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B. Nachman et al. [Phys. Rev. Lett. 126, 062001 (2021)] recently introduced an algorithm (QPS) for
simulating parton showers with intermediate flavor states using polynomial resources on a digital quantum
computer. We make use of a new quantum hardware capability called dynamical quantum computing to
improve the scaling of this algorithm, which significantly improves the method precision. In particular, we
modify the quantum parton shower circuit to incorporate midcircuit qubit measurements, resets, and
quantum operations conditioned on classical information. This reduces the computational depth from
OðN5 log2ðNÞ2Þ to OðN3 log2ðNÞ2Þ and the qubit requirements from OðN log2ðNÞÞ to OðNÞ. Using
“matrix product state” state vector simulators, we demonstrate that the improved algorithm yields expected
results for 2, 3, 4, and 5-steps of the algorithm. We compare absolute costs with the original QPS algorithm,
and show that dynamical quantum computing can significantly reduce costs in the class of digital quantum
algorithms representing quantum walks (which includes the QPS). Python code that implements QPS, both
with and without dynamic gates, is publicly available on Github.
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I. INTRODUCTION

High energy physics (HEP) simulations are one of the
most natural and exciting applications of quantum com-
puters, given the complex many-body quantum nature of
HEP processes. Foundational work establishing the exist-
ence of polynomial scaling digital quantum algorithms for
scattering calculations [1] has been followed by a variety of
particle and nuclear physics investigations into simulations
on quantum computers.1

While most of these studies propose quantum algorithms
for the full scattering process on a quantum computer, a
complementary approach has been proposed to exploit
factorization [3]. In particular, scattering cross sections

approximately factor into pieces governed by physical
processes occurring at different energy scales. One way
to factorize a full calculation at a collider like the Large
Hadron Collider (LHC) involves parton shower (PS)
Monte Carlo. Parton showers govern the collinear radiation
from high energy charged particles. Classical PSs approxi-
mate this radiation as a Markov Chain. This is an excellent
approximation in some cases, but ignores certain interfer-
ence effects. Recently, Ref. [4] introduced a quantum
algorithm for parton showers (QPS) that models interfer-
ence effects from intermediate flavor states. This algorithm
requires only polynomial resources to model the same
physics as existing exponentially scaling algorithms. While
the QPS does not describe the full properties of PSs in the
Standard Model (dominated mostly by the strong force), it
represents an important benchmark for developing and
testing HEP algorithms on quantum computers.
Even though the QPS requires only polynomial quantum

resources, it is still challenging to run on existing devices.
This is because we are in the noisy intermediate scale
quantum (NISQ) [5] computing era where qubit counts,
connectivities, and coherence times are limited, and quan-
tum gate and readout operations have significant noise.
Therefore, there is a strong motivation to improve the
polynomial scaling of the current quantum algorithms like
QPS.
In this paper, we improve the original QPS algorithm [4]

by using dynamical quantum circuits: we incorporate
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midcircuit qubit measurements2 and quantum gates applied
dynamically based on results of classical processing on
these measurements. The resulting quantum state prepared
by the modified protocol is equivalent to the original. By
resetting the measured qubits to the ground state and re-
using them for subsequent iterations, the computational
complexity in both qubits and gates is reduced. Compared
to the original algorithm, the new version uses a factor of
OðN2Þ fewer standard entangling gates, where N is the
number of points used to discretize the PS.
This paper is organized as follows. Section II introduces

dynamic quantum computing, in which a quantum process-
ing unit (QPU) interacts with a classical processing unit
(CPU) during computation. This is in contrastwith nearly all
current digital quantum algorithms, where a preset sequence
of quantum gates are applied, and the system is measured
only as the final step of the computation. Next, Sec. III
begins by briefly reviewing theQPS algorithm [4], including
its qubit and quantum gate requirements. Section III then
continues by introducing a modified QPS that incorporates
midcircuit measurement and quantum-classical feedback.
We have implemented this algorithm in QISKIT [6] and
provide numerical results in Sec. IV. The simulations agree
with those in Ref. [4] and we are able to make more precise
predictions than were possible before, using the matrix
product state simulator.

II. DYNAMIC QUANTUM COMPUTING

Dynamic quantum computing involves dividing a
program into (1) steps that can only be implemented
on a quantum computer (QPU) and (2) steps that can
be implemented more efficiently on a classical computer
(CPU), and (3) interfacing between the QPU and CPU
wherever necessary. This scheme manifests in two cat-
egorically distinct ways.
First, one could execute an algorithm consisting of a

sequence of alternating quantum and classical steps, where
the result of each step is fed serially to the next. The
variational quantum eigensolver (VQE) [7] is the primary
example of this scheme. To compute the smallest

eigenvalue of a Hermitian operator H, VQE alternates
between a quantum step that computes the expectation ofH
on some vector jψðθ⃗Þi, and a classical step that minimizes
the expectation hψðθ⃗ÞjHjψðθ⃗Þi over parameters θ⃗. In this
scheme, each quantum step is independent from the
previous, so the same QPU is reset and re-used for all
quantum steps. This means that the QPU’s coherence time
must be long enough only to accommodate the execution
time for a single quantum step.
On the other hand, one could also construct an algorithm

that requires rapid interfacing between QPU and CPU. For
example, standard quantum error correction (QEC) proce-
dures entail measuring a syndrome operator, followed by a
recovery operation in which predefined quantum gates are
applied conditional on measurement results [8]. Therefore,
incorporating QEC to some general quantum program
requires frequent interfacing between QPUs and CPUs in
the formofmeasurements (QPU toCPU) and feedback (CPU
toQPU). Inaddition to direct feedbackbasedonmeasurement
results, one could also perform classical computations on
them before applying quantum gates conditioned on the
results of those computations. This procedure describes a
fully dynamic quantum-classical computer and is the basis for
the algorithm presented in this paper. Figure 1 illustrates the
operation of a dynamic quantum computer.
In contrast with VQE, where quantum and classical steps

alternate serially, QEC and other algorithms that use a
similar rapid interfacing scheme require that quantum
resources (qubits) maintain coherence during quantum-
classical interfacing.
Limited qubit coherence times are a major bottleneck

for implementing QEC and other dynamic algorithms.
However, coherence times continue to improve as hardware
is developed and refined, and because of the importance of
QEC for developing fault-tolerant quantum computers,
dynamic hardware will be a major focus in the long term.
Until now, demonstrations of dynamic computing with rapid
digital interfacing include active qubit resets [9–11], quan-
tum teleportation [12–16], and error-correction [17–26].
A more complex example was recently demonstrated by
IBM [27], employing a hybrid quantum-classical version of
phase estimation on two qubits, where an m-bit representa-
tion of the phase is computed using several shots of a hybrid

FIG. 1. Dynamic computing workflow. The essential procedure consists of four steps: (1) Measure a subset of quantum resources in
the QPU, represented here by the k-qubit register, (2) On the CPU perform some processing on the measured data, (3) Reset the
measured qubits to the j0i state so they can be reused, and (4) Based on CPU outputs, apply additional quantum operations on the QPU.
Note that the QPU must maintain coherence throughout this procedure.

