
PHYSICAL REVIEW C 102, 034906 (2020)

Hadronic transport coefficients from the linear σ model at finite temperature

Matthew Heffernan ,* Sangyong Jeon ,† and Charles Gale‡

Department of Physics, McGill University, Montreal, QC, Canada H3A 2T8

(Received 15 June 2020; accepted 28 August 2020; published 18 September 2020)

We investigate general frameworks for calculating transport coefficients for quasiparticle theories at finite
temperature. Hadronic transport coefficients are then computed using the linear σ model (LSM). The bulk
viscosity over entropy density (ζ/s) is evaluated in the relaxation time approximation (RTA) and the specific
shear viscosity (η/s) and static electrical conductivity (σel/T ) are both obtained in the RTA and using a functional
variational approach. Results are shown for different values of the scalar-isoscalar hadron vacuum mass with
in-medium masses for the interacting fields. The advantages and limitations of the LSM for studies of strongly
interacting matter out of equilibrium are discussed and results are compared with others in the literature.
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I. INTRODUCTION

The behavior of strongly interacting matter in extreme
conditions of temperature and density is the subject of a
vibrant experimental program and of numerous theoretical
efforts. One of the major achievements of relativistic heavy-
ion physics is the realization that an exotic phase of nuclear
matter—the quark-gluon plasma (QGP) [1]—has been cre-
ated in experiments performed at the Relativistic Heavy Ion
Collider, at Brookhaven National Laboratory and at the Large
Hadron Collider at CERN.

A related collection of theoretical breakthroughs has
shown that the dynamical evolution of this QGP is amenable
to hydrodynamic modeling [2]. Hydrodynamics is able to
interpret a large body of data that reflects the collectivity of the
observed particles and can even make quantitative statements
about local deviations from equilibrium. The response of a
quantum system to some perturbation can be characterized
in different ways, including by monitoring the time it takes
for the system to relax back to the equilibrium state. The
relaxation time can then be related to transport parameters,
which are calculable in terms of correlation functions [3].
In spite of the existence of a general formalism to calculate
transport parameters, obtaining them from QCD has remained
challenging. This has motivated their extraction from analyses
of heavy-ion phenomenology [2,4–6] and from effective mod-
els of the strong interaction.

This work reports on studies of transport coefficients us-
ing the linear σ model (LSM). The LSM, first proposed
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by Gell-Mann and Lévy [7], is a well-studied model of a
simple hadronic system and is one of the most instructive
and paradigmatic field theories. Hadronic physics estimates
have yet to agree on details of the transport parameters that
characterize the strong interaction, whether those come from
analyzing and interpreting data or from attempts to calculate
from more-or-less first principles [8–10]. Therefore, it is in-
structive to make predictions using the LSM. In addition, there
is a need to distinguish the effects of approximations from the
consequences of model-dependent assumptions. This is one
of the goals pursued herein. We adapt and develop various
general theoretical techniques in order to calculate the trans-
port coefficients of the LSM. The shear and bulk viscosity are
computed and the electrical conductivity is calculated in the
LSM for the first time. We discuss the effect on our results of
the assumed value of the vacuum mass of the σ meson using
figures that broadly span the mass of the f0(500) as defined
by its large reported width [11].

The paper is organized as follows: Section II reviews and
details the theoretical framework, established along the lines
of work done in Refs. [12,13]. It begins with a survey of the
LSM with some emphasis on the thermodynamic quantities
that are used as inputs into both the relaxation time approxi-
mation and the variational method. Section III includes a brief
overview of transport and shows the technique for calculating
transport coefficients in the relaxation time approximation.
To go beyond the limitations of the relaxation time approx-
imation (RTA), a general variational technique for massive
theories with elastic and inelastic reactions is developed in
Sec. IV. Finally, in Sec. V, we produce the results of the
calculations with the different techniques and compare to the
literature. Additional details of calculations are provided in
the appendices.

II. THEORETICAL FRAMEWORK

We begin the development of the theoretical framework
with an overview of the linear σ model. Once this is
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established, we describe the treatment of the effective masses
and the thermodynamics of the system.

A. The linear σ model

The LSM is a ubiquitous relativistic field theory capable of
illustrating aspects of low-energy QCD [14]. It can incorpo-
rate mean-field effects and is thermodynamically consistent.
It has been used extensively as an effective model of simple
hadron dynamics and is tractable and well studied [15,16].
Consequently, we use it to provide parametric estimates for
transport coefficients of hadronic systems, to demonstrate the
effectiveness of our framework, and to highlight the quantita-
tive effects of different approximation schemes.

The classic linear σ model Lagrangian is

L = 1

2
(∂μ�)2 − λ

4

(
�2 − f 2

π

)2
. (1)

In general, the bosonic field � has N components. When
N = 4, the standard practice is to ascribe the first N − 1
components to the pion field and define the N th as the σ field:
� = {�π, σ }. Then the LSM model is an effective theory of
soft pion dynamics due to the isomorphism between O(4) (the
symmetry of the LSM) and SU(2)L × SU(2)R (the symmetry
group for two flavors of massless quarks in QCD). At low
temperatures, the O(N) symmetry is spontaneously broken
to O(N − 1) and a temperature-dependent σ condensate v
appears: �N = σ + v. In the classic LSM, the condensate
goes to zero at a critical temperature in a second-order phase
transition [17].

The LSM can be made more realistic by explicitly breaking
chiral symmetry with a pion vacuum mass. The Lagrangian
can now be written as [18,19]

L= 1

2
(∂μσ )2 + 1

2
(∂μ �π )2 − λ

4
(σ 2 + �π2 − f 2)2 + Hσ, (2)

where the vacuum expectation value v of the scalar field σ is
determined by the symmetry-breaking term,

λv(v2 − f 2) = H. (3)

The three undetermined parameters λ, H , and f 2 are de-
termined by the vacuum values of the pion decay constant fπ
and the pion and σ masses,

λ = m2
σ − m2

π

2 f 2
π

, (4)

H = fπm2
π , (5)

f 2 = m2
σ − 3m2

π

m2
σ − m2

π

f 2
π . (6)

In this subsection, all mass symbols represent vacuum
masses—the reason for this clarification will soon become
apparent. The vacuum pion mass is chosen to be mπ =
140 MeV, the decay constant is fπ = 93 MeV, and in this
work the vacuum σ mass will take one of the values mσ =
{400, 600, 900} MeV. The nature of the symmetry breaking at
zero temperature drastically impacts how the chiral symmetry
is restored at high temperatures.

We separate the LSM Lagrangian into kinetic and poten-
tial terms and expand the σ field into a condensate and an
excitation, σ → v + σ . We call the excitation σ as it is the
true σ meson and the condensate v, which is the nonvanishing
vacuum expectation value of the field.

We perform our calculations in the isospin pion basis,
which represents the physical pions. The relations between the
physical pions and the Cartesian pion fields are

π+ = 1√
2

(π1 + iπ2), (7)

π− = 1√
2

(π1 − iπ2), (8)

π0 = π3. (9)

To convert the Lagrangian to the isospin pion basis, it
is simple to invert these relations. Doing so allows one to
trivially rewrite the Lagrangian and read off the matrix ele-
ments. For example, in the calculation of Mπ aπb;π cπd , we see
that from the four-point diagram, we get a factor −2λ. From
π + π → σ → π + π in the s-channel, we get a factor 4λ2v2

s−m2
σ

.
Thus, the four-point pion s-channel diagram is

Mπ aπb;π cπd = −2λ + 4λ2v2

s − m2
σ

, (10)

= −2λ

(
s − m2

π

s − m2
σ

)
. (11)

Including other processes with appropriate Kronecker δs pro-
duces the full matrix element,

Mπ aπb;π cπd

= −2λ

(
s − m2

π

s − m2
σ

δabδcd + t − m2
π

t − m2
σ

δacδbd + u − m2
π

u − m2
σ

δadδbc

)
.

