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1 Introduction

The Standard Model Effective Field Theory is a robust framework to parametrise New
Physics (NP), as it extends the Standard Model (SM) with effective interactions accounting
for the experimental observations supporting physics beyond SM (BSM) [1]. These effective
interactions formed out of the SM particle content respect the gauge symmetry SU(3)C ⊗
SU(2)L ⊗U(1)Y and are suppressed by the SMEFT cut-off scale. In the presence of these
effective operators, the modifications to the observables are parameterised in terms of the
SMEFT Wilson coefficients (WCs), which encapsulate the deviations from the SM [2–9].

To analyse NP interactions via the observables defined at separated energy scales,
one needs to consistently relate WC from these scales. In the present scenario, where
the NP is apparently beyond the reach of current searches, it is sensible to assume that
the NP scale is much larger than that of the Electroweak (EW) Theory. In a generic
(top-down) EFT scenario where NP models are matched to SMEFT, the WCs of effective
operators defined at high scale encapsulate the NP interactions and scale. The WCs encode
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the couplings featured by a theory defined at a certain energy level. Renormalisation
Group Equations (RGEs) are key to expressing these WCs at energies accessible to the
measurements. We construct these relations for SMEFT, and for this, we consider a finite
experimental resolution, which facilitates a truncation on the infinite tower of effective
operators suppressed by according powers of cut-off (Λ).

Recent studies indicate that the SMEFT truncation at order 1/Λ2 is insufficient for
making consistent predictions in several cases. For instance, dimension-8 interactions are
leading contributors in many observables [5, 10–13]. In the weakly-coupled Ultraviolet (UV)
completions of the SMEFT, certain dimension-6 classes of operators are not generated at
tree-level [14–17]. The contribution from dimension-8 (and dimension-6 squared) effects is
significant when the SMEFT cut-off is chosen relatively low [18, 19]. Order 1/Λ4 is also
needed in certain cases where the observables are measured so precisely that they become
sensitive to higher mass dimension operators’ effects [7, 20, 21].

These studies motivate to extend the SMEFT analysis to order 1/Λ4 by including
dimension-8 operators effects, which is the method followed in many recent theoretical
studies [7, 13, 22–25]. Renormalisation up to order 1/Λ4 in the SMEFT from two dimension-
6 operators [26, 27], and one dimension-8 operator [28, 29] have been studied in detail. This
paper aims to compute the renormalisation of SMEFT bosonic interactions up to dimension-
8 by including the running induced by lepton number violating operators up to dimension-7.
The effects of these dimension-5 and dimension-7 effective operators are suppressed by lepton
number violating scale. This scale is typically assumed to be very high (> O(109)GeV) in
certain models (for instance, in Type-I seesaw: Mν 'MD(MN )−1MD, taking MD ∼ O(1),
and Mν and MN are light and heavy neutrino masses respectively). However, there are
also models of neutrino mass generation which explore the possibility of lighter LNV scale,
for instance, radiative seesaw models [30, 31], neutrino texture models [32, 33], etc.1 Here,
we take an agnostic approach on the LNV scale relying upon the robustness of bottom-up
approach of EFTs.

With LNV operators included in the RGEs, all the possible contributions to bosonic
operators of the SMEFT are known explicitly up to order 1/Λ4 at 1-loop. There are
several reasons to approach this problem. For instance, the running of some operators can
provide the leading SMEFT corrections to SM predictions of observables in which loop-
induced interactions appear at leading order. Also, under certain conditions, constraints on
dimension-8 operators can reveal unique bounds on the space of LNV WCs. We discuss one
such case where the T-parameter bound is translated to LNV operators.

Dimension-8 Wilson coefficients are constrained by positivity bounds which are restric-
tions on S-matrix elements deduced from the fundamental axioms — analyticity, unitarity
and crossing symmetry on the underlying theory. [35–41]. Recently, these bounds for
the dimension-8 operators and their validity under RG running have been analysed in
detail [29, 42, 43]. Following the top-down approach, SMEFT WCs are related to model
dependent NP couplings. The RGE effects and the positivity bounds on these WCs impose

1See also ref. [34], where the possibility of observing baryon number violating processes in context of
top-quark production/decay at hadron colliders is discussed.
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remarkable restrictions on the NP parameter space on a case-to-case basis. In this work, we
show unique constraints on the UV space deduced solely from the RGE computation in the
IR (SMEFT in this case) and positivity bounds. We also examine these constraints on two
BSMs — Type-I and III seesaw models — by matching them to SMEFT up to dimension-7
at tree-level, then validating the consistency of the derived constraints. Related to this,
the T-parameter impose restrictions on dimension-8 operators of the φ6D2 class. Based on
the RGE relations computed here, we deduce new restrictions on the LNVs driven by the
T-parameter constraint [44]. We comment on the complementarity of this outcome with
the one deduced from the neutrino mass. We point out that this RGE induced constraint
on LNV Wilson coefficients restrict them from arbitrary large (absolute) values which is a
flat direction in the current neutrino mass bound.

This article is arranged as follows. In section 2, we establish the relevant Lagrangian,
set the conventions used in the article, and discuss the approach we follow for computing
the renormalisation of the operators involved. In section 3, we discuss the derivation of
the divergences and RGEs and provide these at 1-loop up to order 1/Λ4. We point out the
global structure of the RGEs, and comment on contributions that are larger than expected
from naive dimensional analysis. In section 4, we derive constraints on LNV parameter
space using RGEs and positivity bounds for models where φ4D4 are missing at tree-level,
and perform a case study on the seesaw models. We also discuss bounds induced from the
T-parameter to LNVs. Finally, in section 5, we summarise our findings. We tabulate all the
effective operators relevant for our analysis in the appendix A.

2 Theory and methodology

2.1 SMEFT conventions

We consider the SMEFT Lagrangian,

LSMEFT = LSM +

α`φO(5)
`φ

Λ + h.c.

+
∑
i

βi
O

(6)
i

Λ2 +
∑
j

ωj
O

(7)
j

Λ3 +
∑
k

ck
O

(8)
k

Λ4 , (2.1)

where the expansion in the SMEFT cut-off scale Λ is truncated at order 1/Λ4 and α`φ,
βi, ωj , and ck represent d5, d6, d7, and d8 Wilson coefficients,2 respectively. The Standard
Model Lagrangian is written as:

LSM =−1
4G

A
µνG

Aµν− 1
4W

I
µνW

I µν− 1
4BµνB

µν

+qmi /Dqm+`mi /D`m+umi /Dum+dmi /Ddm+emi /Dem

+(Dµφ)† (Dµφ)+µ2
φ|φ|2−λφ|φ|4−

(
yumnq

mφ̃un+ydmnqmφdn+yemn`mφen+h.c.
)
.

(2.2)

The covariant derivative is defined as:

Dµ = ∂µ − ig1Y Bµ − ig2
σI

2 W
I
µ − ig3

λA

2 GAµ . (2.3)

2We adopt the convention “dimension-n” as dn for brevity.
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Here, e, u and d represent the right-handed leptons, up- and down-type quarks; ` and q
represent the left-handed leptons and quarks; and B,W , and G represent the gauge fields
corresponding to U(1)Y , SU(2)L and SU(3)C , with g1, g2 and g3 as their gauge couplings,
respectively. We represent the SM Higgs doublet by φ (Y = 1

2), and φ̃ = iσ2φ∗, where σ’s
denote the Pauli matrices (I = 1, 2, 3). We denote the U(1)Y hypercharge by Y , and λ’s
are the Gell-Mann matrices (A = 1, . . . , 8).

