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It is presumed that thermal fluctuations present during inflationary epoch can make inflaton scalar field 
to interact with other fields resulting in the existence of a thermal component during the inflationary 
period. The presence of this thermal component assists structure formation and reduces reheating 
dependence as in the contemporary inflationary paradigm. This is known as warm inflation. In 1990 
J.D. Barrow [26] considered a scenario of inflation with matter field having a phenomenological equation 
of state of the type p + ρ = γρλ, γ �= 0 and λ constant. He called such inflationary scenarios as 
“graduated inflation”. In this work we reconsider the above equation of state in a scenario of warm 
inflation. Our aim would be to investigate and understand whether such matter can also act as a viable 
candidate for warm inflation.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The discovery of Cosmic Microwave Background Radiations 
(CMBR) by Penzias and Wilson in 1964-65 strongly suggested that 
the universe expanded from an early dense and hot state [1,2]. 
Subsequently Alan Guth in 1981 [3] put forward his theory of an 
exponentially expanding universe while in a supercooled vacuum 
state, which came to be known as the inflation. The inflationary 
paradigm is now the most compelling theory of the early universe. 
It not only solves some of the persistent cosmological problems, 
like the horizon, flatness and monopole problem, but also provides 
scale invariant nearly Gaussian density fluctuations as observed 
by CMBR. In the classical model of inflation the scalar field φ, 
also called the inflaton field, would slowly roll down along a flat 
potential. At the end of this inflation the inflaton field would os-
cillate about a minimum potential creating the friction necessary 
for transfer of energy from the inflaton field to other fields. This 
was the followed by nucleosynthesis and primordial structure for-
mation [5]. (For a review on inflation refer [4]).

Although the usual inflationary model does not assume the ef-
fects of energy dissipation, yet it has been speculated that dissipa-
tive effects, resulting in interactive energy exchanges between the 
various existing matter fields might have been in action during the 
process of inflation [6,7]. This new scenario where one considered 
interactions between the inflaton and radiation through a dissipa-
tive term was called the “warm inflation” in contrast to the classi-
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cal “cold inflation”. Warm inflation is “warm” due to the continu-
ous dissipation of energy from inflaton to the radiation field, which 
creates a thermal component during the process of inflation. Due 
to the continuous heat generation, reheating was no longer essen-
tial at the end of inflation, hence providing a smoother mechanism 
for primordial large scale structure formation [7–9]. Further, the 
presence of the thermal bath could explain the background ther-
mal fluctuations and their differential density fluctuation [6,8–13]. 
The interaction induced thermal fluctuations is mathematically ex-
pressed using a dissipative term �. The dissipative term influenced 
the inflationary period by elongating it, where slow roll conditions 
could be relaxed [16].

Over the past two decades variety of work has been done on 
the warm inflation. Warm inflation has been successfully modeled
with quadratic, hilltop, quartic and hybrid potentials [17]. They 
have been studied in canonical and non-canonical scalar field mod-
els [18] and in the context of generalized Chaplygin gas models 
[19]. Over the past few years, several warm inflation models have 
been discussed in the literature in a variety of diverse theoretical 
scenarios, like the multifield models [20], on the swampland cri-
teria [21], in the Dirac-Born-Infeld non-canonical scalar fields [22]
etc.

The motivation of this article is to study warm inflation sce-
nario in the presence of inflaton field generated due to matter with 
a phenomenological equation of state (that has been sometimes 
called inhomogeneous equation of state, [30]). In the perspective 
of recent observational cosmology, it is predicted that we live in 
a universe that is undergoing accelerated expansion [23]. Math-
ematically such a universe requires the existence of matter with 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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negative pressure, known as the Dark Energy (DE). The DE repre-
sents about 70% of the total energy in the universe [24]. Physicists 
have been perplexed with DE since its formulation. Several dif-
ferent theories from gravity sector modification to introduction 
of interacting dynamics between the several matter components 
have been explored, (for a complete review refer [25]). One such 
probable explanation for DE was provided by the introduction of 
phenomenological equation of state for DE. Such phenomenological 
e.o.s can be expressed by a general relation given by: p +ρ = Aρα , 
where p is the pressure density and ρ the energy density of mat-
ter with A and α being constants. Such inhomogeneous e.o.s was 
previously used by Barrow in [26] to extend the behavior of power 
law inflationary universes. It was called the “graduated inflation-
ary universe”. He showed that it was possible to represent a wide 
class of inflationary universes by using the above ρ − p relation. 
Later, similar equation of states were used to predict the ther-
modynamics of DE universes [27] and in the context of emergent 
universes [28]. They have also been extensively used to explain 
the emergence of phantom epoch [33] and nature of future singu-
larities [29–31]. More recently they have been used to describe a 
finite time strong singularity free universe [32]. In this work we 
shall probe the above equation of state and try to find how they 
can influence the warm inflationary dynamics. We shall use the 
e.o.s as inflaton energy density and effectively develop the ensuing 
warm inflationary dynamics in the presence of a constant dissipa-
tive term.

