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We present an alternative derivation of the gravitational field equations for Lovelock gravity starting from Newton’s law, which
is closer in spirit to the thermodynamic description of gravity. As a warm up exercise, we have explicitly demonstrated that,
projecting the Riemann curvature tensor appropriately and taking a cue from Poisson’s equation, Einstein’s equations immediately
follow.The above derivation naturally generalizes to Lovelock gravity theories where an appropriate curvature tensor satisfying the
symmetries as well as the Bianchi derivative properties of the Riemann tensor has to be used. Interestingly, in the above derivation,
the thermodynamic route to gravitational field equations, suited for null hypersurfaces, emerges quiet naturally.

1. Introduction

Equivalence principle acts as the guiding lighthouse to
understand how matter fields behave in a curved spacetime
background. Unfortunately, there exists no such principle
which helps to answer the opposite, namely, howmatter fields
curve the spacetime [1–7]. Lack of such principle resulted
in the vast landscape of various alternative gravity theories
among which general relativity remains the most useful one.
Despite this large variety of alternative gravitational theories
one can do better by imposing some physical requirements
on the systems of interest. In particular, the restriction to the
class of theories having utmost second-order derivatives of
the metric is a judicious one, since this helps to overcome the
well known Ostrogradski instability by evading the existence
of any ghost modes in the theory [8–10]. Surprisingly enough
the above criteria turn out to be very interesting ones, as they
single out a very specific class of unique gravitational theories,
known in the literature as the Lanczos-Lovelock models of
gravity [11–14]. In particular, all these models satisfy the
criterion that Bianchi derivative of the field tensor identically
vanishes [15, 16]. One can add to this list a large number
of interesting properties; a few among them are as follows:
(a) the action functional for Lanczos-Lovelock gravity can be
broken into a bulk part and a surface contribution, which is
closely related to the Wald entropy associated with the black

hole horizon [17]; (b) the field equations in Lanczos-Lovelock
gravity can be expressed as a thermodynamic identity on
an arbitrary null surface [18–26]; (c) the difference between
a suitably defined surface and bulk degrees of freedom in
the context of Lanczos-Lovelock gravity can be interpreted
as the evolution of the spacetime [27]; (d) the surface and
bulk terms in the Lanczos-Lovelock gravity are related by a
holographic relation between them [28, 29].

In the standard textbook treatment, one first introduces
the gravitational Lagrangian𝐿, which is√−𝑔𝑅 for general rel-
ativity, while the Lagrangian is a polynomial in the Riemann
tensor for general Lanczos-Lovelock gravity. Variation of the
action functional due to arbitrary variation of the metric,
with appropriate boundary conditions [30, 31], leads to the
corresponding field equations for gravity, namely, the rule by
which matter tells the spacetime how to curve (see also [32]).
However, as emphasized earlier there is no physical principle
which guides us to the precise mathematical structure of the
gravitational action; what ismore the field equations obtained
equate matter which is intrinsically quantum with spacetime
geometry describing gravity classically. Despite this concep-
tual discomfort, there exist two additional representations of
the gravitational dynamics, which are intrinsically observer
dependent. The first one uses timelike observers with four-
velocity 𝑢𝑎 and equates two quantities where this observer
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measures in the geometric as well as in the matter sector,
leading to a scalar equation

𝐺𝑎𝑏𝑢𝑎𝑢𝑏 = 𝜅𝑇𝑎𝑏𝑢𝑎𝑢𝑏. (1)

Here 𝜅 stands for the gravitational constant in four dimen-
sions and enforcing this equation for all observers with four-
velocity 𝑢𝑖 leading to Einstein’s equations 𝐺𝑎𝑏 = 𝜅𝑇𝑎𝑏. The
other approach uses null vectors ℓ𝑎 (i.e., ℓ2 = 0) and leads to
the following scalar equation:

𝑅𝑎𝑏ℓ𝑎ℓ𝑏 = 𝜅𝑇𝑎𝑏ℓ𝑎ℓ𝑏. (2)