(12)

A pole clearly arises in each channel. A consistent method
of handling this pole theoretically would entail a resumma-
tion that would parametrically promote the process to higher
powers of λ. However, the coupling in the LSM is larger
than 1 and the diagrammatic expansion is not convergent. We
treat the LSM as an effective theory with λ understood as a
parameter adjusted to fit π -π scattering [17]. We therefore
restrict the kinematics in order to bypass the singularities and
the processes to tree level. We use the Mandelstam variables
in the limit s, t, u → ∞, effectively removing the three-point
interactions [12]. This results in the following matrix elements
for the LSM:

Mσσ ;σσ = −6λ, (13)

Mπaπa;πaπa = −6λ, a = {0,+,−}, (14)

Mπ+π−;π+π− = −2λ, (15)

Mπ0π0;σσ = −2λ, (16)

Mπaσ ;πaσ = −2λ, a = {0,+,−}, (17)

Mπ0πb;π0πb = −2λ, b = {+,−}. (18)
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As we wish to study the critical dynamics at finite mass
and temperature, we adopt an approximate lower bound of
T = 150 MeV: a common value for thermal freeze-out in
studies of heavy ion collisions, which is also in the vicinity
of the crossover temperature obtained in lattice calculations
with baryonless QCD [20]. Higher temperatures will also
be explored so that the behavior of physical quantities of
interest—such as the transport coefficients—can be studied
through gradual chiral symmetry restoration in the LSM.

B. Thermodynamic quantities

To ensure consistency in the calculation, it is imperative
to rigorously incorporate the thermodynamics of the LSM.
This will directly reflect chiral symmetry restoration and will
be critical in determining the transport coefficients. The in-
teractions in the LSM are evaluated in the mean-field limit,
which can in turn be absorbed in a mass redefinition. Detailed
discussions of thermal effective masses exist in the literature,
e.g., in Ref. [21] (based on the methods of Refs. [22–24]);
we present a brief overview of the method here for the sake
of completeness. In this study, we use classical (Boltzmann)
statistics

f eq
a (p, x, t ) = exp(−Ea/T ), (19)

which results in simplifications of statistical factors
throughout.

Mean-field equations of motion are derived by taking the
thermal average of the Euler-Lagrange equation with respect
to a general field, which we denote ψa = {�π, σ },

〈∂2ψa〉 +
〈

∂U

∂ψa

〉
= 0, (20)

where U = λ
4 (σ 2 + �π2 − f 2)2 − Hσ . This can be simplified

further by recognizing

〈∂2ψa〉 = −m2
a〈ψa〉 = 0, (21)

as 〈ψa〉 = 0. Therefore, the thermal average equation of mo-
tion becomes 〈

∂U

∂ψa

〉
= 0. (22)

Through some further calculations, it is clear that the nontriv-
ial solution is

m2
a =

〈
∂2U

∂ψ2
a

〉
. (23)

In order to calculate the effective masses, we solve the
equation of motion for each field in the Lagrangian, producing
three coupled equations that must be solved self-consistently.
These are

0 = λv(v2 − f 2 + 3〈π2〉 + 3〈σ 2〉) − H, (24)

m2
σ = λ(3v2 + 3〈π2〉 + 3〈σ 2〉 − f 2), (25)

m2
π = λ(v2 + 5〈π2〉 + 〈σ 2〉 − f 2), (26)

where the thermal average of the fields is given by

〈
ψ2

a

〉 =
∫

d3 pa

(2π )3

1

Ea
f eq
a , (27)

FIG. 1. Effective masses of the σ and π and of the condensate
for different σ vacuum masses: (a) 400 MeV and (b) 900 MeV.

and solutions are shown in Fig. 1. We show results for vacuum
masses of 400 and 900 MeV, the two extreme values of the
range considered here. While the framework we develop is
general, the evaluation of scattering matrix elements, ther-
mal effective masses, and mean-field effects is done using
the LSM. Importantly, in the rest of this work all energies
and masses are thermal, i.e., the single-particle energies are
Ea = √

�p2
a + m2

a, where m hereon denotes the effective ther-
mal masses discussed previously. When needed, a vacuum
mass is now written as m0,a.

As mentioned, the incorporation of explicit symmetry
breaking qualitatively and radically alters the symmetry
restoration at high temperatures. Figure 1 confirms that
restoration now takes place over a broad crossover region. It
is interesting to recall that our current understanding of the
QCD transition from partonic to confined hadronic degrees of
freedom is also a crossover (at zero net baryon density), albeit
occurring at a lower temperature [20].

We also wish to calculate thermodynamic quantities, such
as the pressure, entropy density, energy density, heat capacity,
and the speed of sound. The total pressure, entropy density,
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energy density, and heat capacity are the sum of the contribu-
tion from each species.

The form of T μν , discussed in more detail in Sec. III A,
yields

P = 1

3
T ii = T

∑
a

∫
d3 pa

(2π )3
f eq, (28)

where we have integrated by parts, assuming a vanishing
boundary term.

The energy density equation is trivial. We next provide the
entropy density

s = dP

dT
= 1

3T 2

∑
a

∫
d3 pa

(2π )3
|pa|2 f eq

a . (29)

The calculation of the speed of sound is more involved and
is shown in detail in Ref. [25]. However, it is important to
consider that the speed of sound is a thermodynamic quantity
as is the consistency condition (also detailed in Ref. [25]) and
the heat capacity, Eq. (30). Thus, these become involved in
Landau matching, which we address in Appendix A.

Finally, the heat capacity at constant volume can be
obtained by assembling expressions from Appendix A.
Specifically, the combination of Eqs. (A14)–(A16) leads di-
rectly to

cv = dε

dT
= 1

T 2

∑
a

∫
d3 pa

(2π )3

(
E2

a − T 2 dm2
a

dT 2

)
f eq. (30)

The discussion of mean fields gains additional importance
as we outline difficulties in performing exact calculations of
the bulk viscosity in single- and multicomponent gases in
Sec. IV.

III. THE RELAXATION TIME APPROXIMATION

In order to discuss transport coefficients, we begin with a
discussion of transport with the Boltzmann equation (BE).

A. Boltzmann equation and some definitions

The Boltzmann transport equation can be written as

∂ fa

∂t
+ va ·∇ fa =

∑
bcd

∫
pb,pc,pd

W (a, b|c, d )

1 + δcd
{ fc fd − fa fb},

(31)

where we have used the convenient shorthand∫
p
=

∫
d3 p

(2π )3
(32)

and

W (a, b|c, d ) = |M|2(2π )4δ4(pa + pb − pc − pd )

16EaEbEcEd
. (33)

with particles a, b incoming and c, d outgoing. The LSM is
not explicitly restricted to 2 ↔ 2 processes, but we will only
consider these processes in this work as already discussed in
Sec. II A.

