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Abstract: Previous studies have shown that the Hawking effect always destroys quantum
correlations and the fidelity of quantum teleportation in the Schwarzschild black hole.
Here, we investigate the fidelity of quantum teleportation of Dirac fields between users in
Schwarzschild spacetime. We find that, with the increase of the Hawking temperature, the
fidelity of quantum teleportation can monotonically increase, monotonically decrease, or
non-monotonically increase, depending on the choice of the initial state, which means that
the Hawking effect can create net fidelity of quantum teleportation. This striking result
banishes the extended belief that the Hawking effect of the black hole can only destroy the
fidelity of quantum teleportation. We also find that quantum steering cannot fully guarantee
the fidelity of quantum teleportation in Schwarzschild spacetime. This new unexpected
source may provide a new idea for the experimental evidence of the Hawking effect.

Keywords: Black Holes, Models of Quantum Gravity

ArXiv ePrint: 2304.00984

*Corresponding author.

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2023)232

mailto:smwu@lnnu.edu.cn
mailto:xwfan0825@163.com
mailto:ruidiwang0625@163.com
mailto:haoyuwu18022049@163.com
mailto:huangxiaoli1982@foxmail.com
mailto:hszeng@hunnu.edu.cn
https://arxiv.org/abs/2304.00984
https://doi.org/10.1007/JHEP11(2023)232


J
H
E
P
1
1
(
2
0
2
3
)
2
3
2

Contents

1 Introduction 1

2 The fidelity of quantum teleportation for X-type state 3

3 Quantization of Dirac fields in Schwarzschild spcetime 4

4 Hawking effect on fidelity of quantum teleportation and quantum steering
in Schwarzschild spacetime 6

5 Conclutions 9

A ρABout 11

B Quantification of quantum steering for X-type state in Schwarzschild
spacetime 12

C Ambiguity of quantum teleportation and steering in Schwarzschild
spacetime 14

1 Introduction

Quantum teleportation, first proposed by Bennett et al. [1], is one of the most crucial
applications for quantum information, which was experimentally proved by Bouwmeester et
al. [2] by using single photons. Quantum teleportation is a basic protocol for transmitting
quantum information from one object to another object by shared quantum entanglement,
where the spatially separated sender and receiver can only perform local operations and
communicate between themselves via a classical channel [3]. Quantum teleportation is
the foundation of quantum information and an important part of practical quantum
technology, which has attracted wide attention [4–13]. In addition, quantum steering,
formalized from the viewpoint of quantum information theory [14, 15], is a concept first
introduced by Schrödinger in 1935 [16, 17]. Quantum steering refers to the impossibility of
describing one party’s conditional state by a local hidden state model in the modern view.
In other words, quantum steering allows one observer to control a remote subsystem of
another observer owned by measuring his subsystem. Thus, quantum steering represents
the quantum correlation between quantum entanglement and Bell nonlocality. Unlike
quantum entanglement, quantum steering has richer properties in quantum systems, such
as two-way steering, one-way steering, and no-way steering, which have been experimentally
demonstrated [18–21]. Because quantum steering is a crucial resource, the problem of
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describing the optimal two-qubit state of quantum teleportation under a fixed steering
amount is interesting and open [22].

From the perspective of Einstein’s theory, the gravitational collapse of sufficiently
massive stars creates black holes that are fascinating objects in our universe. With the
development of astronomy, the existence of black holes has been indirectly or directly
confirmed. For example, (i): the advanced LIGO detector and Virgo detector have detected
gravitational waves for the first time in a binary black hole merger system [23]; (ii): the
first image of a supermassive black hole has been taken by the Event Horizon Telescope
at the center of the giant elliptical galaxy M87 [24–29]; (iii): the Event Horizon Telescope
has photographed Sgr A* [30]. Black hole physics, while making some progress, is still
shrouded in mystery, such as the black hole information paradox. As is well-known, the
two pillars of modern physics are general relativity and quantum mechanics, of which
the unification remains an open question. In order to solve this contradiction, relativistic
quantum information attempts to bridge the gap between general relativity and quantum
mechanics. Recently, Pan and his team have used the “Micius” quantum communication
satellite to complete the quantum optical test of the gravitational decoherence effect,
indicating that the study of relativistic quantum information has entered the stage of
precision experimental verification [31]. On the simulation side, there is a general interest in
simulating the Hawking radiation of the black hole and the cosmological particle generation
in quantum systems [32–39]. In theory, the Hawking effect of the black hole always has a
negative influence on quantum steering, entanglement, discord, coherence, and the fidelity
of quantum teleportation of bosonic fields under the case in curved spacetime [40–58].
Therefore, one of our motivations is to investigate whether the Hawking effect of the black
hole always reduces the fidelity of quantum teleportation of Dirac fields. Another motivation
is to discuss whether the Hawking effect has the same effect on quantum steering and the
fidelity of quantum teleportation.