2Throughout the paper, we use the terms “midcircuit mea-
surements” and “remeasurement” interchangeably.
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circuit that contains m measurement-feed-forward cycles.
For each cycle, an RzðθÞ gate is selected and applied
conditionally on previous measurement results. Different
measurement results select different θ values.
The hybrid phase estimation algorithm demonstrated

by IBM [27] closely resembles the hybrid QPS we will
introduce below in that it consists of single-qubit rotation
gates with rotation angles that depend on classical infor-
mation, i.e., midcircuit measurement results. Therefore,
IBM’s demonstration of executing a hybrid quantum
algorithm shows that our QPS algorithm can theoretically
be implemented on real devices in the future. In Sec. III, we
summarize the original QPS algorithm [4] before laying out
the dynamical version.

III. QUANTUM PARTON SHOWER ALGORITHM

First, we summarize the quantum parton shower (QPS)
algorithm originally presented in Ref. [4]. Slightly modi-
fied variants of QPS are also presented in [28,29].

A. Physical background

Parton shower algorithms are perturbative approaches to
efficiently describe high-multiplicity final states by focus-
ing on the soft and collinear regions of phase space. The
QPS algorithm in Ref. [4] was developed for a simple
quantum field theory involving two types of fermion fields,
f1 and f2, interacting with one scalar boson ϕ governed by
the following Lagrangian:

L ¼ f̄1ði=∂þm1Þf1 þ f̄2ði=∂þm2Þf2 þ ð∂μϕÞ2
þg1f̄1f1ϕþ g2f̄2f2ϕþ g12½f̄1f2 þ f̄2f1�ϕ: ð1Þ

The first three terms in Eq. (1) describe the kinematic
properties of the fermions and scalar while the latter
three terms govern their interactions. The goal of a PS
algorithm is to describe the collinear dynamics of the
theory, which in this case correspond to the fermions
radiating scalars (fi → fjϕ) and scalars splitting into
fermion pairs (ϕ → fif̄j).
In classical PSs, the rates of these processes are

described by splitting functions:

Pi→jϕðθÞ ¼ g2ijPfðθÞ; i; j ∈ f1; 2g ð2Þ

Pϕ→ij̄ðθÞ ¼ g2ijP̂ϕðθÞ; i; j ∈ f1; 2g; ð3Þ

where gi ≡ gii. The splitting functions describe the prob-
ability for a particular particle at a given step (parametrized
by the scale θ) in the parton shower evolution to undergo
a transformation. There are many formally equivalent
definitions of the scale; here we use a common choice
of the opening angle of the emission with respect to the
emitter (angularly ordered shower).

In addition to the splitting functions, another important
quantity is the no-branching probability (Sudakov factor):

Δi;kðθ1; θ2Þ ¼ exp

�
−g2i

Z
θ2

θ1

dθ0P̂kðθ0Þ
�
; ð4Þ

which describes the probability that no emission occurs
between scales θ1 and θ2. With the splitting functions and
Sudakov factors, we can sample from the cross-section
using a Markov Chain algorithm that generates one
emission at a time, conditioned on the previous emissions.
In particular, at a given step in the algorithm with a fixed
number of particles, the probability that none of them
radiate or split is simply a product over Sudakov factors. If
something does happen at a given step, the probabilities are
proportional to the appropriate splitting function. In the
limit g12 → 0, the Markov Chain algorithm can be imple-
mented in terms of emission probabilities, and is therefore
classically efficient. However, if g12 > 0, there are now
multiple histories with unmeasured intermediate fermion
types which contribute to the same final state. To account
for these interferences, we must implement the Markov
Chain at the quantum amplitude level—and with the range
of opening angles θ discretized into N parts, this neces-
sitates keeping track of Oð2NÞ different histories. This
motivates the QPS algorithm, which computes the final
state radiation with g12 > 0 using only polynomially many
qubits and gates on a digital quantum computer.

B. Basis for the quantum algorithm

The interaction terms [Eq. (1)] of the Lagrangian can be
written as a matrix equation:

Linteraction ¼ ð f̄1 f̄2 Þ
�

g1 g12
g12 g2

��
f1
f2

�
ϕ: ð5Þ

Furthermore, the “interaction matrix” is real and symmet-
ric, and can thus be diagonalized as

G≡
�

g1 g12
g12 g2

�
¼ U†

�
ga 0

0 gb

�
U: ð6Þ

By defining a change of basis

�
fa
fb

�
≡U

�
f1
f2

�
; ð7Þ

the interactions [Eq. (1)] become diagonal:

Linteraction ¼ ð f̄a f̄b Þ
�
ga 0

0 gb

��
fa
fb

�
ϕ: ð8Þ

In this “diagonal basis,” splitting does not create inter-
ference between fermion types. In other words,
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Pi→jϕðθÞ ¼ δijg2ijPfðθÞ; i; j ∈ fa; bg ð9Þ

Pϕ→ij̄ðθÞ ¼ δijg2ijPϕðθÞ; i; j ∈ fa; bg; ð10Þ

where δij is the Kronecker delta. Note that this is also the
case in the original basis if g12 ¼ 0.
Therefore, to simulate interference between fermion

types, we first rotate particle registers jpi encoding
fermion/boson fields into the diagonal basis according to
Eq. (7), proceed with a quantum analogue of the classical
Markov Chain algorithm (generating a history of angles
and particle types), and lastly rotate the final particle states
back to the original basis. If g12 > 0, then the initial rotation
to the diagonal basis creates a superposition of fa and fb
fermions. Subsequent operations act on this superposition,
and all intermediate amplitudes/histories are preserved
throughout the quantum Markov Chain. This contrasts
the classical MCMC parton shower, where superpositions
of multiple fermion types are not included.

C. Original quantum algorithm

The QPS circuit uses a qubit register each to encode the
particle state and history, another three registers to store
derived quantities about the number of particles, and a
number of ancillary qubits. For N steps of the algorithm
(i.e, discretizing the range of opening angles into N parts)
and with nI initial particles, the qubit counts for all of these
registers are provided in Table I.
The QPS algorithm then proceeds by iteratively

applying a series of steps. As shown schematically in
Fig. 2, each step (m) has six components: (1) basis rotation
RðmÞ, (2) count particles Ucount, (3) determine emission

UðmÞ
e , (4) update history Uh, (5) update particles U

ðmÞ
p , and

(6) inverse basis rotation RðmÞ† . Using the registers
described in Table I, Alg. 1 gives a high-level description
of the QPS algorithm in terms of these six meta gates. A
detailed description of each register and each quantum gate
is provided in Appendix A. Additionally, Fig. 2 illustrates
two steps of the circuit diagram for Alg. 1. Note that
emission history register jhim is updated and controlled on
for Up once at step m, but untouched at previous and
subsequent steps. This property of the history register is a

consequence of the lack of interference between different
histories with the same emission angles. This motivates the
idea of measuring jhim after each step, and then reusing
those qubits during subsequent steps, thus reducing qubit
requirements for the QPS.

