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The angle γ of the standard CKM unitarity triangle can be determined from tree-level B-meson decays 
essentially without hadronic uncertainties. We calculate the second-order electroweak corrections for 
the B → Dπ modes and show that their impact on the determination of γ could be enhanced by 
an accidental cancellation of poorly known hadronic matrix elements. However, we do not expect the 
resulting shift in γ to exceed 

∣∣δγ Dπ/γ
∣∣ �O

(
10−4

)
.
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1. Introduction

The Cabibbo–Kobayashi–Maskawa (CKM) angle γ ≡
arg(−V ud V ∗

ub/V cd V ∗
cb) can be extracted from B → D K and B →

Dπ decays that receive contributions only from tree operators [1]. 
The absence of penguin contributions and the fact that all relevant 
hadronic matrix elements can be obtained from data makes this 
determination theoretically extremely clean, thus providing a stan-
dard candle for the search for physics beyond the standard model 
(SM).

The sensitivity to γ arises from the interference of b → cūq
and b → uc̄q decay amplitudes (see Fig. 1), which have a relative 
weak phase γ . Here, q denotes either a strange or a down quark. 
The quark-level transitions with q = s mediate the B− → D0 K −
and B− → D̄0 K − decays, whereas the transitions with q = d in-
duce the B− → D0π− and B− → D̄0π− decays. In both cases the 
D0 and D̄0 mesons can decay into a common final state f , lead-
ing to the interference of the two decay channels. Several variants 
of this method have been formulated, distinguished by the final 
state f [2–7]. Alternatively, one can also use decays of neutral B0

or B0
s mesons [8,9], multibody B decays [10–13], and D∗ or D∗∗

decays [14,15] (see also the reviews in [16]).
Whereas in most analyses γ has been extracted only from the 

B → D K modes, the LHCb Collaboration recently included also the 
B → Dπ modes in their full combination [17,18]. The sensitivity 
to γ of these modes is smaller than that of the B → D K modes, 
due to a smaller interference term; this effect is, however, partially 
compensated by the larger B → Dπ branching ratio.
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Fig. 1. Tree contributions (with single W exchange) that mediate b → cūd (left) and 
b → uc̄d (right) quark-level processes, which lead to B− → D0π− and B− → D̄0π−
decays, respectively.

The extraction of γ from tree-level decays suffers from various 
uncertainties. Some of them can be reduced once more statistics 
becomes available, for instance, those related to a Dalitz-plot anal-
ysis [6,19–21]. Other sources of reducible uncertainties are D–D̄
mixing and, for final states with a K S , also K –K̄ mixing. Both of 
these effects can be taken into account by measuring the mix-
ing parameters and appropriately modifying the expressions for 
the decay amplitudes [22–25]. In a similar manner, the effects of 
nonzero ��s can be included into the γ extraction from untagged 
Bs → Dφ decays [26]. It is also possible to allow for CP violation in 
the D-meson decays [17,27–30]. The effects of CP violation in kaon 
mixing have recently been discussed in [31]. Finally, the impact 
on γ of new-physics contributions to tree-level Wilson coefficients 
has been estimated in [32].

As shown in [33], the first irreducible theory error on the de-
termination of γ arises from higher-order electroweak corrections. 
It has been calculated for the B → D K modes, resulting in an up-
per bound on the shift in γ of δγ D K /γ �O(10−7) [33]. The shift 
due to electroweak corrections for the extraction of γ from the 
B → Dπ modes has not yet been computed; we close the gap in 
this Letter.
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The main difference between the B → Dπ and the B → D K
modes lies in their CKM structure. Consequently, as we will see 
later, the effect of the electroweak corrections for the B → Dπ
modes could potentially be much larger than for the B → D K
modes, due to an approximate cancellation of hadronic matrix el-
ements. However, we do not expect the final shift in γ to exceed ∣∣δγ Dπ/γ

∣∣ �O
(
10−4

)
without some accidental fine tuning – well 

below the precision of any current or future measurement.
This Letter is organized as follows. In Section 2 we calculate 

the electroweak corrections to the relevant Wilson coefficients and 
estimate the resulting shift in γ in Section 3. We conclude in Sec-
tion 4.