In this situation as well validity of the above expression
for all null vectors ℓ𝑎, along with two times contracted
Bianchi identity and covariant conservation of matter energy
momentum tensor, amounts to furnishing the ten compo-
nents of Einstein’s equations. Following [33], in this article,
we would like to derive (1) and (2) from a geometrical point
of view for Lanczos-Lovelock theories of gravity. We would
also argue why the route taken in this work is a natural one
compared to the standard derivation of Einstein’s equations
from the gravitational action. We have organized the paper
as follows: In Section 2 we briefly review the derivation of
Einstein’s equations, which will be generalized in Section 3 to
Lanczos-Lovelock theories of gravity. Finally we provide the
concluding remarks before presenting a derivation regarding
the curvature tensor associated with the Lanczos-Lovelock
theory of gravity in Appendix.

2. Einstein’s Equations following
Newton’s Path

To set the stage for Lanczos-Lovelock theories of gravity
we would like to briefly review the corresponding situation
in general relativity, which will mainly follow from [33].
In Newtonian theory one describes gravity using the grav-
itational potential 𝜙(x, 𝑡). Given the matter density 𝜌(x, 𝑡),
the dynamics of the gravitational field is being determined
through Poisson’s equation ∇2𝜙 = (𝜅/2)𝜌. When one invokes
principle of equivalence, the potential 𝜙 is readily identified
with components of themetric, in particular, 𝑔00 = −(1+2𝜙).
One then interprets Poisson’s equation in metric language as
−∇2𝑔00 = 𝜅𝑇00, where matter energy density is interpreted as
the time-time component of the divergence free, symmetric,
matter energy momentum tensor 𝑇𝑎𝑏. In order to have a
relativistic generalization one naively makes the following
replacement ∇2 → ◻. This immediately suggests looking for
second derivatives of themetric which is a second rank tensor
as well as divergence free, paving the way to the Einstein
tensor. On the other hand, for the right hand side the natural
choice being the matter energy momentum tensor 𝑇𝑎𝑏, one
ends up equating Einstein’s tensor with the matter energy
momentum tensor resulting in Einstein’s equations (for a
more detailed discussion, see [33]).

However, we could have just followed Newton’s path and
look for relativistic generalization of Poisson’s equation itself,
possibly leading to a scalar equation describing gravity in
general relativity. As a first step one must realize that the

right hand side of Poisson’s equation is intrinsically observer
dependent, as it is the energy density of some matter field
measured by an observer with some four-velocity 𝑢𝑖. Given
the symmetric and conserved matter energy momentum
tensor 𝑇𝑎𝑏, the matter energy density 𝜌 as measured by
an observer with four-velocity 𝑢𝑎 is 𝑇𝑎𝑏𝑢𝑎𝑢𝑏. Hence the
same observer dependence must continue to exist in general
relativity and the right hand side of the desired general
relativistic equation for gravity should be 𝑇𝑎𝑏𝑢𝑎𝑢𝑏 [33].

To derive the left hand side, that is, analogue of ∇2𝜙,
we note that this requires deriving a scalar object which
involves two spatial derivatives of the metric (since this is
what is responsible for the ∇2𝜙 term in nonrelativistic limit)
and necessarily depends on the four-velocity 𝑢𝑖. The only
tensor depending on two derivatives of the metric that can
be constructed corresponds to the curvature tensor 𝑅𝑎𝑏𝑐𝑑. In
order to obtain double spatial derivatives acting on themetric
one has to project all the components of the curvature tensor
on the plane orthogonal to 𝑢𝑎 using ℎ𝑎𝑏 = 𝛿𝑎𝑏 + 𝑢𝑎𝑢𝑏 and
hence construct a scalar thereof. To keep generality, instead
of looking for a timelike vector 𝑢𝑖, we will concentrate on
a particular vector ℓ𝑎, with norm ℓ𝑎ℓ𝑎 ≡ ℓ2. Then one can
immediately introduce the following tensor:

P
𝑎
𝑏 = 𝛿𝑎𝑏 − 1

ℓ2 ℓ
𝑎ℓ𝑏;

