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Abstract: It is remarkable that the matter fields in the Standard Model (SM) are ap-
parently unified into the SU(5) representations. A straightforward explanation of this fact
is to embed all the SM gauge groups into a simple group containing SU(5), i.e., the grand
unified theory (GUT). Recently, however, a new framework “fake GUT” has been proposed.
In this new framework, the apparent matter unification can be explained by a chiral gauge
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based on SU(5) × U(2)H , where SU(3)c in the SM is from SU(5) while SU(2)L × U(1)Y
are from the diagonal subgroups of SU(5)×U(2)H . We also extend this model to the one
based on a semi-simple group, SU(5) × SU(3)H , so that U(2)H is embedded in SU(3)H .
We also show that this framework predicts rather different decay patterns of the proton,
compared to the conventional GUT.
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1 Introduction

In the Standard Model (SM), the matter fields are apparently unified into the SU(5) repre-
sentations. In general, chiral fermions consistent with SM gauge symmetry do not necessar-
ily satisfy this property [1–3]. Therefore, the apparent SM matter unification into the SU(5)
multiplets is quite remarkable. In fact, the matter unification has been propelling the study
of the grand unified theory (GUT) for a long time [4–6] (see ref. [7] for reviews). In the con-
ventional GUT, the SM matter fields are unified into common representations of a simple
group containing SU(5). As a result of the matter unification, the GUT predicts the proton
decay, which are extensively searched for in a variety of experiments (see e.g. refs. [8–11]).

Recently, we have proposed a new framework “fake GUT” [12]. This framework can
explain the apparent unification of the SM matter fields into the SU(5) multiplets in a
different way than conventional GUT models. In the fake GUT, the SM matter fields are
not necessarily embedded into common SU(5) multiplets at the high energy. Although the
quarks and leptons can have different origins, they form complete SU(5) multiplets at the
low energy as if they originate from the same multiplets. In the fake GUT, the prediction of
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the proton decay can be significantly different from that in conventional GUT models. As
an extreme example, the quarks and leptons may reside in completely different multiplets.
In such a case, the proton decay does not occur.

In ref. [12], a fake GUT model based on a non-simple SU(5)× U(2)H group has been
sketched. In this model, the leptons mainly reside in the part of the vector-like fermions
of U(2)H , while the quarks reside in the 5 ⊕ 10 representations. After the spontaneous
symmetry breaking of SU(5)× U(2)H down to the SM gauge group, only the leptons and
the quarks remain massless which apparently form 5 ⊕ 10 representations. Although the
“GUT scale” is predicted to be much lower than the conventional GUT scale, the proton
decay rate is suppressed as the quarks and the leptons are not in the same multiplets. In
this paper, we study details of the SU(5)×U(2)H model.

We also extend the non-simple SU(5) × U(2)H model to that based on a semi-simple
group SU(5)× SU(3)H . With this extension, we can successfully explain the charge quan-
tization and avoid the Landau pole problem of U(1)H gauge interaction. We also discuss
the symmetry which determines the fraction of the leptons originating from 5⊕ 10, which
in turn controls the proton decay rate.

The organization of this paper is as follows. In section 2, we first review the idea of
the fake GUT. In section 3, we discuss details of the non-simple SU(5)×U(2)H group. In
section 4, we extend the model to that based on a semi-simple SU(5)×SU(3)H model. The
final section is devoted to our conclusions.

2 Fake GUT

In this section, we review the idea of the fake GUT. Let us consider a high energy theory
which satisfies the following conditions;

1. The gauge group is G = SU(5) ×H, which is spontaneously broken down to the
SM gauge group GSM = SU(3)c × SU(2)L ×U(1)Y at the fake GUT scale.

2. Three copies of the chiral fermions in the 5⊕ 10 representations of SU(5) which
are neutral under H.

3. Additional fermions which consist of the vector-like representations of G.

4. All the Cartan subgroups of SU(5) remain unbroken and all of them take part in
GSM.

4′. Some of SU(3)c, SU(2)L and U(1)Y may be diagonal subgroups of SU(5)×H.

We call the theory which satisfies conditions 1 to 4 the “fake GUT.” In this work, we also
assume the additional condition 4′, which realizes more viable models in view of the proton
decay and the coupling unification. As proven in ref. [12], the fake GUT model guarantees
that the low energy fermions completely match with the 5 ⊕ 10 representations, while
the quarks and the leptons do not necessarily originate from 5 ⊕ 10 multiplets (see the
appendix A). When some of quarks/leptons originate from fields other than 5̄⊕ 10, some
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of the 5 ⊕ 10 fermions become massive whose mass partners are parts of the vector-like
fermions of G after G is spontaneously broken down to GSM. In this way, only the SM
fermions remain massless at the GUT scale, which form the 5⊕10 representations regardless
of how they are embedded in the fake GUT representations at the high energy [12]. This
feature strongly owes to the nature of the chiral fermion and does not apply to the bosonic
fields. In the case of supersymmetry (SUSY), this argument applies to the chiral superfields.

Let us emphasize that the apparent matter unification in the fake GUT is guaranteed
by the matching of the characters of the chiral representations and does not depend on the
details of the models. This argument is more versatile than the ’t Hooft anomaly (i.e. the
anomaly of the global symmetry) matching conditions to restrict the fermions in the low
energy theory [13], since the latter relies on the global symmetries of the model.

We may consider the fake GUT with a larger group GUV than SU(5)×H, as long as
GUV is broken to SU(5)×H satisfying the above conditions. For instance, SO(10)×H →
SU(5) ×H with the 16 representations satisfies the above conditions and works as a fake
GUT model.

Another interesting feature of the fake GUTmodel is that it does not necessarily require
the SM gauge coupling unification for a non-trivial H when it satisfies the condition 4′.
Thus, although the coupling unification fails in the non-supersymmetric SM, the fake GUT
framework works with a proper choice of H.

There are many possible choices of H. For example, H = 1, U(1)H , SU(N)H · · · , are
possible candidates. It is also possible to consider H = U(2)H , U(3)H , SU(3)H×SU(2)H×
U(1)H , where U(2)H ⊃ SU(2)L × U(1)Y , U(3)H ⊃ SU(3)c × U(1)Y etc. In fact, many
extensions of the GUT models fit into the fake GUT framework. For instance, massive
fermion extensions play important role in the Yukawa coupling unification [14, 15], (see also
refs. [16–18] for recent applications), and in suppressing lepton/baryon number violation
in GUT [19–21].

Not all possibilities are, however, phenomenologically viable due to the constraints
from the gauge coupling matching conditions and the proton lifetime. As we will see later,
we find that the minimal viable choice is H = U(2)H , if the running of the gauge coupling
constants is the same as the SM below the fake GUT scale. In this case, the smaller choices
such as H = 1, H = U(1)H or H = SU(2)H are not phenomenologically compatible. In
the next section, we discuss a SU(5) × U(2)H model. We also extend the model so that
U(2)H is embedded into SU(3)H in section 4.