2. Calculation of the electroweak corrections

We calculate the shift in γ due to electroweak corrections in 
close analogy to the procedure in Ref. [33]. The sensitivity of the 
B → Dπ modes to γ enters through the amplitude ratio

rDπ
B ei(δDπ

B −γ ) ≡ A(B− → D̄0π−)

A(B− → D0π−)
, (1)

where rDπ
B ∈ [0.001, 0.040] at 95% CL [18] reflects the CKM and 

color suppression of the amplitude A(B− → D̄0π−) relative to 
the amplitude A(B− → D0π−) (there is currently no constraint 
on the strong phase δDπ

B at 95% CL). Note that the correspond-
ing ratio rD K

B for the B → D K modes is known more precisely, 
rD K

B ∈ [0.0732, 0.1085] at 95% CL [18]. Naive scaling by CKM fac-
tors leads to the generic expectation rDπ

B ≈ 5 × 10−3.
The equality (1) is valid only at leading order in the weak inter-

actions, O(G F ), where both the b → cūd and b → uc̄d transitions 
are mediated by a tree-level W exchange.1 At a scale of order mb
the two transitions are then described by the leading nonleptonic 
weak effective Hamiltonians [34]

H(0)

c̄u = G F√
2

V cb V ∗
ud

[
C1(μ)Q c̄u

1 + C2(μ)Q c̄u
2

]
, (2)

H(0)

ūc = G F√
2

V ub V ∗
cd

[
C1(μ)Q ūc

1 + C2(μ)Q ūc
2

]
(3)

which involve the usual four-fermion operators defined by

Q c̄u
1 = (c̄b)V −A(d̄u)V −A, Q c̄u

2 = (d̄b)V −A(c̄u)V −A, (4)

Q ūc
1 = (ūb)V −A(d̄c)V −A, Q ūc

2 = (d̄b)V −A(ūc)V −A . (5)

Here, (q̄q′)V −A denotes the left-handed structure q̄γ μ(1 − γ5)q′ , 
for quark fields q, q′ . The Wilson coefficients, evaluated at a 
scale of the order of the b-quark mass μ ∼ mb , are given 
by C1(mb) = 1.10 and C2(mb) = −0.24 at leading-log order, 
for mb(mb) = 4.163 GeV [35] and the strong coupling constant 
αs(M Z ) = 0.1184 [36]. The decay amplitudes in Eq. (1) are then 
given, at leading order in the electroweak interactions, by

A(B− → D̄0π−) = 〈D̄0π−|H(0)

ūc |B−〉,
A(B− → D0π−) = 〈D0π−|H(0)

c̄u |B−〉. (6)

1 In Ref. [31] it has been pointed out that the weak phase entering the B → D K

modes differs from γ by subleading corrections of order λ4 ≈ 2.6 × 10−3, where 
λ ≡ |V us| is the Wolfenstein parameter (note that in [31] λ erroneously appears 
raised to the power of 5). A similar observation applies for the B → Dπ modes. 
The relation of the phase of rDπ

B to γ involves the ratio V 2
cd/V 2

ud = λ2[1 −λ4 A2(1 −
2(ρ + iη)) + O(λ6)]. This introduces another small O(λ4) uncertainty into the 
extraction of γ which can, in principle, be removed by measuring the phase of 
V cd/V ud independently.
Fig. 2. The electroweak corrections to the b → cūd and b → uc̄d processes at order 
O(G2

F ). Curly lines represent W bosons and the corresponding pseudo-Goldstone 
bosons.

Electroweak corrections, of the order of O(G2
F ), to the ampli-

tudes will induce a shift δγ Dπ in the extracted value of γ if the 
O(G F ) and O(G2

F ) contributions differ in their weak phase. As ar-
gued in [33], the only second-order weak corrections to (1) and (6)
that need to be considered are those arising from W box diagrams 
that have a different CKM structure than the corresponding tree 
amplitude, see Fig. 2. (Diagrams with photon or Z -boson exchange 
do not lead to a different CKM structure, whereas W vertex cor-
rections can be absorbed into a universal renormalization of the 
CKM matrix elements.)

For instance, the CKM structures of the b → uc̄d transition (left 
diagrams in Figs. 1 and 2) are given by V ub V ∗

cd for the tree-level 
diagram and (Vtb V ∗

td)(V ub V ∗
cb) for the box diagram. They differ in 

their weak phases and thus lead to a shift in the extracted value 
of γ .

The b → cūd transition receives a similar correction (right dia-
grams in Figs. 1 and 2), with CKM structures V cb V ∗

ud at tree level 
and (Vtb V ∗

td)(V cb V ∗
ub) for the box diagram. The effects of these 

diagrams are CKM suppressed with respect to the previous con-
tribution by two orders of magnitude and can be safely neglected.