We write the symmetric energy-momentum tensor T μν as

T μν = −Pgμν + wuμuν + T μν (34)

with correction terms related to the dissipation properties

T μν = η
(
Dμuν + Dνuμ − 2

3μν∂ρuρ
) − ζμν∂ρuρ. (35)

We choose the Landau frame,

uμT μν = 0, (36)

where uμ is the energy transport velocity. In our conven-
tion, we use the mostly negative Minkowski metric signature
(+,−,−,−) and define u such that u2 = 1. In this discussion,
P is the pressure, w is the enthalphy density w = T s = P + ε,
s is the entropy density, and ε is the energy density. We have
defined the projection tensor and derivative normal to uμ as

μν = gμν − uμuν, (37)

Dμ = ∂μ − uμuβ∂β, (38)

respectively. We also adopt the convention that Latin indices
either label species or refer to three-components of four-
vectors and are thus not affected by raising and lowering.

B. Approximate solution

The relaxation time approximation1 is a popular approx-
imation to a solution of the BE, and is commonly used in
calculating transport coefficients [26]. However, its validity
decreases as the relaxation time increases and as such it is
arguably uncontrolled. To lay the foundation for a more quan-
titative discussion, we begin by developing this formalism in
some detail before introducing an exact solution for transport
coefficients in the LSM. We will then be able to precisely
quantify this approximation in a consistent way. We derive
the forms of the shear and bulk viscosity using the Chapman-
Enskog expansion [27]. We assume a small deviation from
equilibrium; we satz an that this is of the form

f = f eq + δ f = f eq[1 + φ(p)], (39)

where φ(p) quantifies deviations from equilibrium. We typ-
ically suppress the momentum dependence for clarity. As a
result of the maximally general tensor decomposition of the
form of Eq. (35), it is natural to construct φ such that it has
the same decomposition,

φa = Ca
μν

(
Dμuν + Dνuμ − 2

3μν∂ρuρ
) − Aa

μν∂ρuρ, (40)

where Ca
μν = Ca pμ pν and both Ca and Aa in general depend

on the scalar uα pα .
We additionally require nondecrease of entropy. In the

local rest frame of the fluid, the change in the entropy is
given by

∂μsμ = η

2T

(
∂ iu j + ∂ jui + 2

3
δi j∇ · u

)2

+ ζ

T
(∇ · u)2, (41)

1In this paper, we will take the RTA to mean the energy-dependent
relaxation time approximation.
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which requires that both shear viscosity η and bulk viscosity
ζ be nonnegative.

Assuming that interactions are localized and are point
or contact interactions, the energy-momentum tensor can be
written as a sum of independent contributions. We can then
return to the form T μν = T μν

eq + T μν by writing this as

T μν
eq (x) + T μν (x) =

∑
a

∫
pa

pμ
a pν

a

Ea
f eq
a (x, p)

+
∑

a

∫
pa

pμ
a pν

a

Ea
f eq
a φa(x, p). (42)

For convergence, the deviation φ must be perturbatively small,
i.e., |φ| 	 1.

We now find the form of the shear and bulk viscosity in the
local rest frame of the fluid. This is done by equating the two
expressions for the dissipative part of the energy-momentum
tensor.

T μν =
∑

a

∫
pa

pμ
a pν

a

Ea
f eq
a

[
−Aa∂ρuρ

+Ca pσ pγ

(
Dσ uγ + Dγ uσ − 2

3
γσ ∂ρuρ

)]
. (43)

To calculate shear viscosity, we investigate a purely shear
flow in a single direction. Without loss of generality, we
choose uk = (ux(y), 0, 0). Applying this flow to both expres-
sions for the dissipative part of T μν reduces them to

T xy(x) =
∑

a

∫
pa

pi
a pj

a

Ea
f eq
a Ca pk pl (∂yux(y)), (44)

T xy = η(∂yux(y)), (45)

and it is possible to identify shear viscosity as

η = 2

15

∑
a

∫
pa

|pa|4
Ea

f eq
a Ca. (46)

The same method can be used to isolate the contribution of
bulk viscosity that, after some manipulations, can be written
as

ζ = 1

3

∑
a

∫
pa

|pa|2
Ea

f eq
a Aa. (47)

The terms Ca and Aa are found by manipulations of the
Boltzmann equation. Beginning with the left-hand side,

∂ fa

∂t
+ va · ∇ fa = ∂ fa

∂t
+ pa

Ea
· ∇ fa, (48)

= E−1
a pμ

a ∂μ fa, (49)

≈ E−1
a pμ

a ∂μ f eq
a . (50)

The last line assumes that the off-equilibrium component
φa(x, p) is small. Now we move on to the right-hand side.
Recall Eq. (39) and that, as a consequence of classical statis-
tics, the product of the distribution functions before and after
a collision are equivalent,

fc fd − fa fb = f eq
a f eq

b (φd + φc − φa − φb). (51)

Keeping terms linear in φ, we return to the Boltzmann
equation,

E−1
a pμ

a ∂μ f eq
a =

∑
bcd

∫
pb,pc,pd

W (a, b|c, d )

1 + δcd
f eq
a f eq

b

× (φd + φc − φa − φb). (52)

The first task is to compute the left-hand side. We begin
with the calculation of ∂μ f eq

a where f eq
a = exp(−uν pν/T ) and

obtain

∂μ f eq
a = ∂μ exp

(−uν pν
a

/
T

)
, (53)

= − 1

T
f eq
a pν

a

(
∂μuν − 1

T
uν∂μT

)
. (54)

We now rewrite the Boltzmann equation using some ther-
modynamic quantities. These are standard, but a detailed
treatment can be found in Ref. [25], where many standard
results are collected. Using the speed of sound, we may now
make some progress in rewriting the Boltzmann equation into
a more convenient form,

pμ
a ∂μ f eq

a = − 1

T
f eq
a pμ

a pν
a

[
∂μuν − uν

(
uα∂αuμ − v2

s uμ∂αuα
)]

.

(55)

At this stage it is necessary to substitute the structure of φ

and group terms in Eq. (52), which now reads

0 = f eq
a pμ

a pν
a

2T Ea

(
Dμuν + Dνuμ + 2

3
μν∂ρuρ

− 2

3
μν∂ρuρ + 2v2

s uνuμ∂ρuρ

)

+
∑
bcd

∫
pb,pc,pd

W (a, b|c, d )

1 + δcd
f eq
a f eq

b (φd + φc − φa − φb).

