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Abstract In this paper, we study rotating black holes in
symmergent gravity, and use deviations from the Kerr black
hole to constrain the parameters of the symmergent grav-
ity. Symmergent gravity induces the gravitational constant
G and quadratic curvature coefficient cO from the flat space-
time matter loops. In the limit in which all fields are degener-
ate in mass, the vacuum energy VO can be wholly expressed
in terms of G and cO. We parametrize deviation from this
degenerate limit by a parameter α̂ such that the black hole
spacetime is dS for α̂ < 1 and AdS for α̂ > 1. In con-
straining the symmergent parameters cO and α̂, we utilize
the EHT observations on the M87* and Sgr. A* black holes.
We investigate first the modifications in the photon sphere
and shadow size, and find significant deviations in the pho-
tonsphere radius and the shadow radius with respect to the
Kerr solution. We also find that the geodesics of time-like par-
ticles are more sensitive to symmergent gravity effects than
the null geodesics. Finally, we analyze the weak field limit of
the deflection angle, where we use the Gauss-Bonnet theorem
for taking into account the finite distance of the source and
the receiver to the lensing object. Remarkably, the distance
of the receiver (or source) from the lensing object greatly
influences the deflection angle. Moreover, cO needs be neg-
ative for a consistent solution. In our analysis, the rotating
black hole acts as a particle accelerator and possesses the
sensitivity to probe the symmergent gravity.

a e-mail: rcpantig@mapua.edu.ph
b e-mail: aovgun@gmail.com (corresponding author)

URL: https://www.aovgun.com
c e-mail: durmus.demir@sabanciuniv.edu

1 Introduction

In the Wilsonian sense, quantum field theories (QFTs) are
characterized by a classical action and an ultraviolet (UV)
cutoff �. Quantum loops lead to effective QFTs with loop
momenta cut at �. The effective QFTs suffer from UV over-
sensitivity problems: The scalar and gauge boson masses
receive O(�2) corrections. The vacuum energy, on the other
hand, gets corrected by O(�4) and O(�2) terms. The gauge
symmetries get explicitly broken. The question is simple: Can
gravity emerge in a way restoring the explicitly broken gauge
symmetries? Asking differently, can gravity emerge in a way
alleviating the UV oversensitivities of the effective QFT?
This question has been answered affirmatively by forming
a gauge symmetry-restoring emergent gravity model [1–3].
This model, briefly called as symmergent gravity, has been
built by the observation that, in parallel with the introduction
of Higgs field to restore gauge symmetry for a massive vector
boson (with Casimir invariant mass) [4–6], spacetime affine
curvature can be introduced to restore gauge symmetries
for gauge bosons with loop-induced (Casimir non-invariant)
masses proportional to the UV cutoff � [1–3]. Symmergent
gravity is essentially emergent general relativity (GR) with
a quadratic curvature term. It exhibits distinctive signatures,
as revealed in recent works on static black hole spacetimes
[7–10]. In the present work, we use observational data on
M87* and Srg.A* black holes to study symmergent gravity.
We focus on rotating black hole spacetimes as these black
holes can act as a richer test and analysis laboratory. What
we are doing can be viewed as “doing particle physics via
black holes” as it will reveal salient properties of the QFT
sector through various black hole features.
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In 1919 Arthur Eddington led an expedition to prove Ein-
stein’s theory of relativity using gravitational lensing and
since then lensing has become an important tool in astro-
physics [11–20]. In astrophysics, distances are very impor-
tant when determining the properties of astrophysical objects.
But Virbhadra showed that just the observation of relativis-
tic images without any information about the masses and
distances can also accurately give value of the upper bound
on the compactness of massive dark objects [21]. Further-
more, Virbhadra proved that there exists a distortion param-
eter such that the signed sum of all images of singular gravi-
tational lensing of a source identically vanishes (tested with
Schwarzschild lensing in weak and strong gravitational fields
[22]).

In 2008, Gibbons and Werner used the Gauss-Bonnet the-
orem (GBT) on the optical geometries in asymptotically flat
spacetimes, and calculated weak deflection angle for first
time in literature [23]. Afterwards, this method has been
applied to various phenomena [24–37]. One of the aims of
the present paper is to probe symmergent gravity through the
black hole’s weak deflection angle using the GBT and also the
shadow silhouette as perceived by a static remote observer.
In essence, by the very nature of the symmergent gravity,
we will be studying the numbers of fermions and bosons
and related effects in the vicinity of a spinning black hole,
which has the potential to affect the motions of null and time-
like geodesics as well as their spin parameter a. (By defini-
tion, a = cJ/GM2 where J and M are the angular momen-
tum and mass of the rotation black hole.) Recently, shadow
coming from different black hole models has been analyzed
extensively in the literature as a probe of the imprints of the
astrophysical environment affecting it [38–86] Calculation of
the shadow cast of a non-rotating black hole was pioneered by
[87,88], and later on extended by [89,90] to an axisymmet-
ric spacetime. Recently, after the detection of gravitational
waves in 2015 [91], the first image of the black hole in M87*
was formed by the Event Horizon Telescope (EHT) using
its electromagnetic spectrum [92]. At the time of writing of
this paper, new milestone has been achieved since the EHT
revealed the shadow image of the black hole in our galaxy,
Sgr. A* [93]. This new result indicates that black hole theory
and phenomenology is a hot research topic in vivew of the
rapidly developing observational techniques.

The paper is organized as follows. In Sect. 2, we give
a detailed discussion of the symmergent gravity. We give
in Sect. 3 the rotating metric, indicating dependence on the
symmergent parameters. In Sect. 4, we study the effects of
symmergent gravity on null geodesics, which in turn influ-
ence the shadow radius and observables associated with it.
We also examine the said effect on time-like orbits in the
same section. We devote Sect. 5 to investigation of the weak
deflection angle at finite-distance, and in Sect. 5.1 we cal-
culate the center-of-mass energy (CM) of two particles and

study particle acceleration near rotating symmergent black
hole background. In Sect. 6, we conclude and give future
prospects.

2 Symmergent gravity

In this section, we give a brief description of the symmergent
gravity in terms of its fundamental parameters. The starting
point is quantum field theories (QFTs). Quantum fields are
endowed with mass and spin as the Casimir invariant s of the
Poincaré group. Fundamentally, QFTs are intrinsic to the flat
spacetime simply because they rest on a Poincaré-invariant
(translation-invariant) vacuum state [94,95]. Flat spacetime
means the total absence of gravity. Incorporation of gravity
necessitates the QFTs to be taken to curved spacetime, but
this is hampered by Poincaré breaking in curved spacetime
[95,96]. This hamper and absence of a quantum theory of
gravity [97] together lead one to emergent gravity framework
[98–100] as a viable approach.