P
𝑎
𝑏P
𝑏
𝑐 = (𝛿𝑎𝑏 − 1

ℓ2 ℓ
𝑎ℓ𝑏)(𝛿𝑏𝑐 − 1

ℓ2 ℓ
𝑏ℓ𝑐) = 𝛿𝑎𝑐 − 1

ℓ2 ℓ
𝑎ℓ𝑐

= P
𝑎
𝑐

(3)

for which the final property ensures that it is a projector.
Then one can define a projected Riemann curvature with
respect to the vector ℓ𝑎 by projecting all the indices of the
Riemann curvature tensor, leading to (by the very definition,
the Riemann tensor 𝑅𝑎𝑏𝑐𝑑 has a generic form 𝜕𝑏𝜕𝑐𝑔𝑎𝑑 in local
inertial frame; thus the above projection ensures that 𝑔𝑎𝑏 has
only double spatial derivatives when ℓ𝑎 is a timelike vector;
all time derivatives appearing in R𝑎𝑏𝑐𝑑 are single in nature and
hence vanish in the local inertial frame all together; this is the
prime motivation of introduction of this projected Riemann
tensor; the same can be ascertained from the Gauss-Codazzi
equation as well; see [1, 5])

R𝑚𝑛𝑟𝑠 = P
𝑎
𝑚P
𝑏
𝑛P
𝑐
𝑟P
𝑑
𝑠𝑅𝑎𝑏𝑐𝑑. (4)

The scalar constructed out of this projected Riemann tensor
becomes

R = P𝑚𝑟P𝑛𝑠𝑅𝑚𝑛𝑟𝑠 = 𝑅 − 2
ℓ2𝑅𝑎𝑏ℓ

𝑎ℓ𝑏. (5)

Note that we have thrown away another term involving
𝑅𝑎𝑏𝑐𝑑ℓ𝑎ℓ𝑏ℓ𝑐ℓ𝑑, since due to antisymmetry properties of the
Riemann tensor the above quantity identically vanishes.
Furthermore, the above scalar by construction has only two
derivatives of the metric and is completely spatial in the
instantaneous rest frame of the timelike observer. Hence R

is the relativistic generalization of ∇2𝜙 and thus must be
equal to the corresponding matter energy density, which in



Advances in High Energy Physics 3

this case corresponds to −(2𝜅/ℓ2)𝑇𝑎𝑏ℓ𝑎ℓ𝑏, where 𝑇𝑎𝑏 is the
matter energymomentum tensor.Thus finally one obtains the
following equation:

𝑅𝑎𝑏ℓ𝑎ℓ𝑏 − 1
2𝑅ℓ2 = 𝜅𝑇𝑎𝑏ℓ𝑎ℓ𝑏. (6)

Surprisingly, through the above exercise we have achieved
two results in one go. Firstly, for ℓ2 = −1, that is, for
unit normalized timelike vectors we get back the equation
𝐺𝑎𝑏𝑢𝑎𝑢𝑏 = 𝜅𝑇𝑎𝑏𝑢𝑎𝑢𝑏. Then requiring these equations to hold
for all timelike observers will lead to𝐺𝑎𝑏 = 𝜅𝑇𝑎𝑏. At this stage
it will be worthwhile to mention that a similar approach as
the above one was taken in [34] to derive Einstein’s equations.
However the key difference between the approach in [34] and
in this work is the use of the projection tensorP𝑎𝑏 judiciously.
For our approach the use of projection tensor is of utmost
importance in contrast to [34].

Finally the limit ℓ2 → 0 would lead to the null version
of the above equation, which reads 𝑅𝑎𝑏ℓ𝑎ℓ𝑏 = 𝜅𝑇𝑎𝑏ℓ𝑎ℓ𝑏.
In this case besides demanding the validity of the above
equation for all null vectors, it is important to use contracted
Bianchi identity as well as covariant conservation of energy
momentum tensor, leading to 𝐺𝑎𝑏 + Λ𝑔𝑎𝑏 = 𝜅𝑇𝑎𝑏. Note
that in the second situation a cosmological constant has
automatically come into existence.