In the SMEFT expansion, the d8 Wilson coefficients are suppressed by a power of 1/Λ4.
From power counting, we deduce that the running of d8 at this order is triggered by the
insertions of (I) one d8 [29], (II) two d6 [26], (III) one d5 and one d7, (IV) two d5 and one d6
or (V) four d5 Wilson coefficients. The Weinberg operator is the only operator at d5 [2]. We
use physical bases for the insertions of d6 [45] and d7 [46]. However, the method employed
to compute the divergences requires Green’s bases for d6 [47] and d8 [48] 3.

We perform the renormalisation of the d8 Wilson coefficients using an off-shell scheme [48].
The rationale of this method consists in considering only diagrams that are 1-particle ir-
reducible (1PI) to generate the divergences of the Wilson coefficients (including those of
non-physical operators). In general, we do this by extending the physical basis with a set of
redundant operators spanning all the possible interactions.

We compute the off-shell 1PI diagrams to generate amplitudes, which are then captured
in the Wilson coefficients of the Green’s basis operators. The redundant operators can be
reduced to the physical subset by applying field redefinitions or the Equations of Motion
(EoMs). Consequently, we find that the contribution of the redundant operators amounts
to a shift in the definition of the Wilson coefficients of the physical operators:

cphys
i

Λn →
cphys
i

Λn + 1
Λn

∑
k

bkc
red
k , (2.4)

where, bk usually contains powers of the SM couplings but can also enclose SMEFT
coefficients of lower dimension provided the mass dimension of each term in the shift is the
same. Combinations of more than one SMEFT WC appear when the EoMs for some field
are applied at a greater order in Λ. For d8 WCs, this means that the shift of the physical
coefficients contain linear combinations of redundant d8 WCs but also pairs of redundant
d6 WCs. In principle we could also find contributions of d5 and d7 WCs but applying the
EoMs to these operators leads only to fermionic operators, which are out of the scope of
this paper. Hence, the only redundant degrees of freedom we need to consider are those
contained in the Green’s bases for d6 and d8.

The computation is feasible without introducing redundant operators, but it would
imply dealing with all connected diagrams. In contrast, the off-shell approach just adds
an extra systematical step translating the WCs from the Green’s basis to the physical
basis, and it is already worked out for bosonic interactions in ref. [48]. In practice, the
contribution from connected diagrams in the on-shell approach is indirectly taken care of
when the WC shift is applied since it contains the information given by the EoMs.

3Other choices for SMEFT d7 and d8 operators basis are available at [49–51].
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1/Λ4 d4
5 d2

5 × d6 d5 × d7

8-Higgs 1a - -

6-Higgs - 1b 1e, 1i, 1c

4-Higgs - - 1d, 1f, 1g, 1h

2-Higgs - - -

0-Higgs - - -

Table 1. Relevant contributions for the renormalisation of bosonic operators to order 1/Λ4. Rows
represent the classes of d8 bosonic operators, grouped by the number of Higgs they contain. Columns
represent the possibilities for the insertion of LNV operators. A number means the contribution
is sizeable and considered in this paper in the figure corresponding to that number. A hyphen (-)
means the contribution vanishes or is out of the scope of this paper. See the text for more details.

2.2 Organizing the calculation

The main goal of this paper is to compute the contributions of all LNV operators to the
RGEs of the d8 bosonic Wilson coefficients and to order 1/Λ4. At first, one may think of
the many possible different topologies generated by combinations of d5, d6 and d7 operators
and SM couplings. Considering that the great number of operators (1+20+63) can lead
to several valid diagrams, it seems inevitable that the amplitudes for some processes get
contributions from many operators. Restricting to bosonic processes removes a significant
number of these, and -after a more exhaustive analysis- we show more valid contributions
that actually vanish, thus remarkably reducing the effort needed for the whole computation.
In table 1, we schematically show the variety of possibilities and the diagrams we are left
with. Throughout the rest of this section, we elaborate on the reasoning for which most of
these contributions vanish.

As we can see in the Lagrangian eq. (2.1), the WCs are suppressed by a power of
the energy scale Λ related to the mass dimension of the operator it refers to. With this
Lagrangian and to order 1/Λ4 the following contributions need to be considered: (d4

5),
(d2

5 × d6) and (d5 × d7). The divergences of the bosonic d8 operators with d2
6 and the

self-contribution of d8 are available in [26] and [29], respectively, so we do not consider them
anymore. What remains is precisely the aim of this work: contributions including at least
one LNV operator. Before discussing each set of insertions individually, there are some
global remarks that apply to all cases.

A priori, we deal with insertions of d5, d6 and d7 combined as d4
5, d2

5×d6 and d5×d7 to
make 1PI diagrams of processes that only include bosons as external fields, as we renormalise
the bosonic d8 operators. That would be the maximum number of contributions we would
have to compute, but now we argue that most of the calculations vanish, and the nonzero
combinations are but a small subset of the total amount of possibilities.

First of all, notice that the field content of the loops in the diagrams can only consist
of fermions, and not bosons. It follows from the fact that all of the LNV operators inserted
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Contributions from all possible insertions of LNV operators to order 1/Λ4. Vertices in
red, green and blue represent insertions of a d5, d6, and d7 operators, respectively. Dashed, solid,
and wavy lines represent scalar, fermion, and gauge boson propagators/legs, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 2. Relevant diagrams with insertions of LNV operators. Diagrams 2a and 2b vanish due to
symmetries. 2d is included in the Wilson coefficient shift. 2e and 2f are also included in the Wilson
coefficient shift, but their overall contribution vanishes after computing all the divergences. Vertices
in red, green and blue represent insertions of a d5, d6, or d7 operators, respectively.

include one or two pairs of fermion fields (a bispinor and its conjugate for each pair),
which generate a vertex with two or four fermionic legs. Since the operators we strive to
renormalise do not contain fermions, the fermionic legs cannot be external, thus forcing
them to be closed in a loop. This directly affects the renormalisation operators of mass
dimension lower than eight (See subsection 2.2.4).

The point made above can be exploited from a different perspective. Since fermion
lines must be closed, then the contribution of a four-fermion operator to a certain bosonic
WC would necessarily lead to a 2-loop diagram, thus being out of the scope of this analysis.
Therefore, we only need to consider operators with less than four fermions at the loop. In
particular, this means baryon and lepton number violating operators from the d6 set cannot
renormalise the bosonic operators at 1-loop order.

– 6 –



J
H
E
P
0
6
(
2
0
2
3
)
1
2
3

We do not need to consider all operators for insertions, even if they meet the requirements
above. Among the different classes of d6 operators we find some of them that are not
tree-level generated in the UV completions of SMEFT [15]. This means that any diagram
including these operators would effectively be loop-suppressed with respect to those that
include only tree-level generated operators. The loop-generated operators would lead to a
process of greater order in loop expansion, which we ignore for this paper.

One last general remark about the divergent diagrams is in order: there are d8 operators
containing more than six fields in their definition (i.e., Oφ8 , O(1,2,3,4)

φ6 ). For these to be
renormalised, we need to find a diagram with as many legs as fields. It is somewhat easy
to reach this number with certain insertions of operators; for example, with the Weinberg
operator and a d7 operator from class ψ2φ4 we get six Higgs as external fields (diagram 1e).
One can also try reaching six or eight external legs using SM couplings like Yukawas or
gauge boson couplings. However, since we are only considering 1PI diagrams, any vertex we
add increases the number of propagators in the loop, which can render the diagram finite.
Thus, the insertion of operators is capped.