The paper is organized as follows: Section 2 deal with a gen-
eral discussion on the basic idea of warm inflation with its salient 
features and guiding mathematical relations. In section 3 we shall 
describe our model, providing analytical solutions for the relevant 
physical and dynamical terms. Section 4 shall use numerical evalu-
ations for the analytical results and correspondingly provide graph-
ical representation of the relevant parameter behavior. Finally the 
paper ends with a brief conclusion and discussion in section 4.

2. Warm inflation: A brief recapitulation

Considering a flat FRW universe, with an inflaton field φ having 
potential V (φ), and a radiation field with energy density ρr , the 
Friedmann’s equations give,

3H2 = κ(ρφ + ρr) (1)

−2Ḣ = κ(ρφ + pφ + 4

3
ρr) (2)

where ρφ = 1
2 φ̇2 + V (φ) and pφ = 1

2 φ̇2 − V (φ) are the inflaton 
energy density and pressure. Constant κ = 8πG = 8π

m2
p

with G the 

Gravitational constant and mp the Plank’s mass. H = ȧ
a is the Hub-

ble parameter. The dynamical conservation equations correspond-
ing to the two energy densities are given as:

ρ̇φ + 3H(ρφ + pφ) = −�φ̇2 (3)

ρ̇r + 4Hρr = �φ̇2. (4)

Here � is the dissipative coefficient, such that � > 0 and dot repre-
sents differentiation with respect to time t . � can be constant or it 
can be a function of temperature T or field φ or a function of both 
φ and T , that is, �(φ, T ) [6,8–11]. Equation (3) can be rewritten as 
the inflaton conservation equation from ρφ = 1

2 φ̇2 + V (φ) as:

φ̈ + (3H + �)φ̇ + Vφ = 0, (5)

with Vφ = ∂V
∂φ

.
The equations (1)-(5) are simplified by considering the ensu-

ing process to be i) slow rolling in inflaton field and ii) quasi-
stable in radiation field. The slow roll conditions φ̇2 � V (φ) and 
2

φ̈ � (3H + �)φ̇, imply scalar field dominates the potential dur-
ing the inflationary era. Hence, from equation (5), one obtains 
φ̇ = − Vφ

(3H+�)
. The second condition implies that radiation field al-

though co-exists with the inflaton field, will be dominated by it 
and that the production of radiation during this epoch will be 
quasi-stable. This essentially mean ρφ � ρr and ρ̇r � ρr, ρ̇r �
�φ̇2. Thus from (1) and (5) one obtains 3H2 = κρφ , and ρr = �φ̇2

4H
[9–12].

Using the ρr � Cr T 4 = �φ̇2

4H the temperature of the thermal bath 
T can be obtained as:

T =
(

3Rφ̇2

4Cr

) 1
4

. (6)

Here constant Cr = g∗π2

30 is the Stephen-Boltzman constant with g∗
being the number of relativistic degrees of freedom corresponding 
to the radiation field [6–8] and R = �

3H is redefined as the dissipa-
tion rate with R � 1 corresponding to strong dissipative regime 
(that is dissipation rate is higher than the expansion rate) and 
R � 1 the weak dissipative regime (� � 3H).

Using the above equations the dimensionless slow roll markers 
ε = − Ḣ

H2 and η = − Ḧ
H Ḣ

can be obtained as εw = (1 + R)ε; ηw =
(1 + R)η. These apart there are two other parameters β , that sig-
nify the φ dependence of the dissipation and ι corresponding to 
the temperature dependence of the potential [12,13]. Therefore the 
relevant set of slow-roll markers for warm inflation are now four 
in number and given by:

ε = 1

2κ

(
Vφ

V

)2

; η = 1

κ

(
Vφφ

V

)
; β = 1

κ

(
Vφ�φ

�V

)
; ι = T VφT

Vφ

.

