + x2 − x1x2
(1− x1)(1− x2)

∣∣∣∣ lnn−1 |x1 + x2 − x1x2|
]

−
∞∑
n=2

εn [Ln(x1) + Ln(x2)− Ln(x1 + x2 − x1x2)] . (3.21)

For the order ε2 coefficient, we can use Abel’s formula (C.16), in combination with the Euler
identity (C.11) and inverted Landen identity (C.15), to reduce the number of appearing
L2 to just two,

L2(x1) + L2(x2)− L2(x1 + x2 − x1x2) = L2

(
x2(x1 − 1)

x1

)
+ L2

(
x1(x2 − 1)

x2

)
+ ζ2 ,

(3.22)

where we assumed x1, x2, (x1 +x2−x1x2) > 0. For the higher orders in ε there presumably
exists no representation with fewer than three (single-valued) polylogarithms, since only
for the dilogarithm there exists a suitable five term relation (see appendix C.3).

3.3 Epsilon expansion of D0(s1, s2, q2)

Combining eqs. (3.1) and (3.20), we see that real and imaginary part of D0(s1, s2, q
2) are de-

termined by the phase factors exp
[
iπεΘ

(
− s3
s1s2

)]
·exp [iπε sgn123Θ(−yi)], where yi = − s3si

s1s2

with si = s1, s2, q
2. We can simplify this factor to

e
iπεΘ

(
− s3

s1s2

)
· eiπε sgn123Θ(−yi) = Θ(−si) + Θ(si) eiπε . (3.23)

Therefore, e
iπεΘ

(
− s3

s1s2

)
D0(ε, x1, x2) admits for the representation

e
iπεΘ

(
− s3

s1s2

)
D0(ε, x1, x2) =

(
Θ(−s2) + Θ(s2) eiπε

)
F(ε;x1)

+
(
Θ(−s1) + Θ(s1) eiπε

)
F(ε;x2)

−
(
Θ(−q2) + Θ(q2) eiπε

)
F(ε;x1 + x2 − x1x2) . (3.24)

Hence, the imaginary part is determined by the signs of s1, s2 and q2. Explicit results for
the real and imaginary part in all areas are given in table 1. Note that the superficially
divergent terms log(1−x1) and log(1−x2) cancel between F(ε;x1,2) and F(ε;x1+x2−x1x2)
in the regions where x1,2 = 1.
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s1 s2 q2 Re
(

e
iπεΘ

(
− s3

s1s2

)
D0(ε, x1, x2)

)
Im
(

e
iπεΘ

(
− s3

s1s2

)
D0(ε, x1, x2)

)
− − − F1 + F2 − F12 0
− − + F1 + F2 − F12 cosπε −F12 sin πε
− + − F2 − F12 + F1 cosπε F1 sin πε
+ − − F1 − F12 + F2 cosπε F2 sin πε
− + + F2 + (F1 − F12) cosπε (F1 − F12) sin πε
+ − + F1 + (F2 − F12) cosπε (F2 − F12) sin πε
+ + − −F12 + (F1 + F2) cosπε (F1 + F2) sin πε
+ + + (F1 + F2 − F12) cosπε (F1 + F2 − F12) sin πε

Table 1. Real and imaginary part of eiπεΘ
(
− s3

s1s2

)
D0(ε, x1, x2) in the areas specified by the signs

of s1, s2 and q2. For compactness we introduce the abbreviations F1 ≡ F(ε;x1), F2 ≡ F(ε;x2) and
F12 ≡ F(ε;x1 + x2 − x1x2).

Combining the results listed in table 1 and eq. (3.1) we can directly infer real and
imaginary parts of the complete box integral D0(s1, s2, q

2). For completing the ε-expansion
we can employ [31, eq. (6.1.33)]

Γ(1 + ε) = exp
[
−γE ε+

∞∑
n=2

(−1)nζn εn

n

]
(3.25)

for all Gamma functions in the prefactor, where γE is the Euler-Mascheroni constant.
However, since the same factor of Gamma functions multiplies all one-loop integrals and a
similar factor is present in corresponding phase-space integrals it is often not required to
expand all of them explicitly. Expanding the term

∣∣∣ s3µ2

s1s2

∣∣∣ε introduces additional logarithmic
terms in the ε-expansion. One might albeit need to keep this term unexpanded to regularize
singular behavior in the kinematic limits s1, s2, s3 → 0. This is exemplified in appendix D.