Regarding the d8 Wilson coefficients, not all 89+86 physical and redundant bosonic
operators are renormalised. Recalling the Weinberg operator

O(5)
`φ = εijεmn

(
`iC`m

)
φjφn, (2.5)

we see that two Higgs fields appear as external legs since the loop is formed by the fermion
lines. Thus, the insertion of α`φ implies that the final diagram will have at least two Higgs
as external legs, and we ignore all those d8 operators that do not include Higgs fields.
Furthermore, considering that for d4

5 and d2
5 × d6 there are two or more insertions of the

Weinberg operator, then diagrams with these insertions do not contribute to operators with
less than four Higgs fields. It so happens that all of the d7 operators meeting the previous
properties have at least two Higgs fields as well, so the diagrams for d5 × d7 have at least
four Higgs external legs too. In conclusion, there are no contributions from LNV insertions
to the RGEs of operators with less than four Higgs fields, including all of the loop-generated
bosonic d8 operators.

Finally, we argue why most operators featuring gauge bosons can be neglected too.
All instances containing a gluon field are not renormalised since there are no gluonic LNV
operators. The renormalisation of operators with B bosons is also heavily restricted due to
charge conservation or other symmetries.

Summing up,

• For all diagrams with insertions of LNV, there is only one loop always formed by
fermions.

• Only 2-fermion operators are inserted. In particular, this means the d6 LNV and
baryon number violating operators cannot renormalise the d8 bosonic operators.

• Only tree-level generated d6 operators are inserted.

• There is a limit to the number of Yukawa and gauge couplings that can be inserted
in a diagram before it is no longer divergent.

– 7 –



J
H
E
P
0
6
(
2
0
2
3
)
1
2
3

• Operators with less than four Higgs fields do not get any contribution to the RGEs.
This includes class X2φ2D2.

These points greatly reduce the scenarios of possible insertions to the computations
needed thus simplifying their difficulty. Nevertheless, we can take this analysis further by
focusing on each combination.

2.2.1 Insertions of d5 × d7

Let us study a particular case of d5 × d7. If we consider the vertex generated by the d7
Weinberg operator,

O(7)
`φ = εijεmn

(
`iC`m

)
φjφn

(
φ†φ

)
, (2.6)

we could link the d5 operator vertex in several different ways. However, since we are
interested in the bosonic contributions, we must close all fermion lines. There is only one
way to do this for the purpose of renormalisation at 1-loop, which is joining the fermion
lines of both operators so that a loop is formed. Thus, we discard contributions to operators
with less than six Higgs legs from diagram 1e.

There are more d7 operators, which could lead to different contributions, but some
vanish. This is the case of figure 2b, which represents a topology where we could have
the insertion of O(5)

`φ and
(
O(7)
`φ

)†
or
(
O(5)
`φ

)†
and O(7)

`φ . However, we find that the total
amplitude vanishes due to the cancellation among diagrams which differ in permutations of
internal loop propagators. The presence of the Yukawas is essential for this cancellation; in
particular, diagram 1e looks similar to 2b but does not vanish for those insertions. We do
not see such cancellations when the d7 operator inserted is from class ψ2φ2D2 since there is
no symmetry in their definitions, so diagrams like 1i and 1g are nonzero.

2b is actually the only possible divergence of d5 × d7 with eight Higgs in the external
legs. Knowing its contribution vanishes implies no direct contribution from d5 × d7 appear
in the divergences of the 8-Higgs operator while we can see direct contributions in operators
with less number of Higgs.

Regarding the renormalisation of operatos with gauge bosons, the only LNV operators
containing gauge fields are O`φB and O`φW which, by definition, are skew-symmetric to
flavor transposition, while O(5)

`φ is symmetric:

(O`φB,W )pq = − (O`φB,W )qp ,
(
O(5)
`φ

)
pq

=
(
O(5)
`φ

)
qp
. (2.7)

It follows from this fact, that the amplitude of diagrams like 2c will trivially vanish since
they are proportional to the trace of these two operators. For the same reason, diagram 1h
will also lead to null amplitudes unless the two gauge bosons in the process are W bosons.
In that case, the commutation of Pauli matrices can lead to non-vanishing terms.

2.2.2 Insertions of d5 × d5 × d6

We could use a similar reasoning for the insertion of two Weinberg operators and one d6
operator. It is clear by the points argued before that both d5 operators must be in the
loop. A d6 operator will also be in the loop if it has fermionic lines, forming the diagrams

– 8 –
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in figure 1b. Note how there are no physical tree-level generated d6 two-fermion operators
without at least two Higgs fields, implying we cannot draw a diagram with less than 6-Higgs
as external legs, and so, there do not be any direct contribution to operators with 4-Higgs
legs (i.e. classes φ4D4, Xφ4D2 and X2φ4).

However, we can also think of insertions of bosonic d6 operators. In this case, precisely
due to the lack of fermions, the vertex cannot be part of the loop. Instead, it appears in an
external leg, thus forming a 1-particle-reducible diagram. We have chosen not to consider
these in the off-shell approach (as argued in section 2), so we discard diagrams like 2d, 2e
or 2f. Instead, we use the divergences of the generated redundant operators to order 1/Λ2,
which yield 1/Λ4 terms after the WC shift.

Once again, there is a remark about the contribution to the 8-Higgs operator, Oφ8 .
For the 1PI amplitudes, figure 2a shows the diagram that would need to be considered.
Just as 2b, the total amplitude for the insertion of O(5)

`φ and O`φ vanishes due to mutual
cancellation among the diagrams.

2.2.3 Insertions of d5 × d5 × d5 × d5

Finally, we arrive at the contribution of four Weinberg operators inserted in one loop.
Since fermion lines must be closed, their WCs will appear contracted in the same trace,
resulting in eight Higgs as external legs (figure 1a). This clearly contributes to the 8-Higgs
d8 operator

Oφ8 =
(
φ†φ

)4
. (2.8)

The amplitude is proportional to a trace of the four WCs. The eight legs of the diagram
are the maximum number allowed for an amplitude of order 1/Λ4. Since there is only the
Weinberg operator inserted several times, the remaining freedom resides in the fermions of
the loop. Summing all the combinations yields the only contribution from this configuration.

As argued in the previous sections, the φ8 class of d8 operators receives no other
contribution from 1PI diagrams, meaning the only term in eq. (3.3) accounts for all the
divergences of Oφ8 coming from the LNV operators.

2.2.4 Renormalisation below d8

Here, we comment on the renormalisation of operators with lower mass dimension. Since
we are only considering contributions to bosonic operators, it is clear that there must be an
even number of LNV operators inserted to get a non-LNV contribution, which implies that
the Wilson coefficients could only be renormalised to order 1/Λ2 by two insertions of the
Weinberg operator: d2

5. The bosonic operator’s coefficients of the renormalisable SM do not
get a contribution from these, and for the d6 bosonic operators are computed in ref. [52].

About the renormalisation to order 1/Λ4 of operators below d8, we know the divergences
carry a factor of 1/Λ4 in the amplitude compensated by another mass scale to get the
correct mass dimension below eight for the operators. The only mass scale in the Lagrangian
eq. (2.1) is µφ, meaning that a loop of Higgs fields would need to appear in the diagram. We
have already established in section 2.2 that the loop for the bosonic contributions needs to
be formed by fermions, thus no contribution to order 1/Λ4 is added directly by d4

5, d2
5 × d6

– 9 –
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and d5× d7 to the RGEs of Wilson coefficients from bosonic operators with mass dimension
below 8. Nonetheless, this does not necessarily imply that there is no contribution. In
the off-shell approach, these contribution is encoded in the non-physical operators from
the Green’s basis. Once the divergences have been computed, one must shift the physical
coefficients (as discussed in ref. [48]), this is a consequence of applying the equations of
Motion. The shift causes a mixing of operators of different classes with coupling factors
which, in fact, give a nonzero indirect contribution to the RGE of some operators even if all
their divergent 1PI diagrams are null.

3 The RGEs

In this section, we present the RGEs of the d8 Wilson coefficients up to order 1/Λ4

and discuss the derivation in detail. The main results have been uploaded to a public
Mathematica notebook.