In this paper, we investigate quantum teleportation of Dirac fields between users in
Schwarzschild spacetime. We assume that Alice and Bob initially share an X-type state
and they apply a standard teleportation scheme (STS) to send the unknown state from
Alice to Bob. Here, the sender Alice stays stationary at an asymptotically flat region, while
the receiver Bob hovers near the event horizon of the black hole. Pan and Jing have found
that the fidelity of quantum teleportation of bosonic fields decreases with the increase of
the Hawking temperature [41]. However, we find that the Hawking effect of the black hole
has both positive and negative effects on the fidelity of quantum teleportation of Dirac
fields; this means that the Hawking effect can not only reduce the fidelity of quantum
teleportation but also increase the fidelity in Schwarzschild spacetime. We also find that
the influence of the Hawking effect on quantum teleportation is not the same as that on
quantum steering, showing that quantum steering cannot guarantee the fidelity of quantum
teleportation in curved spacetime.

The structure of the paper is as follows. In section 2, we briefly introduce the fidelity
of quantum teleportation for the X-type state. In section 3, we describe the quantization of
Dirac fields in Schwarzschild spacetime. In section 4, we study the influence of the Hawking
effect on the fidelity of quantum teleportation and quantum steering in Schwarzschild
spacetime. The last section is devoted to the summary.
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2 The fidelity of quantum teleportation for X-type state

In this paper, we consider the universally common X-type state of the bipartite system,
and its density matrix can be written as

ρX =


ρ11 0 0 −ρ14
0 ρ22 −ρ23 0
0 −ρ23 ρ33 0
−ρ14 0 0 ρ44

 . (2.1)

Eq. (2.1) describes the effective quantum states satisfying the unit trace and positive
conditions:ρ11 + ρ22 + ρ33 + ρ44 = 1, ρ22ρ33 > |ρ23|2, and ρ11ρ44 > |ρ14|2. If ρ22ρ33 < |ρ14|2

or ρ11ρ44 < |ρ23|2, the X-type state is entangled.
In general teleportation scheme, we assume that Alice and Bob initially share an X-type

state ρX in an asymptotically flat region. The unknown pure state that can be teleported
from Alice to Bob is represented by |φ〉. Alice and Bob can use some trace-preserving
and local quantum operations and classical communication (LOCC) operations for their
respective systems. After these operations, the final state of Bob takes the form

ρB = TrA,C [M(|φ〉〈φ| ⊗ ρX)],

where M denotes the trace-preserving LOCC operation.
Note that the dimension of Hilbert space HA ⊗HB = Cd ⊗ Cd is d. Therefore, the

fidelity of quantum teleportation that is considered as a measure of the quality of quantum
teleportation reads [59]

F = 〈φ|ρB|φ〉 = fd+ 1
d+ 1 , (2.2)

where f is the fully entangled fraction. The fidelity of quantum teleportation achievable
can be entirely decided by the fully entangled fraction of the bipartite state in the STS,
which is written as [60]

f(ρ) = max
ϕ
〈ϕ|ρ|ϕ〉, (2.3)

where |ϕ〉 covers all maximally entangled states. STS requires the X-type state to meet
the condition f > 1/d for providing better fidelity than classical communication, i.e., the
quantum region. In this paper, we only focus on this state in this region.

If the elements of the density matrix in eq. (2.1) satisfy the conditions ρ22 + ρ33 > 1
2

and ρ23 > 1
2(1− ρ22 − ρ33), the fully entangled fraction can be expressed as [61]

f(ρX) = 1
2(ρ22 + ρ33 + 2ρ23) > 1

2 . (2.4)

Because we only pay attention to the quantum region with f > 1/d = 1/2, the above
conditions are supposed for the X-type state in the following.
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3 Quantization of Dirac fields in Schwarzschild spcetime

Firstly, we briefly review the vacuum structure of Dirac particles in Schwarzschild spacetime.
The metric of Schwarzschild spacetime can be given as [42]

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2

+ r2(dθ2 + sin2 θdϕ2), (3.1)

where M and r are the mass and radius of the black hole, respectively. We take c,G, ~ and
k as unity for simplicity in this paper. The Dirac equation [62] [γaeaµ(∂µ + Γµ)]Φ = 0 in
Schwarzschild spacetime can be expressed as follows

− γ0√
1− 2M

r

∂Φ
∂t

+ γ1

√
1− 2M

r

[
∂

∂r
+ 1
r

+ M

2r(r − 2M)

]
Φ

+ γ2
r

(
∂

∂θ
+ cot θ

2

)
Φ + γ3

r sin θ
∂Φ
∂ϕ

= 0, (3.2)

where γi (i = 0, 1, 2, 3) represent the Dirac matrices [63, 64]. Having solved the Dirac
equation near the event horizon of the black holes, we gain positive frequency outgoing
solutions outside and inside regions of the event horizon as