In general, loss of Poincaré invariance could be interpreted
as the emergence of gravity into the QFT [101]. In a QFT,
curvature can emerge at the Poincaré breaking sources. One
natural Poincaré breakings source is the hard momentum cut-
off on the QFT. Indeed, an ultraviolet (UV) cutoff � [102]
limits momenta pμ within −�2 ≤ ημν pμ pν ≤ �2 interval
as the intrinsic validity edge of the QFT [102]. Under the
loop corrections up to the cutoff �, the action S[η, φ, V ] of
a QFT of scalars S and gauge bosons Vμ receives the cor-
rection (with (+,−,−,−) metric signature appropriate for
QFTs)

δS[η, φ, V ] =
∫

d4x
√−η

{
− VO − cO�

4

−
∑
i

cmi m
2
i �

2 − cS�
2S†S + cV�

2VμV
μ

}
(1)

in whichημν is the flat metric,VO is the vacuum energy which
is not power-law in �, mi stands for the mass of a QFT field
ψi (summing over all the fermions and bosons), and cO, cm ,
cS and cV are respectively the loop factors describing the
quartic vacuum energy correction, quadratic vacuum energy
correction, quadratic scalar mass correction, and the loop-
induced gauge boson mass [103,104]. As revealed by the
gauge boson mass term cV�2VμVμ, the UV cutoff � breaks
gauge symmetries explicitly since � is not a particle mass,
that is, � is not a Casimir invariant of the Poincaré group.
The loop factor cV (as well as cS) depends on the details of
the QFT. (It has been calculated for the standard model gauge
group in [1,2]).

In Sakharov’s induced gravity [98,99], the UV cutoff �
is associated with the Planck scale, albeit with explicitly-
broken gauge symmetries and Planckian-size cosmological
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constant and scalar masses. In recent years, Sakharov’s setup
has been approached from a new perspective in which pri-
ority is given to the prevention of the explicit gauge sym-
metry breaking [1]. For this aim, one first takes the effective
QFT in (1) to curved spacetime of a metric gμν such that the
gauge boson mass term is mapped as cV�2ημνVμVν −→
cV Vμ

(
�2 gμν − Rμν(g)

)
Vν in agreement with the fact that

the Ricci curvature Rμν(g) of the metric gμν can arise only
in the gauge sector via the covariant derivatives [1–3]. One
next inspires from the Higgs mechanism to promote the UV
cutoff � to an appropriate spurion field. Indeed, in par-
allel with the introduction of Higgs field to restore gauge
symmetry for a massive vector boson (Poincare-conserving
mass) [4–6], one can introduce spacetime affine curvature
to restore gauge symmetries for gauge bosons with loop-
induced (Poincare-breaking mass) masses proportional to �

[1,2,105,106]. Then, one is led to the map

�2gμν → R
μν(	) (2)

in which R
μν(	) is the Ricci curvature of the affine con-

nection 	λ
μν , which is completely independent of the curved

metric gμν and its Levi-Civita connection [105–107]. This
map is analogue of the map M2

V → φ†φ of the vector boson
mass MV (Poincare conserving) into the Higgs fieldφ. Under
the map (2) the effective QFT in (1) takes the form

δS[g, φ, V,R] =
∫

d4x
√−η

{
− VO − cO

16
R

2(g)

−
∑
i

cmi

4
m2

i R(g) − cS
4
R(g)S†S

+cV Vμ
(
R
μν(	) − Rμν(g)

)
Vν

}
(3)

in which R(g) ≡ gμνRμν(	) is the scalar affine curvature
[1]. This metric-Palatini theory contains both the metrical
curvature R(g) and the affine curvature R(	). From the third
term, Newton’s gravitational constant G is read out to be

G−1 = 4π
∑
i

cmi m
2
i

one−−→ loop
1

8π
str
[
M2

]
(4)

where M2 is the mass-squared matrix of all the fields in the
QFT spectrum. In the one-loop expression, str[. . . ] stands for
super-trace namely str[M2] =∑i (−1)2si (2si +1)tr[M2]si
in which tr[. . . ] is the usual trace (including the color
degrees of freedom), si is the spin of the QFT field ψi

(si = 0, 1/2, . . . ), and [M2]si is the mass-squared matrix
of the fields having that spin (like mass-squared matrices of
scalars (si = 0), fermions (si = 1/2) and so on). One keeps
in mind that tr[. . . ] encodes degrees of freedom gi (like color
and other degrees of freedom) of the particles.

It is clear that known particles (the standard model spec-
trum) cannot generate Newton’s constant in (4) correctly (in
both sign and size). It is necessary to introduce therefore new

particles. Interesting enough, these new particles do not have
to couple to the known particles since the only constraint on
them is the super-trace in (4) [1,2].

The action (3) remains stationary against variations in the
affine connection provided that

	∇λDμν = 0 (5)

such that 	∇λ is the covariant derivative of the affine con-
nection 	λ

μν , and

Dμν =
(

1

16πG
+ cS

4
S†S + cO

8
gαβRαβ(	)

)
gμν − cV VμVν (6)

is the field-dependent metric. The motion equation (5)
implies that Dμν is covariantly-constant with respect to 	λ

μν ,
and this constancy leads to the exact solution

	λ
μν = 1

2
(D−1)λρ

(
∂μDνρ + ∂νDρμ − ∂ρDμν

)

= g	λ
μν + 1

2
(D−1)λρ

(∇μDνρ + ∇νDρμ − ∇ρDμν

)
(7)

in which g	λ
μν is the Levi-Civita connection of the curved

metric gμν . The Planck scale in (4) is the largest scale and
therefore it is legitimate to make the expansions

	λ
μν = g	λ

μν + 8πG
(∇μD

λ
ν + ∇νD

λ
μ − ∇λ

Dμν

)+ O
(
G2
)

(8)

and

Rμν(	) = Rμν(g) + 8πG
(∇α∇μDαν + ∇α∇νDαμ

−�Dμν − ∇μ∇νD
α
α

)+ O
(
G2
)

(9)

so that both 	λ
μν and Rμν(	) contain pure derivative terms

at the next-to-leading O (G) order [2,3]. The expansion in
(8) ensures that the affine connection 	λ

μν is solved alge-
braically order by order in G despite the fact that its motion
equation (5) involves its own curvature Rμν(	) through Dμν

[105,106]. The expansion (9), on the other hand, ensures that
the affine curvature Rμν(	) is equal to the metrical curva-
ture Rμν(g) up to a doubly-Planck suppressed remainder.
In essence, what happened is that the affine dynamics took
the affine curvature R from its UV value �2

℘ in (2) to its IR
value R in (9). This way, the GR emerges holographically
[108,109] via the affine dynamics such that loop-induced
gauge boson masses get erased, and scalar masses get stabi-
lized by the curvature terms. This mechanism renders effec-
tive field theories natural regarding their destabilizing UV
sensitivities [1,2]. It gives rise to a new framework in which
(i) the gravity sector is composed of the Einstein-Hilbert term
plus a curvature-squared term, and (ii) the matter sector is
described by an MS-renormalized QFT [1,2]. We call this
framework gauge symmetry-restoring emergent gravity or
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simply symmergent gravity to distinguish is from other emer-
gent or induced gravity theories in the literature.