To a very good approximation, the only effect of the box di-
agrams is thus a correction to the Wilson coefficients in the ef-
fective Hamiltonian (3). Keeping only the local parts of the box 
diagrams we can write

H(1)

ūc = G F√
2

V ub V ∗
cd

[(
C1(μ) + �C1(μ)

)
Q ūc

1

+ (
C2(μ) + �C2(μ)

)
Q ūc

2

]
. (7)

The Wilson coefficients C1,2(μ) are the same as in Eqs. (2) and (3), 
while �C1,2(μ) are corrections of O(G F ) relative to the tree-level 
diagrams. They depend on the CKM elements and carry a weak 
phase different from that of C1,2(μ) (which are real in our conven-
tion). While the precise absolute values of the Wilson coefficients 
are irrelevant for the experimental analysis, where all branching 
fractions and amplitude ratios are fitted from data, a contribution 
with a relative weak phase will induce a shift in the extracted 
value of γ .

To get a first estimate of the size of the effect we will per-
form a matching calculation from the SM directly onto the weak 
effective Hamiltonian where the W boson, the top quark, and the 
bottom quark have been integrated out simultaneously. To this end, 
we evaluate the box diagrams in Fig. 2 at μ ∼ MW , treating the 
top and bottom quarks as massive and all remaining quarks as 
massless, and setting all external momenta to zero. Because of the 
Glashow–Iliopoulos–Maiani mechanism acting on both the internal 
up-quark and down-quark lines the result is proportional to xt yb , 
where xt ≡ m2

t /M2
W , yb ≡ m2

b/M2
W , and we find for the shift �C2

of the Wilson coefficient C2 in Eq. (7)

�C2 = −√
2G F

M2
W

4π2

Vtb V ∗
td V ∗

cb

V ∗
cd

Ĉ(xt, yb)

= −√
2G F

M2
W

2

∣∣∣∣ Vtb Vtd V cb
∣∣∣∣ eiβ Ĉ(xt , yb) , (8)
4π V cd
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Fig. 3. The double insertion T {Q 1, Q 1} (left) and T {Q 2, Q 2} (middle and right), contributing to the mixing into Q̃ 2.
with the CKM angle β ≡ arg(−V cd V ∗
cb/Vtd V ∗

tb) and the loop func-
tion

Ĉ(xt, yb) = xt yb

8

[
9

(xt − 1)(yb − 1)

+
(

(xt − 4)2

(xt − 1)2(xt − yb)
log xt + (xt ↔ yb)

)]
. (9)

The result of our calculation agrees with the corresponding loop 
function extracted from [37]. In this first estimate, the shift of the 
Wilson coefficient C1 is zero. Using the input from [36] we find

�C2 = −(1.18 ± 0.11) · 10−7 × eiβ , (10)

where the shown error is dominated by the uncertainty on the 
CKM elements Vtb , V cb , and Vtd .

The loop function Ĉ(xt , yb) is dominated by the term propor-
tional to log yb:

Ĉ(xt, yb) = −2yb log yb +O(yb) , (11)

where the subleading terms amount to a 10% correction. In or-
der to capture also the leading QCD corrections, we now refine 
our analysis and perform a resummation of the terms proportional 
to log yb to all orders in the strong coupling constant. To achieve 
this, we first match the SM to the effective theory below the scale 
μW = O(MW ), where the top quark and the heavy gauge bosons 
are integrated out, but the bottom quark is still a dynamical de-
gree of freedom. In fact, the matching correction at μW vanishes 
to leading order. However, the renormalization-group (RG) running 
will generate this term at the bottom-quark scale μb = O(mb) via 
bilocal insertions of the effective Hamiltonian

H f =5
eff = G F√

2

∑
u1,2=u,c

d1,2=s,d,b

V u1d2 V ∗
u2d1

2∑
i, j=1

Ci(μ)Zij Q (u1d2;d1u2)
j

− 2G2
F V ub V ∗

cd ·
∣∣∣∣ Vtb Vtd V cb

V cd

∣∣∣∣
× eiβ

[ 2∑
i, j,k=1

Ci C j Ẑ i j,k Q̃ k +
2∑

l,k=1

C̃l Z̃lk Q̃ k

]
. (12)