Φ+
k,out ∼ φ(r)e−iωu, (3.3)

Φ+
k,in ∼ φ(r)eiωu, (3.4)

where φ(r) represents four-component Dirac spinor, the retarded coordinate u = t − r∗
with the tortoise coordinate r∗ = r + 2M ln r−2M

2M [63, 64]. Here, ω and k represent the
frequency and wave vector, respectively, which fulfill ω = |k| for the massless Dirac field.
Using eqs. (3.3) and (3.4), the Dirac field Φ can be expanded as

Φ =
∫
dk[âout

k Φ+
out,k + b̂out†

−k Φ−out,k + âin
k Φ+

in,k + b̂in†
−kΦ

−
in,k], (3.5)

where aout
k and bout†

k are the fermionic annihilation and antifermionic creation operators
which correspond to the state in the exterior regions of the event horizon, respectively,
and ain

k and bin†
k are the fermionic annihilation and antifermionic creation operators which

correspond to the state in the interior regions of the event horizon, respectively [44, 50].
According to the suggestion of Domour-Ruffini, we can use Kruskal modes to make

analytic continuations for eqs. (3.3) and (3.4) [65]. However, the Kruskal observer can be
free to create excitations in any accessible mode. Therefore, the single-frequency Kruskal
mode cannot be mapped to a group of single-frequency Schwarzschild modes [66]. To avoid
this incongruity, we can adopt the Unruh mode [66–70], which provides an intermediate
bridge between the Kruskal and Schwarzschild modes. The Unruh operators have the simple
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Bogoliubov transformations with Schwarzschild modes, which take the forms as

c̃k,R = 1√
e−

ω
T + 1

âout
k − 1√

e
ω
T + 1

b̂in†
−k,

c̃k,L = 1√
e−

ω
T + 1

âin
k −

1√
e

ω
T + 1

b̂out†
−k ,

c̃†k,R = 1√
e−

ω
T + 1

âout†
k − 1√

e
ω
T + 1

b̂in
−k,

c̃†k,L = 1√
e−

ω
T + 1

âin†
k −

1√
e

ω
T + 1

b̂out
−k . (3.6)

Here, the subscripts R and L represent the “right” and “left” modes, respectively. Using
the operator ordering âout

k b̂in
−kb̂

out
−k â

in
k , the Unruh vacuum is given by

|0〉U = 1
e−

ω
T + 1

|0000〉 − 1√
e

ω
T + e−

ω
T + 2

|0101〉

+ 1√
e

ω
T + e−

ω
T + 2

|1010〉 − 1
e

ω
T + 1

|1111〉, (3.7)

where T = 1
8πM is the Hawking temperature [71], and |mm′n′n〉 = |mk〉+out|m′−k〉

−
in|n′−k〉

−
out|nk〉+in.

Here, {|nk〉+out} and {|n−k〉−in} are the orthonormal bases for the outside and inside regions
of the Schwarzschild black hole, respectively. The superscript {+,−} represents the fermion
and antifermion. For the Schwarzschild observer hovering outside the event horizon, the
Hawking radiation spectrum from the perspective of an outside observer can be written
as NF == 1

e
ω
T +1

[64]. We can see that the Unruh vacuum observed by the Schwarzschild
observer would be detected as a number of the generated fermions NF corresponding to
a thermal Fermion-Dirac statistics of fermions. This is known as the Hawking radiation.
Each fermionic mode has only the first excited state due to the Pauli exclusion principle.
The Unruh excited state of the fermionic mode can be expanded as

|1〉U = [qR(c̃†k,R
⊗

IL) + qL(IR
⊗

c̃†k,L)]|0〉U

= qR[ 1√
e−

ω
T + 1

|1000〉 − 1√
e

ω
T + 1

|1101〉]

+ qL[ 1√
e−

ω
T + 1

|0001〉+ 1√
e

ω
T + 1

|1011〉], (3.8)

with |qR|2 + |qL|2 = 1.
The operator c̃†k,R in eq. (3.6) represents the creation of an antifermion in the interior

vacuum and a fermion in the exterior vacuum of the black hole, respectively. Similarly, the
operator c̃†k,L in eq. (3.6) means that a fermion and an antifermion are created inside and
outside the event horizon of the black hole, respectively. Hawking radiation is generated by
quantum fluctuations near the event horizon that spontaneously produce pairs of fermion
and antifermion. The fermion and antifermion can radiate toward the inside and outside
regions randomly from the event horizon with the total probability |qR|2 + |qL|2 = 1.
Therefore, qR = 1 represents that all the fermion moves to the outside of the event horizon
of the black hole, while all the antifermion moves toward the inside of the event horizon
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of the black hole. This means that only fermion can be detected as Hawking radiation.
Analogously, qL = 1 means that only antifermion escapes from the event horizon. Therefore,
when only fermion (antifermion) is detected, the single mode approximation for qR = 1
(qL = 1) is a special situation. When we discuss our fidelity of quantum teleportation
beyond the single mode approximation, we investigate different kinds of Unruh modes with
different values of qR.

