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In this article, we perform a sensitivity study of an unbinned angular analysis of the B → D�lνl decay,
including the contributions from the right-handed current. We show that the angular observable can
constrain very strongly the right-handed current without the intervention of the yet unsolved Vcb puzzle.
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I. INTRODUCTION

The B → D�lνl (l ¼ e or μ) has been receiving a great
deal of attention in recent years. Two main reasons are the
so-called Vcb puzzle and the RðDð�ÞÞ anomalies. The former
is the problem that there is a tension between the values of
jVcbj determined by using the experimental measurements
of the inclusive and the exclusive b → clνl decays. The
jVcbj determination from the exclusive B → Dð�Þlνl decay
depends on the B → Dð�Þ form factors. Simultaneous
measurements [1–3] of the jVcbj and the form factors using
the angular distribution [4–9] of the B → D�lνl have been
attempted, which were followed by intensive theoretical
interpretations [10–23]. The most exciting progress we
foresee in this study is that new average of lattice QCD
results will become possible [24]. The latter RðDð�ÞÞ
anomalies are the discrepancies between the Standard
Model (SM) predictions and the experimental results on
the ratios of BðB → Dð�ÞτντÞ and BðB → Dð�ÞlνlÞ. Various
investigations assuming that this is an appearance of the
physics beyond the SM are ongoing [25–35]. In order to
confirm that these phenomena are indeed the new physics
discoveries, detailed studies need to be carried out both
theoretically and experimentally.
In this article, motivated by these phenomenological

problems, we examine the usefulness of the unbinned

angular distribution measurements to scrutinize the
B → D�lνl decay. The existing experimental analysis
mentioned above utilized four one dimensional binned
distributions: they are the projections of one of the three
angles (θl, θV , χ) and one momentum (w). On the other
hand, once a larger amount of data becomes available at
the Belle II experiment [36], the unbinned analysis with
simultaneous fit of three angular distributions will
become possible. The method is similar to the one which
was applied for the B → K�μþμ− decay where another
anomaly is found [37]. We expect that the angular
distribution would be most useful to distinguish the
new physics contributions which carry opposite chirality
to the SM, i.e., the right-handed vector contribution
[38–40], which can be induced in some NP scenarios,
e.g., from the WL −WR mixing in the left-right sym-
metric model [41]. Furthermore, in [42,43], it is pointed
out that the right-handed vector current contribution is
lepton flavor universal at tree level in the context of the
linear electroweak symmetry breaking. Thus, the NP
effects in B → D�lνl may have a strong implication
for B → D�τντ and Bc → τντ processes.
In this article, we will investigate the impact of the

unbinned angular distribution measurements to the inves-
tigation of new physics solely from the right-handed
vector current involving a light charged lepton. We will
utilize the pseudodata generated using hadronic form
factors from the Belle analysis [1] for the light modes
and discuss the role of the lattice QCD results which will
become available soon.

II. THE UNBINNED ANGULAR ANALYSIS

The weak Hamiltonian for B → D�lνl decay including
the left-handed (SM) operator and the right-handed oper-
ator (assuming no right-handed neutrino) is
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Heff ¼
4GFffiffiffi

2
p Vcb½CVL

OVL
þ CVR

OVR
� þ H:c:; ð1Þ

where GF and Vcb are respectively the Fermi Constant and
the Cabibbo-Kobayashi-Maskawa (CKM) matrix element,
and CVL

and CVR
are the Wilson coefficients of the left-

handed and the right-handed vector operators withOVL
and

OVR
defined as

OVL
¼ðc̄LγμbLÞðl̄LγμνLÞ; OVR

¼ðc̄RγμbRÞðl̄LγμνLÞ: ð2Þ
In the SM, we haveCVL

¼ 1 andCVR
¼ 0, while in some

NP scenarios such as the left-right symmetric model [41],
CVR

can be nonzero.
Having the above weak Hamiltonian, let us then build

our probability density function (PDF) in terms of 11
independent angular observables Ji, defined as functions of
Wilson coefficients and helicity amplitudes in Eqs. (A13)
and (A14) in Appendix. First, we integrate out all the
angles to obtain the normalization [44]:

dΓ
dw

¼ 6mBm2
D�

8ð4πÞ4 G2
Fη

2
EWjVcbj2 × BðD� → DπÞ

×
8π

9
f6J01s þ 3J01c − 2J02s − J02cg; ð3Þ

where J0i ≡ Ji
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ð1 − 2wrþ r2Þ. In the following, to

take into account the w dependence, we separate w in 10
bins and prepare the PDF for each bin. We express the
decay rate for each bin as

hΓiw−bin ¼
6mBm2

D�

8ð4πÞ4 G2
Fη

2
EWjVcbj2 × BðD� → DπÞ

×
8π

9
f6hJ01siw−bin þ 3hJ01ciw−bin − 2hJ02siw−bin

− hJ02ciw−bing: ð4Þ

Hereafter, the index w-bin is implicit. Now, the PDF is
written by new normalized angular coefficients gi as:

f̂ ⃗hgiðcos θV; cos θl; χÞ ¼
9

8π

�
1

6
ð1 − 3hg1ci þ 2hg2si þ hg2ciÞsin2θV þ hg1cicos2θV þ ðhg2sisin2θV þ hg2cicos2θVÞ cos 2θl

þ hg3isin2θVsin2θl cos 2χ þ hg4i sin 2θV sin 2θl cos χ þ hg5i sin 2θV sin θl cos χ
þ ðhg6sisin2θV þ hg6cicos2θVÞ cos θl þ hg7i sin 2θV sin θl sin χ þ hg8i sin 2θV sin 2θl sin χ

þ hg9isin2θVsin2θl sin 2χ
�
; ð5Þ

where

hgii≡ hJ0ii
6hJ01si þ 3hJ01ci − 2hJ02si − hJ02ci

: ð6Þ

Notice that hg6si is equivalent to the forward-backward
asymmetry (FBA) up to a constant:

hAθli≡
R
1
0

dΓ
d cos θl

d cos θl −
R
0
−1

dΓ
d cos θl

d cos θlR
1
0

dΓ
d cos θl

d cos θl þ
R
0
−1

dΓ
d cos θl

d cos θl

¼ 3hg6si: ð7Þ
Now having the PDF, the experimental determination of

the hgii can be pursued by the maximum likelihood
method:

Lð ⃗hgiÞ ¼
XN
i¼1

ln f̂ ⃗hgiðeiÞ; ð8Þ

where ei indicates the experimental events and N is the
number of events.
The errormatrix for hgii can beobtained via the covariance

matrix,Vij, which is the 11 × 11matrix for eachw-bin (sowe
need 10 of these matrices if we have 10 bins). In this work,

based on the truth values of hgii obtained using themeasured
form factors in [1], we use the toy Monte-Carlo method to
generate the covariance matrices.
Using the pseudodata of hgii, the Wilson coefficient

CVR
and the parameters in hadronic form factors can be

fitted. Following the Belle analysis [1], we use two sets of
parametrization for B → D� form factors, i.e., the CLN
parametrization [45] based on heavy quark expansion
(HQE) and the BGL parametrization [46] based on
analyticity, despite the fact that there is updated
HQE parametrization [18,47] which is more flexible by
including higher-order terms in 1=mb;c expansion and z
expansion. The theoretical parameters v⃗, which is v⃗ ¼
ðhA1

ð1Þ; ρ2D� ; R1ð1Þ; R2ð1Þ; VcbÞ for the CLN parametriza-

tion and v⃗ ¼ ðag0;1;���; af0;1;���; aF 1

1;2;���; VcbÞ for the BGL para-
metrization [46] are fitted by minimizing the following χ2:

χ2ðv⃗Þ ¼ χ2angleðv⃗Þ þ χ2w−binðv⃗Þ þ χ2latticeðv⃗Þ; ð9Þ

where χ2angleðv⃗Þ takes into account the angular distribution
and χ2w−binðv⃗Þ does the w dependence. The χ2lattice is the
constraint from the lattice QCD computation, which we
explain more in detail below.
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The first term can be given as

χ2angleðv⃗Þ ¼
X10

w−bin¼1

�X
ij

NeventV̂
−1
ij ðhgiiexp

− hgthi ðv⃗ÞiÞðhgjiexp − hgthj ðv⃗ÞiÞ
�
w−bin

; ð10Þ

where V̂ and hgiiexp are the covariance matrix and the w-bin
integrated gi functions. The second term is given as

χ2w−binðv⃗Þ ¼
X10

w−bin¼1

ð½N�w−bin − αhΓiw−binÞ2
½N�w−bin

; ð11Þ

where hΓiw−bin is in Eq. (4). In reality, there might be an
experimental correlation between different w-bin, which
must be taken into account.
The factor α is a constant, which relates the number of

events and the decay rate:

α≡ 4NBB̄

1þ fþ0

τB0 × ϵBðD0 → K−πþÞ; ð12Þ

where NBB̄ ¼ ð772� 11Þ × 106 is the number of BB̄ pairs
produced from ϒð4SÞ, which corresponds to 711 fb−1 of
data at Belle [48], fþ0 is the constant defined as

fþ0 ¼ Γðϒð4SÞ→BþB−Þ
Γðϒð4SÞ→B0B̄0Þ , τB0 is the lifetime of B0, and ϵ is

the experimental efficiency (the values are from PDG [49]).
In the following sections, we will investigate the sensi-

tivity of the unbinned angular analysis proposed above to
the right-handed current, i.e., CVR

. We use the best-fit
values of the CLN and BGL parameters in the Belle ’18
paper [1], in order to generate the pseudo-experimental
data. The total number of events is also adjusted to ∼95 k
as in [1], corresponding to roughly the universal efficiency
of ϵ ∼ 4.8 × 10−2. Thus, the α parameter is computed as
6.616ð6.613Þ × 1018 for CLN(BGL) parametrization.
For illustration, the pseudodata with CLN parameters

leads to the number of events for w-bin as

Nevent ¼ ð5306; 8934; 10525; 11241; 11392; 11132;
× 10555; 9726; 8693; 7497Þ: ð13Þ

Similarly, using the pseudodata with BGL parameters we
find

Nevent ¼ ð5239; 8868; 10500; 11264; 11455; 11217;
× 10638; 9776; 8676; 7368Þ: ð14Þ

As an example, we show the hgii distribution with CLN
pseudodata in Fig. 1.

III. SENSITIVITY TO THE CVR

In this section, we will show that using the two sets of
pseudodata discussed in the previous section, how precisely
the CVR

parameter can be determined assuming the right-
handed vector current is the only source of new physic
contribution (i.e., CVL

¼ 1 and CVR
nonzero). But first, for

a sanity check, we study the SM case and compare to the
result in [1]. Let us start with the CLN pseudodata. We use
the lattice input hA1

ð1Þ ¼ 0.906� 0.013 as done in [1] by
including the following χ2lattice term

χ2latticeðvÞ ¼
�
vlattice − v
σlatticev

�
2

; ð15Þ

with v ¼ hA1
ð1Þ. Then, we find

v⃗ ¼ ðhA1
ð1Þ; ρ2D� ; R1ð1Þ; R2ð1Þ; VcbÞ

¼ ð0.906; 1.106; 1.229; 0.852; 0.0387Þ;
σv⃗ ¼ ð0.013; 0.019; 0.011; 0.011; 0.0006Þ; ð16Þ

using α ¼ 6.616 × 1018 and ηEW ¼ 1.006.
The fitted values coincide well with our input from [1]

while we cannot directly compare the errors with [1] as the
experimental efficiency is not correctly taken into account
here. Nevertheless, our error is ∼50% smaller and a partial
reason might be the unbinned analysis we have applied
here. Next, we use the BGL data. The lattice data for hA1