3. Newton Leads the Way to Lovelock

In view of the above result, one immediately asks for the
corresponding situation in Lovelock gravity: can field equa-
tions of Lovelock gravity be derived following the above
procedure? This is what we will explore in this section and
shall show that one can indeed derive the field equations for
Lovelock gravity following an equivalent procedure. Before
jumping into the details let us mention some structural
aspects of Lovelock gravity. Briefly speaking, Lovelock gravity
corresponds to a class of gravitational Lagrangians which
are polynomial in the Riemann curvature tensor yielding
field equations which are of second order in the metric. The
analytical form of such a polynomial (also called a pure
Lovelock term) of order 𝑚 involves 𝑚 Riemann curvature
tensors contracted appropriately, such that

𝐿(𝑚) = 1
2𝑚 𝛿
𝑎1𝑏1 ⋅⋅⋅𝑎𝑚𝑏𝑚
𝑐1𝑑1 ⋅⋅⋅𝑐𝑚𝑑𝑚

𝑅𝑐1𝑑1
𝑎1𝑏1

⋅ ⋅ ⋅ 𝑅𝑐𝑚𝑑𝑚
𝑎𝑚𝑏𝑚

≡ 1
𝑚𝑃𝑎𝑏𝑐𝑑 (𝑚)𝑅𝑐𝑑𝑎𝑏. (7)

The above relation defines the tensor 𝑃𝑎𝑏𝑐𝑑 (𝑚) associated with
the 𝑚th order Lanczos-Lovelock gravity, having all the sym-
metries of the Riemann tensor with the following algebraic
structure:

𝑃𝑎𝑏𝑐𝑑 (𝑚) = 𝑚
2𝑚 𝛿
𝑎𝑏𝑎2𝑏2 ⋅⋅⋅𝑎𝑚𝑏𝑚
𝑐𝑑𝑐2𝑑2 ⋅⋅⋅𝑐𝑚𝑑𝑚

𝑅𝑐2𝑑2
𝑎2𝑏2

⋅ ⋅ ⋅ 𝑅𝑐𝑚𝑑𝑚
𝑎𝑚𝑏𝑚

. (8)

The tensor 𝑃𝑎𝑏𝑐𝑑 (𝑚) satisfies an additional criterion ∇𝑎𝑃𝑎𝑏𝑐𝑑 (𝑚) =0, which ensures that the field equations derived from this
Lagrangian are of second order. In what follows we will
exclusively concentrate on the 𝑚th order Lanczos-Lovelock

gravity and hence shall remove the symbol “(𝑚)” from the
superscripts of various geometrical expressions.

One can now start from Poisson’s equation and fix the
right hand side to be −𝑇𝑎𝑏ℓ𝑎ℓ𝑏/ℓ2, which is the matter energy
density associated with the vector field ℓ𝑎. In order to get the
left hand side we must construct an appropriate curvature
tensor suited for the Lovelock gravity and project it using
the projector P𝑎𝑏 introduced in (3) before constructing a
scalar out of it. There are two possible choices for such a
curvature tensor among which we will discuss the simpler
one in the following, while the complicated one is deferred
to Appendix 4. The curvature tensor described here was first
introduced in [15, 16] and is defined as follows:

R
𝑎𝑏
𝑐𝑑 = 1

2 (𝑃𝑎𝑏𝑚𝑛𝑅𝑚𝑛𝑐𝑑 + 𝑃𝑚𝑛𝑐𝑑 𝑅𝑎𝑏𝑚𝑛)

− (𝑚 − 1)
(𝑑 − 1) (𝑑 − 2) (𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑎𝑑𝛿𝑏𝑐) 𝐿,

(9)

where 𝐿 is the 𝑚th order Lovelock polynomial and 𝑃𝑎𝑏𝑐𝑑 =
𝜕𝐿/𝜕𝑅𝑐𝑑𝑎𝑏. Since the 𝑚th order Lanczos-Lovelock Lagrangian
depends on 𝑚 powers of Riemann, the above definition for
𝑃𝑎𝑏𝑐𝑑 ensures that it depends on (𝑚 − 1) powers of Riemann
tensor and hence exactly coincides with (8). Furthermore,
the tensor 𝑃𝑎𝑏𝑐𝑑 can be easily generalized to the full Lovelock
polynomial by just adding over different 𝑚 values, but we
will concentrate on a single term in the full Lanczos-Lovelock
Lagrangian. Also note that the above defined “Lovelock”
Riemann tensor has all the symmetries of the original “Ein-
stein” Riemann tensor 𝑅𝑎𝑏𝑐𝑑. Further it satisfies the contracted
Bianchi identity, which will be sufficient for our purpose.
Given the above 𝑚th order “Lovelock” Riemann, one can
project it in the plane orthogonal to ℓ𝑎 and obtain the
following scalar:

R = R
𝑎𝑏
𝑐𝑑P
𝑐
𝑎P
𝑑
𝑏 . (10)

Explicit evaluation of the above scalar can be performed
keeping in mind that the tensor R𝑎𝑏𝑐𝑑 is antisymmetric under
exchange of the indices (𝑎, 𝑏) and (𝑐, 𝑑), respectively, leading
to

R = R
𝑎𝑏
𝑐𝑑𝛿𝑐𝑎𝛿𝑑𝑏 − 2

ℓ2 R
𝑎𝑏
𝑐𝑑ℓ𝑐ℓ𝑎𝛿𝑑𝑏 = 𝑃𝑎𝑏𝑐𝑑𝑅𝑐𝑑𝑎𝑏

− (𝑚 − 1)
(𝑑 − 1) (𝑑 − 2) (𝑑2 − 𝑑) 𝐿

− 2
ℓ2 {𝑃

𝑎𝑏
𝑚𝑛𝑅𝑚𝑛𝑐𝑏 − (𝑚 − 1)

(𝑑 − 1) (𝑑 − 2) (𝑑𝛿𝑎𝑐 − 𝛿𝑎𝑐 ) 𝐿}

⋅ ℓ𝑎ℓ𝑐 = 𝑚𝐿 − 𝑑 (𝑚 − 1)
𝑑 − 2 𝐿 − 2

ℓ2𝑃
𝑎𝑏
𝑚𝑛𝑅𝑚𝑛𝑐𝑏 ℓ𝑎ℓ𝑐 + 2

⋅ 𝑚 − 1
𝑑 − 2 𝐿 = − 2

ℓ2𝑃
𝑎𝑏
𝑚𝑛𝑅𝑚𝑛𝑐𝑏 ℓ𝑎ℓ𝑐 + 𝐿.

(11)

Thus equating (11) to the matter energy density through
−(2𝜅/ℓ2)𝑇𝑎𝑏ℓ𝑎ℓ𝑏 we finally obtain

𝑃𝑎𝑏𝑚𝑛𝑅𝑏𝑚𝑛𝑐 ℓ𝑎ℓ𝑐 − 1
2𝐿ℓ
2 = 𝜅𝑇𝑎𝑏ℓ𝑎ℓ𝑏. (12)
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For unit normalized timelike vectors, ℓ𝑎 = 𝑢𝑎 and ℓ2 = −1,
leading to 𝐸𝑎𝑏𝑢𝑎𝑢𝑏 = 𝜅𝑇𝑎𝑏𝑢𝑎𝑢𝑏, where 𝐸𝑎𝑏 ≡ 𝑃𝑎𝑝𝑞𝑟𝑅𝑏𝑝𝑞𝑟 −(1/2)𝐿𝑔𝑎𝑏 is the analogue of Einstein tensor in Lovelock
gravity. On the other hand, for the null vectors we arrive at
R𝑎𝑏ℓ𝑎ℓ𝑏 = 𝜅𝑇𝑎𝑏ℓ𝑎ℓ𝑏, where the tensor R𝑎𝑏 ≡ 𝑃𝑎𝑝𝑞𝑟𝑅𝑏𝑝𝑞𝑟
is the analogue of Ricci tensor in Lovelock gravity. Hence
even in the case of Lovelock gravity, if one assumes that
𝐸𝑎𝑏𝑢𝑎𝑢𝑏 = 𝜅𝑇𝑎𝑏𝑢𝑎𝑢𝑏 holds for all timelike observers, the
field equations for Lovelock gravity 𝐸𝑎𝑏 = 𝜅𝑇𝑎𝑏 follow.
While in the null case, besides demanding the validity of
𝐸𝑎𝑏ℓ𝑎ℓ𝑏 = 𝜅𝑇𝑎𝑏ℓ𝑎ℓ𝑏 for all null vectors, one has to use the
Bianchi identity associated with Lovelock theories as well as
covariant conservation of matter energy momentum tensor
to arrive at the Lovelock field equations 𝐸𝑎𝑏 + Λ𝑔𝑎𝑏 = 𝜅𝑇𝑎𝑏,
which inherit the cosmological constant as well. Note that the
above result has been derived in the context of 𝑚th order
Lanczos-Lovelock gravity, which can be generalized to the
general Lanczos-Lovelock Lagrangian in a straightforward
manner. This results in {∑𝑚 𝐸(𝑚)𝑎𝑏 } + {∑𝑚 Λ(𝑚)}𝑔𝑎𝑏 = 𝜅𝑇𝑎𝑏.
Interestingly, the cosmological constant besides being gen-
erated as an integration constant of the field equations also
gets contribution from the 𝑚 = 0 term in the Lanczos-
Lovelock gravity. Therefore one may choose this term in the
Lagrangian appropriately to arrive at the present small value
of the cosmological constant. Therefore we conclude that
the derivation of field equations for gravity can always be
achieved starting from Poisson’s equation and subsequently
projecting a suitable curvature tensor, whether it is Einstein
gravity or Lovelock.