(56)

To do this in a consistent way, it is necessary to consider
this equation term by term. It is useful to define the shorthand

Dμν = Dμuν + Dνuμ − 2
3μν∂ρuρ, (57)

U = ∂ρuρ. (58)

Rewriting the φ coefficients of each term, we find that

φd + φc − φa − φb = −(Ad + Ac − Aa − Ab)U
+ (

Cd
μν + Cc

μν − Ca
μν − Cb

μν

)Dμν. (59)

In taking the relaxation time approximation, we suppose
that all particles are in equilibrium except for species a, which
is out of equilibrium by a perturbatively small amount, fa =
f eq
a + δ fa. To that order,

∂ fa

∂t
+ va · ∇ fa =

∑
bcd

∫
pb,pc,pd

W (a, b|c, d )

1 + δcd
{ fc fd − fa fb}

= −ωaδ fa, (60)

where

ωa =
∑
bcd

1

1 + δcd

∫
pb,pc,pd

W (a, b|c, d ) f eq
b (61)

034906-5



HEFFERNAN, JEON, AND GALE PHYSICAL REVIEW C 102, 034906 (2020)

is the interaction frequency. The expressions and phase space
for ωa are shown in detail in Ref. [25]. We define the relax-
ation time to be

τa = ω−1
a , (62)

and the deviation δ fa is that in Eq. (39). Both the interaction
frequency and relaxation time are energy dependent, but we
suppress this in the notation for clarity. To find the viscosities,
it is necessary to substitute the deviation φ into the Boltzmann
equation. Thus, we find

ωa f eq
a φa = f eq

a pμ
a pν

a

2T Ea

(
Dμuν + Dνuμ + 2

3
μν∂ρuρ

− 2

3
μν∂ρuρ + 2v2

s uνuμ∂ρuρ

)
, (63)

= ωa f eq
a

[−Aa∂ρuρ + Ca
μνDμν

]
. (64)

Therefore, we arrive at

−AaU + Ca
μνDμν = τa pμ

a pν
a

2T Ea

(
Dμν + 2

3
μνU + 2v2

s uνuμU
)

.

(65)

It is then possible to make the following identifications:

Ca = τa

2T Ea
, (66)

Aa = − τa

2T Ea

(
2

3
pμ

a pν
aμν + 2v2

s pμ
a pν

auνuμ

)
, (67)

= τa

3T Ea

[(
1 − 3v2

s

)
E2

a − m2
a

]
. (68)

The shear viscosity is now readily calculated using
Eq. (46),

η = 1

15T

∑
a

∫
pa

|pa|4
E2

a

f eq
a τa. (69)

The inclusion of mean-field effects and ensuring thermody-
namic consistency makes the evaluation of the bulk viscosity
slightly more complicated than that of the other transport
coefficients discussed in this work. This is addressed in
Appendix A with details in Ref. [25]. The result for the bulk
viscosity is

ζ = 1

9T

∑
a

∫
pa

τa

E2
a

f eq
a

(
|pa|2 − 3v2

s

[
E2

a − T 2 dm2
a

dT 2

])2

. (70)

With the the incorporation of mean-field effects, the bulk vis-
cosity meets the Landau matching condition. We also display
the result for the electrical conductivity in the RTA [28–31]
for later use:

σel = 1

3T

∑
a

q2
a

∫
pa

p2
a

E2
a

τa f eq
a . (71)

The only modification of η and of the electrical conductivity
σel due to mean fields comes from the presence of effective
masses in phase-space considerations. Finally, τa is calculated
numerically using Eq. (62) and inserted into these workings.

IV. VARIATIONAL METHOD

It is difficult to calculate systematic corrections to the RTA.
As it is important to separate the impact of approximations
from those of the transport properties of the medium itself, we
turn to a method for calculating transport coefficients exactly
in the limit of the linearized Boltzmann equation. We extend
the variational method of Refs. [13,32,33] to massive theories
and remove the small momentum transfer approximation so
the technique is applicable to inelastic processes. We will fol-
low the same notation and provide an overview of the method
for completeness. For details of incorporating masses into this
framework, see Appendix B.

We begin by laying out some notation and motivations of
the general form. To do this, we define a collision operator
that is already linear in the deviation from equilibrium when
using Boltzmann statistics,

(Cδ f )a(pa) ≡
∑
bcd

1

1 + δcd

∫
pb,pc,pd

W (a, b|c, d )

× f a
eq(pa) f b

eq(pb)[δ f a + δ f b − δ f c − δ f d ].

(72)

It may then be shown that the Boltzmann equation, to first
order in gradients, is a linear integral differential equation,[

∂t + p̂a · ∂x + Fa
ext · ∂pa

]
f a
eq(pa, x, t ) = −(Cδ f )a(pa, x, t ).

(73)

We now move on to interpreting the left-hand side (LHS). In
the local fluid rest frame it may be written as

β f a
eq(pa, x)qaIi··· j (p̂)Xi··· j (x), (74)

where qa is the conserved charge of the quantity of interest
and we have separated the angular and spatial dependence
into Ii... j , the unique rotationally covariant tensor, and Xi... j ,
the spatial tensor denoting the driving field:

Xi··· j (x) ≡

⎧⎪⎨
⎪⎩

∇ · u, l = 0
−Ei, l = 1

1√
6

(∇iu j + ∇ jui − 2
3δi j∇ · u

)
, l = 2

, (75)

and

Ii... j (p̂) ≡

⎧⎪⎨
⎪⎩

δi j l = 0 (bulk viscosity)
p̂i l = 1 (conductivity)√

3
2

(
p̂i p̂ j − 1

3δi j
)

l = 2 (shear viscosity)

.

(76)

Due to the rotational invariance of the collision operator C,
the departure from equilibrium and the driving field must have
the same angular form. Thus, the deviation that will solve the
Boltzmann equation must be

δ f a(pa, x) = β2Xi··· j (x)Ii··· j ( p̂a)χa(|pa|). (77)

In order to solve this, we additionally define an inner
product as

( f , g) = β3
∑

a

∫
pa

f (pa)g(pa) f eq
a . (78)
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that will allow us to construct a functional, Q. We will ex-
pand this functional in a variational basis and maximize the
expanded functional to determine variational coefficients and
extract transport coefficients.

We define a functional Q[χi... j] such that it is extremal
when χa(p) satisfy the linear Boltzmann equation

Q[χi... j] = (χi... j, Si... j ) − 1
2 (χi... j, Cχi... j ). (79)

In the above,

χa
i... j (pa) = Ii... j ( p̂)χa(p), (80)

Sa
i... j = −T qa f a

0 Ii... j (pa), (81)

and C is the linearized collision operator while χa(p) is a
rotationally invariant function depending only on excitation
energy. χa(p) is what we will expand in a convergent varia-
tional basis in order to calculate transport coefficients.

The source in Eq. (80) can be written in terms of an expan-
sion basis φm (see Appendix B) as

S̃m = (Si, φ
m) = −β2

∑
a

∫
pa

f eq
a qaφa

m, (82)

and the collision term may be written

C̃mn = (
φm

i , Cφn
i

)
. (83)

This may be assembled into the maximized functional Qmax,

Qmax = 1
2 S̃T C̃S̃. (84)

From this maximized functional, we are able to calculate
the transport coefficients. Keeping in mind the angular mo-
mentum structure of Eq. (81), the expressions for transport
coefficients are

η = 2
15 Qmax, (85)

σel = 2
3 Qmax, (86)

ζ = 2Qmax, (87)

where details of constructing the different components are
given in Appendix B. While we only calculate those appli-
cable to our theory, the work in Ref. [13] also calculates
the flavor diffusion constants; our extended framework
can also calculate this for massive theories with inelastic
processes.

In the bulk viscosity calculation, it is necessary to orthogo-
nalize to the zero modes. This is because the bulk viscosity is a
spin 0 quantity (a scalar), while the other transport coefficients
are spin 1 (a vector) or spin 2 (a tensor). Exact zero modes are
only present in the scalar quantity because when taking the
dot product of the momenta, angular factors in the spin 1 or 2
modes break the degeneracy.