4 Hawking effect on fidelity of quantum teleportation and quantum steer-
ing in Schwarzschild spacetime

We assume that Alice and Bob initially share an X-type state for two Unruh modes at an
asymptotically flat region of the Schwarzschild black hole. Then, Alice still stays stationary
at an asymptotically flat region, while Bob hovers near the event horizon of the black hole.
Bob will detect the thermal Fermi-Dirac particle distribution with his excited detector.
According to eqs. (3.7) and (3.8), we can rewrite eq. (2.1). Since Bob cannot access the
modes inside the event horizon of the black hole, we trace over the inaccessible modes and
obtain the reduced density matrix ρABout (for detail please see appendix A).

We assume that Bob’s detector is sensitive only to the fermionic modes, showing that
the antifermionic modes cannot be excited in a single detector when a fermion was detected.
Therefore, we should trace out the antifermionic mode {|n−k〉−out} outside the event horizon
of the Schwarzschild black hole

ρSX =


ρS11 0 0 −ρS14
0 ρS22 −ρS23 0
0 −ρS23 ρS33 0
−ρS14 0 0 ρS44

 , (4.1)

where

ρS11 = (e−
ω
T + 1)−1ρ11 + |qL|2(e−

ω
T + 1)−1ρ22,

ρS22 = (e
ω
T + 1)−1ρ11 + [1− |qL|2(e−

ω
T + 1)−1]ρ22,

ρS33 = (e−
ω
T + 1)−1ρ33 + |qL|2(e−

ω
T + 1)−1ρ44,

ρS44 = (e
ω
T + 1)−1ρ33 + [1− |qL|2(e−

ω
T + 1)−1]ρ44,

ρS14 = qR(e−
ω
T + 1)−

1
2 ρ14,

ρS23 = qR(e−
ω
T + 1)−

1
2 ρ23. (4.2)

We assume that the state ρSX satisfies the condition

(e
ω
T + 1)−1ρ11 + ρ22 + (e−

ω
T + 1)−1ρ33 >

1
2 .

Therefore, we obtain

f(ρSX) = 1
2
{
(e

ω
T + 1)−1ρ11 +

[
1− |qL|2(e−

ω
T + 1)−1]ρ22 + (e−

ω
T + 1)−1ρ33

+ |qL|2(e−
ω
T + 1)−1ρ44 + 2qR(e−

ω
T + 1)−

1
2 ρ23

}
. (4.3)
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The change of f(ρSX) related to the Hawking temperature can be expressed as

∆T f(ρSX(T )) ≡ f(ρSX(T = T0))− f(ρSX(T = 0))

= 1
2
{
(e

ω
T + 1)−1ρ11 + q2

L(e
ω
T + 1)−1ρ22 − (e

ω
T + 1)−1ρ33

− q2
L(e

ω
T + 1)−1ρ44 − 2qRρ23

[
1− (e−

ω
T + 1)−

1
2
]}
. (4.4)

The derivative of f(ρSX) with respect to Hawking temperature T can be written as ∂f(ρS
X)

∂T .
We can easily obtain that ∂f(ρS

X)
∂T |T0 > 0 means ∆f(ρSX(T0)) > 0, and ∆f(ρSX(T0)) < 0

means ∂f(ρS
X)

∂T |T0 < 0.
In order to investigate whether quantum steering can guarantee the fidelity of quantum

teleportation, we calculate quantum steering from Alice to Bob SA→B(T ) and quantum
steering from Bob to Alice SB→A(T ) (for detail please see appendix B). There is no
ambiguous map related to the anticommutation properties of field operators in the quantum
teleportation and steering for the same initial X-type state ρX in Schwarzschild spacetime
(for detail please see appendix C) [72–76]. In figure 1–3, we plot the fully entangled fraction
f(ρSX), quantum steering SA→B(T ) and SB→A(T ) between two fermions as a function of
the Hawking temperature T for different ω, qR, and initial parameters.

In figure 1, we can see that f(ρSX), SA→B(T ), and SB→A(T ) decrease monotonically
with the increase of the Hawking temperature T . It is worth noting that f(ρSX), SA→B(T ),
and SB→A(T ) depend on the choice of Unruh modes. For example, quantum steering for
qR = 1 and qR = 0.9 decreases to a fixed value with the Hawking temperature T , while
quantum steering for qR = 0.8 suffers from sudden death with T . It means that quantum
steering cannot fully guarantee the fully entangled fraction in Schwarzschild spacetime. We
find that an Unruh mode with qR = 1 is always optimal to teleport the unknown pure
state to Bob and is optimal for quantum steering between Alice and Bob. We can also
see that the fully entangled fraction and quantum steering are monotonically increasing
functions of the frequency ω. The results show that we protect the fully entangled fraction
and quantum steering by choosing the high-frequency mode for maximally entangled states
in Schwarzschild spacetime.