4. Concluding Remarks

By equivalence principle gravity manifests itself by curv-
ing the spacetime, which the material particles follow. In
particular one can invoke special relativity in locally freely
falling frame and hence write down the laws of motion in
curvilinear coordinates, thus describing motion in curved
spacetime.The notion of locally freely falling observer brings
in intrinsic observer dependence in the theory and introduces
observers for whom a local spacetime region is causally
inaccessible, known as a local Rindler observer. Remarkably
the local vacuum state of a test quantum field (as fit for
local inertial observers) will appear as thermal to the local
Rindler observer [35, 36]. If any matter field (characterized
by matter energy momentum tensor 𝑇𝑎𝑏 ) crosses the local
Rindler horizon, it will appear to be thermalized by the
Rindler observer (since the matter will take infinite time to
reach the horizon) and the corresponding heat density is
being given by𝑇𝑏𝑎ℓ𝑎ℓ𝑏 (for a perfect fluid the above quantity is
given by 𝜌 + 𝑝, which by Gibbs-Duhem relation is the matter
heat density), where ℓ𝑎 is the null normal to the horizon. Note
that the above heat density for matter is invariant under the
transformation 𝑇𝑎𝑏 → 𝑇𝑎𝑏 + (constant)𝛿𝑎𝑏 .

At this stage, one can ask a natural question, “what about
heat density of gravity?”. Surprisingly, one can answer the
same in the above setting. Considering a general null surface
it turns out that one can interpret 𝑅𝑎𝑏ℓ𝑏ℓ𝑎 as the heat density
of the spacetime. This originates from the fact that one can

have a one to one correspondence between 𝑅𝑎𝑏ℓ𝑎ℓ𝑏 and the
viscous dissipation term 2𝜂𝜎𝑎𝑏𝜎𝑎𝑏+𝜁𝜃2, where 𝜎𝑎𝑏 is the shear
of the null congruence ℓ𝑎 and 𝜃 is its expansion, with 𝜂 and
𝜁 being shear and bulk viscous coefficients. Thus the term
𝑅𝑎𝑏ℓ𝑎ℓ𝑏 is related to heating of the spacetime [37]. Given
this thermodynamic backdrop, it is clear that the Einstein’s
equations when written as (2) not only yield the geometrical
input of the gravitational theory but are also physically well-
motivated since the equality of (2) can be thought of as an
equilibrium situation, where the heat produced by gravity is
being compensated by that of matter.