To sum up our result, we can cast D0(s1, s2, q
2) as given in eq. (2.35) into the form

D0
(
s1, s2, q

2
)

= 1
ε2

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s1s2

∣∣∣∣∣s3µ
2

s1s2

∣∣∣∣∣
ε

×
[
(Θ(−s2) + Θ(s2)eiπε)F(ε;x1) + (Θ(−s1) + Θ(s1)eiπε)F(ε;x2)

−(Θ(−q2) + Θ(q2)eiπε)F(ε;x1 + x2 − x1x2)
]
. (3.26)

Plugging in the ε-expansion of F(ε;x) from eq. (3.15) we have an all-order ε-expansion
of D0(s1, s2, q

2) with explicit real and imaginary parts valid in the entire kinematic domain
of s1, s2, q

2. Since the term in square brackets is finite for vanishing s1,2, D0(s1, s2, q
2)

behaves like |s1,2|−1−ε in the limits s1,2 → 0. For a comprehensive discussion of the
behavior of F(ε;x) in different kinematic limiting cases we refer to section 3.1.4.
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By bringing the factor
∣∣∣ s3µ2

s1s2

∣∣∣ε into the brackets, we obtain a form analogous to eq. (2.36),

D0
(
s1, s2, q

2
)

= 1
ε2

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s1s2

×
[(

µ2

−s2 − i0

)ε ∣∣∣∣s3
s1

∣∣∣∣ε F(ε;−s3
s1

)
+
(

µ2

−s1 − i0

)ε ∣∣∣∣s3
s2

∣∣∣∣ε F(ε;−s3
s2

)

−
(

µ2

−q2 − i0

)ε ∣∣∣∣∣s3q
2

s1s2

∣∣∣∣∣
ε

F

(
ε;−s3q

2

s1s2

)]
. (3.27)

Eqs. (2.36) and (3.27) differ only by the replacement 2F1
(
1,−ε, 1− ε;x± i0̃

)
→

|x|ε F(ε;x). This can be understood as replacing the hypergeometric function by a suitable
single-valued version. Hence, in contrast to eq. (2.36), the new eq. (3.27) does no longer
suffer from spurious branch cuts.

4 Conclusion

We have revisited the massless scalar box integral with one external off-shell particle, keep-
ing the causal +i0 throughout the calculation. The main new result is extending the explicit
determination of real and imaginary parts beyond finite order in the dimensional regulariza-
tion parameter epsilon in all kinematic regions. The epsilon expansion is expressed to all
orders in terms of newly introduced single-valued polylogarithms. This makes our result
free of the spurious branch cuts common to representations using ordinary polylogarithms.
The single-valued polylogarithms are bounded, such that any divergent behavior in kine-
matic limits is contained in logarithmic terms. Since we have determined the box integral
in all kinematic regions, our result is suitable for all kinds of calculations in higher orders of
perturbation theory, where imaginary parts or higher orders in epsilon become important.

The calculation method put forward in this work can be generalized to the scalar box
integral with two non-adjacent end points off the light cone. A corresponding paper is in
preparation [33].
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A Scalar box integral in case of vanishing Mandelstam variables

In this appendix, we evaluate the internal-massless single off-shell scalar box integral in
case one or several Mandelstam variables vanish, since the result calculated in the main
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text was obtained for non-vanishing Mandelstam variables. For this, we go back to D0 as
given in eq. (2.11) and explicitly set the vanishing Mandelstam variables to zero. We will
find that all cases agree with appropriate limits of the general result.

A.1 s1 = 0 or s2 = 0

Since the scalar box integral is symmetric under exchanging s1 ↔ s2, we can without loss
of generality consider s1 = 0. In this case, the integrals in eq. (2.11) factorize,

D0
(
s1 = 0, s2, q

2 = s2 + s3
)

= µ2ε Γ(2 + ε)Γ2(−ε)
Γ(−2ε)

∫ 1

0
dξ1

∫ 1

0
dξ2 [ξ2 (−s2 − s3ξ1 − i0)]−ε−2

= 2
ε

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε) µ2ε

∫ 1

0
dξ1 [−s2 − s3ξ1 − i0]−ε−2 .

(A.1)

Here the ξ2-integration was performed elementarily. Note that ε < −1 was imposed for
convergence. While the ξ1-integral can in principle be evaluated elementarily as well, first
substituting ξ1 → ζ = −s2 − s3ξ1 is useful for discussing the additional limits q2, s2 = 0.
Splitting the resulting integral into two separate integrals, we obtain

D0
(
s1 = 0, s2, q

2 = s2 + s3
)

= 1
ε

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s3
µ2ε

×
{∫ −s2

0
dζ [ζ − i0]−ε−2 −

∫ −q2

0
dζ [ζ − i0]−ε−2

}

= 1
ε(1 + ε)

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s3

×
{

1
s2

(
µ2

−s2 − i0

)ε
− 1
q2

(
µ2

−q2 − i0

)ε}
. (A.2)

Note that the second integral and thus the second term on the last line vanishes for q2 =
s2 + s3 = 0. The result can be analytically continued to values of ε beyond the original
area of convergence.