In figure 2, we find that, with the growth of the Hawking temperature T , f(ρSX) increases
monotonically, while quantum steering from Alice to Bob SA→B(T ) is always zero, and
quantum steering from Bob to Alice SB→A(T ) for qR = 1 and qR = 0.9 first decreases and
then suffers from a “sudden death”. This means that the Hawking effect of the black hole
has a positive influence on fully entangled fraction and a negative influence on quantum
steering. Therefore, the Hawking effect can create net fidelity of quantum teleportation, and
quantum steering cannot fully guarantee the fully entangled fraction. However, previous
papers have shown that the Hawking effect destroys the fidelity of quantum teleportation
and quantum correlation in Schwarzschild spacetime [40–46]. Therefore, the Hawking
effect of the black hole cannot be simply considered as thermal noise that can only destroy
the fidelity of quantum teleportation. We will use this special type of quantum state to
experimentally explore the Hawking effect in the future. We also find that f(ρSX) and
SB→A(T ) increase as qR increases. In addition, quantum steering from Bob to Alice for
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Figure 1. The fully entangled fraction f(ρS
X), quantum steering SA→B(T ) and SB→A(T ) as a

function of the Hawking temperature T for different ω and qR. The initial parameters are fixed as
ρ11 = ρ44 = ρ14 = 0, and ρ22 = ρ33 = ρ23 = 1

2 .

qR = 0.8 is always zero in Schwarzschild spacetime. This again demonstrates that the fully
entangled fraction and quantum steering depend on the choice of Unruh modes, and the
Unruh mode with qR = 1 is always optimal for the fully entangled fraction and quantum
steering between Alice and Bob. Interestingly, increasing the frequency ω has a negative
effect on the fidelity of quantum teleportation and a positive effect on quantum steering for
this type of special quantum state. Therefore, we should use low-frequency mode to protect
the fidelity of quantum teleportation, while we use quantum steering of high-frequency
mode to handle relativistic quantum information tasks. For the first time, we found their
different dependence on frequency in Schwarzschild spacetime. These results contribute to
our more comprehensive understanding of the Hawking effect of the black hole.

In figure 3, we find that, for qR = 1, f(ρSX) first increases from the initial value to
the maximum value and then monotonically decreases with the growth of the Hawking
temperature T . Through the simple calculation, we can obtain SA→B(T ) = SB→A(T ) = 0
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Figure 2. The fully entangled fraction f(ρS
X), quantum steering SA→B(T ) and SB→A(T ) as a

function of the Hawking temperature T for different ω and qR. The initial parameters are fixed as
ρ11 =

√
2− 1, ρ22 = 1

2 , ρ33 = 3−2
√

2
2 , ρ44 = ρ14 = 0, and ρ23 =

√
2−1
2 .

in this case. This shows that the Hawking effect has the positive and negative influence on
the fully entangled fraction for the single mode approximation, and quantum steering fully
cannot guarantee the fully entangled fraction. We can see that the maximum fidelity of
quantum teleportation depends on the Hawking temperature T and frequency ω. However,
for qR = 0.9 and qR = 0.8, f(ρSX) increases monotonically with the increase of the Hawking
temperature T . For different kinds of Unruh modes, the fully entangled fraction exhibits
completely different properties with the Hawking temperature T .

5 Conclutions

In this paper, we have studied the effect of the Hawking effect on the fidelity of quan-
tum teleportation of Dirac fields between users beyond the single-mode approximation in
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Figure 3. The fully entangled fraction f(ρS
X) as a function of the Hawking temperature T for

different ω and qR. The initial parameters are fixed as ρ11 =
√

2−1
2 , ρ22 =

√
2

2 , ρ33 = 3−2
√

2
2 ,

ρ44 = ρ14 = 0, and ρ23 =
√

2−1
4 .

Schwarzschild spacetime. Alice and Bob initially share an X-type state and they apply a
standard teleportation scheme (STS) to send the unknown state from Alice to Bob. Here,
Alice stays stationary at an asymptotically flat region, while Bob hovers near the event
horizon of the black hole. We find that the fidelity of quantum teleportation of Dirac fields
can monotonically increase, monotonically decrease, or non-monotonically increase, depend-
ing on the choice of the initial state with the increase of the Hawking temperature, meaning
that the Hawking effect can enhance and create net fidelity of quantum teleportation. This
makes sharp a contrast with quantum correlation (quantum steering, entanglement, and
discord) and the fidelity of quantum teleportation of bosonic fields, which decrease mono-
tonically with the growth of the Hawking temperature in Schwarzschild spacetime [40–46].
The reduction of physically accessible fidelity of quantum teleportation and steering by
the Hawking effect can be attributed to the increase of physically inaccessible fidelity of
quantum teleportation and steering by the Hawking effect.