D. Modified quantum parton shower

Using midcircuit operations conditioned on measure-
ment results, we can significantly simplify the quantum
circuit of the previous section. A qubit that is untouched for
the remainder of a circuit can be measured at any time
without changing (in principle) the properties of the
encoded quantum state. In fact, a qubit used only to control
operations on other qubits can be measured—and all
subsequent quantum controls replaced by classical con-
trols—without affecting the distribution of measured states.
By invoking this deferred measurement principle on Fig. 2,
the history subregister jhim at step m can be measured

directly after applying UðmÞ
h , and the results used to classi-

cally control UðmÞ
p . Therefore, in principle, the qubits of

jhim can be reset to the ground state j0i and reused for
jhimþ1. Because jhim encodes a superposition of which
particle jp1i;…; jpnIþm−1i, or None emitted at step m,

TABLE I. Registers in the QPS quantum circuit [4] along with
the number of qubits required for N steps and nI initial particles.

Register Purpose No. of qubits

jpi Particle state 3ðN þ nIÞ
jhi Emission history

P
N−1
m¼0 ⌈log2ðnI þmþ 1Þ⌉

jei Did emission happen? 1
jnϕi Number of ϕ ⌈log2ðN þ nIÞ⌉
jnai Number of fa ⌈log2ðN þ nIÞ⌉
jnbi Number of fb log2ðN þ nIÞ

Ancillas 4⌈log2ðN þ nIÞ⌉þ 5

Algorithm 1. Original QPS algorithm [4].

Data: Splitting functions Pi→jϕ, Pϕ→ij, couplings g1, g2, g12, step
parameter ϵ, number of steps N, and nI initial particles.

Result: Full amplitude description of final state radiation.
begin
j Initialize all qubit registers in the j0i state.
j Encode initial particles jpi1…jpinI .j for j ← 0 to N − 1 do
j j (1) Basis rotation: Rotate all particles in jpi
j j to the diagonal basis (Eq. (6)) using Eq. (A5).
j j (2) Count particles: Using Ucountj j (Appendix A 6), count the number of each particle
j j type, storing the results in jnai, jnbi, jnϕi.j j (3) Determine emission: Using Uej j (Appendix A 7), encode whether an emission
j j occurred this step on jei, where the probability
j j of emission is controlled on jnai, jnbi, jnϕi.j j (4) Update history: Using Uh (Appendix A 8),
j j update the history register jhim, whichj j encodes which particle (if any) emitted this
j j step. The relative amplitudes for particular
j j emissions are controlled by jnai, jnbi,j j jnϕi; jpi; jei. (Note that jei is put back into
j j the j0i state implicitly in Uh.)j j (5) Update particles: Using Up (Appendix A 9),
j j update the particle state, controlled on which
j j particle emitted (encoded in jhmi).j j (6) Inverse basis rotation: Rotate all
j j particles in jpi back to the original basis, using
j j the inverse of Eq. (A5).
j Measure all qubits.
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measuring jhim projects the wave function onto a definite
emission history. In other words, the sequence of emission
locations (particles) is stored classically during the circuit
execution. This does not affect the dynamics of the
simulation, as different emission histories do not interfere
with each other—fermion superpositions within the particle
register jpi remain intact and only affect operations within
the same history. Therefore, by running the simulation a
polynomial number of times (given some constant stat-
istical tolerance), we still construct an accurate probability
distribution of final states. In this section, we describe at a
high level how measuring and resetting jhi after each step
simplifies the QPS algorithm. A detailed treatment of the
improvements is provided in Appendix A.
Measuring the history register at a given step tells us

which particle emits at that step, so the entire emission
history can stored as classical information during the
simulation. In fact, given that the simulation begins
with definite initial particle types (fermion or boson),
then the type of particle emitted at each step can be
inductively inferred from the emission history. Note that
while individual fermions may be in a superposition of
different “flavors” a=b—for the two types of emissions
considered—knowledge of the emitting particle type
(f or ϕ) always implies the emitted particle type, as we
consider the splittings f → fϕ and ϕ → ff. Therefore,
the total number of particles (ntot), number of bosons (nϕ),
and number of fermions (nf ¼ nfa þ nfb) are classical
information. This lets us remove two of the three counting
registers jnϕi, jnai, jnbi, as follows.

In the original QPS, the Ue and Uh gates apply rotations
with different angles, where each rotation (angle) is
controlled on one of the possible values stored in
jnaijnbijnϕi. With midcircuit measurements of jhi, nϕ is
classical information, so there is no need store and control on
jnϕi at all. Now supposewe count the number of a-fermions
using a quantum circuit—without loss of generality we
could instead count the number of b-fermions—and apply
rotations controlled on each possible value stored in jnai.
There is a one-to-one mapping of the possible values stored
in jnai to the possible values of jnbi, given by
ntot ¼ na þ nb þ nϕ, as ntot and nϕ are stored on a CPU.
Therefore, there is no need to store and control on jnbi, as the
superposition of possible nb’s is already implicitly encoded
in jnai. Thus, by measuring jhi at each step, jnbi and jnϕi
become redundant and can be removed.
Suppose we start with

nf;0 ¼ initial number of fermions ¼ nfa þ nfb
nϕ;0 ¼ initial number of bosons

ntot;0 ¼ nf;0 þ nϕ;0 ð11Þ

Then, after measuring the history register, the CPU stores
which of the initial particles emitted, so we adjust

nf;0 ↦ nf;1

nϕ;0 ↦ nϕ;1

ntot;0 ↦ ntot;1 ð12Þ

FIG. 2. High-level circuit diagram of the first two steps of the QPS algorithm. Round gates indicate control qubits.
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in the CPU accordingly, and the emitted particle is encoded
in jp1i. This process is repeated for each subsequent
simulation step, so inductively nf;m; nϕ;m; ntot;m are stored
in the CPU throughout the simulation. Under the
assumption that we can implement the workflow from
Fig. 1, we can use this information to reduce both the
computational complexity and absolute qubit/gate counts
of QPS. Alg. 2 gives a high-level description of the
improved QPS algorithm with midcircuit measurements.
The second simplification is as follows. Storing ϕ or

None in particle register is redundant, as given the emission
history, the location of all ϕ and None particles in the
simulation is stored in the CPU. Therefore, we encode
particle m into a qubit subregister jpmi only if it is a
fermion. To see that this can be done without significantly
changing the QPS algorithm, we briefly comment on each
gate that acts on jpi: R,Ucount,Uh, andUp (see Fig. 3). The
basis rotation R [Eq. (A5)] acts as the identity on ϕ’s, so
simply not encoding ϕ’s does not affect the action of R. For
each particle jpmi in jpi, the counting gateUcount applies an
incrementer on jnai controlled on jpm ¼ fai (see
Appendix B 1). Therefore, not encoding ϕ’s on qubits
does not affect the action of Ucount. The Uh gate applies a
two-level rotation to jhi for each particle in jpi, where the

rotation angle is controlled by particle type (see
Appendix B 3). Recall that by measuring the history
register, the CPU stores whether each particle in the
emission history is a f, ϕ or None. Therefore, for fermions,
control on jpi as before, but for ϕ’s the corresponding
rotation can simply be applied without controlling on jpi.
In the circuit diagram of Uh—Fig. 13—this can be
visualized by replacing quantum register jpii with classical
wires if jpii ¼ jϕi. The gate sequence of Fig. 13 is

unchanged, except that some rotations Uðm;iÞ
h may no

longer be controlled on jpii, but applied directly to jhi.
Finally, the particle update Up must be applied only if a

ϕ → ff̄ emission occurs. If that is the case, then the circuit
in Fig. 14 is applied to jpi.