3 SU(5) × U(2)H model

In this section, we discuss a model with G = SU(5) × U(2)H , where SU(5) ⊃ SU(3)c ×
SU(2)L×U(1)Y and U(2)H ⊃ SU(2)L×U(1)Y . Below the fake GUT scale, SU(2)L×U(1)Y
appear as the diagonal subgroups of SU(5) × U(2)H , while SU(3)c appears solely from
SU(5). As we emphasized above, this choice is the minimal gauge group for the fake GUT
model which is phenomenologically compatible. We summarize the matter contents of this
model in table 1.
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(SU(5), SU(2)H)U(1)H
(SU(3)c, SU(2)L)U(1)Y

fermions
5 (5,1)0 (3,1)+1/3 ⊕ (1,2)−1/2

10 (10,1)0 (3,2)+1/6 ⊕ (3,1)−2/3 ⊕ (1,1)+1

LH (1,2)−1/2 (1,2)−1/2

LH (1,2)+1/2 (1,2)+1/2

EH (1,1)−1 (1,1)−1

EH (1,1)+1 (1,1)+1

scalars
φ2 (5,2)−1/2 (1,3)0 ⊕ (1,1)0 ⊕ [(3,2)−5/6 ⊕ (1,3)0 ⊕ (1,1)0]
H5 (5,1)0 (3,1)−1/3 ⊕ (1,2)+1/2

H2 (1,2)+1/2 (1,2)+1/2

vectors
V5 (24,1)0 (8,1)0 ⊕ (3,2)−5/6 ⊕ (1,3)0 ⊕ (1,1)0

V2H (1,3)0 (1,3)0

V1H (1,1)0 (1,1)0

Table 1. The content of the fermions, the scalar fields and the gauge bosons in the SU(5)×U(2)H
model is shown in the group representation, (SU(5), SU(2)H)U(1)H

and (SU(3)c, SU(2)L)U(1)Y
. Each

fermion has three generations. The U(1)Y neutral scalar fields and gauge bosons are given by the real
scalar fields and real gauge bosons. The scalar fields enclosed in square brackets are the Goldstone
modes associated with SU(5)×U(2)H breaking to GSM, which are eaten by the gauge bosons.

Note that the idea of the fake GUT is completely different from that of the SUSY
GUT model based on the product group [22], although they are both based on the product
gauge group. In the product group SUSY GUT model, the product group is used to solve
the so-called the doublet-triplet mass splitting problem, while the effective gauge coupling
unification is taken seriously and the matter multiplets are assumed as the GUT multiplets.

3.1 Origin of SM fermions

We introduce the three generations of the chiral multiplets 5⊕10 of SU(5). The SM right-
handed down quarks dR sector fully come from the 5, and the right-handed up quarks uR
and the left-handed SU(2)L doublet quarks qL from 10.1 In addition, we introduce three
pairs of vector-like multiplets charged under H = U(2)H ,

(LH : (1,2)−1/2, LH : (1,2)+1/2) × 3, (3.1)
(EH : (1,1)−1, EH : (1,1)+1) × 3. (3.2)

Here, the group representations are denoted by (SU(5), SU(2)H)U(1)H
.

1In this paper, we use Weyl fermion notation thoroughly.
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vectors (SU(3)c, SU(2)L)U(1)Y
mass

Xµ (3,2)−5/6 g5v2/
√

2
Ω3µ (1,3)0

√
g2

5 + g2
2Hv2

Ω1µ (1,1)0
√

3g2
5/5 + g2

1Hv2

Table 2. The mass spectrum of the gauge bosons. Xµ, Ω3µ and Ω1µ are the SU(5) gauge fields,
SU(2)H gauge fields, and U(1)H gauge fields respectively.

In this model, spontaneous breaking of SU(5)×U(2)H into GSM is achieved by a vac-
uum expectation value (VEV) of a complex scalar field φ2, which is a bi-fundamental
representation, (5,2)−1/2. Explicitly, the VEV of φ2 (see ref. [23])

〈φ2〉 =

 0 0 0 v2 0
0 0 0 0 v2

 , (3.3)

breaks SU(5)×U(2)H into GSM. Here, v2 > 0 is a constant with mass dimension and much
larger than the electroweak scale. In this case, SU(3)c appears as an unbroken subgroup of
SU(5), while SU(2)L and U(1)Y appear as diagonal subgroups of SU(5) and U(2)H . After
the symmetry breaking, the gauge bosons corresponding to the broken generators obtain
masses of O(v2). The gauge charges and the masses of them are given in table 2.

Once SU(5)×U(2)H is broken, the massless fermions coincide to the SM chiral fermions,
while the other fermions become heavy. To see this point explicitly, let us consider the
following interactions between the fermions and φ2,

L = mL,ijLHiLHj + λL,ijLHiφ25j +mE,ijEHiEHj + λE,ij
Λcut

EHiφ
†
2φ
†
210j + h.c. (3.4)

Here, λL,E are coupling constants, and Λcut a cutoff scale larger than the fake GUT scale.
The summation of the flavor indices i, j = 1, 2, 3 is understood. The above interactions
are the most general forms of fermion bilinears up to mass dimension five. The higher di-
mensional operator can be generated by integrating over the massive fermions in (5,2)−1/2
representation coupling to φ2, where Λcut is given by the mass of the massive fermions.
Or, we may also consider a complex scalar φ′2 in (10,1)1 which has a Yukawa coupling
EHφ

′
210 and a trilinear coupling φ2φ

′
2φ2 with a dimensionful coupling, a22′2. With this

coupling, the VEV of φ′2 is aligned to 〈φ†2φ
†
2〉 as long as the mass of φ′2, m2

φ′2
, is larger than

v2. In this case, Λcut is given by m2
φ′2
/a22′2.

After the fake GUT symmetry breaking, the above interactions lead to the mass terms
in the leptonic sector. The quarks are, on the other hand, fully contained in 5 ⊕ 10, and
hence, remain massless. The mass terms of the leptonic sector are given by,

Lmass = LHiML,ij

 5L
LH


j

+ EHiME,ij

 10E
EH


j

+ h.c., (3.5)

where the mass matrices are given written as

ML,ij =
(
λL,ijv2 mL,ij

)
, ME,ij =

(
λE,ijv

2
2

Λcut
mE,ij

)
. (3.6)
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Here, 5L and 10E denote the components of the GSM gauge charges corresponding to those
of the doublet and the singlet leptons. Since the mass matrices are given by 3×6 matrices,
we find that three leptons remain massless due to the rank conditions. As a result, the
three generations of the Weyl fermions of the SM can be realized, although the leptons do
not fully belong to 5⊕ 10.

To see the origin of the massless leptons, let us omit the flavor mixing and focus on a
single generation. In this case, the mass eigenstates are given byLM

`L

 =

 cos θL sin θL
−sin θL cos θL

 5L
LH

 , (3.7)

EM
eR

 =

 cos θE sin θE
−sin θE cos θE

 10E
EH

 , (3.8)

where `L and eR are the doublet and the singlet massless eigenstates, respectively. The
mixing angles, θL,E , are

tan θL = mL

λLv2
, (3.9)

tan θE = mE Λcut
λEv2

2
, (3.10)

where we have taken the parameters real positive. The masses of the heavy leptons are
given by,

ML =
√
λ2
Lv

2
2 +m2

L , ME =
√
λ2
Ev

4
2/Λ2

cut +m2
E . (3.11)

As an extreme example, the SM leptons are fully contained in LH and EH for mL =
mE = 0, while the heavy leptons remain massive. In this case, although the quarks and
the leptons in the SM originate from completely separate multiplets in the fake GUT, the
quarks and the leptons apparently form 5 ⊕ 10 multiplets at the low energy. Note that
the limit mL = mE = 0 enhances a global symmetry under which LH and EH are charged
(see section 3.4).

3.2 Origin of SM Higgs and Yukawa interactions

In the previous subsection, we discussed the origin of the SM Weyl fermions. Here, we
discuss the origin of the SM Higgs boson and the Yukawa interactions. As the quarks and
the leptons can originate from the separate multiplets, the SM Yukawa interactions consist
of various contributions. Here, we consider a case that only one SM Higgs doublet remains
in the low energy.

Concretely, we introduce H5 and H2 scalar fields, which are of (5,1)0 and (1,2)1/2 rep-
resentations. These scalar fields contain the SM Higgs scalars as well as the colored Higgs,

H2 = hSM
2 , H5 =

 hcolor
5

hSM
5

 . (3.12)
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The SM Higgs components in H5 and H2 mix with each other, via an interaction,

L52mix = µmixH2φ2H
∗
5 + h.c., (3.13)

once φ2 develops the VEV. As a result, the effective mass terms of H5 and H2 are given by,

L = −m′25 |hcolor
5 |2 −m2

5|hSM
5 |2 −m2

2|hSM
2 |2 + (µmixv2h

SM
2 hSM∗

5 + h.c.) . (3.14)

Accordingly, the SM Higgs, hSM, is given by a linear combination of hSM
2 and hSM

5 ,

hSM = cos θh hSM
2 − sin θh hSM

5 . (3.15)

Here, m2
5, m′25 , and m2

2 are orders of O
(
v2

2
)
and include the contribution from the VEV

of φ2. We also assume µmix is of O(v2). To achieve the mass of hSM in O(100)GeV, we
require severe fine-tuning as in the case of the conventional GUT.