In addition, the fidelity of quantum teleportation and quantum steering depend on the
choice of Unruh modes. We showed that the Unruh mode with qR = 1 is always optimal to
teleport the unknown pure state to Bob and qR = 0 is optimal for quantum teleportation
with anti-Bob inside the event horizon of the black hole [67]. For different kinds of Unruh
modes, the fidelity of quantum teleportation exhibits completely different properties with
the Hawking temperature in curved spacetime (please refer to figure 3 for detail). We
also find that quantum steering cannot guarantee the fidelity of quantum teleportation
in Schwarzschild spacetime. Interestingly, the low-frequency mode may be beneficial for
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protecting the fidelity of quantum teleportation and harmful to quantum steering. These
surprising results overturn the extended belief that the Hawking effect of the black hole
can only destroy the fidelity of quantum teleportation and provides a new and unexpected
source for finding experimental evidence of the Hawking effect in curved spacetime.

A ρABout

An X-type state is initially shared by Alice and Bob at an asymptotically flat region. Then,
we let Bob hover near the event horizon of the black hole. According to eqs. (3.7) and (3.8),
we can rewrite eq. (2.1). Since the exterior region and the interior region are causally
disconnected, we should trace over the inaccessible modes and obtain

ρABout =



ρABout
11 0 0 −ρABout

14 0 ρABout
16 −ρABout

17 0
0 ρABout

22 0 0 ρABout
25 0 0 −ρABout

28
0 0 ρABout

33 0 −ρABout
35 0 0 ρABout

38
−ρABout

14 0 0 ρABout
44 0 −ρABout

46 ρABout
47 0

0 ρABout
25 −ρABout

35 0 ρABout
55 0 0 −ρABout

58
ρABout

16 0 0 −ρABout
46 0 ρABout

66 0 0
−ρABout

17 0 0 ρABout
47 0 0 ρABout

77 0
0 −ρABout

28 ρABout
38 0 −ρABout

58 0 0 ρABout
88


,

(A.1)
where

ρABout
11 = (e−

ω
T + 1)−2ρ11 + |qL|2(e−

ω
T + 1)−1ρ22,

ρABout
22 = (e−

ω
T + 1)−1(e

ω
T + 1)−1ρ11,

ρABout
33 = (e−

ω
T + 1)−1(e

ω
T + 1)−1ρ11 +

[
|qR|2(e−

ω
T + 1)−1 + |qL|2(e

ω
T + 1)−1]ρ22,

ρABout
44 = (e

ω
T + 1)−2ρ11 + |qR|2(e

ω
T + 1)−1ρ22,

ρABout
55 = (e−

ω
T + 1)−2ρ33 + |qL|2(e−

ω
T + 1)−1ρ44,

ρABout
66 = (e−

ω
T + 1)−1(e

ω
T + 1)−1ρ33,

ρABout
77 = (e−

ω
T + 1)−1(e

ω
T + 1)−1ρ33 +

[
|qR|2(e−

ω
T + 1)−1 + |qL|2(e

ω
T + 1)−1]ρ44,

ρABout
88 = (e

ω
T + 1)−2ρ33 + |qR|2(e

ω
T + 1)−1ρ44,

ρABout
14 = qRqL(e−

ω
T + 1)−

1
2 (e

ω
T + 1)−

1
2 ρ22,

ρABout
16 = qL(e−

ω
T + 1)−1(e

ω
T + 1)−

1
2 ρ23,

ρABout
17 = qR(e−

ω
T + 1)−

3
2 ρ14,

ρABout
25 = qL(e−

ω
T + 1)−1(e

ω
T + 1)−

1
2 ρ14,

ρABout
28 = qR(e−

ω
T + 1)−

1
2 (e

ω
T + 1)−1ρ14,

ρABout
35 = qR(e−

ω
T + 1)−

3
2 ρ23,

ρABout
38 = qL(e

ω
T + 1)−

3
2 ρ23,

ρABout
46 = qR(e

ω
T + 1)−1(e−

ω
T + 1)−

1
2 ρ23,

ρABout
47 = qL(e

ω
T + 1)−

3
2 ρ14,

ρABout
58 = qRqL(e−

ω
T + 1)−

1
2 (e

ω
T + 1)−

1
2 ρ44.
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B Quantification of quantum steering for X-type state in Schwarzschild
spacetime

As is well-known, the bipartite entanglement can be effectually measured by the concurrence.
For the X-state ρX of eq. (2.1), the concurrence is given by [77]

C(ρX) = 2 max{|ρ14| −
√
ρ22ρ33, |ρ23| −

√
ρ11ρ44}. (B.1)