ð1Þ
is again used to constrain the BGL parameter af0 via a
relation:

hA1
ð1Þ ¼ 1

2mB
ffiffiffi
r

p
Pfð0Þϕfð0Þ

af0 ; ð17Þ

FIG. 1. Distribution of hgii in ten w-bins.
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which leads to af0 ¼ 0.0132� 0.0002. The fit result yields

v⃗ ¼ ðaf0 ; af1 ; aF 1

1 ; aF 1

2 ; ag0; VcbÞ
¼ ð0.0132; 0.0169; 0.0070;
− 0.0853; 0.0242; 0.0384Þ; ð18Þ

σv⃗ ¼ ð0.0002; 0.0028; 0.0011; 0.0199; 0.0004; 0.0006Þ;
ð19Þ

using α ¼ 6.613 × 1018 and ηEW ¼ 1.006. Thus, the sim-
ilar conclusion applies for the BGL case as well.
Now, let us move to our main topic, the sensitivity study

of the right-handed current, CVR
. By simply adding

CVR
≠ 0, we immediately encounter two fundamental

problems: (i) the fit does not converge as CVR
is not

independent of the vector form factor, which means without
knowing the SM value of the vector form factor, we cannot
determine CVR

, (ii) CVR
and Vcb are also depending as the

changes in both parameters directly impact on the branch-
ing ratio of B → D�lνl. Thus, to obtain the allowed range
of CVR

, we need a precise information of the SM value of
Vcb. However, as it is manifested in the Vcb puzzle, there is
a controversy in the experimental determination of Vcb
from the semileptonic b → clνl transitions.
Fortunately, the first problem will be soon resolved as the

lattice QCD result on the vector form factor will be
available [24]. It is important to emphasize that the
right-handed current contribution cannot be determined
from experimental data without this lattice QCD result. For
the second problem, we may also use the SM value of Vcb
obtained indirectly from the unitarity relation with other
measurements. However, ignoring the Vcb determination
from the semileptonic decays enlarges the error on Vcb and
the correlation between Vcb and CVR

is so strong that the
obtained fit result becomes unstable, especially when we
have many numbers of parameters to fit. On the other hand,
we found that we can circumvent this problem entirely and
determine CVR

at a high precision when we use only the
angular distribution, i.e., χ2angleðv⃗Þ, in which an overall
factor such as Vcb is canceled out in the normalized hgii
functions. That is, we ignore the χ2w−binðv⃗Þ term, which is
useful solely to determine the overall factor and the w
dependence of the form factors. Thus, in the following
studies, we use these strategies: (a) we assume that the
vector form factor is known at a certain precision (we use
the expected lattice QCD precision, 4% in R1ð1Þ and 7% in
hVð1Þ [50]), (b) we use only the first and the third terms of
Eq. (9) and evaluate the compatibility with Vcb after the fit.
We first consider a scenario where CVR

is real, i.e.,
CVR

¼ ReðCVR
Þ. We start with the CLN pseudodata. The

central value of the lattice input for the vector form factor,
which is represented by the R1ð1Þ in the CLN parametri-
zation, is chosen to be our input, with 4% error as

mentioned above, and thus, R1ð1Þ ¼ 1.229� 0.049. Our
fit result yields

v⃗ ¼ ðρ2D� ; R1ð1Þ; R2ð1Þ; CVR
Þ ¼ ð1.106; 1.229; 0.852; 0Þ;

ð20Þ

σv⃗ ¼ ð3.177; 0.049; 0.018; 0.021Þ;

ρv⃗ ¼

0
BBBBBB@

1: −0.016 −0.763 0.095

−0.016 1: 0.006 −0.973
−0.763 0.006 1: −0.117
0.095 −0.973 −0.117 1:

1
CCCCCCA
: ð21Þ

The most important finding here is that the CVR
can be

determined at a 2.1% precision. Note that the central values
here are simply due to our input, where the SM is assumed,
and we will know the true CVR

value only if an experimental
data analysis is performed considering the right-handed
contribution and including the lattice QCD results on the
vector form factor. In this fit, the obtained uncertainties in the
form factor parameters, especially for ρ2D� and R2ð1Þ, are
very large. However, the small correlation between those
parameters and CVR

implies that ignorance of these param-
eters has little impact on the determination of the CVR

. In
Fig. 2 left, we show a contour plot on theR1ð1Þ − CVR

plane.
We repeat that the centre of this plot is at SM due to its initial
assumption. Only when the lattice QCD value of R1ð1Þ is
obtained, wewill be able to tell whetherCVR

is deviated from
the SM value, CVR

¼ 0, or not. This plot shows that one day
if the lattice QCD result on R1ð1Þ becomes available and it
turns out to be different from the experimental fitted value
(assuming SM), nonzero CVR

can be hinted. We found that
our result does not change significantly even if we have
lattice input for ρ2D�, R2ð1Þ, except that the errors on these
parameters become smaller.
Next we study the BGL pseudodata. We again fix the

vector form factor at our input value. In the BGL para-
metrization, the vector form factor is related to the ag0
parameter

1.10 1.15 1.20 1.25 1.30 1.35

–0.06

–0.04

–0.02

0.00

0.02

0.04

0.06

R1(1)
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R
)

0.9 1.0 1.1 1.2 1.3

–0.10

–0.05

0.00
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R
e(

C
V

R
)

FIG. 2. R1ð1Þ − CVR
and hVð1Þ − CVR

contours.
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hVð1Þ ¼
mB

ffiffiffi
r

p
Pgð0Þϕgð0Þ

ag0: ð22Þ

By adding the error of 7% (larger than the ratio R1ð1Þ
which can be determined at a higher precision by lattice
QCD), we use a constraint of the ag0 parameter,
ag0 ¼ 0.0241� 0.0017. We also note that the BGL fit

requires hA1
ð1Þ lattice QCD input as well. The fit result

yields

v⃗ ¼ ðaf0 ; af1 ; aF 1

1 ; aF 1

2 ; ag0; CVR
Þ

¼ ð0.0132; 0.0169; 0.0070;
− 0.0852; 0.0241; 0.0024Þ; ð23Þ

σv⃗ ¼ ð0.0002; 0.0109; 0.0026; 0.0352; 0.0017; 0.0379Þ;

ρv⃗ ¼

0
BBBBBBBB@

1: 0.022 0.039 −0.035 0.000 0.189

0.022 1: 0.860 −0.351 0.000 0.316

0.039 0.860 1: −0.762 0.000 0.283

−0.035 −0.351 −0.762 1: 0.000 −0.119
0.000 0.000 0.000 0.000 1: −0.923
0.189 0.316 0.283 −0.119 −0.923 1:

1
CCCCCCCCA
: ð24Þ

We find again, despite the fact that the hadronic
parameters except for af0 and ag0 have large uncertainties,
the right-handed contribution, CVR

, is constrained at a high
precision, ∼4% level. In Fig. 2 right, we show a contour
plot on the hVð1Þ − CVR

plane, which again suggests the
importance of the lattice calculation of the vector form
factor in the determination of CVR

.
Now, let us discuss the impact of the right-handed

contributions to the Vcb puzzle. As mentioned earlier,
the Vcb determination is in a contradictory situation. It is
determined by the inclusive method at a ∼2% precision and
by the exclusive method at a ∼1% precision, while their
central values are deviated by ∼7%. The most interesting
question is whether the right-handed contribution fill this
gap. Reference [39] pointed out that to match the exclusive
B → D�lνl to the inclusive one requires CVR

≃ −5% while
the exclusive B → Dlνl requires CVR

≃þ5%. On the
other hand, if we consider only these two exclusive
processes, they allow CVR

to be ∼5%. Thus, [39] concluded
that it is difficult to explain the Vcb puzzle by the right-
handed contributions. However, if some problem is found
in one of these three measurements, or the lattice QCD
input utilized to obtain Vcb, the situation could be reversed.
Our proposed method using only the angular distribution
allows us to pin down the CVR

parameter at a few % level
without intervention of the controversial Vcb determina-
tions, including its sign as shown in Fig. 2. Thus, this
method will provide an important step toward revealing the
nature of the right-handed contribution.
Now, let us investigate the role of the w-dependent FBA.