(7)

The validity of the slow-roll corresponds to all the above parame-
ters smaller than (1 + R). Subscripts represent corresponding vari-
able differentiation.

Since the density fluctuations in warm inflation are thermal in 
nature, it is predicted that both entropy and scalar perturbations 
would be significant in warm inflation. However it was eventually 
established in [11] that only scalar perturbations remain dominant 
at large scales. Thus it is only relevant to study the power spectra 
due to the scalar density fluctuations, which now being thermal 
in nature is given by PS = H3 T

φ̇2

√
1 + R [10,11], with the scalar 

spectral index ns − 1 = d lnPS
d ln k given by [15]

ns − 1 = ṖS
HPS

� − 9R + 17

4(1 + R)2
ε − 9R + 1

4(1 + R)2
β + 3

2(1 + R)
η. (8)

Here k is the co-moving wave number and k = aH is the time 
when dissipation damps fluctuations, which being taken same as 
the horizon cross over time [15]. The tensor scalar modes are same 
as in case of classical inflation and are given by PT = 8H2 [14,15]
with spectral index nt − 1 = − 2ε

1+R . The tensor to scalar ratio r =
PT
PS is given by the relation

r � 16εH

T (1 + R)
5
2

. (9)

3. Warm inflation and a general in-homogeneous equation of 
state

We consider the general inhomogeneous equation of state for 
the inflaton energy density as given by [26]

pφ + ρφ = Aρα, (10)
φ
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with α and A constants such that α �= 1, (in (10) replacing α = 1
gives us the usual perfect fluid equation of state). In [26] Barrow 
showed that this simple ρ − p relation could generate a wide class 
of inflationary models just by the variation of some constant pa-
rameters.

We use (10) in the conservation equation for inflaton (3) to-
gether with the relation φ̇2 = ρφ + pφ , and obtain

ρφ = γ
1

1−α

[
ln

(
a

ai

)] 1
1−α

(11)

for α �= 1, with R being dimensionless constant and a the scale 
factor and ai some constant factor. Here γ = 3A(1 + R)(α − 1) is 
a constant. For ρφ > 0 we would require γ > 0, which can be at-
tained under the following restrictions:

• α > 1, A > 0. In this case at a = ai, ρφ → ∞.
• α < 1, A < 0. Here we have for a = ai, ρφ → 0.
• 1

1−α =even integer irrespective of the sign of A. Which confines 
α in the interval ( 1

2 , 1) ∪ (1, 32 ). Evidently for α < 1, at a =
ai, ρφ → 0 while for α > 1, ρφ → ∞.

Here we may note that the pφ

ρφ
= −1 + Aρα−1

φ . Given, that for A > 0

we have constrained α > 1 which gives the vacuum DE equation 
of state for ρφ → 0. While for A < 0 and α < 1 we get a highly 
phantom type fluid with diverging equation of state for ρφ → 0.

For the special case of α = 1 we can obtain ρφ = ρ0a−3A(1+R) , 
with ρ0 being some integration constant. At the beginning of in-
flation when radiation fields are weak, and can be neglected, we 
use 3H2 = ρφ together with the equation (3) to obtain ρφ =

4C0
3A2(1+R)2t2 where C0 is the constant of integration. From the above 
two expressions for ρφ it is evident that for α = 1 with negligi-

ble radiation density the scale factor a will be given by a = ait
2
γ0

where γ0 = 3A(1 + R) is a constant dependent on R and A. Evi-
dently this is the usual power law inflation.

Similarly for any general α, after neglecting the radiation den-
sity we obtain:

C1: For the choice of the parameter α = 1
2 , A < 0 we obtain:

R1: ρφ = ρ0exp 
[

γ t√
3

]

A1: a(t) = aiexp 
[

ρ
1/2
0
γ exp

[
γ t√

3

]]

C2: For α < 1
2 , A < 0 and α > 1, A > 0 we obtain the solution as:

R2: ρφ = ρ0(βγ t)
2

1−2α

A2: a(t) = aiexp 
[
ρ

1/2
0 γ

1
1−2α (βt)

2(1−α)
1−2α

]
with β = 2α−1

2
√

3(α−1)
.

C3: And for 1
2 < α < 1, A < 0

R3: ρφ = ρ0

[
(1−2α)2

12(α−1)2 γ 2t2
] 1

1−2α

A3: a(t) = aiexp 
[
−ρ

1/2
0√

3

(
2α−1

2(1−α)

)(
(1−2α)2

12(α−1)2 γ 2
) 1

2(1−2α)
t

2(1−α)
1−2α

]
.