For any bipartite state ρAB between Alice and Bob, quantum steering from Bob to Alice
can be recognized if the density matrix τ1

AB that becomes

τ1
AB = ρAB√

3
+ 3−

√
3

3

(
ρA ⊗

I

2

)
, (B.2)

is entangled [78, 79], where ρA is Alice’s reduced density matrix, ρA = TrB(ρAB), and I
is the two-dimension identity matrix of Bob’s subsystem. Analogously, quantum steering
from Alice to Bob can be proved if the state τ2

AB that reads

τ2
AB = ρAB√

3
+ 3−

√
3

3

(
I

2 ⊗ ρB
)
, (B.3)

is entangled, where ρB = TrA(ρAB). Therefore, the matrix τ1
AB for the X-state ρX of

eq. (2.1) can be specifically expressed as

τ1,x
AB =


√

3
3 ρ11 + r 0 0 −

√
3

3 ρ14

0
√

3
3 ρ22 + r −

√
3

3 ρ23 0
0 −

√
3

3 ρ23
√

3
3 ρ33 + s 0

−
√

3
3 ρ14 0 0

√
3

3 ρ44 + s

 , (B.4)

with r = (3−
√

3)
6 (ρ11 + ρ22) and s = (3−

√
3)

6 (ρ33 + ρ44). Using eq. (3.1), the state τ1,x
AB

is entangled as long as one of the conditions |ρ14|2 > Fa − Fb and |ρ23|2 > Fc − Fb is
satisfied, where

Fa = 2−
√

3
2 ρ11ρ44 + 2 +

√
3

2 ρ22ρ33 + 1
4(ρ11 + ρ44)(ρ22 + ρ33),

Fb = 1
4(ρ11 − ρ44)(ρ22 − ρ33),

Fc = 2 +
√

3
2 ρ11ρ44 + 2−

√
3

2 ρ22ρ33 + 1
4(ρ11 + ρ44)(ρ22 + ρ33).

Thus the steering from Bob to Alice is proved. Similarly, the steering from Alice to Bob
can also be proved by one of the inequalities,

|ρ14|2 > Fa + Fb, (B.5)

or
|ρ23|2 > Fc + Fb. (B.6)
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Next, we introduced quantities

SA→B = max
{

0, 8√
3

(|ρ14|2 −Fa −Fb),
8√
3

(|ρ23|2 −Fc −Fb)
}
, (B.7)

and
SB→A = max

{
0, 8√

3
(|ρ14|2 −Fa + Fb),

8√
3

(|ρ23|2 −Fc + Fb)
}
, (B.8)

to quantify the steerability from Alice to Bob and from Bob to Alice, respectively. Here,
the factor 8√

3 is to ensure that the maximum steering is 1.
For the X-type state in eq. (4.1), using eqs. (B.7) and (B.8), we obtain the quantum

steering from Alice to Bob

SA→B(T ) = max
{

0, 8√
3
[
| − qR(e−

ω
T + 1)−

1
2 ρ14|2 −Fa(T )−Fb(T )

]
,

8√
3
[
| − qR(e−

ω
T + 1)−

1
2 ρ23|2 −Fc(T )−Fb(T )

]}
, (B.9)

and the quantum steering from Bob to Alice

SB→A(T ) = max
{

0, 8√
3
[
| − qR(e−

ω
T + 1)−

1
2 ρ14|2 −Fa(T ) + Fb(T )

]
,

8√
3
[
| − qR(e−

ω
T + 1)−

1
2 ρ23|2 −Fc(T ) + Fb(T )

]}
, (B.10)

where

Fa(T ) = 2−
√

3
2 [(e−

ω
T + 1)−1ρ11 + (1− |qR|2)(e−

ω
T + 1)−1ρ22][(e

ω
T + 1)−1ρ33

+ ρ44 − (1− |qR|2)(e−
ω
T + 1)−1ρ44] + 2 +

√
3

2 [(e
ω
T + 1)−1ρ11 + ρ22

− (1− |qR|2)(e−
ω
T + 1)−1ρ22][(e−

ω
T + 1)−1ρ33 + (1− |qR|2)(e−

ω
T + 1)−1ρ44]

+ 1
4[(e−

ω
T + 1)−1ρ11 + (1− |qR|2)(e−

ω
T + 1)−1ρ22 + (e

ω
T + 1)−1ρ33 + ρ44

− (1− |qR|2)(e−
ω
T + 1)−1ρ44][(e

ω
T + 1)−1ρ11 + ρ22 − (1− |qR|2)(e−

ω
T + 1)−1ρ22

+ (e−
ω
T + 1)−1ρ33 + (1− |qR|2)(e−

ω
T + 1)−1ρ44], (B.11)