It is worth noting that symmergent gravity is not a loop-
induced curvature sector in curved spacetime [99,110]. In
contrast, symmergent gravity arises when the flat space-
time effective QFT is taken to curved spacetime [1,2] in a
way reviving the gauge symmetries broken explicitly by the
UV cutoff. All of its couplings are loop-induced parameters
deriving from the particle spectrum of the QFT (numbers and
masses of particles). It is with these loop features that the GR
emerges. In fact, the metric-Palatini action (3) reduces to the
metrical gravity theory
∫

d4x
√−g

{
− VO − R(g)

16πG
− cO

16
(R(g))2 + cS

4
S†SR(g)

+cV tr
[
Vμ
(
Rμν(	) − Rμν(

g	)
)
V ν
]}

equation (9)−−−−−−→
∫

d4x
√−g

{
− VO − R

16πG
− cO

16
R2

− cS
4
S†SR + O(G)

}
(10)

after replacing the affine curvature Rμν(	) with its solution
in (9). Of the parameters of this emergent GR action, New-
ton’s constant G was already defined in (4). The loop factor
cS depends on the underlying QFT. (It reads cS � 0.29 in
the standard model.) The loop factor cO, which was associ-
ated with the quartic (�4) corrections in the flat spacetime
effective QFT in (1), turned to the coefficient of quadratic-
curvature (R2) term in the symmergent GR action in (10).
At one loop, it takes the value

cO = nB − nF

128π2 (11)

in which nB (nF) stands for the total number of bosonic
(fermionic) degrees of freedom in the underlying QFT
(including the color degrees of freedom). Both the nB bosons
and nF fermions contain not only the known standard model
particles but also the completely new particles. As was com-
mented just above (5), it is a virtue of symmergence that
these new particles do not have to couple to the known ones,
non-gravitationally.

The last parameter of the symmergent GR action (10) is
the vacuum energy density VO. It belongs to the non-power-
law sector of the flat spacetime effective QFT in (1). At one
loop, it takes value (tr[. . . ] involves all degrees of freedom
gi of particles, like color)

VO = str
[M4

]
64π2 (12)

after discarding a possible tree-level contribution. Being a
loop-induced quantity, Newton’s constant in (4) involves
super-trace of (masses)2 of the QFT fields. In this regard, the
potential energy VO, involving the super-trace of (masses)4

of the QFT fields, is expected to expressible in terms of G.
To see this, it proves useful to start with mass degeneracy
limit in which each and every boson and fermion possess
equal masses, mb = m f = M0, for all b and f . Needless
to say, M0 is essentially the characteristic scale of the QFT.
(Essentially, M0 is the mean value of all the field masses.)
Under this degenerate mass spectrum the potential VO can
be expressed as follows:

VO = str
[M4

]
64π2 = 1

64π2

(∑
B

m4
B −

∑
F

m4
F

)

mass degeneracy−−−−−−−−−→ M4
0

64π2 (nB − nF) = M2
0

8πG
= 1

2(8πG)2cO

(13)

where use have been made of the G formula in (4) and cO for-
mula in (11). Now, the problem is to take into account realistic
cases in which the QFT fields are not all mass-degenerate.
For a QFT with characteristic scale M0 but with no detailed
knowledge of the mass spectrum, realistic cases might be
represented by parametrizing the potential energy as

VO = 1 − α̂

(8πG)2cO
(14)

in which the new parameter α̂ is introduced as a measure of
the deviations of the boson and fermion masses from the QFT
characteristic scale M0. Clearly, α̂ = 1/2 corresponds to the
degenerate case in (13). Alternatively, α̂ = 1 represents the
case in which

∑
B m4

B = ∑
F m

4
F in (13). In general, α̂ > 1

(α̂ < 1) corresponds to the boson (fermion) dominance in
terms of the trace (masses)4.

Symmergence makes gravity emerge from within the flat
spacetime effective QFT. Fundamentally, as follows from the
action (1), Newton’s constant G in (4), the quadratic curva-
ture coefficient cO in (11), and the vacuum energy VO in (12)
transpired in the flat spacetime effective QFT from the matter
loops. (The loop factor cS and similar parameters couple the
matter fields.) Once the gravity emerges as in (10), however,
G, cO and VO gain a completely new physical meaning as the
curvature sector parameters (not involving the matter fields).
In this sense, they are symmergent gravity parameters in the
sense that they became curvature sector parameters via the
symmergence.

A glance at the second line of (10) reveals that symmergent
gravity is an R+ R2 gravity theory with non-zero cosmolog-
ical constant. In fact, it can be put in the form

S = 1

16πG

∫
d4x

√−g (R + f (R)) (15)

after leaving aside the scalars S and the other matter fields,
after switching to (−,+,+,+)metric signature (appropriate
for the black hole analysis in the sequel), and after introduc-
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ing the f (R) gravity function

f (R) = −πGcOR2 − 16πGVO (16)

comprising the vacuum energy VO and the quadratic-
curvature term proportional to cO. The Einstein field equa-
tions arising from the action (15)

Rμν(1 + f ′(R)) − 1

2
gμν(R + f (R))

+(∇μ∇ν − �gμν) f
′(R) = 0 (17)

become R0( f ′(R0) − 1) − 2 f (R0) = 0 upon contraction
at constant curvature (R = R0), and possess the solution
[111,112]

R0 = 32πGVO = 1 − α̂

2πGcO
(18)

after using the vacuum energy formula in (14) in the second
equality. It is clear that this R0 value would vanish if the
vacuum energy were not nonzero. Indeed, for a quadratic
gravity with f (R) = bR2 one gets the solution R0 = 0.
But for a quadratic gravity like f (R) = a + bR2 one finds
R0 = −2a 	= 0, which reduces to the R0 in (18) for a =
−16πGVO.

The Einstein field equations (17) possess static, spherically-
symmetric, constant-curvature solutions of the form [111,
112]

ds2 = −h(r)dt2 + dr2

h(r)
+ r2(dθ2 + sin2 θdφ2) (19)

in which

h(r) = 1 − 2GM

r
− (1 − α̂)

24πGcO
r2 (20)

is the lapse function following from (18). In the sequel,
we will analyze this constant-curvature configuration (R =
R0 	= 0) in both the dS (VO > 0 namely α̂ < 1) and AdS
(VO < 0 namely α̂ > 1) spacetimes in the case of rotating
black holes. We will use rotating black hole properties to
determine or constrain the model parameters cO and α̂.