1. Qubit costs

Figure 3 illustrates the high-level circuit diagram for two
steps of the improved QPS algorithm. Note the reduction in
registers compared to the original QPS. The improved QPS
circuit calls for four qubit registers, detailed in Table II.
Note that the particle state only calls for 2ðN þ nIÞ qubits,

compared to 3ðN þ nIÞ originally (Table I). By only
encoding fermions in quantum registers, two qubits are
sufficient to encode fa, fb, f̄a, f̄b. Also note that the number
of required qubits varies between different circuit executions,
as a simulation where more fermions are produced requires
more quantum resources. In the worst case, jpi will still
consist of N þ nI subregisters, while the actual number is
the total number of fermions in the system, denoted nf.
Depending on parameters g1, g2, g12, ϵ, and the splitting
functions Pi→jϕ, Pϕ→ij, the expectation for hnfi may be
significantly smaller than N þ nI . Therefore, the maximum
number of qubits required for an N-step simulation is

No.of Qubitsmax ¼ 2ðnI þNÞþ 4⌈log2ðnI þNÞ⌉þ 2; ð13Þ

while the actual number is

No. of Qubitsactual ¼ 2½nf þ ⌈log2ðnI þ NÞ⌉
þ ⌈log2ðnfÞ⌉þ 1�: ð14Þ

If a variable number of qubits can be used for circuit
execution, the latter represents a significant resource

Algorithm 2. QPS with midcircuit measurements.

Data: Splitting functions Pi→jϕ, Pϕ→ij, couplings g1, g2, g12, step
parameter ϵ, number of steps N, and nI initial particles.

Result: Full amplitude description of final state radiation.
begin
j Initialize all qubit registers in the j0i state.
j Encode initial particles jpi1…jpinI .j for j ← 0 to N − 1 do
j j (1) Rotate all particles in jpi to the diagonal basis (Eq. (6))
j j using Eq. (A5).
j j (2) Using Ucount (Appendix A 6), count the number of
j j a-fermions, storing the result in jnai.j j (3) UsingUe (AppendixA 7), encodewhether an emission
j j occurred this step on jei, where the probability of
j j emission is controlled on jnai, and nϕ; ntot. from the CPU.
j j (4) UsingUh (Appendix A 8), update the history register
j j jhim, which encodes which particle (if any) emitted
j j this step.
j j The relative amplitudes for particular emissions are
j j controlled
j j by jnai, jei, andnϕ; ntot. fromtheCPU. (Note that jei is put
j j back into the j0i state implicitly in Uh.)j j (5) Measure the history register jhi, storing the result on
j j the CPU.
j j (6) If the measurement result indicates that a ϕ → ff̄
j j emission occurred, apply Up (Fig. 14) to update the
j j particle state.
j j (7) Reset jhi to the j0i state.
j j (8) Rotate all particles in jpi back to the original basis,
j j using the inverse of Eq. (A5).
j Measure jpi.

TABLE II. Registers in the improved QPS algorithm along with
the number of qubits required for N steps and nI initial particles.

Register Purpose No. of qubits

jpi Particle state 2ðN þ nIÞ
jhi Emission history ⌈log2ðN þ nIÞ⌉
jei Did emission happen? 1
jnai Number of fa ⌈log2ðN þ nIÞ⌉

Ancillas 2⌈log2ðN þ nIÞ⌉þ 1
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reduction. The asymptotic qubit scaling is just OðN þ nIÞ,
compared to OðN log2ðN þ nIÞÞ for the original QPS
algorithm (Table I). This original qubit scaling is from
storing the emission history at each step, which entails using
N subregisters jhim each with ⌈log2ðnI þmþ 1Þ⌉ ∼
Oðlog2ðN þ nIÞÞ qubits. By measuring, resetting, and re-
using jhi after each step, jhi just consists of ⌈log2ðN þ
nI þ 1Þ⌉ qubits, and the dominant scaling becomes the
OðN þ nIÞ qubits of jpi. The qubit scaling difference is
illustrated in Fig. 4, which plots qubit count against N, with
one starting particle, nI ¼ 1.

2. Gate costs

We measure gate costs by writing operations in terms of
the universal standard gate set consisting of two-qubit
controlled not gates (CNOTs) and arbitrary single qubit
gates Uðθ;ϕ; λÞ. Multi-controlled gates are decomposed
into sequences of Toffoli (CCX) gates using a standard
procedure that requires ancillary qubits equal to the number
of controls minus one [8]. Then, Toffoli gates are decom-
posed into six CNOTs [8]. For an n-control NOT gate, this
decomposition usesOðnÞ CNOTs. As two-qubit entangling
gates are far costlier to implement in real devices than
single qubit gates, we quote gate counts in terms of CNOTs.
Note that while we illustrate “classical controls” in our
circuit diagrams (Fig. 14, Fig. 13) for quantum gates
selected dynamically by the CPU, just the attached quan-
tum gates are included in the gate count.
Table III summarizes the gate costs of each component of

the improved QPS algorithm. The overall asymptotic
scaling is

OðN · ðN þ nIÞ2 · log2ðN þ nIÞ2Þ; ð15Þ
which is a factor of ðN þ nIÞ2 more efficient than the
original QPS gate scaling:

FIG. 3. High-level circuit diagram of the first two steps of the improved QPS algorithm. Round gates indicate control qubits. Double
wires indicate classical information stored on a CPU, and measured from jhi. Double wires attached to Up indicate that subgates in Up

are selectively applied based on measured values of h0; h1;…. The j0i attached to the same gate indicates a reset to the j0i state.

FIG. 4. Qubit cost comparison between the original QPS and
the improved version with midcircuit measurements. This plot is
simply an illustration of Eq. (13) and the sum over Table I with
nI ¼ 1. For nI > 1, the qubit count curves simply shift to the left,
as nI and N only appear together in the qubit scaling, as N þ nI .