By using H5 and H2, the origins of the SM Yukawa interactions are given by,

LY Q = −(y5)ij 5i 10j H∗5 − (y10)ij 10i 10j H5 + h.c. , (3.16)
LY L = −(yLE)ij LHiEHj H∗2 + h.c. , (3.17)

where i and j run the number of generations. The SM Yukawa couplings are obtained by
substituting hSM

5 → − sin θhhSM, hSM
2 → cos θhhSM after diagonalizing the mass matrices

in eq. (3.6).
As we will see in section 3.5, the lepton components in 5 ⊕ 10 should be highly sup-

pressed to evade the constrains from the proton decay, i.e., θL,E � 1. In this case, the SM
Yukawa couplings are approximately given by,

(ySM
u )ij = − sin θh(y10)ij ,

(ySM
d )ij = − sin θh(y5)ij ,

(ySM
e )ij = cos θh(yLE)ij +O(θLθE) sin θh(y5)ij .

(3.18)

3.3 Gauge coupling constants

In the present setup, SU(2)L × U(1)Y gauge symmetries are the diagonal subgroups of
SU(5)×U(2)H , and SU(3)c gauge symmetry is the remaining unbroken subgroup of SU(5).
The tree-level matching conditions of the gauge coupling constants of the SM and the
SU(5)×U(2)H model at the fake GUT scale are given by [24],

α−1
1 (MX) = α−1

5 (MX) + 3
5α
−1
1H(MX),

α−1
2 (MX) = α−1

5 (MX) + α−1
2H(MX),

α−1
3 (MX) = α−1

5 (MX),

(3.19)

where αi = g2
i /(4π), and gi’s are the gauge coupling constants. Here, MX is the mass of

Xµ in table 2, and we assume that all the supermassive particles have the masses of the
same order of the magnitude. The fine structure constants α5, α2H and α1H are those of
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Figure 1. The running of the SM gauge couplings (solid lines). The red and green dashed lines
denote the matched values of α2H and α1H for a given fake GUT scale (see eqs. (3.19)). The fake
GUT scale is required to be below Mupper

X ' 1014.4 GeV.

5 10 LH LH EH EH φ2 H5 H2 mL mE

U(1)5 −3 1 −3 3 −1 1 0 −2 −2 0 0
U(1)LH 0 0 1 0 0 −1 0 0 0 −1 1

Table 3. The global U(1)5 and U(1)LH charges of fermions and scalars are shown. Here, U(1)LH
charges of mL,E in eq. (3.4) are charges of spurions.

SU(5) and SU(2)H × U(1)H , respectively.2 Thus, the gauge couplings in the SM do not
unify at the fake GUT scale.

As an interesting feature of SU(5)×U(2)H model, there is an upper-limit on the fake
GUT scale. From the matching conditions in eq. (3.19), the fake GUT scale is consistent
only for α−1

1 > α−1
3 and α−1

2 > α−1
3 , since otherwise either α1H or α2H is negative. From

figure 1, we find the fake GUT scale is lower thanMupper
X ' 1014.4 GeV at which α−1

1 = α−1
3 .

On the other hand, there is no lower limit on the fake GUT scale, MX , from the coupling
matching condition. The phenomenological lower limits on MX are of O

(
104–5)GeV from

collider experiments and precision measurements.
Here, let us comment on the coupling matching condition for other choice of the gauge

group H. For the model with SU(5)×U(3)H where SU(3)c×U(1)Y ⊂ U(3)H , for example,
the matching condition of the gauge couplings similar to eq. (3.19), requires that α−1

1,3 >

α−1
2 . This is not possible unless GSM charged particles other than the SM fields appear

below the fake GUT scale (see figure 1). In this way, the matching condition and the gauge
coupling running of the SM constraints the choice of H.

3.4 Global lepton and baryon symmetries

The present model possesses the global U(1)5 symmetry (fiveness) as in the conventional
GUT model. The charge assignment of the fiveness enlarged to the U(2)H sector is given

2Here, α1 satisfies α1 = 5/3αY , where αY is the fine structure constant of U(1)Y .
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in table 3. Note that the interaction terms in eqs. (3.4), (3.13), (3.16), and (3.17) allow
two independent U(1) symmetries one of which is gauged as U(1)H symmetry. Thus, the
uniqueness of charge assignment of U(1)5 is up to the U(1)H charge. We fix the U(1)5
charge by taking the U(1)5 charge of φ2 vanishing.

After the SU(5)×U(2)H breaking, U(1)5 results in the low energy U(1)B−L symmetry,
with the charge

QB−L = 1
5(Q5 + 4QY ) , (3.20)

where Q5 and QY are the charges of U(1)5 and U(1)Y . The B − L applies to the fermion
fields in the same way of the SM.

As mentioned earlier, an additional global symmetry is enhanced in the limit ofmL,E →
0, which we call U(1)LH symmetry. The charge assignment is given in table 3. The U(1)LH
symmetry also remains in the low energy which gives an additional lepton symmetry, U(1)L.
This lepton symmetry is, however, not exact since it is broken by the gauge/gravitational
anomalies. This additional symmetry can be identified with the lepton symmetry of the SM.

Up to the gauge/gravitational anomalies the U(1)B−L and U(1)L symmetries are con-
served separately in the limit of mL,E → 0, which may be rearranged as U(1)B and U(1)L.
As far as these symmetries are respected, no visible low energy baryon/lepton violating
processes are expected. Note that the effects of the breaking of U(1)B−L and U(1)L by the
gauge and the gravitational anomalies are highly suppressed for the nucleus decays [25].

In the conventional SU(5) GUT both the baryon symmetry U(1)B and the lepton
symmetry U(1)L are embedded in the GUT fiveness. Thus, at the low energy, only the
linear combination, U(1)B−L, is conserved. As a result, the conventional GUT predicts the
proton decay which violates the U(1)B and U(1)L symmetries while U(1)B−L is conserved.
The proton lifetime is dominantly determined by the GUT gauge boson mass scale.

In the present fake GUT model, the proton decay is forbidden when the U(1)LH
symmetry emerges, i.e. mL,E = 0. In fact, this symmetry is crucial for the successful
U(2)H fake GUT model as the X gauge boson mass scale MX < 1014.4 GeV, which would
lead to too rapid proton decay without this symmetry.

It is, however, highly non-trivial whether we can impose such global symmetries on the
model. In general, it is argued that all global symmetries are broken by quantum gravity
effects (see e.g. [26–32]). Moreover, the gauge/gravitational anomalies already break the
U(1)B−L and U(1)L symmetries explicitly in this model. In addition, the origins of the
neutrino masses and the baryon asymmetry in the Universe may also indicate the breaking
of those symmetries. Therefore, we expect that small violation of U(1)B−L and U(1)L exist
which generate tiny mL,E . The breaking of the U(1)B−L and U(1)L symmetries depend on
the further high energy physics. In the following analysis, we simply regard mL,E (or equiv-
alently θL,E in eqs. (3.9) and (3.10)) as the parameter of the explicit symmetry breaking.3

Let us also comment on the origin of the neutrino mass. The observations of the
neutrino oscillations show that the neutrinos have tiny masses. In the present model, there
are various ways to realize the active neutrino masses. First, we may consider the active

3We discuss one example of the origin of the U(1)LH symmetry and its breaking based on the SU(5)×
SU(3)H model in the appendix C.
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neutrinos as the Dirac neutrinos, where the right-handed neutrinos couple to the leptons
and Higgs in the U(2)H sector. In this case, there is no lepton symmetry violation, and
hence, the proton decay is also suppressed for mL,E → 0 as explained above.