3 Rotating black holes in symmergent gravity

Appropriate for a rotating black hole geometry, we use
Boyer–Lindquist coordinates with a metric free of the coor-
dinate singularities in the spacetime both exterior to the black
hole and interior to the cosmological horizon. The metric is
given by [111,113–117]

ds2 = ρ2

�r
dr2 + ρ2

�θ

dθ2 + �θ sin2 θ

ρ2

[
adt − (r2 + a2) dφ

�

]2

−�r

ρ2

(
dt − a sin2 θ

dφ

�

)2

(21)

with the various quantities

�r =
(
r2 + a2

)(
1 − r2

3

(1 − α̂)

8πcO

)
− 2Mr, (22)

ρ2 = r2 + a2 cos2 θ, (23)

�θ = 1 + r2

3

(1 − α̂)

8πcO
a2 cos2 θ, (24)

� = 1 + r2

3

(1 − α̂)

8πcO
a2. (25)

Here, a is the black hole spin parameter, and α̂ and cO are the
parameters of the symmergent gravity. The physical energy
E and angular momentum J of the black hole are related to
the parameters M and a via the relations [118,119]

E = M

�2 , J = aM

�2 (26)

in which M is the root of the equation �r (r+) = 0 namely

M = 1

2r+

(
r2+ + a2

)(
1 − r2+

3

(1 − α̂)

8πcO

)
(27)

where r+ is the radius of the event horizon. In this way, one
can express energy and angular momentum in terms of the
parameters r+, a, and G. (One here notes that 1

l2
= (â−1)

24πG cO
,

where the curvature radius l is related to the negative cosmo-
logical constant as � = −3 l−2). As a result, one finds

E = 1

2�2r+

(
r2+ + a2 + r4+

l2
+ a2r2+

l2

)
,

J = a

2�2r+

(
r2+ + a2 + r4+

l2
+ a2r2+

l2

)
(28)

as the explicit expressions for the definitions in (26).
Numerically, horizons can be determined by analyzing the

lapse function, that is, by solving �r = 0 using its definition
in (22). Besides, the location of the ergoregions can be deter-
mined numerically by plotting the metric component gtt and
looking for points satisfying gtt = 0. In fact, plotted in Fig. 1
are �r and gtt as functions of r for the integration constant
α̂ of 0.90 and 1.10, black hole spin parameter a = 0.9 M ,
and the various values of cO. In general, symmergent black
hole can mimic the dS (α̂ > 1) or AdS-Kerr (α̂ < 1) black
holes depending on the sign of α̂. But, as already shown by
Pogosian and Silvestri [120], consistent f(R) gravity theo-
ries require dF(R)

dR > 0 in order to remain stable the (non-
tachyonic scalaron). This constraint imposes the condition
cO < 0 on the loop-induced quadratic curvature coefficient,
and restricts viable solutions to the AdS-Kerr type. In view of
the underlying QFT, cO < 0 implies that nF > nB – a mostly
fermionic QFT [1–3]. In the extreme case of no new bosons
(in agreement with nF > nB), one finds out that the new par-
ticle sector remains inherently stable thanks to the fact that
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fermion masses do not have any power-law sensitivity to the
UV cutoff.

Usually, value of the cosmological constant is scaled to a
higher value to see its overall effect. In this sense, assumed
values of α̂ and cO are also rescaled similarly. As is seen from
Fig. 1, null boundaries are greatly affected by the values of
the symmergent parameters α̂ and cO. Indeed, α̂ > 1 leads
to three horizons where, in the context of the dS geometry,
the third horizon corresponds to the cosmic outer boundary.
It shifts farther as cO gets more negative. The two remaining
null boundaries are the Cauchy and event horizons. In con-
strast to the dS solution, the symmergent AdS solution gives
only two horizons such that symmergent effects are nearly
vanishingly small on the inner horizon compared to the outer
horizon. As for the ergoregions, α̂ > 1 leads to three ergore-
gions, and it can be seen that the farthest one turns out to be
even beyond the cosmic horizon.

The Hawking temperature is given by

T = κ

2π
(29)

such that the surface gravity

κ2 = −1

2
�μχν�μχν (30)

involves the null Killing vectors χν . The two Killing vectors
ξν = ∂t and ζ ν = ∂ϕ in the metric are associated with
the time translation and rotational invariance, respectively.
Consequently, we take

χν = ξν + �ζν (31)

and determine � under the condition that χν is a null vector.
This leads to the constraint

χνχν = gtt + 2�gtϕ + �2gϕϕ = 0, (32)

from which one gets

� = − gtϕ
gϕϕ

±
√(

gtϕ
gϕϕ

)2

− gtt
gϕϕ

(33)

which reduces to

�+ = a�

r2+ + a2
(34)

at the event horizon �(r+) = 0. For this � value one then
gets

κ = 1

2
(
r2+ + a2

) d�r

dr

∣∣∣∣
r=r+

, (35)

for the surface gravity,

T = r+
4π
(
r2+ + a2

)
(

1 + a2

l2
+ 3r2+

l2
− a2

r2+

)

= 3r4+ + (a2 + l2
)
r2+ − l2a2

4πl2r+
(
r2+ + a2

) (36)

for the Hawking temperature, and

S = A

4
= π

(
r2+ + a2

)
�

(37)

for the Bekenstein-Hawking entropy. Needless to say, all
thermodynamic quantities are necessarily non-negative. The
rotating symmergent black hole satisfies therefore the first
law of thermodynamics

dE = TdS + �d J (38)

with

� = a
(
1 + r2+l−2

)
r2+ + a2

. (39)

4 Geodesics around rotating symmergent black holes

In this section we give a detailed analysis of the geodesics
and orbits around the symmergent black holes.

4.1 Null geodesic and shadow cast

We start the analysis with null geodesics. The Hamilton–
Jacobi equation gives

∂S

∂λ
= −H, (40)

where S is the Jacobi action in terms of the affine parameter λ
(proper time) and coordinates xμ. The Hamiltonian is given
by

H = 1

2
gμν

∂S

∂xμ
∂S

∂xν
, (41)

in the GR so that

∂S

∂λ
= −1

2
gμν

∂S

∂xμ
∂S

∂xν
(42)

as follows from (40) above. Using the separability ansatz for
the Jacobi function

S = 1

2
μ2λ − Et + Lφ + Sr (r) + Sθ (θ), (43)

with the particle massμ, one is led to the following first-order
motion equations [121]

�
dt

dλ
= �(r2 + a2)P(r)

�r
− �aP(θ)

�θ

,

�
dr

dλ
= √R(r),

�
dθ

dλ
= √�(θ),

123



Eur. Phys. J. C (2023) 83 :250 Page 7 of 20 250

Fig. 1 Variations of the functions �r (left panel) and gtt (right panel)
with the radial coordinate r for the black hole spin parametera = 0.9 M .
The plots show the null boundaries, with solid (dashed) lines mimicking

the behavior of AdS (dS) black holes. We consider only negative values
of cO in agreement with [120]

�
dφ

dλ
= �aP(r)

�r
− �P(θ)

�θ sin2 θ
(44)

after introducing the functions

R(r) = P(r)2 − �r (μ
2r2 + K ),

P(r) = �E(r2 + a2) − �aL ,

�(θ) = �θ(K − μ2a2 cos2 θ) − P(θ)2

sin2 θ
,

P(θ) = �(aE sin2 θ − L). (45)

From the third equation in (44) above, constants of motion
can be correlated via the relation K = �2(aE − L)2, which
is a consequence of a hidden symmetry in the θ -coordinate
[121,122].