This observable is particularly interesting to measure: it
requires only one angle measurement and many experi-
mental errors can cancel out. As mentioned earlier, FBA is

proportional to hg6si and for curiosity, we investigate what
constraint on CVR

we would obtain from this single angular
observable. The fit method is the same as before: we use the
vector form factor as input. The result for the CLN case
yields:

v⃗ ¼ ðρ2D� ; R1ð1Þ; R2ð1Þ; CVR
Þ

¼ ð1.106; 1.229; 0.852; 0.000Þ; ð25Þ

σv⃗ ¼ ð2.200; 0.049; 0.031; 0.022Þ; ð26Þ

ρv⃗ ¼

0
BBB@

1: 0.008 −0.873 0.262

0.008 1: −0.040 −0.931
−0.873 −0.040 1: −0.296
0.262 −0.931 −0.296 1:

1
CCCA: ð27Þ

It is quite intriguing that the CVR
can be determined at a

2.2% precision, which is almost as good as the case where
we use the full angular coefficients. For the BGL para-
metrization, we find the situation is similar: FBA alone can
constrain CVR

at a precision of ∼4%. Since this measure-
ment can be made as a very simple extension of the work,
e.g., in [1], we highly suggest it be done in the near future.
Finally, we discuss the models in which the right-handed

interaction contain the CP violating phase, i.e., CVR
is a

complex number. The imaginary part of the CVR
can be

determined thanks to the angular observables hg8i and hg9i,
which are the triple product observables that can detect the
CP violation without having a source of a strong phase.
These observables were not included in the previous
analysis, e.g., [1] as they are always zero in the SM.
They are important observables determining the CP
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violation and they should be introduced in the future study.
In our fit, we find that ImðCVR

Þ can be determined at a 0.7%
precision, both for CLN and BGL.

IV. CONCLUSIONS

In this article, motivated by the various interesting
problems observed recently in the semileptonic b → clν
transitions, we investigated an application of the unbinned
angular analysis of the B → D�lνl and its impact on
pinning down the new physics signals. We proposed the
detailed processes to apply the unbinned angular analysis to
search for the right-handed contributions, in the future
experimental analysis. We introduced the 11 angular
coefficients and their distributions in w-bin, i.e., the hgii
functions. The hgii functions are normalized functions, in
which the overall factor in the decay rate expression,
including Vcb, is canceled. Therefore, we can determine
the right-handed vector contributions by circumventing the
problem of the controversial values of Vcb.
We use pseudodata computed using the theoretical

parameters, from both CLN and BGL parametrizations,
obtained by the fit of the Belle data [1] assuming the SM,
with 95 k events and performed a sensitivity study of the
parameters which represent the right-handed contribution,
CVR

, assuming it is the only/dominant source of new
physics. The very important finding of this study is that
the new physics parameter CVR

and the SM parameter
coming from the vector form factor cannot be separately
measured. Fortunately, the latter can be obtained by the
lattice QCD computation and the result is expected very
soon. Its central value is not known yet while the precision
that the current lattice QCD computation can achieve is
known to be 4% for R1ð1Þ and 7% for hVð1Þ. Using these
values, we found that the real part of the CVR

can be
determined at a precision of 2–4%. Furthermore, the
imaginary part of CVR

can also be determined once we
include the two CP violating angular coefficients, which
are neglected in the previous experimental analysis. We
found the imaginary part of CVR

can be determined at a
∼1% precision.
An additional result is obtained from a sensitivity study

of the well-known FBA observable to the real part of the
CVR

parameter. The FBA turned out to be proportional to
the angular coefficient hg6si. We performed the same fit as
above but with this single angular observable. In the CLN
(BGL) parametrization, we found that the FBA alone can
determine the real part of the CVR

at a ∼2ð4Þ% precision,
which is almost equally good as the full angular coefficient
fit. Therefore future measurements of FBAwill be particu-
larly useful for constraining CVR