In section 3.1, we show the divergences we use to get the RGEs in 3.2, where we also
tabulated the greatest contributions to the anomalous dimension matrix. The process is
simple, but we explain it here for a complete analysis.

In general, we shall have three sources of LNV contributions to the anomalous dimension
matrix to order 1/Λ4:

16π2 d
d lnµck(µ) := ċk = γkα`φα`φα`φα`φ + γikα`φα`φβi + γjkα`φωj , (3.1)

where hereafter ck are Wilson coefficients of d8 bosonic operators (shown in table 4), but
any other coefficient of dimension lower than eight can be either bosonic or fermionic (see
table 5). Note this only affects βi, which are the d6 Wilson coefficients — the d5 (α`φ) and
d7 (ωj) only include fermionic operators.

Following the steps in section 2, the divergences are obtained. Now, they are applied
to the formula for the computation of the RGEs up to 1-loop order:

ċi = −ci
∑
j

njxj
∂

∂xj

(
c̃i
ci

)
, (3.2)

where nj is the tree-level anomalous dimension,3 and xj are all the Wilson coefficients (run-
ning or not) that enter the Lagrangian. ci are the Wilson coefficients that are renormalised,
whereas, c̃i are the computed divergences. They should also include contributions from
the field redefinition needed to normalise the Higgs kinetic term canonically, as well as
the Wave Function Renormalisation (WFR) for gauge bosons; however, these only affect
self-contributions to the RGEs, which we do not consider here.

For an exhaustive computation of the anomalous dimension matrix to order 1/Λ4, we
must also consider the divergences of d6 operators to order 1/Λ2 by LNV operators. The
insertions can only be of two d5 operators. Nonetheless, we have attached these results in
section 3.1 for completeness.

3For an operator with nψ fermions, nX field strength tensors, nφ Higgs fields then nj = nψ +nX +nφ− 2
in D = 4− 2ε.
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3.1 Divergences

The calculation of the divergences is the key step to determine the running of the Wilson
coefficients. We have already shown in section 2 the 1PI diagrams whose amplitudes we
need to compute for renormalisation. These divergent amplitudes are matched with those
of the corresponding tree-level processes with d8 vertices.

In order to do this, both the SMEFT and the d8 effective Lagrangians are implemented
in FeynRules [53] models, and the amplitudes are computed with the help of FormCalc [54]
and FeynArts [55]. The amplitudes are a sum of expressions that depend on the couplings
and kinematic invariants (i.e. a set of algebraically independent contractions of momenta
and polarisation vectors). Equating the amplitudes for each process, we get a set of as
many equations as unique kinematic invariants. The solutions of these equations are
the divergences for the d8 Wilson coefficients of the Green’s basis operators, which we
present here.4

c̃φ8 ⊃ −
1

2π2ε
Tr
[
α`φα

†
`φα`φα

†
`φ

]
, (3.3)

c̃
(1)
φ6D2 ⊃

1
2π2ε

Tr
[
−3β(1)

φ` α
†
`φα`φ + 4β(3)

φ` α
†
`φα`φ

]
+ 1

4π2ε
Im
(
Tr
[
α`φy

eω∗`φDe

])
+ 1

2π2ε
Re
(
Tr
[
α`φω

†
`φ

])
− 1

16π2ε
Re
(
Tr
[
α†`φ (ye)∗ (ye)ω(2)

`φD

])
− 1

16π2ε
Re
(
Tr
[
α†`φ (ye)∗ (ye)

(
ω

(1)
`φD +

(
ω

(1)
`φD

)T)])
, (3.4)

c̃
(2)
φ6D2 ⊃

1
2π2ε

Tr
[
−2β(1)

φ` α
†
`φα`φ + β

(3)
φ` α

†
`φα`φ

]
− 1

4π2ε
Im
(
Tr
[
α`φy

eω∗`φDe

])
+ 1

4π2ε
Re
(
Tr
[
α`φω

†
`φ

])
− 1

16π2ε
Re
(
Tr
[
α†`φ (ye)∗ (ye)ω(2)

`φD

])
− 1

16π2ε
Re
(
Tr
[
α†`φ (ye)∗ (ye)

(
ω

(1)
`φD +

(
ω

(1)
`φD

)T)])
, (3.5)

c̃
(3)
φ6D2 ⊃

1
4π2ε

Tr
[
−β(1)

φ` α
†
`φα`φ + β

(3)
φ` α

†
`φα`φ

]
− 1

8π2ε
Re
(
Tr
[
α`φω

†
`φ

])
, (3.6)

c̃
(4)
φ6D2 ⊃

1
8π2ε

Im
(
Tr
[
α`φω

†
`φ

])
, (3.7)

c̃
(2)
φ4D4 ⊃

1
4π2ε

Re
(
Tr
[
α†`φω

(2)
`φD

])
, (3.8)

c̃
(10)
φ4D4 ⊃

1
8π2ε

Re
(
Tr
[
α†`φω

(2)
`φD

])
, (3.9)

c̃
(11)
φ4D4 ⊃

1
8π2ε

Re
(
Tr
[
α†`φω

(2)
`φD

])
, (3.10)

4The divergences of classes φ8 and φ6D2 are cross-checked using matchmakereft [56].
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c̃
(12)
φ4D4 ⊃

1
4π2ε

Re
(
Tr
[
α†`φω

(2)
`φD

])
, (3.11)

c̃
(1)
Wφ4D2 ⊃

g2
12π2ε

Re
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.12)

c̃
(2)
Wφ4D2 ⊃

g2
8π2ε

Im
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.13)

c̃
(3)
Wφ4D2 ⊃

g2
16π2ε

Im
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.14)

c̃
(4)
Wφ4D2 ⊃ −

g2
16π2ε

Re
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.15)

c̃
(5)
Wφ4D2 ⊃

g2
48π2ε

Im
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.16)

c̃
(6)
Wφ4D2 ⊃

g2
48π2ε

Re
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.17)

c̃
(7)
Wφ4D2 ⊃

g2
48π2ε

Re
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.18)

c̃
(1)
W 2φ4 ⊃

g2
2

192π2ε
Re
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
− g2

8π2ε
Re
(
Tr
[
α`φω

†
`φW

])
, (3.19)

c̃
(2)
W 2φ4 ⊃

g2
2

128π2ε
Im
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
+ g2

8π2ε
Im
(
Tr
[
α`φω

†
`φW

])
, (3.20)

c̃
(3)
W 2φ4 ⊃

g2
2

192π2ε
Re
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
+ g2

8π2ε
Re
(
Tr
[
α`φω

†
`φW

])
, (3.21)

c̃
(4)
W 2φ4 ⊃

g2
2

128π2ε
Im
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
− g2

8π2ε
Im
(
Tr
[
α`φω

†
`φW

])
, (3.22)

c̃
(1)
WBφ4 ⊃

g1g2
96π2ε

Re
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.23)

c̃
(2)
WBφ4 ⊃

g1g2
64π2ε

Im
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
. (3.24)

The absent coefficients are not receiving any contribution from LNV operators.