Another possibility is to couple the right-handed neutrinos to the SU(5) sector. In
this case, although the active neutrino masses are the Dirac type, we require the lepton
symmetry breaking, that is, the tiny mixing between the lepton components of 5 and LH .
It is an interesting feature of this model, that both the neutrino masses and the proton
decay rate are generated by the effects of the lepton symmetry breaking, i.e., mL.

More attractive possibility is to consider the Majorana neutrino masses, which break
U(1)LH symmetry down to Z2 subgroup. When Z2 subgroup of U(1)LH is conserved
separately from U(1)B−L, the proton is stable as long as Z2 is unbroken. For instance, it
is possible to consider the seesaw mechanism [33–38] in the U(2)H sector where the model
possesses the Z2 symmetry while mL,E are suppressed.

3.5 Nucleon decay

The nucleons can decay through the heavy SU(5) gauge bosons X exchange. For simplicity,
we assume θE,L in eq. (3.7) and (3.8) do not depend on the generations. In this case, the
proton lifetime of the p→ π0 + e+ mode is

τ(p→ π0 + e+) ' 5× 1026 yrs
sin2 θE + 0.2 sin2 θL

(
MX/g5

1014 GeV

)4
. (3.21)

In order to estimate the proton lifetime, we adopt the method described in ref. [39], using
the hadron matrix elements of refs. [40, 41]. By comparing to the current limit, τ(p →
π0 + e+) > 2.4× 1034 yrs [8], this model seemingly predicts too short proton lifetime as in
the case of the conventional non-supersymmetric SU(5) GUT model. However, the proton
decay width can be suppressed by the mixing angles θE,L in the fake GUT. In the above
example, small mixings, sin θE,L . 10−4, are consistent with the current limit on the proton
lifetime. This suppression means that the SM quarks and leptons mostly have different
origins. Such small mixing angles correspond to mE,L � v2, where the global symmetry is
enhanced, as discussed in the previous subsection.

The proton lifetime in eq. (3.21) shows that we need small mixings of both the 5L
and 10E with the SM leptons to evade the constraints. Thus, for the choices such as
H = 1, U(1)H , SU(2)H , for example, the proton lifetime is predicted to be too short
unless we introduce a large number of SU(5) charged fermions [20]. This is the reason why
SU(5) × U(2)H is the minimal choice which is phenomenologically viable. Note that we
estimate the above proton lifetime without considering the effects of the flavor mixings for
simplicity. In general, however, the lepton mass matrices in eq. (3.6) are flavor dependent.
Hence, an SU(5) gauge interaction eigenstate does not coincide with one generation of the
SM fermions but consists of the admixture of the multiple SM generations. Therefore,
the predictions of the nucleon decay rates and the branching fractions in the fake GUT
are different from those in the conventional GUT. For example, the decay rate of the
p→ π0 +µ+ mode can be larger than that of the p→ π0 + e+ mode. This is a contrary to
the conventional GUT, where the nucleon decay modes which include different generations
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are suppressed by the Cabibbo-Kobayashi-Maskawa (CKM) mixing angle. In this way, a
variety of the nucleon decay modes will provide striking signatures of the fake GUT.

To see the effects of the flavor dependence of the mass matrices in eq. (3.6), let us
consider the following example of the fermion mass terms at the fake GUT scale.

ML = M0


1 0 0 δL,11 δL,12 δL,13

0 1 0 δL,21 δL,22 δL,23

0 0 1 δL,31 δL,32 δL,33

 , ME = M0


1 0 0 δE,11 δE,12 δE,13

0 1 0 δE,21 δE,22 δE,23

0 0 1 δE,31 δE,32 δE,33

 . (3.22)

Here, we introduce small parameters δL,E,ij with |δL,E,ij | � 1, which represents explicit
breaking of the global symmetry. We take flavor indices of 5i and 10i to match the
generations of the quarks, and those of LHi and EHi approximately corresponds to the
generations of the leptons (see eq. (3.18)). In our analysis, we adopt a flavor basis that the
up-type Yukawa matrix is diagonal, while the down-type Yukawa matrix has CKM-related
off diagonal elements.

In figure 2, we show the proton lifetime for each mode. In each figure, we switch on the
mixing parameters in eq. (3.22) as shown in the caption. The predictions are proportional to
δ−2
L,E andM4

X . Black lines denote the Super-Kamiokande constraints at 90%C.L. [8, 42–46]
and yellow ones represent the future prospects of Hyper-Kamiokande [9]. The figures show
the model predicts various leading proton decay modes depending on the mixing parame-
ters. For the case of the figure 2 (b), for example, p→ π0 + µ+ mode is the leading decay
mode, which is not expected in the conventional GUT model with minimal flavor violation.4

Finally, let us comment on the proton decay through the colored Higgs exchanges. In
the conventional GUT model, these contributions is always subdominant compared with
those of the X boson exchanges due to the Yukawa suppression [47],

τ(p→ K+ + ν)|colored Higgs exchange ∼ 1045 yrs× θ−2
L,E

(
MHc

1014 GeV

)4
sin4 θh . (3.23)

Here, we multiply the factor sin4 θh which stems from the relative enhancement of y5,10,
compared with the SM Yukawa couplings given in eq. (3.18). To reproduce the masses of
the SM fermions, we find that, the largest components of y10,5,LE are

y10 ∼ yt/ sin θh , y5 ∼ yb/ sin θh , yLE ∼ yτ/ cos θh . (3.24)

Thus, by requiring |y10,5,LE | . 1,

sin θh ∼ yt/y10 & 0.5 , cos θh ∼ yτ/yLE & 10−2 . (3.25)

Therefore, there is no large enhancement from sin4 θh and the proton decay rate from the
colored Higgs exchange is negligible.

4The GUT models with non-minimal flavor violation can also lead to the branching ratio patterns
differing from the GUT models with minimal flavor violation (see e.g. ref. [39]).

– 11 –



J
H
E
P
0
7
(
2
0
2
2
)
0
8
7
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p→ π0 + e+

p→ π0 + µ+

p→ π+ + ν̄

p→ K0 + e+

p→ K0 + µ+

p→ K+ + ν̄

p→ η + e+

p→ η + µ+

(a) δL,11 = δE,11 = 10−4.

τp/B [year]

1030 1032 1034 1036 1038 1040

p→ π0 + e+

p→ π0 + µ+

p→ π+ + ν̄

p→ K0 + e+

p→ K0 + µ+

p→ K+ + ν̄

p→ η + e+

p→ η + µ+

(b) δL,12 = δE,12 = 10−4.

τp/B [year]

1030 1032 1034 1036 1038 1040

p→ π0 + e+

p→ π0 + µ+

p→ π+ + ν̄

p→ K0 + e+

p→ K0 + µ+

p→ K+ + ν̄

p→ η + e+

p→ η + µ+

(c) δL,21 = δE,21 = 10−4.

τp/B [year]

1030 1032 1034 1036 1038 1040

p→ π0 + e+

p→ π0 + µ+

p→ π+ + ν̄

p→ K0 + e+

p→ K0 + µ+

p→ K+ + ν̄

p→ η + e+

p→ η + µ+

(d) δL,13 = δE,13 = 10−3.

Figure 2. The proton lifetime of each decay mode. Here, we switch on the mixing parameters in
eq. (3.22) as indicated by the subcaptions. We take MX = 1014 GeV.

4 SU(5) × SU(3)H model as UV completion of SU(5) × U(2)H model

In this section, we consider SU(5)×SU(3)H model where U(2)H is embedded into SU(3)H .
Note that SU(3)H does not include SU(3)c of the SM. As we will construct, SU(3)H is
spontaneously broken down to U(2)H by the VEV of the adjoint scalar of SU(3)H , A. The
remaining SU(5) × U(2)H is subsequently broken down to GSM by the VEV of the scalar
field in the bi-fundamental representation of SU(5)× SU(3)H , φ3. That is,

SU(5)× SU(3)H
〈A〉−−→ SU(5)×U(2)H

〈φ3〉−−→ GSM. (4.1)

In the previous section, we showed that SU(5) × U(2)H model is phenomenologically
viable. However, since H includes U(1) gauge symmetry, the model cannot explain the
charge quantization unlike the conventional GUT. The U(1) gauge symmetry also exhibits
the Landau pole problem. These drawbacks can be solved by the extension to SU(5) ×
SU(3)H . We summarize the matter contents in table 4.