.
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APPENDIX: THEORETICAL FRAMEWORK

We define the helicity amplitudes of left and right handed
currents as follows

HλD�
λ ðq2Þ ¼ ϵ̄�μðλÞhD�ðλD� Þjc̄γμð1 − γ5ÞbjB̄i;

ĤλD�
λ ðq2Þ ¼ ϵ̄�μðλÞhD�ðλD� Þjc̄γμð1þ γ5ÞbjB̄i; ðA1Þ

where ϵ̄μðλÞ is the polarization vector of the virtual
W boson.
The hadronic matrix elements describing the B̄ → D�

decay can be parametrized in terms of four Lorentz
invariant transition form factors Vðq2Þ, A0ðq2Þ, A1ðq2Þ,
and A2ðq2Þ [51]:

hD�ðpD� ;ϵÞjc̄γμð1− γ5ÞbjB̄ðpBÞi

¼ 2iVðq2Þ
mBþmD�

ϵμναβϵ
�νpα

D�pβ
B−2mD�A0ðq2Þ

ϵ� ·q
q2

qμ

− ðmBþmD� ÞA1ðq2Þ
�
ϵ�μ−

ϵ� ·q
q2

qμ

�

þA2ðq2Þ
ϵ� ·q

mBþmD�

�
ðpBþpD� Þμ−

m2
B−m2

D�

q2
qμ

�
; ðA2Þ

where we use ϵ0123 ¼ 1.
The nonzero helicity amplitudes H0 ≡H0

0, H� ≡H�
�,

Ĥ0 ≡ Ĥ0
0 and Ĥ� ≡ Ĥ�

� of left-handed and right-handed
currents satisfy the following relations using form factors in
Eq. (A2):

H�ðq2Þ ¼ −Ĥ∓ðq2Þ

¼ ðmB þmD� ÞA1ðq2Þ ∓ 2mBjpD� j
mB þmD�

Vðq2Þ; ðA3Þ

H0ðq2Þ ¼ −Ĥ0ðq2Þ

¼ mB þmD�

2mD�
ffiffiffiffiffi
q2

p
�
ðm2

B −m2
D� − q2ÞA1ðq2Þ

−
4m2

BjpD� j2
ðmB þmD� Þ2 A2ðq2Þ

�
; ðA4Þ

where jpD� j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmB−mD� Þ2−q2Þ�½ðmBþmD� Þ2−q2�

p
2mB

. In the follow-

ing, we use w variable instead of q2, with w ¼ m2
Bþm2

D�−q2

2mBmD�
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such that jpD� j ¼ mD�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
and w ¼ 1 corresponds to

the zero-recoil momentum.
In the CLN parametrization, the helicity amplitudes are

written as

H�ðwÞ¼mB
ffiffiffi
r

p ðwþ1ÞhA1
ðwÞ

�
1∓

ffiffiffiffiffiffiffiffiffiffiffi
w−1

wþ1

r
R1ðwÞ

�
; ðA5Þ

H0ðwÞ ¼ m2
B

ffiffiffi
r

p ðwþ 1Þ 1 − rffiffiffiffiffi
q2

p hA1
ðwÞ

×

�
1þ w − 1

1 − r
ð1 − R2ðwÞÞ

�
; ðA6Þ

where we have r ¼ mD�=mB and

hA1
ðwÞ ¼ hA1

ð1Þð1 − 8ρ2D�zþ ð53ρ2D� − 15Þz2
− ð231ρ2D� − 91Þz3Þ;