Let us compare this result to the limit s1 → 0 of the general result as given eq. (2.36).
The limit of the first and last term in the general result are of the form

lim
s1→0

1
s1

2F1

(
1,−ε, 1− ε; a

s1
± i0̃

)
, where a ∈ R\{0} . (A.3)

To evaluate this limit, we first apply the inversion formula for the hypergeometric function
derived in eq. (B.11) in the appendix, which yields

eq. (A.3) = lim
s1→0

1
s1

{
−2F1

(
1, ε, 1 + ε; s1

a

)
+ 1 +

(−a
s1
∓ i0̃

)ε πε

sin(πε)

}
. (A.4)

Imposing the condition ε < −1, which is needed for convergence in case s1 = 0, the second
term vanishes. The remaining limit can be evaluated using L’Hôpital’s rule,

eq. (A.3) = lim
s1→0

{
− 1
a

d
dx 2F1(1, ε, 1 + ε;x)

∣∣∣∣
x= s1

a

}
= − 1

a

ε

1 + ε
. (A.5)
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The derivative of the hypergeometric function was read off the series expansion given in
eq. (B.1). The second term in the general result also vanishes for s1 → 0 since ε < −1.
Combining everything, we find that taking the limit s1 → 0 of the general result given in
eq. (2.36) is equivalent to setting s1 = 0 in eq. (2.11).

A.2 s1 = 0 and s2 = 0

In this case, we set s2 = 0 in eq. (A.1) and obtain

D0
(
s1 = 0, s2 = 0, q2 = s3

)
= − 1

ε(1 + ε)
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
2
s2

3

(
µ2

−s3 − i0

)ε
. (A.6)

This is identical to the expression obtained by taking the limit s2 → 0 of eq. (A.2), i.e.
taking the limits s1, s2 → 0 of eq. (2.36).

A.3 s3 = 0

In this case, eq. (2.11) reads

D0
(
s1 = 0, s2, q

2 = s2
)

= µ2ε Γ(2 + ε)Γ2(−ε)
Γ(−2ε)

∫ 1

0
dξ1

∫ 1

0
dξ2 [−s1ξ1 − s2ξ2 − i0]−ε−2

= 1
ε

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s2
µ2ε

×
∫ 1

0
dξ1

{
[−s1ξ1 − i0]−ε−1 − [−s1ξ1 − s2 − i0]−ε−1

}
, (A.7)

where the ξ2-integration was performed elementarily. Note that ε < −1 was imposed for
convergence. Next, we substitute ξ1 → ζ = −s1ξ1 in the first term and ξ1 → ζ = −s1ξ1 − s2
in the second term, and subsequently split the latter integral into two separate integrals,

D0
(
s1, s2, q

2 = s1 + s2
)

= 1
ε

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s1s2

µ2ε
{
−
∫ −s1

0
dζ [ζ − i0]−ε−1

−
∫ −s2

0
dζ [ζ − i0]−ε−1 +

∫ −q2

0
dζ [ζ − i0]−ε−1

}
. (A.8)

Note that the last integral vanishes for q2 = 0. Evaluating the remaining ζ-integrals yields

D0
(
s1, s2, q

2 = s1 + s2
)

= 1
ε2

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s1s2

×
{(

µ2

−s1 − i0

)ε
+
(

µ2

−s2 − i0

)ε
−
(

µ2

−q2 − i0

)ε}
, (A.9)

which can be analytically continued beyond ε < −1 which was originally required for
convergence. One can easily see that this result is equivalent to setting s3 = 0 in the
general result as given in eq. (2.36), since the resulting hypergeometric functions evaluate
to 2F1(1,−ε, 1− ε; 0) = 1 according to eq. (B.1).
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A.4 s1 = s3 = 0 or s2 = s3 = 0

As above, we can without loss of generality consider s1 = s3 = 0. In this case, eq. (2.11)
yields

D0
(
s1, s2, q

2 = s1 + s2
)

= µ2ε Γ(2 + ε)Γ2(−ε)
Γ(−2ε)

∫ 1

0
dξ1

∫ 1

0
dξ2 [(−s2 − i0)ξ2]−ε−2

= 1
ε

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

2
s2

2

(
µ2

−s2 − i0

)ε
. (A.10)

As in the previous cases, one has to impose ε < −1 for convergence before analytically
continuing to larger ε.

Let us compare this expression to the corresponding limit of the general result as given
in eq. (2.36). For s3 = 0, the hypergeometric functions evaluate to 2F1(1,−ε, 1− ε; 0) = 1.
The limit remaining to be taken is

lim
s1,s3→0

D0
(
s1, s2, q

2
)

= 1
ε2

Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε)

2
s2

×

 lim
s1→0

[
µ2

−s2−i0

]ε
−
[

µ2

−s1−s2−i0

]ε
s1

+ lim
s1→0

[
µ2

−s1−i0

]ε
s1

 . (A.11)

Imposing the condition ε < −1, which is needed for convergence in case s1 = 0, the second
term vanishes. Applying L’Hôpital’s rule to the first limit, we find that the limit s1, s3 → 0
of the general result given in eq. (2.36) is equivalent to setting s1 = s3 = 0 in eq. (2.11).