3.2 Explicit expression for the RGEs

We compute the terms of the anomalous dimension matrix, as discussed at the beginning of
this section. The nonzero RGEs for the d8 physical basis operators are:

ċφ8 = 8λφβφD Tr
[
α`φα

†
`φ

]
+ 32λφTr

[
−β(1)

φ` α`φα
†
`φ + β

(3)
φ` α`φα

†
`φ

]
− 16λφRe

(
Tr
[
α†`φω`φ

])
− λφg2

2 Re
(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
+ 16Tr

[
α`φα

†
`φα`φα

†
`φ

]
, (3.25)
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ċ
(1)
φ6 = 4βφD Tr

[
α`φα

†
`φ

]
+ 16Tr

[
3β(1)

φ` α`φα
†
`φ − 4β(3)

φ` α`φα
†
`φ

]
− 16Re

(
Tr
[
α†`φω`φ

])
+ 7

3g
2
2 Re

(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
− 32λφRe

(
Tr
[
α†`φω

(2)
`φD

])
− 4 Im

(
Tr
[
α`φy

eω∗`φDe

])
− 2Re

(
Tr
[
α†`φ (ye)∗ (ye)

(
ω

(1)
`φD +

(
ω

(1)
`φD

)T)])
− 2Re

(
Tr
[
α†`φ (ye)∗ (ye)ω(2)

`φD

])
, (3.26)

ċ
(2)
φ6 = 8βφD Tr

[
α`φα

†
`φ

]
+ 16Tr

[
2β(1)

φ` α`φα
†
`φ − β

(3)
φ` α`φα

†
`φ

]
− 8Re

(
Tr
[
α†`φω`φ

])
+ 1

12g
2
2 Re

(
Tr
[
2α†`φω

(1)
`φD + α†`φα

(2)
`φD

])
− 16λφRe

(
Tr
[
α†`φα

(2)
`φD

])
+ 4 Im

(
Tr
[
α`φ (ye)ω∗`φDe

])
+ 2Re

(
Tr
[
α`φ (ye)∗ (ye)

(
ω

(1)
`φD +

(
ω

(1)
`φD

)T)])
+ 2Re

(
Tr
[
α†`φ (ye)∗ (ye)ω(2)

`φD

])
, (3.27)

ċ
(2)
φ4 = −8Re

(
Tr
[
α†`φω

(2)
`φD

])
, (3.28)

ċ
(1)
Wφ4D2 = −4g2 Re

(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.29)

ċ
(2)
Wφ4D2 = −4g2 Im

(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.30)

ċ
(3)
Wφ4D2 = −2g2 Im

(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.31)

ċ
(4)
Wφ4D2 = 2g2 Re

(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
, (3.32)

ċ
(1)
W 2φ4 = −1

4g
2
2 Re

(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
+ 4g2 Re

(
Tr
[
α`φω

†
`φW

])
, (3.33)

ċ
(2)
W 2φ4 = −1

4g
2
2 Im

(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
− 4g2 Im

(
Tr
[
α`φω

†
`φW

])
, (3.34)

ċ
(3)
W 2φ4 = −1

4g
2
2 Re

(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
− 4g2 Re

(
Tr
[
α`φω

†
`φW

])
, (3.35)

ċ
(4)
W 2φ4 = −1

4g
2
2 Im

(
Tr
[
2α†`φω

(1)
`φD + α†`φω

(2)
`φD

])
+ 4g2 Im

(
Tr
[
α`φω

†
`φW

])
, (3.36)

ċ
(1)
WBφ4 = −g1g2 Re

(
Tr
[
α†`φω

(1)
`φD

])
− 1

2g1g2 Re
(
Tr
[
α†`φω

(2)
`φD

])
, (3.37)

ċ
(2)
WBφ4 = −g1g2 Im

(
Tr
[
α†`φω

(1)
`φD

])
− 1

2g1g2 Im
(
Tr
[
α†`φω

(2)
`φD

])
. (3.38)
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As discussed in section 2.2.4, there is no renormalisation at order 1/Λ4 coming directly
from the 1PI diagrams with LNV vertices for any coefficient of dimension less than eight.
However, the redundancies of the operators in the Green’s basis do contribute to these
equations. All of these yield a non-vanishing RGE for some coefficients. Again, we only
show the nonzero RGEs:

λ̇φ = −8µ4
φRe

(
Tr
[
α†`φω

(2)
`φD

])
, (3.39)

ċφ = −4µ2
φβφD Tr

[
α`φα

†
`φ

]
+ 16µ2

φTr
[
β

(1)
φ` α`φα

†
`φ

]
− 16µ2

φTr
[
β

(3)
φ` α`φα

†
`φ

]
+ 8µ2

φRe
(
Tr
[
α†`φω`φ

])
+ µ2

φg
2
2 Re

(
Tr
[
α†`φω

(1)
`φD

])
+ 1

2µ
2
φg

2
2 Re

(
Tr
[
α†`φω

(2)
`φD

])
+ 16λφµ2

φRe
(
Tr
[
α†`φω

(2)
`φD

])
, (3.40)

ċφ� = 16µ2
φRe

(
Tr
[
α†`φω

(2)
`φD

])
, (3.41)

ċφD = 16µ2
φRe

(
Tr
[
α†`φω

(2)
`φD

])
. (3.42)

The previous results for the RGEs are expressed in table 2. There, it is easy to check
the numerical contribution for each operator coming from all the possible sources detailed
previously. In cases where there is more than one term for the same contribution, we show
only the greatest. Naive loop suppression γ ∼ 1 competes with a high numerical coefficient
for some of the terms, especially those of class φ6D2, which hold the greatest terms of all
the renormalised WC.

As discussed in section 2.2, we see many vanishing contributions in table 2. All of the
entries are well understood in terms of the logic stated before: the order of the operator
expansion and loop expansion altogether with the restriction to bosonic operators leaves
little scope for non-vanishing anomalous dimension matrix elements. Nevertheless, there
are two cases worth remarking here, after the computations are done.

First of all, the nonrenormalised WC of O(2)
φ4 by α`φω(1)

`φD is the result of an accidental
zero. The contributions from class ψ2φ2D2 to φ4 are not forbidden by any theoretical
argument and in fact they are expected to be non-zero like the contribution from α`φω

(2)
`φD.

In this case, the reason lies in the operator structure, O(1)
`φD = εijεmn`

iC(Dµ`j)φm(Dµφ
n),

which under the contraction with the Weinberg operator to make a 4-Higgs process is
anti-symmetric under swapping of the internal loop propagators (`i ↔ `j) and thus the
amplitude vanishes. This is an artefact of both the operator and the process, as in contrast,
the mixing contribution from O(2)

`φD is non-vanishing.
All other non-trivial zeros come from the class Xφ2D2. However, in this case, the

diagrams 2c vanish regardless of the internal structure of the operator. This can be
demonstrated through unitary cuts but also considering that there is only one independent
operator for each subclass Bφ2D2 and Wφ2D2 which means the symmetry argument
discussed in section 2.2.1 will hold after any possible redefinition of operators O`φB andO`φW .

3.3 Detailed example

Let us work out a detailed example of this calculation for clarity: the contribution of all
the LNV operators to the RGE of c(2)

φ4 . First, we implement the Lagrangian eq. (2.1) in a
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(α`φ)4 (α`φ)2 βφD (α`φ)2 β
(1)
φ` (α`φ)2 β