4.1 Spontaneous symmetry breaking of SU(5) × SU(3)H

In this model, we introduce a real scalar field, A, in (1,8) representation, and a com-
plex scalar field, φ3, in (5,3) representation of (SU(5), SU(3)H), respectively. The scalar
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(SU(5), SU(3)H) (SU(3)c, SU(2)L)U(1)Y

fermions
5 (5,1) (3,1)+1/3 ⊕ (1,2)−1/2

10 (10,1) (3,2)+1/6 ⊕ (3,1)−2/3 ⊕ (1,1)+1

LT (1,3) (1,2)−1/2 ⊕ (1,1)+1

LT (1,3) (1,2)+1/2 ⊕ (1,1)−1

scalars
A (1,8) (1,3)R0 ⊕ (1,2)+3/2 ⊕ (1,1)R0
φ3 (5,3) (3,2)−5/6 ⊕ (3,1)+2/3 ⊕ (1,2)+3/2 ⊕ (1,3)0 ⊕ (1,1)0

H5 (5,1) (3,1)−1/3 ⊕ (1,2)+1/2

H3 (1,3) (1,2)−1/2 ⊕ (1,1)+1

vectors
V5 (24,1) (8,1)R0 ⊕ (3,2)−5/6 ⊕ (1,3)R0 ⊕ (1,1)R0
V3H (1,8) (1,3)R0 ⊕ (1,2)+3/2 ⊕ (1,1)R0

Table 4. The content of fermions, scalar fields and gauge bosons in the SU(5) × SU(3)H model
is shown in the group representation, (SU(5), SU(3)H) and (SU(3)c, SU(2)L)U(1)Y

. Each fermion
has three generations. The superscript R denotes the real field, while the other fields are complex
fields. Some components of the fake GUT Higgs scalars φ3 and A become the longitudinal modes
of the fake GUT gauge boson when SU(5)× SU(3)H is broken to GSM (see text).

potential is

V (A, φ3) = −µ2
ATr

[
A2
]

+ λ1A
(
Tr
[
A2
])2

+ λ2ATr
[
A4
]

+ µ3ATr
[
A3
]

− µ2
φTr

[
φ†3φ3

]
+ λ1φ

(
Tr
[
φ†3φ3

])2
+ λ2φTr

[
φ†3φ3φ

†
3φ3

]
+ λ1φATr

[
φ†3φ3

]
Tr
[
A2
]

+ λ2φATr
[
φ†3A

2φ3
]
− µ3φATr

[
φ†3Aφ3

]
. (4.2)

Here, µ’s are parameters with mass dimension one, and λ’s are dimensionless parameters.
We take all the parameters are positive for simplicity. The vacuum in SU(5)×U(2)H model
in eq. (3.3) is reproduced when A and φ3 take the VEVs in the following form;

〈A〉 =


vA 0 0
0 vA 0
0 0 −2vA

 , 〈φ3〉 =


0 0 0 v3 0
0 0 0 0 v3

0 0 0 0 0

 . (4.3)

To achieve this form, vA 6= 0 is crucial, since otherwise we find that either only a single
row of 〈φ3〉 or all the three rows of 〈φ3〉 are non-vanishing.5 Once vA 6= 0, the last two
terms in eq. (4.2) can make the mass squared of the third row of φ3 positive while those

5The symmetry is broken as SU(5)× SU(3)H → SU(4)× SU(2)×U(1) for the former case, and SU(5)×
SU(3)H → SU(3)× SU(2) for the latter case.
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vectors (SU(3)c, SU(2)L)U(1)Y
mass

Xµ (3,2)−5/6 g5v3/
√

2
Ω2µ (1,2)+3/2 3g3H

√
v2
A + v2

3/18
Ω3µ (1,3)0

√
g2

5 + g2
2Hv3

Ω1µ (1,1)0
√

3g2
5/5 + g2

1Hv3

Table 5. The mass spectrum of the gauge bosons. The Xµ is the SU(5) gauge fields. Ω2µ, Ω3µ
and Ω1µ are the SU(3)H gauge fields.

of the first and the second rows are kept negative. For vA & v3, we may regard that the
symmetry breaking takes place in the two steps as follows;

SU(5)× SU(3)H
〈A〉−−→ SU(5)×U(2)H

〈φ3〉−−→ GSM, (4.4)

where the second step corresponds to the symmetry breaking in the SU(5)×U(2)H model.
Note that the model does not require the hierarchy between vA and v3, and it is possible
to consider situation where SU(5)× SU(3)H breaks down directly to GSM for vA < v3.

In table 5, we show the gauge boson masses. The X boson absorbs (3,2)−5/6 scalar
in table 4 as a longitudinal mode. The Ω2 boson absorbs a linear combination of two
(1,2)+3/2 scalar fields. The Ω3 (Ω1) absorb a linear combination of (1,3)0 ((1,1)0) in
the bi-fundamental fake GUT Higgs φ3. Accordingly, the physical fake GUT Higgs bosons
appearing from φ3 and A consist of a (1,2)+3/2 scalar field, two (1,3)R0 scalars, two (1,1)R0
scalars, and a (3,1)+2/3 scalar.

In the previous SU(5) × U(2)H model, the matching conditions between the SM and
SU(5)×U(2)H gauge couplings are given in eq. (3.19). For vA & v3 the matching conditions
of the gauge coupling constants at the symmetry breaking in the second step in eq. (4.4)
are also given by eq. (3.19) with MX replaced by MX = g5v3/

√
2.

The matching conditions between SU(5)×U(2)H and SU(5)× SU(3)H models are, on
the other hand, given by

1
3α
−1
1H(MΩ) = α−1

3H(MΩ),

α−1
2H(MΩ) = α−1

3H(MΩ) .
(4.5)

Here, MΩ = 3g3H
√
v2
A + v2

3/18 is the energy scale at which these two models are matched.
The factor 1/3 in eq. (4.5) appears since the U(1)H charge is embedded in the fundamen-
tal representation of SU(3)H with the normalization, tr[tatb] = δab/2, with ta being the
generator of SU(3)H .6

For a givenMX , the gauge couplings α1H and α2H are determined by eq. (3.19). Above
MX , α5, α1H , and α2H evolves following the renormalization group (RG) equations in the
SU(5)×U(2)H model for vA & v3. The RG equations of the present model are given in the

6The generator of U(1)H embedded in SU(3)H corresponds to −t8 with t8 being the eighth Gell-Mann
matrix divided by 2.
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(a) MX = 107 GeV.
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(b) MX = 1013 GeV.

Figure 3. The left (right) figure shows the running of gauge couplings when MX = 107 GeV
(MX = 1013 GeV). The red, green, and blue solid lines denote the runnings of α−1

1 , α−1
2 , and α−1

3 ,
respectively. The red, green, and blue dashed lines are, respectively, the runnings of α−1

1H/3, α
−1
2H ,

and α−1
5 . Here we assume that only the particles contained in the SU(5)×U(2)H model contribute

to the running of gauge couplings. The figure shows that the matching between U(2)H and SU(3)H
is possible for the left panel while it is not possible in the right panel.

appendix B. We show examples of the RG running in figure 3. By using these running gauge
couplings, we can find the matching scaleMmatch

Ω which satisfies the conditions in eq. (4.5).
For vA . v3, all the gauge boson masses are dominated by v3 contribution, and hence,

MX ' MΩ. Accordingly, the matching conditions in eqs. (3.19) and (4.5) are combined
where the matching conditions are given at the same scale, MX 'MΩ.