As in [26], we see that by considering (10) in the presence of an 
interaction with radiation energy density we could obtain several 
categories of solution parametrized by the exponent α. From the 
case C2 we have a(t) → ∞ as t → ∞ while from C3 we see that 
at t = 0, a = 0 and proceeds to a → ai at t → ∞.

Using the relation φ̇ = dφ
da aH and H approximated with ρφ we 

obtain the scalar field φ in terms of the scale factor a as follows:
(

φ − φ0

2

)2

= 3A

γ
ln

(
a

ai

)
(12)

which gives the potential as:
3

V (φ) = γ
2

1−α

(3A)
1

1−α

(
φ − φ0

2

) 2
1−α − A

2

γ
2α

1−α

(3A)
α

1−α

(
φ − φ0

2

) 2α
1−α

.

(13)

The above relations completely describe the initial inflaton field. 
Here V (φ) ∝ φs where s is a fractional number. Thus we see that at 
the beginning, the considered energy density gives an intermediate 
inflation.

3.1. Radiation energy density and the inflaton field

As inflation proceeds radiation energy density gets significant 
and can be obtained from (4) and pφ +ρφ = φ̇2 with ρ̇r << ρr as:

ρr = 3

4
R Aγ

α
1−α

[
ln

(
a

ai

)] α
1−α

. (14)

Now using the results for ρφ and ρr , in the equation (1) and (2)
we get:

3H2 = γ
1

1−α

[
ln

(
a

ai

)] 1
1−α + 3

4
R Aγ

α
1−α

[
ln

(
a

ai

)] α
1−α

(15)

−2Ḣ = (1 + R)Aγ
α

1−α

[
ln

(
a

ai

)] α
1−α

. (16)

As the field evolves the initial scalar field due to inflaton en-
ergy density is now replaced with the total energy density of 
the inflaton field and the radiation field. So that we have φ̇2 =
(1 + R)Aγ

α
1−α

[
ln

(
a
ai

)] α
1−α

. This gives the new scalar field poten-

tial as:

V (φ) = V 0

[
(φ − φ0)

2 − 2

3(α − 1)2

]

×
[
(φ − φ0)

2 − R

(1 + R)(α − 1)2

] α
1−α

(17)

where V 0=
(

γ (α−1)
4

) 1
1−α

and φ−φ0= 2
√

3A(1+R)
γ

√
γ ln

(
a
ai

)
+ 3

4 R A. 

This also gives an intermediate inflation. Comparing equations (13)
and (17) we see that in the presence of radiation energy density 
the scalar field potential varies by some factor proportional to the 
dissipation rate R and the exponent α of the inflaton energy den-
sity. We see that due to the presence of the dissipation factor, 
potential field will roll down slower as compared to the that in 
the absence of dissipation. This is consistent with warm inflation-
ary dynamics.

Using the above equations one can also consider the dynam-
ics of the above warm inflationary scenario. The relevant slow roll 
parameters are obtained as:

ε =
3
2 (1 + R)A

3
4 R A + γ ln

(
a
ai

) η = 3(1 + R)A

3
4 R Aα + γ ln

(
a
ai

)

β =
3
2 (1 + R)A

3
4 R A + γ ln

(
a
ai

) (18)

Using the above slow roll parameters and the equations (8) and 
(9) we obtain the scalar spectral index ns and the tensor to scalar 
ratio r as:

ns = 1 − 27A

4γ ln
(

a
a

)
+ 3AR

+ 18Aα

4γ ln
(

a
a

)
+ 3ARα

(19)
i i
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Fig. 1. Evolution of N(t) = ln
(

a
ai

)
corresponding to (a) Equation A2 for α = 1.95 > 1 and A = 0.6; (b) Equation A1 for α = 0.5 and A = −0.6; (c) Equation A2 for α = 0.15 < 1

2

and A = −0.6; (d) Equation A3 for 1
2 < α = 0.75 < 1 and A = −0.6.
r = 16

⎛
⎝4g∗π2 A3(γ ln

(
a
ai

)
)

α
1−α

90R

⎞
⎠

1
4

×
⎛
⎝ 3

(1 + R)3
(

4γ ln
(

a
ai

)
+ 3R A

)
⎞
⎠

1
2

. (20)

3.2. Numerical and graphical results

It may be noted that the term ln
(

a
ai

)
gives us an accurate 

estimate of the number of e-folds N until the end of inflation. 
Since the results obtained in the above analysis are all functions 
of ln

(
a
ai

)
they can, in general be represented as a function of the 

e-folding number N where N can be obtained in terms of time t
using the results A1–A3 for the cases C1–C3. This gives an estimate 
on the range of parameters that can give 60 e-folds of inflation be-
fore it ends.