First, we study null geodesic and shadow cast for massless
particles (μ = 0). Photon circular orbits, which are always
unstable, must then satisfy the following condition

R(r) = dR(r)

dr
|r=ro= 0. (46)

The null geodesic is important is an important quantity for
symmergent black holes. We need, in particular, the photon
region in constant r0, the so-called photonsphere, which is
an unstable orbit. The shadow cast ultimately depends on the
photon region. With μ = 0, it proves convenient to define
these two impact parameters

ξ = L

E
and η = K

E2 . (47)

These parameters are found to possess the following explicit
expressions

ξ = �′
r (r

2 + a2) − 4�r r

a�′
r

, (48)

η = −r4�′2
r + 8r3�r�

′
r + 16r2�r (a2 − �r )

a2�′2
r

(49)

after a lengthy algebra. The photonsphere radius rph can then
be determined by solving η(r) = 0 for r . The analytical solu-
tions are well-known for both Schwarzschild and Kerr black
holes. In our case, we plot (49) in Fig. 2 to get the qualita-
tive impression about the location of rph. The left panel of
Fig. 2 concerns location of the photonsphere along the equa-
torial plane. As we would expect, the Schwarzschild case
gives rph = 3M . The extreme Kerr case gives two possi-
ble locations, that is, the prograde orbit at rph = M and the
retrograde orbit at rph = 4M . The plot shows the locations
for a = 0.90M , which fall near the said extreme values.
For the symmergent effect, the dS type (dashed lines) gives
slightly lower values in the retrograde case while the AdS
type gives a larger one. It is clear that the more negative the
cO the closer the photon ring to the Kerr case. The sym-
mergent effect is also present in the prograde case though
the deviation is smaller than in the retrograde case. In the
right panel of Fig. 2, we consider photons with zero angular
momentum, that is, those that traverse the equatorial plane in
a perpendicular manner (the so-called nodes). The retrograde
case gives higher values for such an orbit than the prograde
case. The deviation caused is barely evident, especially in
the prograde case (the inset highlights the deviation). As a
final remark, we note that the symmergent effect mimics dS
or AdS cases, where such a behavior does not occur in the
Schwarzschild case. The coupling between the spin and sym-
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mergent parameters made it possible to affecy the behavior
of the photonsphere.

Escaping photons in the unstable orbit gives the possi-
bility for remote observers to backward-trace and obtain a
shadow cast by using the celestial coordinates (robs, θobs).
Such an observer is also known as the Zero Angular Momen-
tum Observer (ZAMO). Also, in this type of co-moving
frame, without loss of generality, one makes the approxi-
mation robs → ∞ and takes θobs = π/2. The celestial coor-
dinates are defined as [123]

X = −robs
ξ

ζ
√
gφφ

(
1 + gtφ

gφφ
ξ
) ,

Y = robs
±√

�(i)

ζ
√
gθθ
(

1 + gtφ
gφφ

ξ
) , (50)

and the condition robs → ∞ leads to the simplified relations

X = −ξ csc θobs,

Y = ±
√
η + a2 cos2 θobs − ξ2 cot2 θobs. (51)

These expressions further simplify to X = 0 and Y = ±√
η

when θobs = π/2. If, furthermore, a = 0 then shadow cast of
a Schwarzschild black hole (a circle) is obtained. The plot of
Y vs. X is shown in Fig. 3 for the black hole spin parameter
value of a = 0.90M .

Overall, we observe the D-shaped nature of the shadow
cast due to the spin parameter. Considering first the effect of
the inclination angle, we see that as we decrease the value of
θ (going up from the equatorial plane), we see that the shape
changes. Remarkably, in the upper right figure, the shape
becomes more compressed in the α axis, and as one contin-
ues to go up (lower left figure), it goes back to an almost
spherical shape. Finally, near the pole, a drastic change in
the shadow shape occurs due to stretching of the α-axis. For
the symmergent effects, we note that the dS type tends to
decrease the photonsphere radius. Nevertheless, as photons
travel in the intervening space under the effect of the symmer-
gent parameter the shadow size is seen to increase. We can see
the contrast in the AdS type symmergent effect in that while
the photonsphere increases the shadow size tends to decrease.

In the azimuthal plane, we see how the shadow becomes
“D-shaped” when the balck hole spin parameter a is near
extremal. The numerical value of the shadow radius associ-
ated with this shape [59] can be calculated [40] by using

Rs = Y2
t + (Xt − Xr)

2

2|Xt − Xr| (52)

which we plot in Fig. 4 (upper left), along with the shadow’s
angular radius θsh (upper right), where the latter is defined
by

θsh = 9.87098 × 10−3 RsM

D
(53)

after taking the black hole mass M in units of M� and D
in parsecs. We emphasize that these behaviors are consis-
tent with Fig. 3. Other observables that can be derived from
the shadow are the distortion parameter δs and the energy
emission rate d2E

dωdt , which are defined as

δs = ds

Rs
= X̃l − Xl

Rs
, (54)

d2E

dωdt
= 2π2 �ilm

eω/T − 1
ω3 (55)

such that the energy absorption cross-section can be approx-
imated as �ilm ∼ πR2

s for an observer at robs → ∞. These
observables are plotted in Fig. 4 in the lower two panels.
From these panels we are able to see how the spin parame-
ter increases the distortion of the shadow. We can also see
that even if the dS symmergent effect tends to increase the
shadow, the distortion it gives is smaller than the AdS sym-
mergent effect. In the lower right panel of Fig. 4, we com-
paratively show a = 0.25M and a = 0.90M for the Kerr,
dS and AdS symmergent black holes. For the Kerr case, we
see that low values of a leads to higher values for energy
emission rate and peak frequency. Adding the symmergent
effect at low values of a and α̂ = 0.90, we see that a less
negative cO provides the highest peak frequency and energy
emission rate. For α̂ = 1.1, this very same cO gives the low-
est emission rate and peak frequency. For a = 0.90M , we
observe in the inset plot that the roles are reversed near the
peak of the curve. We see that there is a point in the plot
where the behavior flips as the frequency σ increases whilst
the emission rate decreases.

We now investigate observational constraints on the sym-
mergent parameter cO using the black hole shadow data col-
lected from M87* [124] and Sgr. A* [93]. The data is tabu-
lated in Table 1. With these data, one can determine diameter
of the shadow size in units of the black hole mass with

dsh = Dθ

M
. (56)

In this sense, the diameter of the shadow image of M87* and
Sgr. A* are dM87*

sh = (11 ± 1.5)m and dSgr. A*
sh = (9.5 ±

1.4)m, respectively. Meanwhile, the theoretical shadow
diameter can be obtained via d theo

sh = 2Rsh with the use of
Eq. (52). Based on Fig. 5, we can conclude that the param-
eters we used in describing the shadow cast fall within the
upper and lower bounds at the 1σ level. Where this happens,
the range in cO is more extensive in M87* than in Sgr. A*. We
also observe that less negative cO introduces more sensitivity
to deviation than more negative cO (Table 2).
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Fig. 2 Location of the photonsphere (left panel), and location of the photonsphere crossing at φ = 0 or along the equatorial plane (right panel).
We take a = 0.90M in both plots (a is the black hole spin parameter)

Fig. 3 Shadow plot for different inclination angles for the black hole spin parameter a = 0.90M (aspect ratios of figures are set to obtain the
actual view)
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Fig. 4 Shadow observables associated with the upper left panel of Fig. 3. Shown here are shadow radius (upper-left panel), angular diameter in
μas for M87* (upper-right panel), distortion parameter (lower-left panel), and energy emission rate (lower-right panel)