Fb(T ) = 1
4[(e−

ω
T + 1)−1ρ11 + (1− |qR|2)(e−

ω
T + 1)−1ρ22 − (e

ω
T + 1)−1ρ33 − ρ44

+ (1− |qR|2)(e−
ω
T + 1)−1ρ44][(e

ω
T + 1)−1ρ11 + ρ22 − (1− |qR|2)(e−

ω
T + 1)−1ρ22

− (e−
ω
T + 1)−1ρ33 − (1− |qR|2)(e−

ω
T + 1)−1ρ44], (B.12)

Fc(T ) = 2 +
√

3
2 [(e−

ω
T + 1)−1ρ11 + (1− |qR|2)(e−

ω
T + 1)−1ρ22][(e

ω
T + 1)−1ρ33

+ ρ44 − (1− |qR|2)(e−
ω
T + 1)−1ρ44] + 2−

√
3

2 [(e
ω
T + 1)−1ρ11 + ρ22

− (1− |qR|2)(e−
ω
T + 1)−1ρ22][(e−

ω
T + 1)−1ρ33 + (1− |qR|2)(e−

ω
T + 1)−1ρ44]

+ 1
4[(e−

ω
T + 1)−1ρ11 + (1− |qR|2)(e−

ω
T + 1)−1ρ22 + (e

ω
T + 1)−1ρ33 + ρ44

− (1− |qR|2)(e−
ω
T + 1)−1ρ44][(e

ω
T + 1)−1ρ11 + ρ22 − (1− |qR|2)(e−

ω
T + 1)−1ρ22

+ (e−
ω
T + 1)−1ρ33 + (1− |qR|2)(e−

ω
T + 1)−1ρ44]. (B.13)
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C Ambiguity of quantum teleportation and steering in Schwarzschild
spacetime

Ambiguity is related to the ordering criterion of the creation and annihilation operators
and has gone unnoticed in fermionic quantum teleportation and steering in Schwarzschild
spacetime. Below, we briefly introduce ambiguity. We consider a two-mode fermionic
system associated with fermionic creation operators a† and b† acting on a vacuum state |0〉.
Therefore, the relevant Hilbert space is four dimensional. The Hilbert space basis of our
toy model can be represented as

|00〉 = |0〉, |10〉 = a†|0〉, |01〉 = b†|0〉, |11〉 = a†b†|0〉. (C.1)

Based on this basis, we can endow the Hilbert space with a tensor product structure, which
allows us to consider two qubits, where the first label corresponds to one qubit and the
second label corresponds to the other qubit. We may change the quantum entanglement
of state by making nonlocal changes to the basis: we swap the positions of a† and b† in
eq. (C.1) [72–76]. The new basis can be obtained as

|00〉′ = |00〉, |01〉′ = |01〉, |10〉′ = |10〉, |11〉′ = b†a†|0〉 = −|11〉. (C.2)

Therefore, we can obtain a new basis in this specific case. Interestingly, choosing these two
different types of bases may result in a separable state being the Bell state.

In this paper, we use the operator ordering âout
k b̂out

−k b̂
in
−kâ

in
k to rewrite eq. (3.7) as

|0〉′U = 1
e−

ω
T + 1

|0000〉 − 1√
e

ω
T + e−

ω
T + 2

|0101〉

+ 1√
e

ω
T + e−

ω
T + 2

|1010〉+ 1
e

ω
T + 1

|1111〉. (C.3)

However, eq. (3.8) remains unchanged. Similarly, we can rewrite eq. (2.1). Then, we trace
over its inaccessible modes and obtain

ρ̃ABout =



ρABout
11 0 0 −ρABout

14 0 ρABout
16 −ρABout

17 0
0 ρABout

22 0 0 ρABout
25 0 0 −ρABout

28
0 0 ρABout

33 0 −ρABout
35 0 0 −ρABout

38
−ρABout

14 0 0 ρABout
44 0 −ρABout

46 −ρABout
47 0

0 ρABout
25 −ρABout

35 0 ρABout
55 0 0 −ρABout

58
ρABout

16 0 0 −ρABout
46 0 ρABout

66 0 0
−ρABout

17 0 0 −ρABout
47 0 0 ρABout

77 0
0 −ρABout

28 −ρABout
38 0 −ρABout

58 0 0 ρABout
88


.

(C.4)
From eqs. (A.1) and (C.4), we can see that the density matrix ρ̃ABout is different from the
density matrix ρABout . Then, we trace out the antifermionic mode of ρ̃ABout outside the
event horizon of the black hole and obtain

ρ̃SX =


ρS11 0 0 −ρS14
0 ρS22 −ρS23 0
0 −ρS23 ρS33 0
−ρS14 0 0 ρS44

 . (C.5)
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From eqs. (4.1) and (C.5), we find that quantum state ρ̃SX is the same as quantum state ρSX .
Therefore, there is no ambiguous map in the quantum teleportation and steering for the
same initial X-type state ρX in the Schwarzschild black hole.
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