In Fig. 1 we have plotted the values of N(t) = ln
(

a
ai

)
corre-

sponding to the equations A1-A3 and for various values of the 
dissipative factor R . Fig. 1(a) gives the e-folding number with re-
spect to the time t corresponding to equation A2. This figure shows 
that for α > 1 and A > 0, a weak dissipative factor R << 1 takes 
less time to get to the 60 e-folds mark as compared to a stronger 
dissipation, i.e. R > 1. In Fig. 1(b) we have plotted the e-folding 
number corresponding to equation A1 for α = 0.5. Here the scale 
factor a(t) is dependent on a double exponential term, as a result 
4

inflation proceeds faster as compared to in scenario A2. Further a 
higher dissipative regime will give a faster inflation than a weaker 
dissipative regime as is evident in the figure. Fig. 1(c) represents 
the case α < 0.5 and A < 0 for equation A2. Here the scale factor 
a(t) evolves as an exponential of some positive power of t that is 
a ∝ etδ with δ > 0 as result inflation proceeds fast with faster rate 
for higher dissipative scenario. Fig. 1(d) corresponds to equation 
A3. The scale factor a ∝ e−t−δ

, as a result a → ai as t → ∞.
In Fig. 2 the scalar spectral index ns is plotted for the four cases 

considered in A1-A3. Recent Planck data constrains the scalar spec-
tral index ns for classical inflation models to ns � 0.9659 ± 0.0040
while the bounds on the tensor to scalar ratio r are put at r <

0.072. Figs. 2a and 2b shows the behavior of ns and r correspond-
ing to the specific parameter choices. The parameters have been 
chosen so that they represent the cases C1–C3 and for R > 1 and 
R < 1. The graphical representations of ns and r show that the 
model performs best for the parameter ranges of α > 1 and A > 0.

Fig. 3 shows the values of the scalar field φ and the potential 
V (φ) against the e-folding number N . From both figures we see 
that the values of φ to be increasing while V (φ) decreasing as is 
expected from a slowly rolling inflaton field.

In Fig. 4a we have shown the general behavior of V (φ) against 
φ for a specific choice of parameter. It may be stated that similar 
plots can be obtained for other parameter choices. In Fig. 4b, we 
have plotted ns against r for a particular case of α > 1 and A > 0. 
One may note that ns and r are not always consistent to the Planck 
2018 prescribed bounds. Consistent results are obtained in the case 
of α > 1 and A > 0 corresponding to both R > 1 and R < 1.
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Fig. 2. (a) ns plotted as a function of N(t); (b) r plotted as a function of N(t).

Fig. 3. (a) V (φ) plotted as a function of N(t); (b) φ plotted as a function of N(t).

Fig. 4. (a) V (φ) vs φ plotted for α = 1.95, A = 0.6, R = 2.5; (b) ns vs r for α = 1.95, A = 0.6, R = 2.5.
4. Discussions

In this article we have considered a scenario of warm inflation 
where the inflaton field couples with radiation energy via a non-
trivial coupling term, called the dissipative constant. The inflaton 
energy density driving warm inflation was previously discussed in 
[26] and was found to exhibit a wide class of inflationary uni-
verses. In the presence of coupling with radiation field we find 
that the corresponding field exhibits intermediate inflation where 
5

the scale factor varies as the exponential of time t f where f > 0
or f < 0. Further by special choice of the parameters we could also 
obtain a scenario power law inflation and a double exponential in-
flation. In all the cases we have evaluated the relation between the 
scalar field and the field potential. Graphical representations of the 
models exhibit behavior consistent to inflation. Further we have 
shown how the presence of the dissipative term affects the field 
potential making the field to roll down slower. The behavior of the 
ns vs. r plot is also consistent with inflationary models. Thus using 
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a non-trivial coupling between a general phenomenological equa-
tion of state inflaton field and radiation energy density we could 
successfully obtain a model of warm intermediate inflation.
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