Since MΩ & MX in the present model, we find that there is an upper limit on MX

which can be seen from figure 4;

MX ≤ 4× 1010 GeV . (4.6)

Due to this severer constraints on MX than that in SU(5)×U(2)H model, MX . 1014 GeV,
(see figure 1), this model requires smaller mixing angles of the lepton components of 5⊕10
to evade the constraints from the proton lifetime;

θL,E . 10−12
(
MX/g5

1010 GeV

)2
, (4.7)

(see eq. (3.21)). To achieve the highly suppressed lepton mixing angle, we need a high
quality lepton symmetry. In the appendix C, we give an example of a model in which such
a high quality lepton symmetry originates from a discrete gauge symmetry.

4.2 SM fermions, SM Higgs and Yukawa interactions

In the SU(5) × U(2)H model, the vector-like fermions are charged under H = U(2)H
are (LH , LH) and (EH , EH). In the SU(5) × SU(3)H model, they are straightforwardly
embedded into the SU(3)H fundamental representations,

(LT = (LH EH) : (1,3), LT = (LH EH) : (1,3) ) × 3. (4.8)
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Figure 4. The matching scale Mmatch
Ω as a function of MX (red solid line).

As in the case of SU(5)×U(2)H model, the leptonic components, 5L and 10E become the
mass partners of LT and LT through the coupling to φ3,

L = mTLTLT + λ5LTφ35 + λ10
Λcut

LTφ
†
3φ
†
310 + λTATLTALT + h.c. (4.9)

Here, mT is a mass parameter of the vector-like fermions and λ’s are dimensionless cou-
plings. The flavor indices are omitted for simplicity. The SU(3)H indices of LTφ†3φ

†
3 are

contracted by the totally anti-symmetric invariant tensor of SU(3)H , while its SU(5) in-
dices are contracted with those of 10 which is the anti-symmetric representation. The
cutoff scale Λcut is a scale larger than the fake GUT scale v3 and vA corresponding to
some heavier particles. An example of such particles is Dirac fermion with (5,3). We may
also consider a complex scalar φ′3 in (10,3) which has a Yukawa coupling LTφ′310 and a
trilinear coupling φ3φ

′
3φ3 (see the appendix C for a concrete model.).

As in the previous section, the SM quarks originate from 5⊕10. The lepton components
in 5 and 10 and LT ’s obtain 3×6 mass matrices from the interactions in eq. (4.9), and the
three leptons remain massless due to the rank conditions. Since the 5⊕10 contributions to
the SM leptons are highly suppressed (see eq. (4.7)), we require mT � v3,A and λTAT � 1.
As in the case of the SU(5) × U(2)H model, the global U(1)LT symmetry is enhanced in
addition to the global U(1)5 symmetry in the limit of vanishing mT and λTAT . In the
appendix C, we discuss a model where the lepton symmetry originates from a discrete
gauge symmetry.

Next, we discuss the origin of the SM Higgs and Yukawa interactions in the SU(5) ×
SU(3)H model. As in the SU(5) × U(2)H model, the SM Yukawa interactions come from
various contributions, and we consider a case that only one SU(2)L Higgs doublet remains
in the low energy. We introduce H5 and H3 scalar fields, which are (5,1) and (1,3)
representations. The H3 and H5 are decomposed as,

H3 =

 hSM†
3

hsinglet
3

 , H5 =

 hcolor
5

hSM
5

 , (4.10)
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where a linear combination of hSM
3 and hSM

5 becomes the SM Higgs doublet. The mixing
term between hSM

3 and hSM
5 comes from

L53mix = µφ53H
†
3φ3H

†
5 + h.c., (4.11)

where µφ53 is the mass parameter of the order of the fake GUT scale. The SM Higgs doublet
in the electroweak scale requires fine-tuning. The singlet and the colored Higgs as well as
a heavier combination of hSM

3 and hSM
5 obtain masses of the order of the fake GUT scale.

The Yukawa interactions of the quarks are given by those of SU(5) multiplets with H5
as in eq. (3.16). Since the SM leptons dominantly come from LT ’s, we expect that the SM
lepton Yukawa couplings are dominated by the couplings to H3,

LY L = −(yLT )ijεαβγHα
3 L

β
T iL

γ
Tj + h.c., (4.12)

which is the naive extension of eq. (3.17). Here, the subscript α is the index of the SU(3)H
and i and j run the number of generations. Since εαβγ is totally antisymmetric, we find
(yLT )ij = −(yLT )ji. The 3-by-3 antisymmetric Yukawa coupling results in the massless
electron and the µ and τ lepton in the same mass. Thus, the Yukawa coupling given by
eq. (4.12) does not reproduce the lepton masses in the SM.

As in eq. (3.18), the lepton Yukawa couplings receive the contribution from y5, which
are suppressed by the lepton mixing angles θL×θE . The lepton mixing angles are, however,
required to be highly suppressed, θL,E . 10−12, to evade the constraints from the proton
lifetime (see eq. (4.7)). Thus, those contributions are too small to reproduce the lepton
masses in the SM, and hence, we need other origins of the lepton Yukawa interactions.

As an example to generate appropriate lepton Yukawa coupling, we consider the fol-
lowing higher dimensional operator,

LY L = −(YLT )ij
ΛY

LαTiA
β
αL

γ
TjH

δ
3εβγδ + h.c., (4.13)

where ΛY is a cutoff scale. The scale ΛY can be given by the mass of heavy particles such
as Dirac fermions in (1,3) representation (see appendix C). Once A obtains the VEV, this
operator generates the lepton Yukawa couplings. Unlike the Yukawa couplings in eq. (4.12),
the 3-by-3 coefficient matrix is not anti-symmetric, and hence, this operator can reproduce
the SM lepton spectrum, when ΛY is smaller than O

(
102)× vA.

5 Conclusions and discussions

The fake GUT is a framework which has been proposed to explain the perfect fit of the SM
matter fields into the SU(5) multiplets [12]. Unlike the conventional GUT [4], the quarks
and leptons are not necessarily embedded in common GUT multiplets but embedded in
different multiplets although they appear to form complete GUT multiplets at the low
energy. In this paper, we studied details of the model based on SU(5) × U(2)H gauge
symmetry and its extension with SU(5)×SU(3)H gauge symmetry. We discussed the nature
of the fake GUT symmetry breaking. We also studied the origins of the SM quarks/leptons,
the Higgs fields, and the SM Yukawa interactions.
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In the present models, the global lepton and baryon symmetries play a crucial role
to avoid too rapid nucleon decays. However, these global symmetries are less likely exact
ones, due to theoretical and phenomenological reasons. With the violation of the global
symmetries, the nucleons are no longer stable. The decay rates and decay modes strongly
depend on its size and flavor structure. Observations of multiple nucleon decay modes are
the smoking guns of the present models.

We extended the SU(5) × U(2)H model to the SU(5) × SU(3)H model to explain the
U(1)H charge quantization and avoid Landau pole problem. As for SU(3)H model, we
discussed the scalar potential with which the SU(2)L appears in the diagonal subgroup
of SU(5) × SU(3)H . As a result, we find that the model with the scalar fields in the bi-
fundamental representation of SU(5)×SU(3)H and in the adjoint representation of SU(3)H
provides the successful symmetry breaking. We also studied the upper limit on the fake
GUT scale, MX . 1010 GeV. Due to the low fake GUT scale, the model requires rather
strict lepton symmetry to suppress the proton decay.

Let us briefly discuss alternative extension of SU(5)×U(2)H model, instead of SU(5)×
SU(3)H . For example, one may consider models based on the gauge groups SU(6) ×
SU(2)H → SU(5) × U(2)H or SU(7) → SU(5) × U(2)H . Those groups have chiral repre-
sentations 6⊕ 6⊕ 15 for SU(6) and 7⊕ 7⊕ 7⊕ 21 for SU(7), respectively. However, the
resultant SU(5)×U(2)H models do not satisfy the conditions of the fake GUT model, and
hence, they do not provide viable UV completions of the SU(5)×U(2)H model.