A zero mode is an eigenvector with a vanishing eigen-
value that presents a problem to the inversion of the matrix.
It corresponds to conserved quantities in the system, so in
a system with only number-conserving processes, two zero
modes exist: one corresponding to the conservation of energy
and the other to the conservation of total particle number. At
the order we consider, our theory exactly conserves particle

number, which means that the source must be absolutely or-
thogonal to both the energy and number conservation zero
modes. This can only be accomplished by detailed account-
ing for a chemical potential that we do not develop, or by
explicitly knowing the form of the zero mode. The exact
form of the zero mode is known for a single-component
gas [33] but this result is not applicable to multicomponent
gases and rigorous study of this is beyond the scope of this
work. To avoid detailed treatment of a chemical potential, one
would have to make the system particle number nonconserv-
ing. One would then need to consider 1 ↔ 2 processes or
2 ↔ 4 processes, which would mean the return of poles in the
matrix elements, poorly defined expansion to higher orders
in the coupling, and/or a reevaluation of the approximations
in this work. Due to a large coupling constant in the LSM,
higher-order expansions are not well defined. As a result,
these considerations are beyond the scope of this work and the
development of techniques to address them will be pursued
elsewhere.

The details of the LSM itself are incorporated in the ther-
mal masses, collision term, and source of the variational
framework that has been developed in this section. As a re-
sult, this method remains completely general and quantitative
comparisons can be made to other general methods and calcu-
lations, such as the RTA and perturbative QCD.

V. RESULTS

We present the numerical results beginning with the ther-
modynamics of the LSM. This reveals that the behavior near
chiral symmetry restoration contains interesting physics that
can be explored in more physical models. Importantly, the fea-
tures of the chiral symmetry restoration have a consequence
upon the system’s thermodynamics. Having verified that we
are able to resolve the dynamics we expect in the thermody-
namic quantities, we compute transport coefficients beginning
with the vector and tensor quantities σ/T and η/s in both
the relaxation time approximation and the variational method
as these do not possess exact zero modes. We conclude by
calculating ζ/s in the relaxation time approximation, leaving
the treatment of zero modes for future work.

Integrals are evaluated using Vegas adaptive Monte Carlo
[34] and numerical uncertainties are propagated through
nested calculations.2 We compare to hadron gas calculations,
chiral perturbation theory, and pQCD calculations and show
that the LSM demonstrates key features of these other
approaches. We also use this calculation to provide insight
to the possible parameters of a σ meson, keeping in mind
the characteristics of the f0(500) [35] and also the possible
caveats associated with identifying this σ field with a physical
particle [36].

A. Thermodynamic quantities

Once the effective masses shown in Fig. 1 are obtained via
a self-consistent numerical optimization [37], one is able to

2https://pypi.org/project/uncertainties/
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FIG. 2. Thermodynamic quantities for a vacuum σ mass of
400 MeV. Quantities for other values of the vacuum σ mass can be
seen in Ref. [12].

calculate thermodynamic quantities such as energy density,
pressure, and entropy density (Fig. 2); heat capacity (Fig. 3);
and the speed of sound (Fig. 4). An important and clearly
visible feature is the different behaviors of the thermody-
namic quantities and heat capacity at different values of the
vacuum σ mass: The higher the vacuum σ mass, the more
suddenly chiral symmetry is restored, producing a peak in
the heat capacity and a corresponding trough in the speed of
sound. Similarly, the thermodynamic quantities have a more
pronounced behavior at m0,σ = 900 MeV than they do at
600 MeV. This behavior has a clear impact on the transport
coefficients, but none more so than the bulk viscosity, which is
highly sensitive to the conformality of the system as measured
by the speed of sound.

FIG. 3. Heat capacity at various values of the vacuum σ meson
mass. The 600- and 900-MeV vacuum σ mass cases match those of
Ref. [12].

FIG. 4. Speed of sound in the hadron gas. The 600- and
900-MeV vacuum σ mass cases match those of Ref. [12].

B. Electrical conductivity

We now turn our attention to the transport coefficients and
begin with the electrical conductivity, which quantifies the
conduction properties of the medium. The DC conductivity
is the real, static part of the complex conductivity tensor,
σel = Re{limω→0+ σii(ω, 0)}, and is related to the electrical
field through Ohm’s law: �JEM = σel �E . One may use linear
response theory [17] to derive a Kubo formula for the con-
ductivity tensor, which features the electromagnetic current
operator:

σi j = −i
∫

d4xθ (t )ei(ωt−�k·�x)
〈[

JEM
i (t, �x), JEM

j (0, 0)
]〉
. (88)

Importantly, the emission of electromagnetic radiation is also
regulated by the current-current correlator [38]. Therefore,
in addition to its intrinsic interest from the point of view of
transport, σel can provide information on the ability of the hot
and strongly interacting medium to emit soft photons:

lim
ω→0+

lim
k→0+

ω
d3R

d3k
= #T σel, (89)

where # is a numerical prefactor. Rigorous quantitative con-
trol of the electrical conductivity can thereby also provide
constraints on the phenomenology of soft electromagnetic
radiation.

The electrical conductivity has been the subject of previous
studies with both hadronic (confined) and partonic degrees of
freedom [13,39–47]. The dc electrical conductivity was not
previously studied in the LSM, although its vector structure is
conducive to calculation using the variational method we have
extended. We provide calculations here both in the relaxation
time approximation and in the variational method, noting the
differences between them.

Some extractions of the electrical conductivity of hadron
gases are available, making this an ideal choice for further
study and for validation of our method. An additional ben-
efit comes in computational efficiency: Since the conserved
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FIG. 5. Comparison with some other calculations of electrical
conductivity for different values of the σ vacuum mass. “Variational”
is abbreviated to “Var.” Also shown here are the electrical conductiv-
ity obtained in the parton-hadron string dynamics calculation [42]
and the Nambu-Jona-Lasinio model [43].

charge for electrical conductivity is simply the electrical
charge of particle a, the source [Eq. (81)] for neutral particles
is identically 0. This naturally simplifies the structure of the
maximization, since these components will not contribute and
do not have to be calculated in either the exact variational
or RTA approaches. The σ meson contributes resistance only
through interactions with π .

As current calculations of transport parameters of strongly
interacting matter have not converged to a set of well-defined
values, it is prudent to learn from this apparent lack of unity
and to compare with various approaches and models. We
begin with the electrical conductivity here. Figure 5 contains
results for the electrical conductivity over temperature plotted
as a function of temperature, calculated by both the RTA and
variational techniques. Some previous calculations of σel for
a hadron gas are also shown. For ease of comparison between
different models and results we use a scaled temperature.
Since there is no genuine phase transition occurring with in-
creasing temperature, one must adopt an operational definition
of critical temperature “Tc.” Possible choices are the temper-
ature where effective masses are minimized (see Fig. 1), or
when cV /T 3 peaks (see Fig. 3). In addition, these answers
would vary, depending on the choice of m0,σ . Choosing the
first criterion leads to Tc = (242, 245, 259) MeV, for m0,σ =
(400, 600, 900) MeV, respectively. The second yields Tc =
(200, 219, 245) MeV. We will choose the first scheme and
the intermediate value of the scalar-isoscalar mass. Therefore,
for calculations that involve the LSM, we set Tc = 245 MeV.
The “critical temperature” in other approaches shown here is
the one reported using each of those models.