(3)
φ` α`φω`φ α`φω

(1)
`φD α`φω

(2)
`φD α`φω`φDe α`φω`φW

γφ8 16 8λφ 32λφ 32λφ 16λφ 2λφg2
2 λφg

2
2 0 0

γ
(1)
φ6 0 4 48 64 16 14

3 g
2
2 32λφ 4ye 0

γ
(2)
φ6 0 8 32 16 8 1

6g
2
2 16λφ 4ye 0

γ
(2)
φ4 0 0 0 0 0 /0 8 0 0

γ
(1)
Wφ4D2 0 0 0 0 0 8g2 4g2 0 /0
γ

(2)
Wφ4D2 0 0 0 0 0 8g2 4g2 0 /0
γ

(3)
Wφ4D2 0 0 0 0 0 4g2 2g2 0 /0
γ

(4)
Wφ4D2 0 0 0 0 0 4g2 2g2 0 /0
γ

(1)
W 2φ4 0 0 0 0 0 1

2g
2
2

1
4g

2
2 0 4g2

γ
(2)
W 2φ4 0 0 0 0 0 1

2g
2
2

1
4g

2
2 0 4g2

γ
(3)
W 2φ4 0 0 0 0 0 1

2g
2
2

1
4g

2
2 0 4g2

γ
(4)
W 2φ4 0 0 0 0 0 1

2g
2
2

1
4g

2
2 0 4g2

γ
(1)
WBφ4 0 0 0 0 0 g1g2

1
2g1g2 0 /0

γ
(2)
WBφ4 0 0 0 0 0 g1g2

1
2g1g2 0 /0

γφ 0 4µ2
φ 16µ2

φ 16µ2
φ 8µ2

φ µ2
φg

2
2 16µ2

φλφ 0 0
γφ� 0 0 0 0 0 0 16µ2

φ 0 0
γφD 0 0 0 0 0 0 16µ2

φ 0 0
γλφ 0 0 0 0 0 0 8µ4

φ 0 0

Table 2. Anomalous dimension matrix. The columns represent the greatest terms from each
contribution in absolute value that renormalise the coefficients in the rows. See equations (3.25)–
(3.42) for complete RGEs. 0 represents a trivially vanishing contribution due to the absence
of Feynman diagrams. /0 represents non-trivially vanishing contribution. See the discussion in
section 2.2.

FeynRules model. With this, we generate the topologies and processes in FeynArts, which
-paired with FormCalc- computes the amplitudes for the different processes. In particular,
for c(2)

φ4 we get information from the process φ0 → φ0φ+φ−. Of course, this is not the only
process that could yield the divergence for this particular coefficient. Generally, different
processes give the divergences for the same set of coefficients, so it is a matter of finding a
suitable process in each case. In our example, we have

−iAIR = 2c(1)
φ4 (−κ1213+κ1322+κ1323)+2c(2)

φ4 (−κ1123+κ1223+κ1323)

+2c(3)
φ4 (−κ1213+κ1223+κ1233)+2c(4)

φ4 (κ1212+κ1213−κ1223−κ1233)

+c(4)
φ4 (−κ1112+κ1113−κ1123−κ1133−κ1222+κ1322−κ2223−κ2233)

+c(6)
φ4 (κ1112−κ1113−κ1122−κ1123+κ1233−κ1333−κ2223−κ2333)

+2c(6)
φ4 (κ1313+κ1213−κ1322−κ1323)+4c(8)

φ4 (−κ1112−κ1113+κ1123)

+2c(8)
φ4 (κ1111+κ1122+κ1133+κ2233)+c(10)

φ4 (κ3333+κ1122+κ1133+κ2233)

+2c(10)
φ4 (−κ1233−κ1333+κ2333)+c(11)

φ4 (κ2222+κ1122+κ1133+κ2333)

+2c(11)
φ4 (−κ1222−κ1322+κ2223)+2c(12)

φ4 (κ2323+κ1123−κ1223−κ1323)

+c(12)
φ4 (−κ1122−κ1133+κ1222+κ1233+κ1322+κ1333+κ2223+κ2333) , (3.43)
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where κijkl = pi · pjpk · pl are the kinematic invariants, and we do not include CP-odd terms
since we already know they do not contribute to the CP-even c(2)

φ4 . This amplitude has been
built at tree level, including redundant operators in the d8 Green’s basis so that only 1PI
diagrams are considered here, as explained in section 2. Consequently, with this method,
the amplitude is off-shell. Now for the 1-loop amplitude, we have:

− iAUV = 1
8π2ε

Re
[
α†`φω

(2)
`φD

]
(κ2222 + κ3333 + 2κ2233 + 4κ2323 + 4κ2333) , (3.44)

which indicates that the only contribution for this process comes from the 4-Higgs diagram
displayed in figure 1d.

Equating the two amplitudes matches the Wilson coefficients effectively to their diver-
gences. The nonzero solutions for our example are:

c
(2)
φ4 = 2c(10)

φ4 = 2c(11)
φ4 = c

(12)
φ4 = 1

4π2ε
Re
[
α†`φω

(2)
`φD

]
. (3.45)

We have obtained the divergences of c(2)
φ4 , but following the off-shell method, we also

need the divergences for the redundant coefficients that appear in the redefinition of c(2)
φ4 .

According to ref. [48], the shift for this coefficient is:

c
(2)
φ4 → c

(2)
φ4 + g1c

(3)
Bφ2D4 + g2c

(3)
Wφ2D4 − g2

1cB2D4 − g2
2cW 2D4 . (3.46)

Applying all the divergences to eq. (3.46), we get the physical 1-loop coefficient:

c̃
(2)
φ4 = 1

4π2ε
Re
[
α†`φω

(2)
`φD

]
. (3.47)

Now, for equation eq. (3.2), we need the tree-level anomalous dimension nj of operators
α`φ and ω(2)

`φD. One can trivially check that

Mass dim.
[
µ−(n(5)

`φ
)εα`φ

Λ O
(5)
`φ

]
7→ 4− (n(5)

`φ )ε = 4− 2ε⇒ n
(5)
`φ = 2. (3.48)

And through a similar procedure n(2)
`φD = 3. Finally, all that remains is to use the definition

of the RGEs eq. (3.2), which is straightforward since we have all the ingredients needed.
Note that xj in the formula comprehends all the coefficients, running or not, which includes
all the WCs, but also the SM couplings and masses µ2

φ, λφ, g1, g2, and g3. In this case, the
derivative is trivial, and so the RGE reads:

ċ
(2)
φ4 = −8Re

[
α†`φω

(2)
`φD

]
. (3.49)

There are other contributions to eq. (3.47) at order 1/Λ4, which are from lepton number
conserving operators. The rest of the terms, those coming from other d8 operators or pairs
of d6, are explicitly shown in refs. [26, 29].

4 Discussions and outlook

Here, we discuss some implications on BSM parameter space based on these RGEs.
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4.1 Positivity bounds in seesaw models

Positivity bounds are restrictions on the S-matrix elements derived using the standard
axioms — analyticity, unitarity, and crossing symmetry on the underlying theory. In the
context of SMEFT, these bounds constrain the space of Wilson coefficients of d8 operators.
The positivity bounds for 2 → 2 scattering amplitude A(s, t) in the forward scattering
limit (t = 0) are deduced using [35],

d2

ds2A(s, 0)
∣∣∣∣∣
s=0
≥ 0. (4.1)

Assuming that A(s, 0) is analytic around the origin and is expanded around s = 0,

A(s, 0) = a0 + a1s+ a2s
2 + . . . , (4.2)

which implies that a2 ≥ 0 following eq. (4.1). a2 is defined by combinations of d8 operators
(or pairs of d6 operators), and the positivity bounds restrict these combinations. For
example, the process φφ→ φφ yields positivity bounds affecting the Wilson coefficients of
φ4D4 operators [38],

φ1φ2 → φ1φ2 : c(2)
φ4 ≥ 0 ,

φ1φ3 → φ1φ3 : c(1)
φ4 + c

(2)
φ4 ≥ 0 , (4.3)

φ1φ1 → φ1φ1 : c(1)
φ4 + c

(2)
φ4 + c

(3)
φ4 ≥ 0 .

The amplitude around s = 0 can be irregular in certain cases, such as contributions
from loops carrying massless propagators, where one encounters branch cuts extending to
the origin. Generally, one arrives at eq. (4.1) by lending a small mass ‘m’ to the massless
state to regularise the singularity at the origin and resetting it to zero at a later stage.
Nonetheless, one needs to scrutinise this procedure when loops with massless propagators
are present [42].