A.5 s1 = s2 = s3 = 0

Setting all Mandelstam variables to 0 in eq. (2.11) and requiring ε < −2 for convergence
yields

D0
(
s1 = 0, s2 = 0, q2 = 0

)
= µ2ε Γ(2 + ε)Γ2(−ε)

Γ(−2ε)

∫ 1

0
dξ1

∫ 1

0
dξ2 [0]−ε−2 = 0 . (A.12)

This integral also has to vanish since the integrand has a mass dimension of −ε − 2, but
does not depend on any mass scale. Taking the limit s1,2,3 → 0 of the general result given
in eq. (2.36) leads to the same conclusion.

B Gauss hypergeometric function 2F1(1,−ε, 1− ε; z)

For |z| < 1 the Gauss hypergeometric function is defined by the series [31, eq. (15.1.1)]

2F1(a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n! , (B.1)

where (a)n = Γ(a+n)
Γ(a) is the Pochhammer symbol. It is analytically continued by the integral

representation [31, eq. (15.3.1)]

2F1(a, b, c; z) ≡ Γ(c)
Γ(b) Γ(c− b)

∫ 1

0
dt tb−1 (1− t)c−b−1 (1− zt)−a , (B.2)

where Re(c) > Re(b) > 0 , z ∈ C\R≥1 .
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Note that the integral may be ill-defined for z > 1, since in this case the term (1− zt)
changes sign within the range of integration. This change of sign can, in general, give rise
to a discontinuity or branch cut. In the following, we discuss selected properties (including
the branch cut structure) of the specific hypergeometric function 2F1(1,−ε, 1− ε; z) which
appears in the internal-massless single off-shell scalar box integral.

B.1 Epsilon expansion of 2F1(1,−ε, 1− ε; z)

The ε-expansion of this hypergeometric function was derived in ref. [16, eq. (B.28)],

2F1(1,−ε, 1− ε; z) = 1−
∞∑
n=1

εn Lin(z) . (B.3)

Since the polylogarithms Lin(z) have a branch cut along the positive real axis greater than
1 [32], the hypergeometric function also has a branch cut there. The branch cut structure
will be discussed in section B.3.

B.2 Inversion relation for 2F1(1,−ε, 1− ε; z)

An equation relating the hypergeometric function 2F1(1,−ε, 1− ε; z) to another hypergeo-
metric function with argument 1

z is useful because it allows us to transform the argument
away from the branch cut. To find this inversion relation, we write the hypergeometric
function in terms of its ε-expansion and invert the appearing polylogarithms using the
inversion relation for the polylogarithm given in ref. [32, eq. (7.20)],

Lin(z) + (−1)n Lin
(1
z

)
= − lnn(−z)

n! + 2
bn/2c∑
k=1

lnn−2k(−z)
(n− 2k)! Li2k(−1) , (B.4)

which holds for z ∈ C \ [0,∞).5 Plugging the second term on the left into eq. (B.3) leads
to the closely related ε-expansion of 2F1

(
1, ε, 1 + ε; 1

z

)
, while plugging the second term on

the right into eq. (B.3) leads to the series expansion of an exponential function, such that

2F1(1,−ε, 1− ε; z) + 2F1

(
1, ε, 1 + ε; 1

z

)

= 1 + (−z)ε − 2
∞∑
n=1

εn
bn/2c∑
k=1

lnn−2k(−z)
(n− 2k)! Li2k(−1) . (B.5)

To simplify the term on the second line of this expression, we interchange the two sums
and subsequently shift the summation index to N = n− 2k, such that the N -sum becomes
an exponential function,

∞∑
n=1

εn
bn/2c∑
k=1

lnn−2k(−z)
(n− 2k)! Li2k(−1) =

∞∑
k=1

Li2k(−1) ε2k
∞∑
N=0

(ε ln(−z))N

N !︸ ︷︷ ︸
=(−z)ε

. (B.6)

5For reference, the corresponding equation on the branch cut, i.e. for x ∈ (0,∞), is

Lin(x± i0) + (−1)n Lin
( 1
x± i0

)
= − lnn(x)

n! + 2
bn/2c∑
k=1

ζ2k
lnn−2k(x)
(n− 2k)! ± iπ lnn−1(x)

(n− 1)! .
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Thus, we obtain

2F1(1,−ε, 1− ε; z) + 2F1

(
1, ε, 1 + ε; 1

z

)
= 1 + (−z)ε

[
1− 2

∞∑
k=1

Li2k(−1) ε2k
]
. (B.7)