Our results depend strongly on the value of the vacuum σ

mass, as seen in Fig. 5. For comparison, we also show results
obtained with the parton-hadron string dynamics (PHSD)
[42] and Nambu-Jona-Lasinio (NJL) [43] models. As is the
case for the magnitude of the transport parameters, there is

FIG. 6. The specific shear viscosity, η/s, is calculated in the
relaxation time approximation and with the functional variation
method and compared to results using BAMPS [50], the dynamical
quasiparticle model (DQPM) and NJL of Ref. [43], and AdS-
CFT [49]. We additionally compare to the variational technique of
Ref. [12], labeled as “Alt. Var.”

currently no consensus on the details of their temperature
dependence. A hint of critical behavior is observed in the
results with large σ mass, which is also seen in the results
of PHSD, but that is where similarities end. This spread in
theoretical results is also seen in more extensive compilations
[48], which makes it difficult to single-out a preferred value
of m0,σ by comparing between theoretical results. However,
the magnitude of the vast majority of results obtained in
the field fall within the range spanned by the value of m0,σ

explored here.
We directly compare the calculations in the relaxation time

approximation and the variational method and we find that
the two are within a factor ∼3 of each other. This deviation
between results obtained with the two techniques using the
same model is a feature seen in all of our calculations and is
also observed in others [12]. We also note some difference in
the parametric behaviours, particularly at low-T and near Tc.
This could be added to the growing body of evidence caution-
ing against using the RTA for precise quantitative studies of
strongly interacting systems.

C. Shear viscosity

The shape and value of the shear viscosity to entropy den-
sity ratio for strongly interacting matter is a topic of immense
interest. Our results (Fig. 6) again reveal that relaxation time
calculations of the minimum value of η/s can be as much as a
factor of 3 lower than the value of a more precise calculation
within the same theory. While the RTA calculation of η/s with
a vacuum σ mass of 900 MeV approaches the KSS result
of 1/4π [49], the same calculation in the variational method
does not.

Many calculations of η/s exist in the contemporary sci-
entific literature and we again can not show an inclusive

034906-9



HEFFERNAN, JEON, AND GALE PHYSICAL REVIEW C 102, 034906 (2020)

compendium here. It is appropriate to show a direct com-
parison to another similar calculation in the linear σ model
[12]. As seen on Fig. 6, the numerical results reported here
are close those seen in Ref. [12], with a difference increasing
with decreasing temperatures. As T shrinks to the lowest
values explored here, an apparent plateau in η/s is seen in
Ref. [12]—and perhaps even a decrease—whereas the values
of specific shear viscosity calculated here follow an almost-
perfect exponential increase. In addition, the figure contains
results obtained with BAMPS (a relativistic Boltzmann equa-
tion solver) [50], the dynamical quasiparticle model (DQPM)
[43], and with the NJL model [43]. These approaches again all
yield results that differ over the range of temperatures chosen
here. This is a recurrent theme and is consistent with the
current state of affairs in the field. Several of those approaches
use different degrees of freedom but parton-hadron duality
for T ∼ Tc has the potential to minimize these differences.
Finally, calculations of η/s exist for lower values of T [8,51].
Given that the range of validity of those decreases with in-
creasing temperature3 and our results have used the s → ∞
limit, showing that they agree in some range of T (they do)
has questionable value.

In most hydrodynamic applications, quantities are often
fixed by the ratios of different transport coefficients. If the
system can be characterized by a single relaxation time, then,
once we know one transport coefficient, others can be deduced
by knowing these ratios. A natural question is that, while
the use of the RTA is questionable for quantitative studies,
perhaps the ratios between transport coefficients calculated
using the RTA are close to those obtained using the variational
technique. We explicitly considered the ratio of electrical
conductivity to shear viscosity, σel/η. The value of the ratio
using the RTA depends on choice of m0,σ . Choosing the lower
value more closely reproduces the ratio seen in the functional
variation calculation. Even with the larger scalar-isoscalar
masses, the ratios from the RTA are within ∼20% of those
obtained using functional variations. The ratios obtained with
both techniques are almost flat above Tc. We will show these
results situated in context and in more detail in upcoming
work.

D. Bulk viscosity

We present the calculation of the linear σ model bulk vis-
cosity in the RTA in Fig. 7. The only computational advantage
of the RTA presents itself here: Zero modes of the colli-
sion matrix are not present. However, as we have established
through the calculations of electrical conductivity and shear
viscosity, we can produce only an estimate that exhibits the
broad dynamics of the more precise calculation.

We do not calculate bulk viscosity in the variational tech-
nique because of zero modes, as discussed in Sec. IV. We
instead calculate the bulk viscosity in the relaxation time
approximation as this approximation bypasses the issue. We
have shown in Figs. 5 and 6 evidence suggesting that the RTA

3The work in Ref. [8] relies on chiral perturbation theory, for
instance.

FIG. 7. The bulk viscosity to entropy density ratio for a variety of
vacuum σ masses in the relaxation time approximation. Comparisons
are shown to pQCD [33].

is insufficiently precise for detailed studies, and discussions in
the literature also suggest the RTA is insufficient for calcula-
tions of the bulk viscosity [52]. With those caveats in mind,
one observes that the peak exhibited in Fig. 7 by the LSM
RTA calculation with the larger σ mass is approximately a
factor of 3 lower than that used in some hydrodynamics-driven
phenomenological analyses [53,54]. This must be understood
in context: As made clear in Ref. [55], the bulk viscosity
is currently not well constrained by systematic analyses of
experimental data.

As stated many times, the convergence of results for trans-
port coefficients is currently not at hand. This is especially
true for the bulk viscosity and it is clear that the proper exact
treatment of bulk viscosity should be a priority for future
investigations. One of the reasons for this emphasis is the
special dual role enjoyed by ζ/s. On one hand, in dynamical
simulations the bulk viscosity reflects the resistance of the
hydrodynamic system to volumetric deformation and there-
fore has a direct impact on the average transverse momentum
of measured hadrons [53]. On the other hand, it can also
be related to the nonconformality of the underlying theory,
QCD [56].

VI. CONCLUSIONS

In this work, we have used a comprehensive general
framework for the calculation of transport coefficients in mas-
sive quasiparticle theories at finite temperature with inelastic
processes. Using the linear σ model, hadronic transport co-
efficients were calculated and compared to results from other
theories. We have produced the first calculations of the elec-
trical conductivity in the linear σ model using the RTA and
functional variational techniques. We have shown calculations
for the shear viscosity in both methods, while a calculation
of the bulk viscosity was only produced in the relaxation
time approximation. Reasons for this choice were provided in
detail. In all cases, we observe that the RTA and the variational
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results can differ by a factor of ∼3. This difference arises as a
direct consequence of the RTA, in which the approximation
becomes exact in the limit when only one species in the
system is out of equilibrium at any given time. This is overly
simplistic and has a large impact on the results. This should
be interpreted as a cautionary flag for all calculations and
should preface most—if not all—current theoretical attempts
at a quantitative characterization of strongly interacting matter
out of equilibrium. This reinforces the need for precise calcu-
lations using realistic models of hadron and parton dynamics
and for rigorous and systematic phenomenological extractions
of transport coefficients from experimental relativistic heavy-
ion data. This study should also provide impetus for further
phenomenological applications by influencing, and even pro-
viding, prior distributions in Bayesian analyses [6].
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APPENDIX A: MEAN-FIELD EFFECTS
AND LANDAU MATCHING

This section provides a summary of the Landau matching
in Ref. [25], in turn based on that in Ref. [12].