For φ4D4 operators, the running effects of lower dimensional operators (φ4 and φ4D2)
dominate the corresponding amplitude in the limit m → 0 [42]. The positivity bounds
on φ4D4 class are respected by the running of effective interactions, which implies the d8
RGEs restrict arbitrary values of the WCs provided that φ4 and φ4D2 are absent at the
tree-level. For instance, we can consider the bound c(2)

φ4 (Λ) ≥ 0 and eq. (3.28), then, eq. (3.1)
evaluates to

16π2c
(2)
φ4 (µ) = 8Re

(
Tr
[
α†`φω

(2)
`φD

])
lnΛ
µ
≥ 0

⇒ Re
(
Tr
[
α†`φω

(2)
`φD

])
≥ 0 , (4.4)

for µ < Λ in the limit of scale-invariance of the LNVs. This inequality imposes significant
restrictions on new physics parameter space. Specifically, if we assume the WCs are nonzero
for one flavour index and are real-valued, then α`φ,mm and ω(2)

`φD,mm must have the same
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signs in all possible UV completions of SMEFT that do not generate φ4D4 WCs at tree
level. For three flavour indices, the restriction is

3∑
mn

α`φ,mnω
(2)
`φD,mn ≥ 0. (4.5)

We emphasise that this restriction is deduced using purely IR information , i.e. the RGE
calculation in the low energy theory (SMEFT in our case), and the positivity bounds impose
direct constraints on the UV space.

Let us inspect this inequality in BSMs where these LNVs are generated at tree-level
matching, but φ4D4 class of d8 operators are not. A suitable choice for such BSMs are
Type-I and III seesaw models [57–59].

We add two heavy multiplets to the SM particle content N i : (1, 1, 0) 1
2
and Σi : (1, 3, 0) 1

2
with SM gauge and spin quantum numbers shown as: (SU(3)C , SU(2)L,U(1)Y )S . The BSM
Lagrangian is defined as

L = LSM + 1
2N̄(i/∂ −MN )N + 1

2Tr[Σ̄(i /D −MΣ)Σ]

− 1
2
{
Y N†
ij N̄ i φ̃† `j + (Y N )Tij N̄ i φ̃T `Cj + Y Σ

ij φ̃
†Σ̄i `j + Y Σ∗

ij φ†Σ̄i iσ2`
Cj+ h.c.

}
, (4.6)

where Σ is a SU(2) triplet expressed in 2-dimensional matrix form. We integrate out the
heavy fields at tree-level onto SMEFT up to order 1/Λ3, leading to the d7 operator O′7ij
and its WC C′7ij ,

O′7ij = (¯̀C
i φ̃
∗) /D2(φ̃†`j) , C′7ij = −

[
(Y N )∗(Y N )†

]
ij

2M3
N

−

[
(Y Σ)T (Y Σ)

]
ij

2M3
Σ

, (4.7)

O′7ij is related to operators in the basis we have considered (table 5). Using the SM
equation of motions and properties of Dirac-gamma matrices, one can reduce it to operators
of classes ψ2φ2, ψ2φ4, ψ4φ, ψ2φ3D, and ψ2φ2X. Note that of all d7 operators only O(2)

`φD

renormalises the φ4D4 class operators as can be seen in the only nonzero RGE of that
class eq. (3.28). For these models, O(2)

`φD is not generated from tree-level matching, and so,
ω

(2)
`φD = 0. Therefore, we arrive at the important conclusion that the restrictions derived

from positivity bounds in eqs. (4.4) and (4.5) are respected in these seesaw models.

4.2 Constraints from T-parameter

Here, using the RGE relations presented in subsection 3.2, we discuss the restrictions
imposed by the T-parameter on the LNVs via the d8 class φ6D2. The Wilson coefficients
βφD (d6) and c(2)

φ6 (d8) contribute to the T-parameter [44]:

T = − 1
2α

v2

Λ2

(
βφD + c

(2)
φ6
v2

Λ2

)
, (4.8)

where α ∼ 1
137 is the fine structure constant. The LNVs renormalise O(2)

φ6 , and therefore,
the T-parameter restricts these WCs from arbitrary values. This becomes important where
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Figure 3. The restrictions imposed on Weinberg-like operators, O(5)
`φ at d5 and O(7)

`φ at d7, translated
from bounds on the T-parameter for one non-vanishing flavour direction. Neutrino mass bounds
restrict these two Wilson coefficients to lie on the shown blue contour, whereas the T-parameter
bound restricts the Wilson coefficients within the yellow region. The plot is created for Λ = 1TeV,
and µ = 246GeV, with inputs T = 0.10± 0.12 [44], and MN < 0.081 eV [60].

φ4D2 and φ6D2 classes do not appear at tree-level. In such case, from the RGE of c(2)
φ6

(eq. (3.27)) and from eq. (4.8), we get (in the limit of scale-invariant WCs),

T = − 1
4π2α

v4

Λ4 ln
[Λ
µ

] 3∑
mn

α`φ,mnω`φ,mn, (4.9)

assuming that only the WCs of Weinberg-like operators (α`φ and ω`φ) are non-vanishing
and real valued. This puts restrictions on the α`φ − ω`φ plane, which can be compared to
the bounds from neutrino masses [60],

(MN )mn = −v
2

Λ

(
α`φ,mn + v2

2Λ2ω`φ,mn

)
. (4.10)

It is straightforward to visualise the restrictions on α`φ vs ω`φ plane taking both the
T-parameter and neutrino mass bounds in the case of single non-vanishing flavor direction
as shown in figure 3. Note that, in general, neutrino masses do not restrain α`φ and ω`φ
to possess large values. This blind direction is lifted by the T-parameter, as it imposes an
upper bound to these WCs on the account of the RGEs of d8 operators, which is shown
in figure 3.

5 Conclusions

Throughout the last years and with the effort of many authors, the different contributions
to the running of the Wilson coefficients of the SMEFT have been studied and revealed
part by part. With eqs. (3.25)–(3.42), we have computed in this paper for the first time
the last set of operators to be included in the running of bosonic operators at order 1/Λ4.
Now that the LNVs contribution to the RGEs is computed, all the possible contributions to
bosonic operators of the SMEFT are available, as shown in table 3. There are some general
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d5 d2
5 d6 d3

5 d5 × d6 d7 d4
5 d2

5 × d6 d2
6 d5 × d7 d8

d≤4 (bosonic) X [61] X [26] X [29]
d≤4 (fermionic) X [61] X X
d5 X [62–64] X [8] X [8]
d6 (bosonic) X [52] X [61, 65, 66] This work X [26] This work X [29]
d6 (fermionic) X [52] X [61, 65–67] X X X
d7 X [8] X [8] X [49, 68]
d8 (bosonic) This work This work X [26] This work X [29]
d8 (fermionic) X X X X X [28]

Table 3. State of the art of the SMEFT renormalisation (adapted from refs. [26, 29]). The rows
show the renormalised operators (categorised by dimensions and statistics). The columns show
the operators contributing to RG running. Blank entries vanish, X denotes that the complete
contribution is available, X implies that only (but substantial) partial results are present, and X
indicates that nothing, or very little, is known. The contribution made in this paper is marked by
This work .

remarks about the anomalous dimension matrices of the operators considered here that also
apply in this case and are worth mentioning.

All the bosonic operators being renormalised arise at tree-level in the UV completions of
SMEFT. All the bosonic operators that are loop-generated (those with less than four Higgs
fields) are not renormalised for the reasons mentioned in section 2.2. We have eliminated
all the vanishing divergences due to irrelevant or trivial amplitudes (caused, for example,
by extra loop suppression or the absence of LNV operators with gluon field strength) and
those being cancelled out by symmetries (like B-only operators). The remaining coefficients
are renormalised, and their equations’ contributions are sorted out. In particular, we have
found that four insertions of Weinberg operators can only renormalise the φ8 operator,
and they are the only contribution to 1PI diagrams for this class of operators. On the
other hand, the rest of the operators show at least one term containing the insertion of one
d7 operator.