TABLE III. Gate costs of the different circuit elements using
re-measurement. l≡ ⌈log2ðnI þmþ 1Þ⌉
Element Step m cost Total scaling (N steps)

R 2ðnI þmÞ OðN2 þ NnIÞ
Ucount 13lðnI þmÞ OðNðN þ nIÞ · log2ðnI þ NÞÞ
Ue ðnI þmÞð12l − 10Þ OðNðN þ nIÞ · log2ðnI þ NÞÞ
Uh OðNðN þ nIÞ2 · log2ðnI þ NÞ2Þ
Up 2 2N
Total OðNðN þ nIÞ2 · log2ðnI þ NÞ2Þ
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OðN · ðN þ nIÞ4 · log2ðN þ nIÞ2Þ: ð16Þ

This scaling improvement is due to the fact that at step m,
jnai is a superposition of nI þm possible basis states,
while jnaijnbijnϕi is a superposition of ðnI þmÞ3 possible
basis states. To implement Uh (see Appendix A), rotation
gates controlled on the counting registers jnii are applied to
jhi for each possible value stored in jnii. Therefore, in the
original algorithm, Uh consisted of OððnI þmÞ3Þ con-
trolled-rotations, while in the improved algorithm, only
OðnI þmÞ controlled rotations are applied.
Figure 5 compares the actual gate counts of our

improved QPS circuits with those of the original QPS
circuits. The dashed line is the contribution from just theUh
gate, and Fig. 5 illustrates thatUh dominates the gate count.

IV. NUMERICAL RESULTS

Using QISKIT’s matrix product state simulator [30,31],
we are able to simulate QPS with one initial particle
(nI ¼ 1) up to several steps. For each simulation, we use
a scale parameter θ ¼ θm, defined by

θm ≡ ϵm=N; ϵ ¼ 0.001; ð17Þ

splitting functions

Pi→iϕðθÞ ¼ g2i P̂fðθÞ ¼
g2i logðθÞ

4π
ð18Þ

Pϕ→iīðθÞ ¼ g2i P̂ϕðθÞ ¼
g2i logðθÞ

4π
; ð19Þ

couplings

g1 ¼ 2 g2 ¼ 1 g12 ¼ 1; ð20Þ

and one initial f1 (see Eq. (A2)),

jpiinitial ¼ jp1i ¼ j100i: ð21Þ

The couplings g1 ¼ 2, g2 ¼ 1, g12 ¼ 1 are arbitrary, but
chosen such that ga; gb ≠ 0 and ga ≠ gb [Eq. (6)], in order
to capture the full problem complexity. For simplicity, the
couplings are also kept independent of step. (In reality,
they would run with the scale). This means that the
rotations are the same at each step. The numerical values
of the diagonalized couplings are

ga ¼
3þ ffiffiffi

5
p

2
≈ 2.618 ð22Þ

gb ¼
3 −

ffiffiffi
5

p

2
≈ 0.382; ð23Þ

and the rotation angle u is

u ¼
ffiffiffi
5

p
− 1

2
ffiffiffi
5

p ≈ 0.28 rad: ð24Þ

With these parameters, the Sudakov factors, which give
probabilities of no emission from a particular particle at
step m, can be written as

ΔaðθmÞ ¼ ϵg
2
a=4πN ð25Þ

ΔbðθmÞ ¼ ϵg
2
b=4πN ð26Þ

ΔϕðθmÞ ¼ ϵðg
2
aþg2bÞ=4πN: ð27Þ

Because the couplings are kept constant, these probabilities
also remain constant at each step.
We run simulations with g12 ¼ 0 in addition to g12 ¼ 1.

As explained in Sec. III A, when g12 ¼ 0 the parton shower
can be solved using a classical Markov Chain algorithm.
Therefore, as a sanity check, we overlay analytical Markov
Chain calculations, each with 107 shots, over simulation
results with g12 ¼ 0 in our plots.
Figures 6 and 7 present simulation results for N ¼ 2, 3,

4, 5 steps and compare the outputs between the original
QPS and QPS with midcircuit measurements.3 We have
chosen two different observables for illustration.

FIG. 5. Gate cost comparison: The dashed line represents the
dominant contribution from Uh to the total gate count for QPS
with midcircuit measurements.

3We have stopped at 5 steps due to the simulation time. The
present criteria for determining how many steps to use is that
simulations with 105 shots have to take fewer than 3 hours
running naively without any parallelization on a 8 GB RAMMac.
It would be possible to go a bit further with larger computing
resources. For the remeasurement circuits, it took ∼2.5 hours to
achieve 105 shots for g12 ¼ 0 and g12 ¼ 1. We note that classical
conditioning is not fully implemented in QISKIT (it is not possible
to do arbitrary classical calculations), so we have to apply an
exponential number of classically conditioned gates.
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First, Fig. 6 shows histograms of the total number of
emissions (E). The main subplot illustrates the probability
distributions of E for classical MCMC (black), original
QPS (filled bars), and QPS with midcircuit measurements

(solid edges), with both g12 ¼ 0 (blue) and g12 ¼ 1 (red).
The second subplot magnifies differences between the
MCMC and g12 ¼ 0 simulation distributions, which are
due to statistical noise and exhibit the expected deviations.

(a) (b)

(c) (d)

FIG. 6. Probability vs Number of emissions (E) for 2, 3, 4, and 5 step simulations. Error bars represent 1σ ranges, e.g., in each third
subplot, the red error bars correspond to the standard deviation of the difference distribution between simulation results obtained from
original QPS and QPS with remeasurement. Classical MCMC data were obtained using 107 shots, so the statistical errors are suppressed
by a factor of 1=10, and are thus negligible. Error bars in each second subplot are the statistical deviations for g12 ¼ 0 simulations.
(a) N ¼ 2 (b) N ¼ 3 (c) N ¼ 4 (d) N ¼ 5.
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The third subplot magnifies differences between distri-
butions obtained from original QPS and QPS with
midcircuit measurements, which are also within the
expected statistical variations. With 105 shots per simu-
lation, typical statistical errors are on the order of σ∼ffiffiffiffiffiffiffiffi

PrðEÞ
105

q
≲

ffiffiffiffiffi
1
105

q
≈ 0.0032. Error bars shown in the second

and third subplots of Fig. 6 are 1σ ranges for the difference
distributions, and the simulation results exhibit deviations
on the expected scale. In other words, the second subplot
shows that quantum simulations with coupling turned off
ðg12 ¼ 0Þ agree with the classical MCMC algorithm, as
expected. Additionally, the two different versions of the
quantum algorithm—original and with midcircuit mea-
surements—agree with one another. Nevertheless, the
classical ðg12 ¼ 0Þ and quantum ðg12 ¼ 1Þ algorithms
yield fundamentally different results.
We briefly describe the qualitative features of Fig. 6.