Using Eq. (59), it is simple to rewrite Eq. (56) as

−UAa + DμνCa
μν = 0 (A1)

and extract the functions Ca
μν and Aa. Details of this are

provided in Ref. [25],

Ca
μν = pμ pν

2T Ea
+

∑
bcd

1

1 + δcd

∫
pb,pc,pd

W (a, b|c, d ) f eq
b

× (
Cd

μν + Cc
μν − Ca

μν − Cb
μν

)
, (A2)

Aa = 1

3T Ea

[(
1 − 3v2

s

)
(pαuα )2 − m2

a

]

+
∑
bcd

∫
pb,pc,pd

W (a, b|c, d ) f eq
b

1 + δcd
(Ac + Ad − Aa − Ab).

(A3)

These “departure functions” characterize the shear and bulk
departures from equilibrium. An important subtlety is that
in the departure function decomposition of the Boltzmann
equation, there is not a unique solution to Aa in Eq. (A3).
Infinite solutions can be generated by shifting a particular

solution A(E ), e.g.,

A′(E ) = A(E ) − a − bE , (A4)

where a is an arbitrary constant associated with particle con-
servation and b is an arbitrary constant associated with energy
conservation. This degree of freedom is related to the fact
that the Boltzmann equation admits summational invariants
[28]. We are restricting our scope to that with no chemical
potential, thus all a are 0 as there are no particle conservation
considerations. Thus, a particular solution A′

a to the above can
be related to all other solutions

A′
a = Aa − bEa. (A5)

Thus, by considering Eq. (43) and uμT μν = 0, it is
straightforward to conclude that

0 =
∑

a

∫
p

Ea f eq
a [Aa − bEa]. (A6)

Recalling the definitions of the single-particle contribu-
tions to thermodynamic quantities, it can be seen that

b = 1

T 2cV

∑
a

∫
pa

Ea f eq
a Aa. (A7)

We now consider the variational impact from the mean-
field effects on Landau matching. It is of particular importance
to treat δ f correctly [52]. We take a small deviation from the
equilibrium distribution function:

fa(x, p) = f eq
a (Ea,0) + δ fa(x, p). (A8)

The single-particle energy also takes an off-equilibrium shift,

Ea = Ea,0 + δEa. (A9)

If the equilibrium distribution function is expressed as a func-
tion of the true energy (including off-equilibrium shifts), then

fa(x, p) = f eq
a (Ea) + δ f̃a(x, p) (A10)

and

δ f̃a(x, p) = δ fa(x, p) − ∂ f eq
a (Ea)

∂Ea
δEa. (A11)

The shift in the energy density is therefore

T 00 =
∑

a

∫
pa

[
Eaδ f̃a(x, p) − f eq

a (Ea)

2T

dm2
a

dT
δT

]
(A12)

with

δ fa = −e−Ea/T

(
δEa

T
− Ea

T 2
δT

)
, (A13)

∴ δ f̃a = e−Ea/T EaδT

T 2
. (A14)

We now return to the consideration of T 00.

T 00 =
∑

a

∫
pa

1

Ea

(
E2

a − T 2 dm2
a

dT 2

)
δ f̃a(x, p). (A15)

We obtain this final result by recalling 2T dT = dT 2. By defi-
nition, u2 = 1. As a result, we satz that uμuν is the prefactor of
the T 2 term an. This follows from physical arguments, such as
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that this effective mass dependence does not have an impact
on the pressure in the local rest frame. Thus, we generalize as
follows:

T μν =
∑

a

∫
pa

1

Ea

(
pμ

a pν
a − uμuνT 2 dm2

a

dT 2

)
δ f̃a(x, pa). (A16)

Recall the definitions of shear and bulk viscosity

η = 2

15

∑
a

∫
d3 pa

(2π )3

|pa|4
Ea

f eq
a Ca, (A17)

ζ = 1

3

∑
a

∫
d3 pa

(2π )3

|p|2
Ea

f eq
a Aa. (A18)

We now impose Landau matching with the new results on
the effects of mean fields. This only modifies bulk viscosity ζ .
As before, if a particular solution does not meet the Landau-
Lifshitz matching condition, then it can be made to comply by
adding/subtracting a linear energy term,

∑
a

∫
pa

f eq
a (x, p)

Ea

[
E2

a − T 2 dm2
a

dT 2

]
[Aa(Ea) − bEa] = 0. (A19)

We now use a relation to simplify the process and find the
final result:

dP

dT
= dP

dε

dε

dT
= v2

s

dε

dT
. (A20)

Compiling Eqs. (A14)–(A16) results in

ε = T 00 = 1

T 2

∑
a

∫
p

(
E2

a − T 2 dm2
a

dT 2

)
f eqδT, (A21)

P = T ii = 1

3T 2

∑
a

∫
p
|p|2 f eqδT . (A22)

Thus,

0 = dP

dT
− v2

s

dε

dT

=
∑

a

∫
pa

f eq

[
|pa|2 − 3v2

s

(
E2

a − T 2 dm2
a

dT 2

)]
. (A23)

Using this expression, we may rearrange slightly and con-
strain the solution with the use of Landau matching.

∑
a

∫
pa

f eq|p|2 =
∑

a

∫
pa

f eq

[
3v2

s

(
E2

a − T 2 dm2
a

dT 2

)]
, (A24)

= 3T 2s. (A25)

And as a result, it is possible to constrain b in Eq. (A19)

0 =
∑

a

∫
pa

1

Ea
f eq
a

[
E2

a − T 2 dm2
a

dT 2

]
× [Aa − bEa], (A26)

b = v2
s

T 2s

∑
a

∫
pa

1

Ea
f eq
a

[
E2

a − T 2 dm2
a

dT 2

]
Aa. (A27)

We may finally substitute A′
a(Ea) = Aa − bEa into the ex-

pression for bulk viscosity and we can conclude with an

expression for bulk viscosity that meets the Landau-Lifshitz
condition by construction

ζ = 1

3

∑
a

∫
pa

|pa|2
Ea

Aa f eq
a

(
|p|2 − 3v2

s

[
E2

a − T 2 dm2
a

dT 2

])
.

(A28)
Substituting the solution for Aa from the relaxation time ap-
proximation yields Eq. (69).

APPENDIX B: DETAILS OF THE FUNCTIONAL
MINIMIZATION

Explicitly, the collision term of the functional [Eq. (78)] is

(χi... j, Cχi... j )

= β3

8

∑
abcd

∫
pa,pb,pc,pd

W (a, b|c, d ) f eq
a f eq

b

× [
χa

i... j (pa) + χb
i... j (pb) − χ c

i... j (pc) − χd
i... j (pd )

]2
,

(B1)

and the source is

(χi... j, Si... j ) = −β2
∑

a

∫
p

f eq
a qaχa. (B2)

We now encounter the first point where the masses enter
the theory: in the use of the convenient δ function expansion,

δ(0)(Ea + Eb − Ec − Ed )

=
∫ ∞

−∞
dwδ(w + Ea − Ec)δ(w − Eb + Ed ), (B3)

where we recognize w as the energy transfer. We addition-
ally define a momentum transfer q such that pc = pa + q,
pd = pb − q. To remove the integration over cosines, we must
expand these δ functions and derive limits,

δ(w − Eb + Ed )

= Ed

pbq
δ

(
cos θpbq − 2wEb − t + m2

d − m2
b

2pbq

)
, (B4)

cos θpaq = m2
a + t + 2wEa − m2

c

2paq
, (B5)

and

δ(w + Ea − Ec)

= Ec

paq
δ

(
cos θpaq − m2

a + t + 2wEa − m2
c

2paq

)
, (B6)

where q denotes the magnitude of q. Implicit in each of these
final δ functions is a θ function that ensures that energy is con-
served; �(Eb − w) in Eq. (B4) and �(Ea + w) in Eq. (B6).