Finally let us comment on the topological objects generated in the early Universe
in these models. Unlike the conventional GUT based on simple groups, the SU(5) ×
U(2)H model has no dangerous topological objects. Therefore high-scale inflation and high
reheating temperature are allowed in the model. In the case of SU(5) × SU(3)H , on the
other hand, it is possible to generate monopoles if the fake GUT breaking takes place after
the inflation. In order to avoid this monopole problem, the reheating temperature should
be much less than the fake GUT scale. Detailed constraints and the possible detection of
the monopole will be explored elsewhere. Besides, let us also comment on the monopole
catalysis of proton decay. In the conventional GUT model, the monopoles induce the
baryon-number non-conserving reactions [48, 49]. In the fake GUT model, on the other
hand, baryon-number violating processes, e.g. proton decay, are also controlled by the
lepton symmetry unlike the conventional GUT. This may provide different features of the
monopole in the fake GUT model compared to that in the conventional GUT.
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A Characters of SM and SU(5) groups

In order to see that the SM fermions are apparently unified into the SU(5) multiplets,
it is convenient to use the character of the gauge groups G defined by the trace of a
representation matrix, R(g) (g ∈ G)

χR(g) := tr[R(g)] = R(g)ii . (A.1)

In this paper, we use the left-handed Weyl fermions, and the representation matrices are
defined for those left-handed Weyl fermions. In this definition, the chiral nature of the
representations of the fermions is encoded in the following quantity,

∆χR(g) := χR(g)− χR†(g) , (A.2)

to which only the chiral fermions give non-zero contributions [50].
Now, let us consider ∆χR in the SM model. Since the SM model fermions are the

chiral fermions, all of them contributes to ∆χR which amounts to

ASM(gSM) := ngen ×
∑

i=L,d,Q,u,e

∆χi(gSM) , (A.3)

where ngen = 3 is the number of the fermion generations. As a surprising feature of the SM
fermions, ASM(gSM) coincides with the ∆χR of the 5⊕ 10 representation of SU(5), that is

ASM(gSM) = ngen × [∆χ5(gSM) + ∆χ10(gSM)] , (A.4)

where gSM is the SU(5) elements restricted to the SM gauge group. By remembering the
orthogonality and the completeness of the characters, eq. (A.4) means that the SM fermions
can be exactly embedded into the three copies of 5⊕ 10. This amazing feature cannot be
explained within the SM, because, in general, chiral fermions consistent with SM gauge
symmetry do not necessarily satisfy this property.

The fake GUT conditions in section 2 guarantee the relation in eq. (A.4) automatically.
Let us emphasize again that the quarks and leptons are not required to reside in the
same SU(5) multiplets in the fake GUT model unlike the conventional GUT model. Once
eq. (A.4) is guaranteed by the fake GUT model, it uniquely determines the gauge charges
of the low energy fermions under GSM due to the orthogonality and the completeness of
the characters. In this way, the fake GUT model explains why the SM fermions form the
apparently complete SU(5) multiplets.

In the following, we list the characters of the SM and SU(5). Here, we parameterize
the Cartan subgroups of GSM with four parameters, θU(1), θSU(2), θSU(3),3, and θSU(3),8. In
this case, the character of the SM leptons and quarks are computed as follows:

χL(gSM) = Tr
[
exp

(
iθSU(2)

σ3

2

)]
×Tr

[
exp

(
iθU(1)

(
−1

2

))]
=
[
exp

(
iθSU(2)

2

)
+exp

(
−
iθSU(2)

2

)]
×exp

(
−
iθU(1)

2

)
, (A.5)
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χd(gSM) = Tr
[
exp

(
−iθSU(3),3

λ3

2 − iθSU(3),8
λ8

2

)]
×Tr

[
exp

(
iθU(1)

1
3

)]
=
[

exp
(
iθSU(3),8√

3

)
+exp

(
iθSU(3),3

2 −
√

3iθSU(3),8

6

)
+exp

(
−
iθSU(3),3

2 −
√

3iθSU(3),8

6

)]

×exp
(
iθU(1)

3

)
, (A.6)

χQ(gSM) = Tr
[
exp

(
iθSU(3),3

λ3

2 + iθSU(3),8
λ8

2

)]
×Tr

[
exp

(
iθSU(2)

σ3

2

)]
×Tr

[
exp

(
iθU(1)

1
6

)]
=
[

exp
(−iθSU(3),8√

3

)
+exp

(
−iθSU(3),3

2 +
√

3iθSU(3),8

6

)
+exp

(
iθSU(3),3

2 +
√

3iθSU(3),8

6

)]

×
[
exp

(
iθSU(2)

2

)
+exp

(
−
iθSU(2)

2

)]
×exp

(
iθU(1)

6

)
, (A.7)

χu(gSM) = Tr
[
exp

(
−iθSU(3),3

λ3

2 − iθSU(3),8
λ8

2

)]
×Tr

[
exp

(
iθU(1)

(
−2

3

))]
=
[

exp
(
iθSU(3),8√

3

)
+exp

(
iθSU(3),3

2 −
√

3iθSU(3),8

6

)
+exp

(
−
iθSU(3),3

2 −
√

3iθSU(3),8

6

)]

×exp
(
−

2iθU(1)

3

)
, (A.8)

χe(gSM) = Tr
[
exp

(
iθU(1)(1)

)]
= exp

(
iθU(1)

)
. (A.9)

Next, let us compute the characters of the 5 and 10. Here, we parameterize the Cartan
subgroups of SU(5) with four parameters, θ3, θ8, θ23, θ24. At this time, the diagonal
generators of 5 and 10 representations correponding each parameters are the following
forms:

T 3
5 = −1

2 diag (1,−1, 0, 0, 0) , (A.10)

T 8
5 = − 1

2
√

3
diag (1, 1,−2, 0, 0) , (A.11)

T 23
5 = −1

2 diag (0, 0, 0, 1,−1) , (A.12)

T 24
5 = − 1

2
√

15
diag (−2,−2,−2, 3, 3) , (A.13)

T 3
10 = 1

2 diag (1,−1, 0, 1,−1, 0,−1, 1, 0, 0) , (A.14)

T 8
10 = 1

2
√

3
diag (1, 1,−2, 1, 1,−2,−1,−1, 2, 0) , (A.15)

T 23
10 = 1

2 diag (1, 1, 1,−1,−1,−1, 0, 0, 0, 0) , (A.16)

T 24
10 = 1

2
√

15
diag (1, 1, 1, 1, 1, 1,−4,−4,−4, 6) . (A.17)
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In this case, χ5 and χ10 are

χ5(gSM) = Tr
[
exp

(
iθ3T

3
5 + iθ8T

8
5 + iθ23T

23
5 + iθ24

√
5
3T

24
5

)]

=
[
exp

(
iθ23

2

)
+ exp

(
− iθ23

2

)]
× exp

(
− iθ24

2

)
+
[
exp

(
iθ8√

3

)
+ exp

(
iθ3
2 −

√
3iθ8
6

)
+ exp

(
− iθ3

2 −
√

3iθ8
6

)]

× exp
(
iθ24

3

)
, (A.18)

χ10(gSM) = Tr
[
exp

(
iθ3T

3
10 + iθ8T

8
10 + iθ23T

23
10 + iθ24

√
5
3T

24
10

)]

=
[
exp

(−iθ8√
3

)
+ exp

(
−iθ3

2 +
√

3iθ8
6

)
+ exp

(
iθ3
2 +

√
3iθ8
6

)]

×
[
exp

(
iθ23

2

)
+ exp

(
− iθ23

2

)]
× exp

(
iθ24

6

)
+
[
exp

(
iθ8√

3

)
+ exp

(
iθ3
2 −

√
3iθ8
6

)
+ exp

(
− iθ3

2 −
√

3iθ8
6

)]

× exp
(
−2iθ24

3

)
+ exp (iθ24) . (A.19)

If we identify θ3, θ8, θ23 and θ24 with θSU(3),3, θSU(3),8, θSU(2) and θU(1) respectively, we
can find that χ5(gSM) and χ10(gSM) correspond to χL(gSM) + χd(gSM) and χQ(gSM) +
χu(gSM) + χe(gSM) respectively.