The remaining polylogarithm constants can be written as [32, eq. (7.29)]

Li2k(−1) = −(−1)k−1
(
22k−1 − 1

)
B2k

π2k

(2k)! , (B.8)

where B2k are the Bernoulli numbers, which are given by the coefficients in the following
series expansion6

t

et − 1 =
∞∑
n=0

Bn
tn

n! . (B.9)

Using this, we find that the term in square brackets is the series representation of πε csc(πε)=
πε/ sin(πε) [31, eq. (4.3.68)],

1− 2
∞∑
r=1

Li2r(−1) ε2r = 1 +
∞∑
r=1

(−1)r−1 2
(
22r−1 − 1

)
B2r

(2r)! (πε)2r = πε

sin(πε) . (B.10)

Hence the inversion formula for the hypergeometric function is

2F1(1,−ε, 1− ε; z) + 2F1

(
1, ε, 1 + ε; 1

z

)
= 1 + (−z)ε πε

sin(πε) . (B.11)

B.3 Branch cut structure of 2F1(1,−ε, 1− ε; z)

The hypergeometric function 2F1(1,−ε, 1− ε; z) has a branch cut along the positive real
axis starting at 1. This is explicitly seen through the inversion formula derived in eq. (B.11).
If we take x ∈ R>1 and i0 as an infinitesimal imaginary part, then we have

2F1(1,−ε, 1− ε;x± i0) = − 2F1

(
1, ε, 1 + ε; 1

x

)
+ 1 + (−x∓ i0)ε πε

sin(πε) . (B.12)

Note that the imaginary part could be dropped in the hypergeometric function on the
right-hand side since the function is well-defined for arguments 1/x < 1. Explicitly writing
the factor (−x∓ i0)ε in terms of its real and imaginary part, we obtain

2F1(1,−ε, 1− ε;x± i0) = − 2F1

(
1, ε, 1 + ε; 1

x

)
+ 1 + πε cot(πε)xε ∓ iπε xε . (B.13)

C Single-valued polylogarithms

C.1 Single-valued polylogarithms in the literature

There are several definitions of so called single-valued polylogarithms in the literature. Their
common feature is that they do not have branch cuts opposed to regular polylogarithms.
Depending on the intended use, different versions proof themselves to be most suitable [34].

6Note that this modern definition of the Bernoulli numbers differs slightly from the older definition given
in ref. [32, eq. (7.23)], the relation cited in eq. (B.8) was adjusted accordingly.
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Bloch and Wigner devised an important version of a single-valued dilogarithm [35]

D2(z) = Im [Li2(x)] + arg(1− z) ln |z| , (C.1)

defined on C \ {0, 1}. This was generalized to polylogarithms by Ramakrishnan [36]. With
a slight modification for odd n due to Wojtkowiak [37] and the notation Rn = Re / Im if n
is odd / even, his definition reads

Dn(z) = Rn

[
n−1∑
k=0

(−1)k lnk |z|
k! Lin−k(z)− (−1)n lnn |z|

2n!

]
. (C.2)

Similarly Zagier proposed [38, eq. (33)]

Pn(z) = Rn

[
n−1∑
k=0

2kBk

k! lnk |z|Lin−k(z)− 2n−1Bn

n! lnn |z|
]
. (C.3)

Both are single-valued real-analytic functions from C\{0, 1} to R. Zagier’s version satisfies
the functional equations of the polylogarithm in a clean fashion without product terms.
However, both Ramakrishnan’s and Zagier’s functions are identically zero on R for even n.
Hence, they are not suitable for our purpose.

Also in an attempt to get rid of product terms in the functional equations, Lewin
defined his version of polylogarithms by [39, eq. (3.19)]

Ln(x) =
n−1∑
k=0

(−1)k

k! lnk |x|Lin−k(x) + (−1)n−1

n! lnn−1 |x| ln(1− x) (C.4)

for x < 1, as a generalization of Rogers’ dilogarithm L2(x) [40, eq. (1)]. They are related
to Kummer’s functions [41, p. 330] Λn(x) =

∫ x
0 dt lnn−1 |t|

1+t by [39, eq. (3.18)]

Ln(x) = (−1)n

(n− 1)! Λn(−x) + (−1)n−1

n! lnn−1 |x| ln(1− x) . (C.5)

Kummer’s functions are real-valued for real arguments, which makes them single-valued
polylogarithms predating Bloch and Wigner’s construction by well over a century. We
observe from eq. (C.5) that Ln(x) can be continued to a single-valued function for x > 1
by replacing log(1− x)→ log |1− x| in definition (C.4).