First, with the chosen parameters [Eqs. (17),(19) and (20)],
it turns out that

PrðE ¼ 0; g12 ¼ 0Þ > PrðE ¼ 0; g12 ¼ 1Þ: ð28Þ
Additionally, for g12 ¼ 1, the probability of ϕ-emission is
1 − ϵ7=4πN , compared to 1 − ϵ5=4πN for g12 ¼ 0. Therefore,
conditional on a ϕ particle being present in the system,
ϕ-emissions occur more frequently when g12 ¼ 1. This
explains why the probability of having just one emission
for g12 ¼ 1 is so low compared to g12 ¼ 0. Finally, the
exact shape of E distributions depends on numerical
parameter values, but the general shape exhibited in
Fig. 6—increasing density with increasing E up to a peak
(which could be E ¼ N), followed by a tail where density
decreases as E → N—is expected to hold for all N and all
parameter values. The probability of emission at a given
step is higher when there are more particles in the system,
which explains why having just one or two emissions is less
probable compared to having several emissions. However
at the tail end (E → N) of this trend, the distribution
decreases slightly, because combinatorially there are more
histories with E ¼ N − 1 then with E ¼ N.
The second observable, Fig. 7, is the distribution of the

“hardest” emission angle, which algorithmically corres-
ponds to the first emission that occurred during the
shower evolution. The emission probability decreases expo-
nentially with logðθÞ, or linearly with opening angle θ.
Algorithmically, this is because the probability of first
fi → fiϕ emission occuring at smaller angles (later steps)
is just an exponential of the Sudakov factor [Eq. (27)]. For
g12 ¼ 0,

PrðFirst emission at stepmÞ

¼ ð1 − ΔaðθmÞÞ
Ym−1

i¼1

ΔaðθmÞ

¼ ðΔaÞm−1ð1 − ΔaÞ; ð29Þ

and for g12 ¼ 1,

PrðFirst emission at stepmÞ
¼ uðΔaÞm−1ð1 − ΔaÞ
þ ð1 − uÞðΔbÞm−1ð1 − ΔbÞ: ð30Þ

Figure 7 shows the distribution of logeðθmaxÞ, with proba-
bilities displayed in the main subplot and differences
displayed in the secondary subplots. For this observable
there is again a demonstrated difference in results between
the classical ðg12 ¼ 0Þ and quantum ðg12 ¼ 1Þ algorithms.
Nevertheless, the third subplot illustrates that the two
versions of QPS—original and with midcircuit measure-
ments—agree within expected statistical variations.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have simplified the digital quantum
parton shower (QPS) algorithm presented in [4] by con-
sidering midcircuit measurements and quantum gates that
are dynamically selected based on these measurement
results. The QPS is an iterative “quantum Markov
Chain” algorithm with N steps, and by making a midcircuit
measurement on a subset of qubits at each step, subsequent
multi-qubit controlled Ry rotations in the original QPS can
be replaced by dynamically selected single-qubit Ry

rotations. In this case, the number of required Ry rotations
at each step is reduced by a factor of N2. Additionally,
qubits measured midcircuit can be reset to the initial j0i
state and reused during subsequent steps, which reduces
qubit costs significantly. The resulting Alg. 2 improves the
quantum gate complexity from OðN · ðN þ nIÞ4 · logðN þ
nIÞ2Þ to OðN · ðN þ nIÞ2 · logðN þ nIÞ2Þ (Fig. 5), and the
qubit complexity from OðN logðN þ nIÞÞ to OðN þ nIÞ
(Fig. 4), compared to the original algorithm (Alg. 1).
We implement our quantum circuits using QISKIT

(where dynamical quantum operations is a relatively new
feature), and present results for N ¼ 2, 3, 4, 5 steps. We
illustrate agreement between the original and improved
versions of QPS, as well as agreement with classical
MCMC simulations in the limit g12 ¼ 0, where QPS can
be efficiently computed classically. Errors are shown to be
consistent with the expected statistical uncertainties in
all cases.
More generally, we showed how adopting a hybrid

quantum-classical computing platform can be used to make
an originally quantum algorithm more efficient. Recent
studies [27,32] have demonstrated that dynamic/hybrid
quantum computing is feasible, and even implemented
shallow algorithms on current hardware. As qubit design
continues to improve, we expect to be able to execute more
complicated hybrid algorithms such as QPS on real
devices, and eventually be able to compute classically
inaccessible physical observables. Moreover, as dynamic
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quantum computing is an intrinsic component of quantum
error correction, developing dynamic/hybrid computing
platforms is likely necessary in order to realize fault-
tolerant quantum computers. The improved QPS algorithm
serves as an additional case for prioritizing development of
dynamic computing platforms, as reduced qubit and gate
complexities raise the potential for realizing QPS to

compute classically inaccessible physical quantities much
sooner. It is likely that other digital quantum algorithms
with similar features—Markov Chain, or iterative algo-
rithms where interferences exist within but not between
different histories—can benefit from employing a dynamic
structure, and we encourage algorithm developers to con-
sider this approach.

(a) (b)

(c) (d)

FIG. 7. Probability vs logeðθmaxÞ for 2, 3, 4, and 5 step simulations. As in Fig. 6, error bars represent 1σ ranges for the difference
distributions. Simulation data (red, blue) is normalized such that probabilities are equal to bar height times bar width. For g12 ¼ 0
simulations (blue), the area of each bar is equal—up to statistical deviations—to the integral of the analytical curve (black) over the
respective bin. (a) N ¼ 2 (b) N ¼ 3 (c) N ¼ 4 (d) N ¼ 5.
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Our Python code is available at [33]. The paper ends with
conclusions in Sec. V.
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APPENDIX A: DETAILS OF THE ORIGINAL
QUANTUM PARTON SHOWER (QPS)

ALGORITHM

This appendix provides details on the original QPS
algorithm presented in [4].

1. Particle state jpi
This register consists of N þ nI 3-qubit subregisters, one

for each initial particle, and one for each emission step,

jpi ¼ jp1i⊗3 ⊗ … ⊗ jpnIþNi⊗3: ðA1Þ

We use three qubits to encode each particle, as there are six
different types of particles (f1, f2, f̄1, f̄2, ϕ, and None) in
our model. The exact encoding is relevant, and we use the
following,

jpii ¼

0
BBBBBBBBBBBBB@

000

001

010

011

100

101

110

111

1
CCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBB@

None

ϕ

f1=fa
f2=fb
f̄1=f̄a
f̄2=f̄b

1
CCCCCCCCCCCCCA

: ðA2Þ

Therefore, operations conditioned on whether a particle is a
fermion are controlled by just the first qubit, and operations
conditioned on whether a fermion is type-a or type-b are
controlled by just the first and third qubits. Note that two
computational basis states are extraneous.

2. Emission history jhi
In original QPS, jhi encodes the location of emission at

each step. In particular, at step m, jhmi stores a binary
number between 0 and nI þm that specifies which particle
emitted at that step. The j0i state encodes that no emission
occurred. Therefore, each subregister jhmi consists of
⌈log2ðnI þmþ 1Þ⌉ qubits, and in total jhi consists of

XN−1

m¼0

ð⌈log2ðnI þmþ 1Þ⌉Þ ∼OðNlog2ðnI þ NÞÞ ðA3Þ

qubits.