Table 1 Black hole observational constraints

Black hole Mass (M�) Angular diameter: 2θsh (μas) Distance (kpc)

Sgr. A* 4.3 ± 0.013x106 (VLTI) 48.7 ± 7 (EHT) 8.277 ± 0.033

M87* 6.5 ± 0.90x109 42 ± 3 16800

Fig. 5 Constraint on the symmergent gravity parameter cO by the Sgr. A* data (left-panel) and M87* data (right-panel)
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Table 2 Bounds on c0 as read off from the curves in Fig. 5

2σ 1σ Observed Rsh

Sgr. A*

Spin a (α̂ = 0.90) Upper Lower Upper Lower Mean

0.25M – – – −0.057 −0.184

0.90M – – – −0.060 −0.196

Spin a (α̂ = 1.10) Upper Lower Upper Lower Mean

0.25M −0.127 – −0.397 – –

0.90M −0.137 – −0.431 – –

M87*

Spin a (α̂ = 0.90) Upper Lower Upper Lower Mean

0.25M – −0.054 – −0.196 –

0.90M – −0.057 – −0.185 –

Spin a (α̂ = 1.10) Upper Lower Upper Lower Mean

0.25M −0.081 – −0.117 – −0.336

0.90M −0.089 – −0.128 – −0.364

4.2 Symmergent gravity effects on time-like orbits:
effective potential and ISCO radii

We now turn our attention to time-like orbits. Here, we will
still use the equations of motion from the Hamilton–Jacobi
approach but this time set μ = 1. We are interested in
determining the radius of the innermost stable circular orbit
(ISCO), which is very important in the study of matter accre-
tion disks and in the study also of the effective potential for
getting a qualitative description of bound and unbound orbits
under the symmergent effects.

To determine the qualitative behavior of massive particle’s
motion around the symmergent black hole (i.e. bound, stable
and unstable circular orbits), we use the effective potential
formula [125]

V± = gtφ

gtt
L ±

{[(
gtφ

gtt

)2

− gφφ

gtt

]
L2 − 1

gtt

}1/2

. (57)

written in terms of the inverse metric gμν and angular
momentum L . Shown in Fig. 6 is the effective potential for
L = ±3.50M . In this figure, maxima and minima corre-
spond to the unstable and stable circular orbits, respectively.
One notes that for a = 0 (Schwarzschild) case, the maxima
of the effective potential curve are way lower compared to
when a = 0.90M (Kerr case). We can see that the energy
for an unstable circular orbit is higher in the AdS symmer-
gent effect, where less negative c0 giving the highest energy.
Its minima, which represents the stable circular orbit, has a
greater radius for more negative c0. Peculiar as it may seem,
particles with energies higher that than the peak energy tend
to get deflected back when it reaches at some radial point
near the cosmic horizon (one recalls that we scaled the Sym-
mergent dS and AdS parameters). As for the dS symmergent

effect, we can see that the least negative cO gives the lowest
peak energy in the unstable circular orbit. Particles with low
energy are deflected back to r → ∞ when they reach low
values of r . While the AdS type can have elliptical bound
orbits the same way as in the Kerr case, we see that dS type
does not admit such orbit as far as the value of the angular
momentum used herein is concerned. In Fig. 6 (right-panel),
we plotted also the effective potential in which the particle
attains a negative angular momentum. It is known that it does
not happen in the Schwarzschild case. As we can see in the
right-panel, particles with negative energies can be created
near the rotating black hole’s event horizon. Clearly, sym-
mergent gravity affects the particle’s energy, which in turn
contributes to the Penrose process and black hole evapora-
tion.

The ISCO radius occurs when the maximum and mini-
mum of the effective potential curve merge in an inflection
point for a given value of L . It is clear that we have two sepa-
rate cases for ISCO determination since we need to consider
both the prograde and retrograde motion of the time-like par-
ticles. Besides, such a circular orbit is only marginally stable,
which means that any inward perturbation will lead the par-
ticle to spiral toward the event horizon. In locating the ISCO
radius, we use Eq. (46) and solve for the energy Ecir. One
starts with [121,126],

X2 = L − aE = r3
(
�′

r − 2E2
cirr
)

−2a2 − r�′
r + 2�r

. (58)

Differentiating equation (58) with respect to r and after some
algebra we get (Ecir = Eisco)

E2
isco = 1

Br

{
a2 [− (r�′′

r + 3�′
r

)]+ r�r�
′′
r − 2r�′2

r + 3�r�
′
r

}
,

(59)
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Fig. 6 The effective potential as a function of r/M for L > 0 (left-panel) and L < 0 (right-panel). In both plots, the black hole spin parameter is
set to a = 0.90M

where B = −8a2 +r
(
r�′′

r − 5�′
r

)+8�r . The ISCO radius
can then be found by solving the Eq. [127]

η(r)isco = ±2�r
(
a2 − �r

)2 ± 9

4
r�r

(
a2 − �r

)
�′

r

± 1

16
r3�′

r

(
�r�

′′
r − 2�′2

r

)

± 1

16
r2[4�r

(
a2 − �r

)
�′′

r + (15�r − 4a2)�′2
r

]

+ a�r

√
4a2 + 2r�′

r − 4�r

×
[
−a2 + 1

8
r
(
r�′′

r − 5�′
r

)+ �r

]
= 0 (60)

which redues to the Kerr case

3a2 ∓ 8a
√
m

√
r + r(6m − r) = 0 (61)

when �(r) = r2 − 2mr + a2. The upper and lower signs
in Eq. (60) correspond to the prograde and retrograde orbit
of the massive particle at the ISCO radius, respectively. We
determine ISCO radius numerically by plotting Eq. (60) in
Fig. 7. First, we note that in the Schwarzschild case, the ISCO
radius is located at r = 6M . For the extreme Kerr case, on the
other hand, the prograde ISCO is at r = M (which coincides
with the prograde photonsphere) and retrograde ISCO is at
r = 9M . Thus, in Fig. 7, the left-panel represents the retro-
grade ISCO where we can see clearly how the symmergent
parameters affect the radius. The innermost radius, which
determines the accretion disk’s innermost region, is smaller
in the AdS type whilst the dS type is slightly larger in the
Kerr case. We note that the first root of ηisco is unphysical
since those radii are smaller than the photonsphere in the ret-
rograde case. Finally, we see the same symmergent effects in
the prograde ISCO (right-panel of Fig. 7). Before we close
this section, we remark that we used lower values of c0 in
time-like geodesics than when analyzing the null boundaries
and geodesics. Thus, there must be some different constraints

to be considered in studying time-like geodesics. If we used
the same parameters for the null case, the results would be
unphysical. Nonetheless, even if c0 are more negative, we
see that time-like particles are more sensitive to symmergent
effects.