C.2 Definition and basic properties of continuous single-valued polylogarithms

We define for n ∈ N≥2 and real x a version of single-valued polylogarithms by

Ln(x) =
n−1∑
k=0

(−1)k

k! lnk |x|Lin−k(x) + (−1)n−1

n! lnn−1 |x| ln |1− x| . (C.6)

For x > 1 the polylogarithms are taken on their principal branch, which is inherited from
the principal branch of the logarithm, i.e. Lin(x) ≡ Lin(x− i0). As a result we have a
function of a real variable x with the following properties:
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Figure 4. Plots of the single-valued polylogarithms defined in eq. (C.6), on the left for even n, on
the right for odd n.

(a) Ln(x) is single-valued, i.e. there is no branch cut and no imaginary part, in contrast
to Lin(x).

(b) Ln(x) is continuous for all x ∈ R.

(c) Ln(x) is bounded on R, in contrast to Lin(x).

(d) Ln(x) satisfies clean versions of the functional equations of Lin(x), i.e. without prod-
uct terms, as for Lewin’s and Zagier’s functions.

These properties make the function Ln(x) well-suited for various applications, where one
is interested in having a well-behaved version of polylogarithms with real arguments. Plots
of the first few single-valued polylogarithms are shown in figure 4.

The qualitative behaviour of the functions is different for even and odd n. Here,
ζn = ζ(n) =

∑∞
k=1 k

−n are the integer values of the Riemann zeta function.

For even n: Ln(x) is monotonously increasing with Ln(−∞) = 2(21−n − 1)ζn and
Ln(∞) = 2ζn. Special values are Ln(−1) = (21−n − 1)ζn, Ln(0) = 0, Ln(1) = ζn.
These functions are discontinuous at infinity, meaning Ln(∞) 6= Ln(−∞). Therefore
functional equations mapping infinity to 0 or 1 will be discontinuous at those points.

For odd n: it is Ln(−∞) = 0, Ln(x) is decreasing in (−∞,−1) to a minimum value
of Ln(−1) = (21−n − 1)ζn, increases in (−1, 1), with Ln(0) = 0, to a maximum of
Ln(1) = ζn and monotonously falls in (1,∞) to Ln(∞) = 0. Since Ln(∞) = Ln(−∞)
these functions are continuous at infinity. Therefore functional equations mapping
infinity to 0 or 1 are continuous.

For both odd and even n, Ln(x) is real analytic on R\{0, 1}. At x = 0 its derivative
diverges logarithmically, at x = 1 it is (n− 2)-times differentiable, the (n− 1)th derivative
diverges logarithmically at this point.

C.3 Functional equations of continuous single-valued polylogarithms

The functional equations satisfied by single-valued polylogarithms are inherited from the
corresponding polylogarithms [32]. Single-valued polylogarithms obey these equations in
a cleaner fashion, where all product terms vanish. There are equations satisfied for all n
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and additional identities for small values of n. We explicitly give the identities for di- and
trilogarithm, identities for higher order polylogarithms can be found in [32, 39].

C.3.1 Equations of all single-valued polylogarithms

For all n there is an inversion relation and a duplication formula.

(i) Inversion relation:

Ln(x) + (−1)nLn
(1
x

)
=


0 for odd n ,

2ζn for even n and x > 0 ,
2(21−n − 1)ζn for even n and x < 0 .

(C.7)

Alternatively we can write this in the suggestive form

Ln(x) + (−1)nLn
(1
x

)
= Ln(sgn(x)∞) . (C.8)

(ii) Duplication formula:

Ln(x) + Ln(−x)− 21−nLn
(
x2
)

= 0 . (C.9)

C.3.2 Equations of the single-valued dilogarithm

For the single-valued dilogarithm, defined as

L2(x) = Li2(x) + ln |x| ln(1− x)− 1
2 ln |x| ln |1− x| , (C.10)

there is the richest structure. We have identities connecting the arguments x, 1− x, x
x−1 ,

1
x ,

1
1−x and 1 − 1

x . Additionally there is the famous 2-variable 5-term relation discovered
independently by Spence [42, p.9] and Abel [43, XIV.(9)]. All discontinuities in these
identities are induced by the mapping of the discontinuity at infinity.

(i) Euler identity:

L2(x) + L2(1− x) = ζ2 . (C.11)

(ii) Landen identity:

L2(x) + L2

(
x

x− 1

)
=
{

0 for x < 1 ,
3ζ2 for x > 1 .

(C.12)

(iii) Inversion identity:

L2(x) + L2

(1
x

)
=
{
−ζ2 for x < 0 ,
2ζ2 for x > 0 .

(C.13)

(iv) Inverted Euler identity:

L2(x)− L2

( 1
1− x

)
=
{
−ζ2 for x < 1 ,
2ζ2 for x > 1 .

(C.14)
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(v) Inverted Landen identity:

L2(x)− L2

(
1− 1

x

)
=
{
−2ζ2 for x < 0 ,
ζ2 for x > 0 .