3. Emission jei
The emission register jei stores a boolean that specifies

whether an emission occurred at a given step. It is
straightforward to uncompute jei after each step, so just
one qubit is sufficient to represent jei.

4. Number registers jnϕi;jnai;jnbi
The number registers are used to count the number of

each particle type at each step. In particular, at step m each
of jnϕi; jnai; jnbi stores a binary number between 0 and
nI þm, the maximum possible number of particles at step
m. Also note that the total is constrained by

0 ≤ nϕ þ na þ nb ≤ nI þm: ðA4Þ

All three number registers are uncomputed after each step
and can be re-used for subsequent steps. Therefore, for
an N-step algorithm, each number register consists of
⌈log2ðnI þ NÞ⌉ qubits, for a total of 3⌈log2ðnI þ NÞ⌉
qubits between jnϕi; jnai, and jnbi.
Having set up the six quantum registers shown in Fig. 2,

we now describe each gate in the circuit.

5. RðmÞ basis rotation

As described in Sec. III B, we rotate fermion states from
the 1=2 basis into the a=b basis by applying unitary U
[Eq. (A5)]. Given our particle state representation (A2),
rotating a single particle represented by three qubits entails
applying the following unitary gate:

R ¼

0
BBB@

I 0 0 0

0 I 0 0

0 0 U 0

0 0 0 U

1
CCCA; ðA5Þ

where I and U are 2 × 2 matrices. Therefore, to rotate to
complete particle register jpi at step m, apply the product
gate

R⊗ðnIþmÞ: ðA6Þ

The gate in Eq. (A5) is just a controlled-U gate, where U is
applied to the rightmost qubit controlled on the leftmost
qubit, in the particle encoding (Eq. (A2)). Therefore,
applying Eq. (A6) at the beginning and end of step m
involves applying ðnI þmÞ controlled-U gates, each of
which can be decomposed into two CNOTs.
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6. Ucount particle counting

The counting gate maps the particle state jpi at stepm to
the number of each particle, which is stored in
jnϕi; jnai; jnbi. Note that we count fermions and antifer-
mions of the same type together, as this distinction does not
affect emission probabilities. For each particle jpii in the
particle state jpi, we apply an increment gate þ controlled
on particle type to each of jnϕi; jnai; jnbi, as illustrated in
Fig. 8 The increment gate controlled on ϕ, fa, and fb
implements respective transformations

jpiijnϕi → jpi ¼ ϕijnϕ þ 1i þ jpi ≠ ϕijnϕi ðA7Þ

jpiijnai → jpi ¼ faijna þ 1i þ jpi ≠ faijnai ðA8Þ

jpiijnbi → jpi ¼ fbijnb þ 1i þ jpi ≠ fbijnbi; ðA9Þ

and is illustrated in Fig. 9. In total,Ucount consists of 3ðnI þ
mÞ controlled-incrementers, each of which requires
Oð⌈log2ðnI þmþ 1Þ⌉Þ gates and ⌈log2ðnI þmþ 1Þ⌉ re-
usable ancillas. Thus, the total gate complexity of Ucount
is OððnI þmÞ · ⌈log2ðnI þmþ 1Þ⌉Þ.

7. Ue emission update

At each step, the total probability that an emission
occurs depends on the scale θm, splitting functions
PfðθmÞ; PϕðθmÞ, and numbers of each type of particle
jnai; jnbi; jnϕi. Let

ΔaðθmÞ;ΔbðθmÞ;ΔϕðθmÞ ðA10Þ

denote the probability of no emission from a particular fa,
fb, or ϕ particle, respectively. [These are the Sudakov
factors defined by Eq. (4).] Then, the total probability of
having no emission at step m is

PrðNo emissionÞ
≡ ΔðmÞ ¼ ΔaðθmÞnaΔbðθmÞnbΔϕðθmÞnϕ ; ðA11Þ

so that the probability of emission is

PrðEmit at stepmÞ ¼ 1 − ΔðmÞ: ðA12Þ

Note that jnai; jnbi; jnϕi are quantum superpositions while
θm; PfðθmÞ; PϕðθmÞ are classical parameters. The Ue gate
puts qubit jei in the j0i state with probability ΔðmÞ and the
j1i state with probability 1 − ΔðmÞ. With jei initially in the
j0i state, this entails applying a rotation

UðmÞ
e ¼

� ffiffiffiffiffiffiffiffiffi
ΔðmÞp

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΔðmÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΔðmÞp ffiffiffiffiffiffiffiffiffi

ΔðmÞp
�
: ðA13Þ

As ΔðmÞ depends on the jnai; jnbi; jnϕi, this rotation
must be controlled on all three count registers. As ΔðmÞ
takes a different value for each combination of counts,
we control on every possible combination, of which
there are Oððmþ nIÞ3Þ. Each rotation is controlled on
3⌈ log2ðnI þmþ 1Þ⌉ qubits. A standard method [8]
decomposes multi-control gates into a sequence of
Toffoli gates, which can each be implemented using six
CNOTs. Then the total cost to implement a single
3⌈log2ðnI þmþ 1Þ⌉-controlled rotation is

12 · ð3⌈log2ðnI þmþ 1Þ⌉ − 1Þ ðA14Þ

CNOTs and

3⌈log2ðnI þmþ 1Þ⌉ − 1 ðA15Þ

reusable ancillary qubits.

FIG. 9. Increment gate controlled on jp ¼ ϕi. First, a multi-
control gate that encodes whether jpii is a ϕ onto an ancilla jci
is applied. Then, a Ripple Adder [34] with jci as an input carry,
and an additional ancillary register initialized to j0i is applied.
Therefore, jnϕi is mapped to jnϕ þ 1i if c ¼ 1, i.e., if jpii is a ϕ.
Increment gates controlled on jp ¼ fai jp ¼ fbi are identical
other than the control setting (see (A2).