5 Weak deflection angle from rotating symmergent
black holes using Gauss–Bonnet theorem

In this section, we investigate the deflection angle of light
rays from the rotating symmergent black hole in the weak
field limit using the methodology given in [29,31]. Below,
we briefly discuss the finite distance method. First of all, the
deflection angle is defined as

θ̂ = �R − �S + φRS (62)

in which φRS is the longitude separation angle, �R is the
angle between light rays and radial direction, and �S is the
angle between the observer and the source. Unit tangential
vector ei is used to write the above angle as follows

(er , eθ , eφ) = ε

(
dr

dφ
, 0, 1

)
(63)

where ε is a radial quantity. For a stationary spacetime
described by the metric

ds2 = −A(r, θ)dt2 + B(r, θ)dr2 + C(r, θ)dθ2

+ D(r, θ)dφ2 − 2H(r, θ)dtdφ, (64)

one straightforwardly finds

ε = A(r)D(r) + H2(r)

A(r)(H(r) + A(r)b)
, (65)
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Fig. 7 Location of ISCO radius for counter-rotation of a massive particle (left-panel) and co-rotation of a massive particle (right-panel). We set
a = 0.90M in both panels

where b is the impact parameter. We can write conserved
quantities energy and the angular momentum per unit mass
in the form

E = A(r)ṫ + H(r)φ̇ L = D(r)φ̇ − H(r)ṫ, (66)

where the overdot denotes the derivative of the coordinates
t and φ with respect to the affine parameter λ (proper time).
In the equatorial plane (θ = π

2 ), the line element reduces to

dl2 ≡ γi j dx
i dx j (67)

with the spatial metric γi j . It is then possible to define

cos� ≡ γi j e
i R j . (68)

as the angle between the direction ei and the radial vector
R j = ( 1√

γrr
, 0, 0). Having cos� at hand, we use equations

(63) and (68) to get

sin� = H(r) + A(r)b√
A(r)D(r) + H2(r)

. (69)

Now, using this methodology we can calculate the deflec-
tion angle of the symmergent black hole in the weak field
limit. Indeed, with the impact parameter b = L

E and radial
coordinate 1/u in place of r we get
(
du

dφ

)2

= 1

b2 − 4aMu

b3 − u2 + 2Mu3 + 1 − α̂

24πc0

− 2a

3b3u2

(1 − α̂)

8πc0
− 8aM

3b3u

(1 − α̂)

8πc0

+O
[
M2,

(
1 − α̂

8πc0

)2

, a2

]
(70)

where we considered only the retrograde solution. For the
prograde solution, we just flip the sign of the spin parameter
a. It is convenient to start by computing the separation angle

integral. This can be done by writing
(
du
dφ

)2 = F(u) and

extracting the angle

φRS =
∫ R

S
dφ =

∫ u0

uS

1√
F(u)

du +
∫ u0

uR

1√
F(u)

du, (71)

where uS (uR) is inverse distance to the source (observer),
and u0 is the inverse of the closest approach r0. Considering
the weak field and slow rotation approximations, the impact
parameter can be related to u0 as

b = 1

u0
+ M − 2aMu0 + O

[
M2,

(
1 − α̂

8πc0

)2

, a2

]
. (72)

Then, performing the necessary calculations we find

φRS = φKerr
RS +

⎛
⎝ uR√

1 − b2u2
R

+ uS√
1 − b2u2

S

⎞
⎠ b3

6

(1 − α̂)

8πc0

+
(

b
(
2 − 3b2u2

R

)
2
(
1 − b2u2

R

)
3/2

+ b
(
2 − 3b2u2

S

)
2
(
1 − b2u2

S

)
3/2

)
M

3

(1 − α̂)

8πc0

+
⎛
⎝ 1 − 2b2u2

R

uR

√
1 − b2u2

R

+ 1 − 2b2u2
S

uS

√
1 − b2u2

S

⎞
⎠ a

3

(1 − α̂)

8πc0

+O
[
M2,

(
1 − α̂

8πc0

)2

, a2

]
, (73)

where the Kerr term is given by

φKerr
RS = φSW

RS −
⎛
⎝ 1√

1 − b2u2
R

+ 1√
1 − b2u2

S

⎞
⎠ 2aM

b2 . (74)

In this equation, the Schwarzschild term is

φSchw
RS = π − arcsin (buR) − arcsin (buS)

123



250 Page 14 of 20 Eur. Phys. J. C (2023) 83 :250

+
⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+ 2 − b2u2
S√

1 − b2u2
S

⎞
⎠ M

b
. (75)

To get the remaining terms appearing in the light deflection
angle expression, one should identify the � terms. We find

sin� = bu − bMu2 + 2aMu2

−
(
bM

6
− a

3u
+ b

6u

)
(1 − α̂)

8πc0

+O
[
M2,

(
1 − α̂

8πc0

)2

, a2

]
. (76)

This relation produces

�R − �S = �Kerr
R −

⎛
⎝ 1

uR

√
1 − b2u2

R

+ 1

uS

√
1 − b2u2

S

⎞
⎠

×b

6

(1 − α̂)

8πc0
−
(

2b2u2
R − 1(

1 − b2u2
R

)
3/2

+ 2b2u2
S − 1(

1 − b2u2
S

)
3/2

)

×bM

6

(1 − α̂)

8πc0

+
⎛
⎝ 1

uR

√
1 − b2u2

R

+ 1

uS

√
1 − b2u2

S

⎞
⎠ a

3

(1 − α̂)

8πc0

+O
[
M2,

(
1 − α̂

8πc0

)2

, a2

]
, (77)

where one has

�Kerr
R − �Kerr

S = �Schw
R − �Schw

R

+
⎛
⎝ u2

R√
1 − b2u2

R

+ u2
S√

1 − b2u2
S

⎞
⎠ 2aM, (78)

and where one has found

�Schw
R − �Schw

R = (arcsin (buR) + arcsin (buS) − π)

−
⎛
⎝ u2

R√
1 − b2u2

R

+ u2
S√

1 − b2u2
S

⎞
⎠Mb. (79)

Combining the above equations, we get an expression of the
light deflection angle given by

θ̂ =
(√

1 − b2u2
R +

√
1 − b2u2

S

)
2M

b

−
(√

1 − b2u2
R −

√
1 − b2u2

S

)
2aM

b2

−
⎛
⎝ 1 − b2u2

R

uR

√
1 − b2u2

R

+ 1 − b2u2
S
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. (80)

This form can be reduced to a simplified one using certain
convenable approximations. Taking uSb << 1 and uRb <<

1, we can get an expression involving divergent terms coupled
to the cosmological contributions. These terms should be
existed to show the cosmological background dependence.
The desired deflection angle of light rays is found to be

θ̂ = 4M

b
− 4aM

b2 + bM

3
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8πc0
−
(

1

uR
+ 1
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)
b
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8πc0
+ O

[
M2,
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1 − α̂

8πc0

)2

, a2

]
.

(81)

An examination shows that this expression recovers many
previous findings. Without the cosmological contributions,
we get the results of the ordinary Symmergent black hole
solutions investigated in [9].