R1ðwÞ ¼ R1ð1Þ − 0.12ðw − 1Þ þ 0.05ðw − 1Þ2;
R2ðwÞ ¼ R2ð1Þ þ 0.11ðw − 1Þ − 0.06ðw − 1Þ2; ðA7Þ

where z ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p Þ.
In the BGL parametrization, the helicity amplitudes are

written as [14]

H�ðwÞ ¼ fðwÞ ∓ mBjpD� jgðwÞ; ðA8Þ

H0ðwÞ ¼
F 1ðwÞffiffiffiffiffi

q2
p ; ðA9Þ

where the form factors are the expansion in terms of the z
variable

gðzÞ¼ 1

PgðzÞϕgðzÞ
XN
n¼0

agnzn; fðzÞ¼ 1

PfðzÞϕfðzÞ
XN
n¼0

afnzn;

F 1ðzÞ¼
1

PF 1
ðzÞϕF 1

ðzÞ
XN
n¼0

aF 1
n zn: ðA10Þ

The full expressions of Pg;f;F 1
and ϕg;f;F 1

can be found
in [1]. The f and F 1 are not completely independent and
we have

F 1ð0Þ ¼ ðmB −mD� Þfð0Þ; ðA11Þ
which leads to a relation of their leading order coefficients

aF 1

0 ¼ ðmB −mD� ÞϕF 1
ð0Þ

ϕfð0Þ
af0 : ðA12Þ

We write contributions from the left-handed current, the
right-handed current, and the interference terms in terms of
Ji parameters:

dΓðB̄ → D�ð→ DπÞl−ν̄lÞ
dwd cos θVd cos θldχ

¼ 6mBm2
D�

8ð4πÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ð1 − 2wrþ r2ÞG2

FjVcbj2BðD� → DπÞ

× fJ1ssin2θV þ J1ccos2θV þ ðJ2ssin2θV þ J2ccos2θVÞ cos 2θl þ J3sin2θVsin2θl cos 2χ

þ J4 sin 2θV sin 2θl cos χ þ J5 sin 2θV sin θl cos χ þ ðJ6ssin2θV þ J6ccos2θVÞ cos θl
þ J7 sin 2θV sin θl sin χ þ J8 sin 2θV sin 2θl sin χ þ J9sin2θVsin2θl sin 2χg; ðA13Þ

where in the massless limit of leptons the Jiði ¼ 1 ∼ 9Þ can be written by the helicity amplitudes and the Wilson coefficients
of left- and right-handed currents as

J1s ¼
3

2
ðH2þ þH2

−ÞðjCVL
j2 þ jCVR

j2Þ − 6HþH−Re½CVL
C�
VR
�;

J1c ¼ 2H2
0ðjCVL

j2 þ jCVR
j2 − 2Re½CVL

C�
VR
�Þ;

J2s ¼
1

2
ðH2þ þH2

−ÞðjCVL
j2 þ jCVR

j2Þ − 2HþH−Re½CVL
C�
VR
�;

J2c ¼ −2H2
0ðjCVL

j2 þ jCVR
j2 − 2Re½CVL

C�
VR
�Þ;

J3 ¼ −2HþH−ðjCVL
j2 þ jCVR

j2Þ þ 2ðH2þ þH2
−ÞRe½CVL

C�
VR
�;

J4 ¼ ðHþH0 þH−H0ÞðjCVL
j2 þ jCVR

j2 − 2Re½CVL
C�
VR
�Þ;

J5 ¼ −2ðHþH0 −H−H0ÞðjCVL
j2 − jCVR

j2Þ;
J6s ¼ −2ðH2þ −H2

−ÞðjCVL
j2 − jCVR

j2Þ;
J6c ¼ 0;

J7 ¼ 0;

J8 ¼ 2ðHþH0 −H−H0ÞIm½CVL
C�
VR
�;

J9 ¼ −2ðH2þ −H2
−ÞIm½CVL

C�
VR
�: ðA14Þ
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