Thus the equation 2𝐺𝑎𝑏ℓ𝑎ℓ𝑏 = 𝑇𝑎𝑏ℓ𝑎ℓ𝑏 arises more
naturally from the relativistic generalization of Newton’s law
and the usefulness of writing Einstein’s equations in this
manner stems from the fact that one might interpret both
sides of these equations independently and the equations
themselves follow due to a balancing act performed by
spacetime itself [33, 38, 39]. We would like to reiterate
that the field equations derived in this context are purely
geometrical and follow Newton’s path. One first realizes
that energy density associated with any material body is
intrinsically observer dependent and surprisingly one can
construct a tensor (again dependent on observer) which
contains spatial derivatives of the metric alone. Keeping this
as a curved spacetime generalization of Newton’s law one
uniquely arrives at Einstein’s equations when one makes use
of all observers (or all the null surfaces). This shows that the
most natural generalization of Newton’s law to curved space-
time is 𝑅𝑎𝑏ℓ𝑎ℓ𝑏 = 8𝜋𝑇𝑎𝑏ℓ𝑎ℓ𝑏 (of course, leading to Einstein’s
equations, but at a secondary level) bolstering the claim that
gravity is intrinsically a thermodynamic phenomenon.

Appendix

An Alternative Riemann Tensor for
Lovelock Gravity

In Lovelock gravity it is possible to define two tensors having
the symmetry properties of Riemann and satisfying Bianchi
identity. The first one corresponds to defining a (2𝑚 × 2𝑚)
tensor for 𝑚th order Lovelock polynomial by multiplying 𝑚
such curvature tensors and then an alternating tensor of rank
(2𝑚 × 2𝑚) as [40]

R
𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚
𝑎1𝑎2 ⋅⋅⋅𝑎2𝑚

= 𝛿𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚𝑐1𝑐2 ⋅⋅⋅𝑐2𝑚
𝛿𝑑1𝑑2 ⋅⋅⋅𝑑2𝑚𝑎1𝑎2 ⋅⋅⋅𝑎2𝑚

𝑅𝑐1𝑐2
𝑑1𝑑2

⋅ ⋅ ⋅ 𝑅𝑐2𝑚−1𝑐2𝑚
𝑑2𝑚−1𝑑2𝑚

. (A.1)

Note that the above tensor is completely antisymmetric in
both upper and lower indices.

Let us now project all the indices on a lower dimensional
spacelike hypersurface using the projection tensor P𝑎𝑏 = 𝛿𝑎𝑏 −(1/ℓ2)ℓ𝑎ℓ𝑏, such that one obtains another (2𝑚 × 2𝑚) tensor,
but whose inner product with the normal ℓ𝑎 identically
vanishes. Hence one arrives at

𝑚!R𝑝1𝑝2⋅⋅⋅𝑝2𝑚𝑞1𝑞2⋅⋅⋅𝑞2𝑚
= P
𝑝1
𝑏1

⋅ ⋅ ⋅P𝑝2𝑚
𝑏2𝑚

P
𝑎1
𝑞1

⋅ ⋅ ⋅P𝑎2𝑚𝑞2𝑚R𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚𝑎1𝑎2 ⋅⋅⋅𝑎2𝑚
. (A.2)
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One can immediately construct a scalar out of the projected
(2𝑚 × 2𝑚) tensor, leading to

𝑚!R = P
𝑎1
𝑏1

⋅ ⋅ ⋅P𝑎2𝑚
𝑏2𝑚

R
𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚
𝑎1𝑎2 ⋅⋅⋅𝑎2𝑚

. (A.3)

There would be two terms contributing to the above expres-
sion, one when all the projectors are related by Kronecker
deltas and when one of the projector P𝑎𝑏 is replaced by ℓ𝑎ℓ𝑏
while all the others are replaced by Kronecker deltas. In any
other case, for example if two projectors are replaced by
the normal, then it would identically vanish, thanks to the
completely antisymmetric nature of R𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚𝑎1𝑎2 ⋅⋅⋅𝑎2𝑚

. Thus finally
we obtain

𝑚!R
= 𝛿𝑎1
𝑏1

⋅ ⋅ ⋅ 𝛿𝑎2𝑚
𝑏2𝑚

R
𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚
𝑎1𝑎2 ⋅⋅⋅𝑎2𝑚

− 2𝑚
ℓ2 ℓ
𝑎1ℓ𝑏1𝛿𝑎2𝑏2 ⋅ ⋅ ⋅ 𝛿𝑎2𝑚𝑏2𝑚R𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚𝑎1𝑎2 ⋅⋅⋅𝑎2𝑚