FIG. 8. Complete illustration of the Ucount gate.
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8. Uh history update

The Uh gate encodes the probability of specific particles
emitting. If there is no emission, then jhi → j0i with

amplitude
ffiffiffiffiffiffiffiffiffi
ΔðmÞp

But if there is an emission, Uh maps
jhi to a superposition of basis states that correspond to
particle numbers 1 to nI þm. Each state j1i through jnI þ
mi gains amplitude equal to the square root probability that
the corresponding particle emits. In particular, the proba-
bility for a specific particle to emit is equal to the total
emission probability 1 − ΔðmÞ times the conditional emis-
sion probability for that particle type. Denote the relative
emission probabilities

PaðθmÞ ¼ 1 − ΔaðθmÞ ðA16Þ

PbðθmÞ ¼ 1 − ΔbðθmÞ ðA17Þ

PϕðθmÞ ¼ 1 − ΔϕðθmÞ: ðA18Þ

Given that an emission occurred, the conditional proba-
bility that particle p is the emitter is

Prðp emitsjje ¼ 1iÞ

¼ PpðθmÞP
p∈fa;b;ϕgnpPpðθmÞ

¼ PpðθmÞPnIþm
j¼1 PjðθmÞ

: ðA19Þ

Therefore,Uh prepares the computational basis states of jhi
with the following amplitude distribution:

jhi ↦
ffiffiffiffiffiffiffiffiffi
ΔðmÞ

p
j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΔðmÞ

p

×
XnIþm

j¼1

jji · Prðpj emitsjje ¼ 1iÞ: ðA20Þ

Starting with jhi in the j0i state, this distribution is prepared
by applying a series of two-level rotations from j0i to the
other computational basis states of jhi. Each rotation is
controlled on jei, and applies the conditional emission
probability for each particle jp1i…jpnIþmi. The rotation
controlled on jpji is

Uðm;kÞ
h ¼

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − PjðθmÞP

k≥j
PkðθmÞ

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PjðθmÞP
k≥j

PkðθmÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PjðθmÞP
k≥j

PkðθmÞ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − PjðθmÞP

k≥j
PkðθmÞ

r
1
CCCA: ðA21Þ

As the rotation angle depends on counts jnai; jnbi; jnϕi,
rotations are also controlled on the count registers, in
addition to jei and jpi. Iterating through each particle
p1…pnIþm, every rotation is followed by a decrement to

jnai, jnbi, or jnϕi controlled on the previous particle type.
This means the relative emission probabilities given by
Eq. (A19) are updated after each rotation. (Note that the
denominator in the entries of Eq. (A21) is different for each
rotation.) Figure 10 illustrates a single rotation-decrement
iterate, and Fig. 11 illustrates the entire Uh gate.
The gate complexity ofUh isOððmþnIÞ4log2ðnIþmÞ2Þ,

and 3⌈log2ðnI þmþ 1Þ⌉þ 2 reusable ancilla qubits are
required.

FIG. 11. Original Uh gate. Each subgate is defined by Fig. 10.

FIG. 10. A rotation-decrement iterate used to construct Uh.
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9. Up particle update

The Up gate updates the particle state jpi based on
which particle emitted at a given step. At step m, jpmi
stores the newly radiated particle if any. For example, if
particle i emits a ϕ at step m, then Up takes

Upjpi ¼ fjijpm ¼ 0i → jfjijϕi: ðA22Þ

Keeping in mind that jhi and jpi encode superpositions of
different emission histories, Up is implemented by applying
the gate in Fig. 12 controlled on jhm − ji for each j from 1 to
nI þm. The single-qubit rotation Ur in Fig. 12 is the gate

Ur ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2a þ g2b

q
�
ga −gb
gb ga

�
: ðA23Þ

In total the particle update step consists of ðnI þmÞ
applications of Fig. 12, each controlled on the ⌈log2ðnIþ
mþ 1Þ⌉ qubits of jhmi. The gate in Fig. 12 has a constant
number of operations, so the overall gate complexity of the
particle update Up is OððnI þmÞ log2ðnI þmþ 1ÞÞ.

APPENDIX B: DETAILS OF THE QPS
ALGORITHM WITH MIDCIRCUIT

MEASUREMENTS

1. Ucount gate

We need only count the number of a single fermion type,
so both gate and qubit counts are reduced by a factor of 3,
compared to [4].
The total number of CNOTs required to implement

Ucount at step m is

13ðnf;mÞ⌈log2ðnf;mþ1Þ⌉≤ 13ðnIþmÞ⌈ log2ðnIþmþ1Þ⌉:
ðB1Þ

2. Ue gate

Instead of conditioning on jnai, jnbi, and jnϕi, we only
condition on jnai. We compute Sudakov factors [4] for
each possible value of jnai, and apply the appropriate
rotation matrices [4] conditioned on the value stored in
jnai. At themth simulation step, 0 ≤ na ≤ nI þm, so there
are at most nI þm rotations, each conditioned on
⌈log2ðnI þmþ 1Þ⌉ qubits. In the original algorithm, there
are Oðm3Þ rotations, which is the number of combinations
of jnai; jnbi; jnϕi. Here nϕ and nb are classically condi-
tioned, so the number of rotations is reduced by a factor of
m2. Thus, the computational complexity of the Ue gate is
reduced to OððnI þmÞ⌈log2nI þmþ 1Þ⌉, compared to
OððnI þmÞ3log2⌈nI þmþ 1Þ⌉ for the original [4].

3. Uh gate

Like the Ue gate, the rotations in this gate must be
conditioned only the value stored in jnai. Thus, the
computational complexity of the Uh gate is reduced to
OððnI þmÞ2log22⌈nI þmþ 1⌉Þ, compared to OððnI þ
mÞ4log22⌈nI þmþ 1⌉Þ for the original [4]. The improved

Uh gate is illustrated in Fig. 13. The individual Uðm;kÞ
h

rotations are given by Eq. (A21).

FIG. 12. Up consists of applying this gate, controlled on
jhm ¼ ji, for each j from 1 to nI þm.

FIG. 13. The Uh gate at step m. Each Uðm;jÞ
h gate denotes a

sequence of two-level rotations (see Appendix A 0 h) controlled
on the different states stored in jnai and jpij. These controls are
denoted by circular “gates” in the diagram. The relative prob-
abilities for an emission from jpij depend on whether jpij is an
fa, fb, or ϕ, as well as the number of each particle type in the
system (which is fully encoded by jnai and previous measure-
ments of jhi). Therefore, we must apply 3⌈ log2ðnI þmþ 1Þ⌉
different two-level rotations between jh ¼ 0i and jji, each
conditional on the values stored in jnai and jpij. Applying a

controlled-decrement after each Uðm;jÞ
h ensures that the correct

relative emission probabilities are encoded into jhi (see Appen-
dix A.5 in [4]), and also resets jnai to the j0i state. Finally, the last
gate puts jei back to the j0i state—after updating the history
register, jhi ≠ j0i ⇔ jei ¼ j1i, so we apply a NOT gate condi-
tional on jhi ≠ j0i.
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4. Up gate

Measuring the history register at step m collapses the
wave function of the system such that a definite emission
event (including no emission) occurs with probability one.
There is still quantum interference between the different
fermion types, as measuring jhi does not affect super-
positions within particle states jpi.
The selection of which Up gate to apply is determined

dynamically based on the measurement result. If the

emitting particle is a ϕ, then the particle update shown
in Fig. 14 is applied.
If the emitting particle is a fermion, then the particle

update consists of entirely classical operations, as ϕ
and None are not encoded on qubits. In this case, a
CPU records that particle m is a ϕ while the emitting
particle remains a fermion. A “particle history table” like
the one shown in Table IV is used to store the emission
history as described. The computational cost of the Up

gate is reduced to a constant 2 CNOTs, compared to
ðnI þmÞ⌈log2nI þmþ 1⌉ for the original [4].
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