(C.15)

(vi) Abel identity:

L2(x) + L2(y) + L2

( 1− x
1− xy

)
+ L2(1− xy) + L2

( 1− y
1− xy

)
= ±3ζ2 , (C.16)

where the sign on the right is negative if 1− xy < 0 and x, y < 0, else positive.

C.3.3 Equations of the single-valued trilogarithm

Besides the inversion relation, the single-valued trilogarithm, defined as

L3(x) = Li3(x)− ln |x|Li2(x)− 1
2 ln2 |x| ln(1− x) + 1

6 ln2 |x| ln |1− x| , (C.17)

satisfies a single-variable identity connecting three terms and a three-variable 22 term
relation discovered by Goncharov [44]. From the latter there follow a plethora of two
variable identities as special cases. Since the single-valued trilogarithm is continuous at
infinity, these identities are continuous.

(i) Inversion relation:

L3(x)− L3

(1
x

)
= 0 . (C.18)

(ii) Landen identity:

L3(x) + L3(1− x) + L3

(
x

x− 1

)
= ζ3 . (C.19)

(iii) Goncharov identity:

L3(xyz) +
⊕

Cyc(x,y,z)

[
L3(x)− L3(xy) + L3

(
x(1− y)
x− 1

)
+ L3

(
y(1− x)
y − 1

)

+ L3

( 1− x
1− xyz

)
+ L3

(
xy(1− z)
1− xyz

)
− L3

(
x(1− y)(1− z)

(x− 1)(1− xyz)

)]
= 3ζ3 ,

(C.20)

where cyclic summation for a function f(x, y, z) is defined as

⊕
Cyc(x,y,z)

f(x, y, z) = f(x, y, z) + f(y, z, x) + f(z, x, y) . (C.21)
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

∗

Figure 5. NNLO contribution to qq̄ → γ∗ from interference of box and tree-level amplitudes.
There are three different boxes and two different tree-level diagrams for this process.

D Example: regularizing kinematic limits for Drell-Yan differential in
rapidity

In this appendix, we illustrate the regularization of kinematic divergences occurring in the
box integral using the Drell-Yan process differential in momentum transfer Q2 and rapidity
y at O(αα2

s) as an example. This process was first calculated to NNLO in [45] using the
reversed unitarity method. Instead, for the purpose of our example, we consider the NNLO
calculation using the traditional treatment of the phase space integral as was done for the
NLO calculation in [46]. We will explicitly see that orders beyond ε0 of D0 are required
and the full ε-dependence of any terms divergent in the kinematic limit is needed here. To
illustrate these points it is sufficient to look at the contribution to dσ

dQ2dy from the quark-
antiquark process. At NNLO the box integral appears through the interference term of
one-loop and tree level diagrams for qq̄ → γ∗g, which are depicted in figure 5.

The two particle phase space in d = 4 − 2ε dimensions is given by (see eqs. (79) and
(80) in [46])

dPS2 = 1
8π

( 4π
Q2

)ε zε(1− z)1−2ε

Γ(1− ε)

∫ 1

0
dy y−ε(1− y)−ε , (D.1)

with

s = Q2

z
, t = −Q

2

z
(1− z)(1− y) , u = −Q

2

z
(1− z)y . (D.2)

For simplicity, we only perform the regularization for y → 1 in the following. Treatment
of y → 0 and z → 1 would be analogous. The relevant part of the phase space in the limit
y → 1 is (1− y)−ε. Calculating the interference terms of the type depicted in figure 5, we
find that the scalar box integral contributes through

(i) (1− y)−εD0
(
Q2

z ,−
Q2

z (1− z)(1− y), Q2
)
f1(y, ε) ,

(ii) (1− y)−εD0
(
Q2

z ,−
Q2

z (1− z)y,Q2
)
f2(y, ε) ,

(iii) (1− y)−1−εD0
(
Q2

z ,−
Q2

z (1− z)y,Q2
)
f3(y, ε) ,

(iv) (1− y)−εD0
(
−Q2

z (1− z)y,−Q2

z (1− z)(1− y), Q2
)
f4(y, ε) ,
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where the fi are functions finite in the limit y → 1 order by order in ε. The behavior of
the scalar box functions D0 for y → 1 can be obtained from eq. (3.26). We find

D0(s, t,Q2) ∼ 1
st

∣∣∣∣∣uµ2

st

∣∣∣∣∣
ε [

F

(
ε;−u

s

)
+ eiπε F

(
ε;−u

t

)
− eiπε F

(
ε;−uQ

2

st

)]

∼ (1− y)−1−ε
[
F(ε; (1− z)y) + eiπε F

(
ε;− y

1− y

)
− eiπε F

(
ε;− yz

1− y

)]
,

(D.3)

where ∼ means that we dropped factors non-singular for y → 1. In the limit y → 1 the
argument of the first F stays finite, for the latter two the argument tends to −∞. According
to eq. (3.17), F is finite order by order in ε in this case. Hence, we can write