Plotted in Fig. 8 are the Eqs. (80) (left-panel) and (81)
(right-panel). The solid curves represent photons co-rotating
with the black hole, while the dashed curves represent the
counter-rotating photons. For the left-panel, which holds for
finite distance, the results show that the co-rotating photons
produce weak deflection angle at lower impact parameters
compared to the counter-rotating photons. If we compare θ̂

for a specific orbital direction of photons, we see that the sym-
mergent AdS type gives a higher value for θ̂ at large impact
parameters. However, AdS type in the counter-rotation case
gives a higher θ̂ than the co-rotation case. Finally, the right-
panel stands for the case where we used the large distance
approximation. Since the symmergent parameters are scaled,
the location of the receiver in this case is comparable to the
cosmic horizon. In this case, the symmergent effect is strong,
giving the effects shown in the plot. We could see that there
are cases where θ̂ is repulsive. In general, weak deflection
angle is seen to have a strong sensitivity to the symmergent
parameters.

5.1 Particle acceleration near rotating symmergent black
hole backgrounds

As Banados, Silk and West (BSW) show that collisions in
equatorial plane near a Kerr black hole can occur with an
arbitrarily high center of mass-energy and Kerr black holes
can serve as particle accelerators [128]. Then the BSW mech-
anism has been studied different black hole spacetimes [129–
135]. In the present work, we find that the symmergent
parameter c0 has an important effect on the result. To do
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Fig. 8 Weak deflection angle of photons as a function of b/m for var-
ious values of the spin and symmergent parameters. The solid lines
correspond to a > 0 (prograde) and dashed lines correspond to a < 0

(retrograde). In making these plots we take uS = uR = 0.5b−1 (left),
uS = uR = 0.01b−1 (right), and α̂ = 0.90. The horizontal dotted lines
represent critical impact parameters in each case

that first we consider the particle motion on the equatorial
plane (θ = π

2 , ρ2 = r2). In fact, generalized momenta Pμ
can be written as (μ, ν = t, r, φ, θ )

Pμ = gμν ẋ
ν (82)

where the dot stands for derivative with respect to the affine
parameter λ. Then, one can write the generalized momenta
Pt (test particle’s energy per unit mass E) and Pφ (the angular
momentum per unit mass L parallel to the symmetry axis)

Pt = gtt ṫ + gtφφ̇, (83)

Pφ = gφφφ̇ + gtφ ṫ (84)

where one keeps in mind that Pt and Pφ are constants of
motion.

Our goal is to study the CM energy of the two-particle
collision in the background spacetime of the rotating sym-
mergent black holes. To this end, we start with the CM energy
ECM [128]

E2
CM = 2m2

0

(
1 − gμνu

μ
1 u

ν
2

)
(85)

in which uμ1 , u
ν
2 are the 4-velocity vectors of the two particles

(u = (ṫ, ṙ , 0, φ̇)). Correspondingly, particle i = 1, 2 has
angular momentum per unit mass Li and energy per unit mass
Ei . We also consider particles with the same rest mass m0.
Initially the two particles are at rest at infinity (E1/m0 = 1
and E2/m0 = 1) and then they approach the black hole and
collide at a distance r . Then, their CM energy takes the form

E2
CM = 2m2

0

�r r2

[(
r2 + a2)2 − a (L1 + L2)

(
r2 + a2 − �r

)

+L1L2
(
a2 − �r

)+ �r
(
r2 − a2)− X1X2

]
(86)

with the functions

Xi =
√(

aLi − r2 − a2
)2 − �r

(
(Li − a)2 + μ2r2

)
. (87)

Collisions occur at the horizon of the black hole so that
�r = 0 in Eq. (86) so CM energy could diverge when the
particles approach the horizon. It is not difficult to see that
the denominator of E2

CM is zero there. Evidently, the maxi-
mal energy of the collision occurs if L1 and L2 are opposite
(such as head-on collision). Plotted in Fig. 9 is ECM as a func-
tion of the radial distance r . As is seen from the figure, CM
energy blows up at the horizons. It demonstrates the radial
dependence of the CM energy of the particles moving along
circular orbits with the different symmergent parameters. The
symmergent parameter decreases the CM energy.

6 Conclusion

In this paper, we have studied rotating black holes in sym-
mergent gravity, and used deviations from the Kerr black
hole to constrain the parameters of the symmergent grav-
ity. Symmergent gravity generates parameters of the gravita-
tional sector from flat spacetime loops. It induces the grav-
itational constant G and quadratic-curvature coefficient cO.
In the limit in which all fields are degenerate in mass, the
vacuum energy VO can be expressed in terms of G and cO.
We parametrize deviation from this degenerate limit by the
parameter α̂. The black hole spacetime is dS for α̂ < 1 and
AdS for α̂ > 1. In constraining the symmergent parameters
cO and α̂, we utilize the EHT observations on the M87* and
Sgr. A* black holes.

We have analyzed symmergent gravity parameters for dif-
ferent spinning black hole properties. We first investigated the
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Fig. 9 Dependence of the CM energy ECM on the radial distance r for
different values of the spin and symmergent parameters. We consider
two parameter sets m = M = 1, L1 = −4,c0 = −0.5, α̂ = 0.9 and

a = 0.5 (left-panel) as well as m = M = 1, L1 = −4,L2 = 50,
α̂ = 0.9 and a = 0.5 (right-panel). It is clear that the CM energy blows
up at the horizons

effects of symmergent gravity on the photonsphere, black
hole shadow, and certain observables related to them. Our
findings show that location of the photonsphere depends on
the symmergent effects due to its coupling to the black hole
spin parameter. We have seen how the instability of the pho-
ton radii depends on and gets affected by cO and α̂. Also, sym-
mergent gravity effect is evident, even for observers deviating
from the equatorial plane. Interesting effects are also seen in
the energy emission rate, which may directly affect the black
hole’s lifetime. Constraints on symmergent parameters from
the shadow radius data coming from recent observations are
also discussed. For a low and high spin parameter a val-
ues (the parameter α̂ dictates whether the symmergent effect
mimics the dS and AdS type), we found that the parame-
ter c0 fits within ±2σ at 95% confidence level for M87*
than in Sgr. A*. It means that the true value is somewhere
within such confidence level. The plot in Fig. 5 reveals that
the detection of symmergent effects can be achieved more
easily in M87* than in Sgr. A*, for the obvious reason that
the farther the galaxy is the stronger the symmergent effects
are. Finally, for comparison, we also briefly analyzed such
an effect on the time-like geodesic. Our findings indicate that
massive particles are more sensitive to deviations caused by
the symmergent parameter than null particles.

In addition, we investigated the symmergent effects on
photons’ weak deflection angle as they traverse near the black
hole. We also considered the finite distance effects. We have
found that the deflection angle depends on α̂ but the devia-
tions are also caused by how far the receiver is from the black
hole. This effect is clearly shown in Fig. 8. It implies that the
weak deflection angle can detect symmergent effects more
easily for black holes that are significantly remote compared
to our location.

Lastly, we study the particle collision near the rotating
symmergent black hole background and we analyze the pos-

sibility that rotating symmergent black holes could act as par-
ticle accelerators. We show that rotating symmergent black
holes can serve as particle accelerators because the center-
of-mass energies blow up at the horizons. As a result, the
BSW mechanism depends on the value of the Symmergent
parameter c0 of the black hole.

Future research direction may include investigation of the
shadow, and showing its dependence on the observer’s state.
One may also study the spherical photon orbits or the stability
of time-like orbits.
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