= 𝛿𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚𝑐1𝑐2 ⋅⋅⋅𝑐2𝑚
𝛿𝑑1𝑑2 ⋅⋅⋅𝑑2𝑚
𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚

𝑅𝑐1𝑐2
𝑑1𝑑2

⋅ ⋅ ⋅ 𝑅𝑐2𝑚−1𝑐2𝑚
𝑑2𝑚−1𝑑2𝑚

− 2𝑚
ℓ2 ℓ
𝑎1ℓ𝑏1𝛿𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚c1𝑐2 ⋅⋅⋅𝑐2𝑚 𝛿𝑑1𝑑2 ⋅⋅⋅𝑑2𝑚𝑎1𝑏2 ⋅⋅⋅𝑏2𝑚

𝑅𝑐1𝑐2
𝑑1𝑑2

⋅ ⋅ ⋅ 𝑅𝑐2𝑚−1𝑐2𝑚
𝑑2𝑚−1𝑑2𝑚

.

(A.4)

One can now use the following identities:

𝛿𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚
𝑑1𝑑2⋅⋅⋅𝑑2𝑚

𝛿𝑐1𝑐2 ⋅⋅⋅𝑐2𝑚
𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚

= 𝑚!
2𝑚 𝛿
𝑐1𝑐2 ⋅⋅⋅𝑐2𝑚
𝑑1𝑑2 ⋅⋅⋅𝑑2𝑚

(A.5)

as well as

𝛿𝑏1𝑏2 ⋅⋅⋅𝑏2𝑚𝑐1𝑐2 ⋅⋅⋅𝑐2𝑚
𝛿𝑑1𝑑2 ⋅⋅⋅𝑑2𝑚
𝑎1𝑏2 ⋅⋅⋅𝑏2𝑚

𝑅𝑐1𝑐2
𝑑1𝑑2

⋅ ⋅ ⋅ 𝑅𝑐2𝑚−1𝑐2𝑚
𝑑2𝑚−1𝑑2𝑚

= 𝑚!
2𝑚 𝛿
𝑏1
𝑐1
𝛿𝑑1𝑑2 ⋅⋅⋅𝑑2𝑚𝑎1𝑐2 ⋅⋅⋅𝑐2𝑚

𝑅𝑐1𝑐2
𝑑1𝑑2

⋅ ⋅ ⋅ 𝑅𝑐2𝑚−1𝑐2𝑚
𝑑2𝑚−1𝑑2𝑚

(A.6)

such that one arrives at

R = 1
2𝑚 𝛿
𝑑1𝑑2 ⋅⋅⋅𝑑2𝑚
𝑐1𝑐2 ⋅⋅⋅𝑐2𝑚

𝑅𝑐1𝑐2
𝑑1𝑑2

⋅ ⋅ ⋅ 𝑅𝑐2𝑚−1𝑐2𝑚
𝑑2𝑚−1𝑑2𝑚

− 2𝑚
ℓ2

1
2𝑚 ℓ
𝑎1ℓ𝑏1𝛿𝑏1𝑐1 𝛿𝑑1𝑑2 ⋅⋅⋅𝑑2𝑚𝑎1𝑐2 ⋅⋅⋅𝑐2𝑚

𝑅𝑐1𝑐2
𝑑1𝑑2

⋅ ⋅ ⋅ 𝑅𝑐2𝑚−1𝑐2𝑚
𝑑2𝑚−1𝑑2𝑚

= 𝐿 − 2
ℓ2 ℓ𝑐ℓ
𝑑𝑅𝑐𝑝𝑞𝑟𝑃𝑞𝑟𝑑𝑝 = 𝐿 − 2

ℓ2R𝑎𝑏ℓ
𝑎ℓ𝑏,

(A.7)

whereR𝑎𝑏 stands for the analogue of Ricci tensor associated
with the Lovelock gravitational action. Hence this particular
Lovelock Riemann tensor reproduces the Lovelock field
equations for gravity as well if the procedure outlined above
is being followed. The above exercise explicitly demonstrates
the robustness of the idea presented here.
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