B RG equations

We show the RG equations of the gauge couplings of the SU(5) × U(2)H model and
SU(5)× SU(3)H model up to two-loop level. We used the program PyR@TE 3 [51] for the
calculation. Here, we neglect the Yukawa and Higgs couplings.

SU(5) × U(2)H model. The matter fields are given in table 1.

(4π)2 dg5
d logµ = −83

6 g
3
5 + 1

(4π)2

(
−373

3 g5
5 + 3g3

5g
2
2H + g3

5g
2
1H

)
, (B.1)

(4π)2 dg2H
d logµ = −13

3 g
3
2H + 1

(4π)2

(
24g2

5g
3
2H −

47
6 g

5
2H + 9

2g
3
2Hg

2
1H

)
, (B.2)

(4π)2 dg1H
d logµ = 7g3

1H + 1
(4π)2

(
24g2

5 + 24g2
5g

3
1H + 27

2 g
2
2Hg

3
1H + 33

2 g
5
1H

)
. (B.3)

SU(5) × SU(3)H model. The matter fields are given in table 4.

(4π)2 dg5
d logµ = −41

3 g
3
5 + 1

(4π)2

(
−1768

15 g5
5 + 8g2

3Hg
3
5

)
, (B.4)

(4π)2 dg3H
d logµ = −15

2 g
3
3H + 1

(4π)2

(
24g3

3Hg
2
5 − 21g5

3H

)
. (B.5)
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C On global lepton and baryon symmetry

As discussed in subsection 3.4, the global lepton symmetry plays a crucial role to make
the SU(5)×U(2)H model phenomenologically viable. The global lepton symmetry is more
important for SU(5) × SU(3)H model due to the smaller X gauge boson mass. In this
appendix, we give an example of the model in which the high quality lepton symmetry
originates from a discrete gauge symmetry in SU(5)× SU(3)H model.

Before discussing the lepton symmetry, we first provide a concrete model to generate
the higher dimensional operators used in eqs. (4.9) and (4.13). As for the mixing term in
eq. (4.9), we consider a complex scalar φ′3 in (10,3) representation which has a Yukawa
coupling LTφ′310 and a trilinear coupling φ3φ

′
3φ3. When the mass of φ′3 is larger than the

fake GUT scale while the coefficient of the trilinear coupling is of order of the fake GUT
scale, the VEV of φ′3 is aligned to the φ′3 ∼ φ†3φ

†
3. In this way, the higher dimensional

lepton mixing mass is achieved by

L = λ10,ijLTφ
′
310j → Leff ∼

µφφ′φ
M2
φ′
λ10,ijLTφ

†
3φ
†
310j . (C.1)

Here, Mφ′ and µφφ′φ are the mass and the coefficient of the trilinear coupling of φ′, respec-
tively.

To generate the origin of the Yukawa interactions in eq. (4.13), we introduce other
Dirac fermions, (HF , HF ) with the Yukawa interactions,

LY L = −MHHHFHF + aiLT iAHF + bjHFLTjH3 + h.c. (C.2)

We again assume that (HF ,HF ) is heavier than the fake GUT scale. By integrating out
HF , HF , we obtain,

Leff = aibj
MHH

LαTiA
β
αL

γ
TjH

δ
3εβγδ + h.c. (C.3)

Since we have the other Yukawa coupling in eq. (4.12), one pair of (HF , HF ) can reproduce
the masses of the SM leptons with appropriate choice of ai, bi and (YLT )ij .

In section 3.4 we assumed a global lepton symmetry to suppress the proton decay rate.
In the SU(5) × SU(3)H model, the lepton symmetry is required to suppress mT and λT .
In the present model, however, the lepton Yukawa interactions in eq. (4.12) and (4.13)
include L2

T , and hence, the lepton symmetry can not be the continuous U(1) symmetry.
Instead, we consider a discrete Z2n (n ∈ N) symmetry, under which LT ’s have charge n.
The discrete Z2n symmetry forbids only the unwanted mT and λT terms when (HF , HF )
also have Z2n charge n while other fields are neutral under Z2n (see table 6).

As mentioned earlier, it is argued that all global symmetries are broken by quantum
gravity effects (see e.g., refs. [26–32]). Thus, we seek a possibility to realize Z2n symmetry.
The anomaly coefficients of the gauged discrete symmetry come only from LT (n) since
(HF , HF ) contributions trivially cancels;

Z2n × [SU(3)H ]2 = n× 3 ≡ n (mod 2n) , (C.4)
Z2n × [gravity]2 = n× 3× 3 ≡ 0 (modn) , (C.5)

Z3
2n = n3 × 3× 3 ≡ 0 (mod n3 or 2n) , (C.6)
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which should be vanishing for the Z2n symmetry to be a gauge symmetry [52–55]. The
third condition in eq. C.6 can be always satisfied by choosing the normalization of n
appropriately [56]. Thus, it does not lead to useful constraints on the particle contents.
Here, the first, second and third quantities in the each multiplication represent Z2n charge,
the number of particles with same charges and degrees of freedom of SU(3)H . Thus, to
realize the gauged Z2n symmetry, we need additional SU(3)H charged fermions which are
chiral under Z2n.

To cancel the anomaly, Z2n × [SU(3)H ]2, we introduce a pair of (Θ, Θ) which are
(anti)-fundamental representation of SU(3)H and have Z2n charges (n,0). In this case, all
the anomaly coefficients vanish, and Z2n can be the gauge symmetry. However, Z2n must
be broken to give a mass to the pair, (Θ, Θ), by the VEV of a complex scalar φZ with
the Z2n charge n. Such a VEV of φZ also generates mT , which results in the large lepton
mixing angles.

To avoid this problem, we assume that the additional chiral fermions have smaller Z2n
charges. Concretely, we consider n = 4, and hence, Z8 symmetry, with the Z8 charges of
(Θ, Θ) being (2,0) (see table 6). In this case, the anomaly coefficients of Z8 × [SU(3)H ]2

and Z8 × [gravity]2 require two pairs of (Θ, Θ). In this way, we achieve the anomaly-free
Z8 symmetry.

The masses of the pairs of (Θ, Θ) are given by the VEV of the complex field φZ with
a Z8 charge 6, vZ = 〈φZ〉. The mass of a pair (HF , HF ) is not forbidden by the Z8
symmetry.7 The lepton symmetry breaking parameters mT and λTAT are, on the other
hand, suppressed by the cutoff scale which is now taken to be the Planck scale, MPl,

mT ∼
v2
Z

MPl
, λTAT vA ∼

v2
Z

M2
Pl
vA . (C.7)

To achieve those mass parameters smaller than 10−4 GeV, we find that the breaking scale
of Z8 is limited from above,

vZ < O
(
107
)

GeV . (C.8)

In summary, the extra particles (Θ, Θ) have masses of vZ . 107 GeV, while the lepton
symmetry breaking mass parameter mT is highly suppressed.

When a discrete symmetry is broken spontaneously, the domain walls are formed. To
avoid the cosmological domain wall problem, we need to assume that at least the reheating
temperature after inflation should be lower than the Z8 breaking scale, vZ . Combined with
the upper limit on vZ in eq. (C.8), the upper limit on the reheating temperature is given
by Trh . O(107) GeV.

The running of the gauge coupling of the SU(3)H is modified because of the addi-
tion of multiple Dirac fermions and scalar particles in this example model. However, the
asymptotic freedom SU(3)H gauge interaction is still preserved in the present setup.

7The fields LT and HF have the same gauge charges, and hence, they mix with each other. Such mixing
does not alter our conclusions.
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SU(5) SU(3)H Z8

LT1,2,3 1 3 4
LT1,2,3 1 3 0
HF 1 3 4
HF 1 3 4
Θ1,2 1 3 2
Θ1,2 1 3 0
φZ 1 1 6

Table 6. Field contents of fermions and a scalar with the Z2n charge and pairing fermions for
n = 4. SM lepton doublets are in LT ’s. The Z8 symmetry is free from anomaly including Z3

8. In
practice, this Z8 symmetry is equivalent to Z4 symmetry.
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