Here, Z and Ẑ are the renormalization constants for the local and 
bilocal insertions, respectively. The first line in Eq. (12) contains 
the four-quark operators obtained by integrating out the W and Z
bosons. We denote them by

Q (u1d2;d1u2)
1 = (ū1d2)V −A(d̄1u2)V −A ,

Q (u1u2;d1d2)
2 = (ū1u2)V −A(d̄1d2)V −A . (13)

The second line in Eq. (12) contains the operators

Q̃ 1 = m2
b

μ2ε g2
s
(ūb)V −A(d̄c)V −A ,

Q̃ 2 = m2
b

2ε 2
(d̄b)V −A(ūc)V −A . (14)
μ gs
They arise as counterterms to the bilocal insertions and are thus 
formally of dimension eight; this is made explicit by the m2

b pref-
actor. These operators have the same four-quark structure as the 
leading-power operators Q 1,2. We neglect the six-quark operators 
which arise from integrating out the W boson and the top quark, 
as they are suppressed by an additional factor of 1/M2

W .
To arrive at the CKM structure of the second line in Eq. (12) we 

note first that the two diagrams in Fig. 3 (right) have exactly the 
same phase as the corresponding tree-level diagram, so we can 
drop them. For the remaining diagrams we use the unitarity re-
lation V ub V ∗

ud + V cb V ∗
cd = −Vtb V ∗

td , combining pairs of diagrams 
with internal up and charm quarks as shown in Figs. 3 and 4, and 
then factor out the tree-level coefficient V ub V ∗

cd .
The relevant diagrams in Figs. 3 and 4 yield the following 

mixing (we use γ̂i, j;k = 2 Ẑ i, j;k and expand γ̂i, j;k = αs
4π γ̂

(0)

i, j;k + . . . , 
where i, j denote the Q 1,2 insertions, and k is the label of the Q̃ k
operators):

γ̂
(0)

1,1;2 = γ̂
(0)

2,2;2 = γ̂
(0)

1,2;1 = γ̂
(0)

2,1;1 = −8 , (15)

with all the remaining entries either vanishing or not contributing. 
The value of the Wilson coefficients C̃k at the scale mb can now be 
calculated in complete analogy to the procedure in Ref. [33], where 
we refer the interested reader for details. Our final result, using 
mb(mb) = 4.163 GeV [35], αs(M Z ) = 0.1184 [36], and employing 
“RunDec” [38] for the numerical running of the strong coupling 
constant, is
(
C̃1(mb), C̃2(mb)

) = (0.03,0.31) . (16)

Finally, at the bottom-quark scale we need to match the ma-
trix elements of the two Hamiltonians (12) and (3). This will yield 
the leading yb behavior with resummed logarithms. We write the 
matrix elements as∑

k

�Ck(μb)〈Q k〉(μb)

= −2
√

2G F

∣∣∣∣ Vtb Vtd V cb

V cd

∣∣∣∣ eiβ
∑

i=1,2

C̃i(μb)〈Q̃ i〉(μb) , (17)

where we expand �Ck = 4π
αs

�C (0)

k + . . . in such a way that the ar-

tificially inserted factor of 1/g2
s in the definition of Q̃ k (14) is can-

celed. In Eq. (17) we have dropped the double insertions 〈Q i Q j〉
as they enter at higher order in αs and need not be calculated in 
our approximation. Therefore, we effectively obtain the matching 
condition for the Wilson coefficients of the local operators (7) in 
the form

�C (0)

k (μb) = −2m2
b

√
2G F

16π2

∣∣∣∣ Vtb Vtd V cb

V cd

∣∣∣∣ eiβ C̃ (0)

k (μb) . (18)

Numerically, we find

�C1 = −(1.14 ± 0.10) · 10−8 × eiβ ,

�C2 = −(1.09 ± 0.09) · 10−7 × eiβ ; (19)

the quoted errors reflect the uncertainty in the electroweak in-
put parameters. This should be compared to the unresummed 
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Fig. 4. The double insertions T {Q 1, Q 2} contributing to the mixing into the opera-
tor Q̃ 1.

result (10): we see that, indeed, the RG running has induced a 
nonzero correction to the Wilson coefficient C2 in (7). Moreover, 
also C1 gets a small correction, in contrast to the unresummed re-
sult. As a check of our calculation we expand the solution of the 
RG equations about μ = MW and recover exactly the logarithm in 
Eq. (11),

�C1 = 0 , �C2 ∝ −√
2G F

M2
W

4π2
(−2yb log yb) , (20)

where we dropped the CKM factors.