The masses do not modify the Jacobians, so these are the
same for the massless case. Performing the cosine integrals
trivially using the δ function will yield limits to ensure that
the δ functions are satisfied. In order to find the limits, we
solve the inequality

cos2 θpaq =
(

m2
a + t + 2wEa − m2

c

2paq

)2

� 1. (B7)
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If we consider only elastic processes, then we can make the
further simplification that ma = mc and mb = md . Adding the
assumptions that Epa,pb � 0, mpa,pb = mpc,pd � 0 yields
the following bounds:

Ea � 1

2

[√
q2

(
4m2

a + q2 − w2
)

q2 − w2
− w

]
, (B8)

Eb � 1

2

[√
q2

(
4m2

b + q2 − w2
)

q2 − w2
+ w

]
, (B9)

|w| < q. (B10)

Our calculations also include inelastic collisions, but the
limits for inelastic processes are significantly more involved
and are excluded due to space constraints. However, the
phase space can be thoroughly explored by taking the clear
kinematic limits and checking numerically to see that the
conditions from the δ functions are satisfied. We include
details here to clarify what differences arise without taking
the small momentum transfer approximation in a massive
case. The biggest consideration is in the treatment of angular
cross terms, which are radically different. Returning to the
integral,

(χi... j, Cχi... j ) = β3

(4π )6

∑
abcd

∫ ∞

0
p2

ad paq2dqk2d pb

∫ q

−q
dw

∫ 2π

0
dφq

EcEd

pa pbq2EaEbEcEd
|M|2 f eq

a f eq
b

× [
χa

i... j (pa) + χb
i... j (pb) − χ c

i... j (pc) − χd
i... j (pd )

]2
�(Ea + w)�(Eb − w), (B11)

χ (p) can then be expanded in a basis,

χ (p) =
N∑

m=1

amφ(m)(p), (B12)

where we successfully use the same basis as that in Ref. [13],

φ(m)(p) = (p/T )m

(1 + p/T )N−1
, (B13)

where N is the size of the basis, which has been chosen such
that it converges quickly. The coefficients am are maximized
in order to maximize the functional Q, which we will denote
as Qmax. We must now also repeat the treatment of δ functions
for cosines to account for masses. All our results for limits and
angular factors recover those of Ref. [13] when m → 0,

cos θpaq = 2wEa + t + m2
a − m2

c

2paq
, (B14)

cos θpbq = 2wEb − m2
b + m2

d − t

2pbq
, (B15)

cos θpcq = 2wEc − t + m2
a − m2

c

2pcq
, (B16)

cos θpd q = −2wEd − m2
b + m2

d + t

2pd q
, (B17)

cos θpa pc = 2EaEc + t − m2
a − m2

c

2pa pc
, (B18)

cos θpb pd = 2EbEd + t − m2
b − m2

d

2pb pd
, (B19)

cos θpa pb = cos θpaq cos θpbq + sin θpaq sin θpbq cos φ, (B20)

cos θpa pd = cos θpaq cos θpd q + sin θpaq sin θpd q cos φ, (B21)

cos θpc pb = cos θpcq cos θpbq + sin θpcq sin θpbq cos φ, (B22)

cos θpc pd = cos θpcq cos θpd q + sin θpcq sin θpd q cos φ. (B23)

What remains is to properly deal with the χ factor. Know-
ing that the matrix elements in the LSM are constants has the
potential to simplify the forms of some of the φ integral, but
this is properly done at the end of the manipulations.

In not taking the small momentum transfer approximation,
we must consider all of the angular factors. As a result, we
require proper treatment of angular to account for the inelastic
processes that take place in the linear σ model,[

χa
i... j (pa) + χb

i... j (pb) − χ c
i... j (pc) − χd

i... j (pd )
]2

. (B24)

This produces terms such as

2χa
i... j (pa)χb

i... j (pb) = 2χa(pa)χb(pb)Pl
(

cos θpa pb

)
. (B25)

Taking the analogy to φ as shown before, the right-hand side
becomes(

φa
m(pa)φb

n (pb) + φa
n (pa)φb

m(pb)
)
Pl

(
cos θpa pb

)
. (B26)

This occurs for all the cross terms and angles between parti-
cles. The result of this computation is inserted into Eq. (B11)
but is not included here due to length. Care must be taken with
angular cross terms in Eq. (B11). These are explicitly

Ii... j ( p̂a)Ii... j ( p̂b) = Pl (cos θpa pb ), (B27)

where Pl (cos θ ) is the lth Legendre polynomial and refers to
the spin of the underlying transport coefficient. As discussed
in Sec. IV, the appropriate values are 0 for the bulk viscosity
(a scalar), 1 for the conductivity (a vector), and 2 for the shear
viscosity (a tensor).

The electrical conductivity, at least in the case of the LSM,
is a simple case as the source for neutral particles is explicitly
0 and we expect δ f to be identical only for particles with
identical mass and reactions. This makes it possible to easily
identify components of the collision matrix that do not con-
tribute. The shear and bulk viscosity will require appropriate
consideration of different δ f for π and σ mesons.

Most importantly, in shear and bulk viscosity, we must
consider a cross coupling between the σ and the π with
appropriate consideration for their different departures from
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equilibrium. This means that instead of an N × N collision
matrix, we instead have a 2N × 2N collision matrix. Note that
it is not 4N × 4N because for the viscosities, the pions are
identical. We therefore sum the three pions in the π segment
of the above matrix and the πσ interactions in the πσ sections
above. In the expansion in Eq. (B12), one species will have
expansion coefficients am, but the other will then have the
expansion coefficient aN+m. We now turn to a discussion of
the source.

The assembly of the collision matrix C̃ and the source
vector S̃ require some details to ensure that interactions are
properly implemented. The assembly of these into block
components most clearly demonstrates this process. C̃ is as-
sembled is by calculating each component with only one
species Cσ , Cπ and then the interactions between particle
species, Cσπ , and then compiling into blocks within the re-
spective matrices, [

Cσ Cσπ

Cσπ Cπ

]
. (B28)

The notation below is somewhat simplified, Cπ can be further
expanded into

Cπ =
⎡
⎣ Cπ0

Cπ0π+
Cπ0π−

Cπ+π0
Cπ+

Cπ+π−

Cπ−
Cπ−π+

Cπ−π0

⎤
⎦,

although this becomes more cumbersome to show in the full
collision matrix. Cσ contains all reactions with only σ and the
off diagonals contain pion-σ reactions. Similarly, the source
is composed of subcomponents that are compiled into[

Sσ

Sπ

]
. (B29)

The term Sπ may be decomposed in the same manner as Cπ .
Thus, Qmax becomes

Qmax = 1

2
[Sσ Sπ ]

[
Cσ Cσπ

Cσπ Cπ

]−1[
Sσ

Sπ

]
. (B30)
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