We find it interesting that most of the anomalous dimension matrix terms for operators
with more than four Higgs legs (both of d6 and d8) deviate from the naive dimensional
analysis expectation order O(γ) ∼ 1. Table 2 shows that the insertion of a d6 operator is
the contribution with the largest numerical coefficients in magnitude. More specifically,
operators of class φ6D2 are enhanced by factors beyond O(γ) ∼ 50 from the insertion of
two Weinberg operators and O(1,3)

φ` .
We have discussed that the positivity bounds impose restrictions on d8 WCs, and these

restrictions could be translated to LNV operators. We have shown one such case, where
the constraints on the WCs of O(5)

`φ and O(2)
`φD are deduced using the RGE equation of c(2)

φ4

and its positivity bound. Assuming they are single-flavoured, these d5 and d7 WCs must
have identical signs in any UV completion that does not generate φ4D4 at tree-level. We
have inspected the constraint in models extended with heavy fermions where these LNVs
are generated at tree-level, but the φ4D4 class operators are absent. We have found that
these bounds are respected in Type-I and III seesaw models. We also have shown that
the T-parameter bounds impact the LNV space on account of the RGEs. To elaborate
on this, we have derived the restrictions on the space of Weinberg-like operators based on
the T-parameter bound. To quantify the impact, we have shown in figure 3 that these put
restrictions on these Wilson coefficients complementary to those imposed by neutrino masses.

– 20 –



J
H
E
P
0
6
(
2
0
2
3
)
1
2
3

Acknowledgments

We thank Mikael Chala for the suggestions and discussions. We also thank José Santiago
and Pablo Olgoso for help with MatchMakerEFT [56], and Guilherme Guedes, Anisha
and Maria Ramos for comments on the manuscript. This work is partly supported by
SRA (Spain) under Grant No. PID2019-106087GB-C21 / 10.13039/501100011033 and
PID2021-128396NB-100; by the Junta de Andalucía (Spain) under Grants No. FQM- 101,
A-FQM-467-UGR18, and P18-FR-4314 (FEDER). ADC is also supported by the Spanish
MINECO under the FPI programme.

A Tables of operators

Dimension 8

φ8 Oφ8 (φ†φ)4

O(1)
φ6 (φ†φ)2(Dµφ

†Dµφ) O(2)
φ6 (φ†φ)(φ†σIφ)(Dµφ

†σIDµφ)
φ6D2

O(3)
φ6 (φ†φ)2(φ†D2φ+ h.c.) O(4)

φ6 (φ†φ)2Dµ(φ†i←→D µφ)

O(1)
φ4 (Dµφ

†Dνφ)(Dνφ†Dµφ) O(2)
φ4 (Dµφ

†Dνφ)(Dµφ†Dνφ)

O(3)
φ4 (Dµφ†Dµφ)(Dνφ†Dνφ) O(4)

φ4 Dµφ
†Dµφ(φ†D2φ+ h.c.)

O(5)
φ4 Dµφ

†Dµφ(φ†iD2φ+ h.c.) O(6)
φ4 (Dµφ

†φ)(D2φ†Dµφ) + h.c.

O(7)
φ4 (Dµφ

†φ)(D2φ†iDµφ) + h.c. O(8)
φ4 (D2φ†φ)(D2φ†φ) + h.c.

O(9)
φ4 (D2φ†φ)(iD2φ†φ) + h.c. O(10)

φ4 (D2φ†D2φ)(φ†φ)

O(11)
φ4 (φ†D2φ)(D2φ†φ) O(12)

φ4 (Dµφ
†φ)(Dµφ†D2φ) + h.c.

φ4

O(13)
φ4 (Dµφ

†φ)(Dµφ†iD2φ) + h.c.

O
(1)
G2φ4 (φ†φ)2GAµνG

Aµν O
(2)
G2φ4 (φ†φ)2G̃AµνG

Aµν

O(1)
W 2φ4 (φ†φ)2W I

µνW
Iµν O(2)

W 2φ4 (φ†φ)2W̃ I
µνW

Iµν

O(3)
W 2φ4 (φ†σIφ)(φ†σJφ)W I

µνW
Jµν O(4)

W 2φ4 (φ†σIφ)(φ†σJφ)W̃ I
µνW

Jµν

O(1)
WBφ4 (φ†φ)(φ†σIφ)W I

µνB
µν O(2)

WBφ4 (φ†φ)(φ†σIφ)W̃ I
µνB

µν

X2φ4

O(1)
B2φ4 (φ†φ)2BµνB

µν O(2)
B2φ4 (φ†φ)2B̃µνB

µν

O(1)
Wφ4D2 i(φ†φ)(Dµφ†σIDνφ)W I

µν O(2)
Wφ4D2 i(φ†φ)(Dµφ†σIDνφ)W̃ I

µν

O(3)
Wφ4D2 iεIJK(φ†σIφ)(Dµφ†σJDνφ)WK

µν O(4)
Wφ4D2 iεIJK(φ†σIφ)(Dµφ†σJDνφ)W̃K

µν

O(5)
Wφ4D2 (φ†φ)DνW

Iµν(Dµφ
†σIφ+ h.c.) O(6)

Wφ4D2 (φ†φ)DνW
Iµν(Dµφ

†iσIφ+ h.c.)

O(7)
Wφ4D2 εIJK(Dµφ

†σIφ)(φ†σJDνφ)WKµν

O(1)
Bφ4D2 i(φ†φ)(Dµφ†Dνφ)Bµν O(2)

Bφ4D2 i(φ†φ)(Dµφ†Dνφ)B̃µν

Xφ4D2

O(3)
Bφ4D2 (φ†φ)DνB

µν(Dµφ
†iφ+ h.c.)

Table 4. d8 bosonic operators with four or more Higgs fields in the Green’s basis of ref. [48].
Operators in gray are redundant.
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Dimension 7

ψ2φ4 O(7)
`φ εijεmn(`iC`m)(φjφn)(φ†φ)

ψ2φ2D2 O(1)
`φD εijεmn`

iC(Dµ`j)φm(Dµφ
n) O(2)

`φD εimεjn`
iC(Dµ`j)φm(Dµφ

n)

ψ2φ3D O`φDe εijεmn(`iCγµe)φjφmDµφn

ψ2φ2X O`φB εijεmn`
iC(σµν`m)φjφnBµν O`φW εij(τ Iε)mn`iC(σµν`m)φjφnW Iµν

Dimension 6

φ6 Oφ (φ†φ)3

Oφ� (φ†φ)2(φ†φ) OφD (φ†Dµφ)†(φ†Dµφ)
φ4D2

O′φD (φ†φ)(Dµφ)†(Dµφ) O′′φD i(φ†φ)Dµ(φ†Dµφ−Dµφ†φ)

Ouφ (φ†φ)qφ̃u Odφ (φ†φ)qφd
ψ2φ3

Oeφ (φ†φ)`φe

O(1)
Hq i(qγµq)(φ†Dµφ−Dµφ

†φ) O(3)
Hq i(qσIγµq)(φ†σIDµφ−Dµφ

†σIφ)

OHu i(uγµu)(φ†Dµφ−Dµφ
†φ) OHd i(dγµd)(φ†Dµφ−Dµφ

†φ)

O(1)
H` i(`γµ`)(φ†Dµφ−Dµφ

†φ) O(3)
H` i(`σIγµ`)(φ†σIDµφ−Dµφ

†σIφ)
ψ2φ2D

OHe i(eγµe)(φ†Dµφ−Dµφ
†φ) OHud i(uγµd)(φ†Dµφ−Dµφ

†φ)

Dimension 5

ψ2φ2 O(5)
`φ εijεmn(`iC`m)(φjφn)

Table 5. d5, d6 and d7 from bases in refs. [2, 46, 47], needed for the renormalisation of d8
bosonic operators.
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