3. The induced shift in γ

The imaginary part of the shift in the Wilson coefficients cal-
culated in the previous two sections induces a shift in γ via a 
modification of the ratio rDπ

B , Eq. (1):

rDπ
B ei(δDπ

B −γ )

→ rDπ
B ei(δDπ

B −γ )
(

1 + �C1

C1 + C2rA′
+ �C2

C1/rA′ + C2

)
, (21)

where we expanded in the small corrections �C1, �C2 to linear 
order. The resulting shift in the extracted value of γ is

δγ Dπ = − Im(�C1)

C1 + C2rA′
− Im(�C2)

C1/rA′ + C2
. (22)

To estimate its size we need to evaluate the amplitude ratio rA′ , 
defined as

rA′ ≡ 〈π− D̄0|Q ūc
2 |B−〉

〈π− D̄0|Q ūc
1 |B−〉 . (23)

The amplitudes contain the D̄0 meson in the final state; this is 
directly related to the fact that the electroweak corrections affect 
only the numerator of the ratio (1). By contrast, in the case of B →
D K only the denominator of the corresponding amplitude ratio 
rD K

B is modified (the reason being the different CKM structure of 
the B → D K modes).

Keeping in mind that the D meson is much heavier than the 
pion we see that both numerator and denominator in rA′ are sup-
pressed by powers of �QCD/mb [39]. Using color counting and ne-
glecting annihilation topologies yields rA′ ∼ Nc = 3 as a naive esti-
mate, with large uncertainties. A crude numerical estimate treating 
both final-state particles as light [40] and using an asymmetric 
D-meson wave function [39] suggests that the annihilation con-
tribution is indeed negligible and that rA′ ≈ 1.

Interestingly, for a value of rA′ ≈ 4.6 the two terms in the de-
nominators in Eq. (22) cancel each other, so that the electroweak 
correction to the ratio rDπ

B could, in principle, become arbitrarily 
large. The reason, of course, is that this cancellation would imply 
the vanishing of rDπ

B . Ignoring differences in the matrix elements 
related to the replacement of pions by kaons, this would also im-
ply the vanishing of the ratio rD K

B , in contradiction to the measured 
value (cf. the discussion below Eq. (1)). A complete cancellation 
can thus be safely excluded, although a more quantitative state-
ment is difficult to obtain. To be conservative we will take rA′ = 4.5
for our estimate of δγ Dπ . Using sin 2β = 0.682 [36] we then ob-
tain

δγ Dπ � 9.7 · 10−6 (unresummed) ,

δγ Dπ � 9.2 · 10−6 (resummed) . (24)

Large uncertainties are associated with these numbers due to the 
poorly known value of rA′ and missing nonlocal contributions, but 
it seems very unlikely that the shift in γ exceeds 

∣∣δγ Dπ/γ
∣∣ �

10−4. Note that for values of rA′ � 3 the shift 
∣∣δγ Dπ/γ

∣∣ drops 
below 10−6. On the other hand, considerable fine tuning would be 
required for an almost complete cancellation of the denominators 
in Eq. (22). For instance, to find |δγ Dπ/γ | larger than 10−3 would 
require a tuning of rA′ of the order of 10−4.

4. Summary and conclusion

The determination of the CKM phase γ from tree-level de-
cays is theoretically exceptionally clean, as all necessary branching 
fractions and amplitude ratios can be obtained from experimen-
tal data. In the SM, the only shift in γ is induced by electroweak 
corrections to the effective Hamiltonian that carry a weak phase 
relative to the leading contributions. In this Letter we have esti-
mated the shift for the extraction of γ from the B → Dπ decay 
modes. We calculated the electroweak corrections in two ways, 
first integrating out the bottom quark together with the top quark 
and the W boson, then also summing leading QCD logarithms of 
mb/MW in a two-step matching procedure.

Interestingly, the different CKM structure compared to the 
B → D K modes could lead to a moderately large shift in γ via 
an approximate cancellation of hadronic matrix elements. Whereas 
these matrix elements are hard to estimate, we find that without 
large accidental fine tuning the expected shift in γ is very unlikely 
to exceed

∣∣δγ Dπ/γ
∣∣ � 10−4 . (25)

A better estimate of the hadronic matrix elements seems worth-
wile and could reduce this uncertainty.
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