D0(s, t,Q2) = (1− y)−1−εAst(y) , (D.4)

where Ast(y) collects all factors which stay finite in the limit y → 1. Similarly,

D0(t, u,Q2) ∼ 1
tu

∣∣∣∣∣sµ2

tu

∣∣∣∣∣
ε [

F

(
ε;−s

t

)
+ F

(
ε;− s

u

)
− eiπε F

(
ε;−sQ

2

tu

)]

∼ (1− y)−1−ε
[
F

(
ε; 1

(1− z)(1− y)

)
+ F

(
ε;− 1

(1− z)y

)
−eiπε F

(
ε;− 1

(1− z)2y(1− y)

)]
, (D.5)

where again the bracket is finite for y → 1, since F stays finite if its argument tends to ±∞
(compare eqs. (3.16) and (3.17)). Hence, analogous to eq. (D.4)

D0(t, u,Q2) = (1− y)−1−εAtu(y) . (D.6)

For D(s, u,Q2) we obtain

D(s, u,Q2) ∼ 1
su

∣∣∣∣∣ tµ2

su

∣∣∣∣∣
ε [

F

(
ε;− t

s

)
+ eiπε F

(
ε;− t

u

)
− eiπε F

(
ε;− tQ

2

su

)]

∼ (1− y)ε
[
F(ε; (1− z)(1− y)) + eiπε F

(
ε;−1− y

y

)
−eiπε F

(
ε;−(1− y)z

y

)]
. (D.7)

In the limit y → 1 the arguments of all three F functions become zero. From eq. (3.18) we
infer that for F̃(ε;x) = F(ε;x) − |x|ε the limit limx→0

F̃(ε;x)
x is finite order by order in ε.

Therefore, we can write

D(s, u,Q2) ∼ (1− z)−ε + eiπεyε(1− z−ε)

+ (1− y)ε
[
F̃(ε; (1− z)(1− y)) + eiπε F̃

(
ε;−1− y

y

)
− eiπε F̃

(
ε;−(1− y)z

y

)]
. (D.8)

Note that the term in square brackets stays finite in the limit y → 1 even when divided by
(1− y) and hence

D(s, u,Q2) = Asu(y) + (1− y)1+εBsu(y) , (D.9)

with both Asu(y) and Bsu(y) finite in the limit y → 1 order by order in ε.
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To convert the singular behavior for y → 1 into poles in ε, which is required to combine
real and virtual corrections ensuring cancellation of infrared poles, we use the expansion
(see e.g. eq. (110) in [46] or eq. (69) in [47])

(1− y)−1−kε = − 1
kε
δ(1− y) +

∞∑
n=0

(−kε)n

n!

[ lnn(1− y)
1− y

]
+
, (D.10)

where the plus distribution is defined by∫ 1

0
dy f(y) [g(y)]+ ≡

∫ 1

0
dy [f(y)− f(1)] g(y) . (D.11)

Using eqs. (D.4), (D.6), and (D.9), we find for the four types of contributions

(i) (1− y)−εD0(s, t,Q2) =
(
− 1

2ε δ(1− y) +
∑∞
n=0

(−2ε)n

n!

[
lnn(1−y)

1−y

]
+

)
Ast(y) f1(y) ,

(ii) (1− y)−εD0(s, u,Q2) =
(∑∞

n=0
(−ε)n

n! logn(1− y)
)

(Asu(y) + (1− y)Bsu(y)) f2(y) ,

(iii) (1− y)−1−εD0(s, t,Q2) =
(
−1
ε δ(1− y) +

∑∞
n=0

(−ε)n

n!

[
lnn(1−y)

1−y

]
+

)
Asu(y) f3(y)

+Bsu(y) f3(y) ,

(iv) (1− y)−εD0(t, u,Q2) =
(
− 1

2ε δ(1− y) +
∑∞
n=0

(−2ε)n

n!

[
lnn(1−y)

1−y

]
+

)
Atu(y) f4(y) .

We see that the order ε1 of the box integral contributes to the order ε0 of the full result, since
the 1

ε -poles generated by eq. (D.10) multiply the order ε1 of the functions Ast(y), Asu(y),
and Atu(y). Hence, it is required to perform the ε-expansion of the box integral to one
order higher than needed if no regularization would be required. In the case of multiple
regularizations, e.g. for y, z → 1 as in eq. (111) of [46], multiple poles multiply the box
integral, requiring knowledge of the box integral to even higher orders in ε. Furthermore
it was crucial to sum up any terms of the box integral singular in the kinematic limit to
all orders, i.e. summing up terms of the form εn logn(1− y) to (1− y)−ε. This changed 1

ε

to 1
2ε in (i) and (iv).
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