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The multiplicity distributions of shower, grey, and black particles produced in interactions of 4He, 12C, 16O, 22Ne, and 28Si with
emulsion (Em) at 4.1–4.5 AGeV/c beam energies, and their dependence on target groups (H, CNO, and AgBr) is presented and
has been reproduced by multisource thermal model. The multiplicity and the angular distributions of the three types of particles
have been investigated. The experimental results are compared with the corresponding ones from the model. We found that the
experimental data agrees with theoretical calculations using multisource thermal model.

1. Introduction

Study of the secondary charged particles produced in heavy
ion collisions is attracting a great deal of attention during the
recent ten years. Since the first run of theDubna Synchropha-
sotron, in 1980, a lot of data for nuclear fragmentation in
light- and heavy-ion collisions at high energy have been
collected [1–5]. The measurements show that the average
multiplicity of shower, grey particles increases with increase
in projectile mass, but the average multiplicity of black
particles is approximately constant. These observations have
generated a flurry of theoretical activities [6–11].

Many models have been introduced to describe the
multiparticle production in the nucleus-nucleus (N-N) inter-
actions; some of them concern the dynamical evolution of
interacting systems [12–18]. Others concern the thermal char-
acteristics of final-state particles and fragments. One of these
thermal models is the multisource thermal model, proposed
to explain themultiplicity and angular distributions, based on
the assumption that many emission sources are assumed to
be formed in the interactions [19–30]. The aim of the present
research is to check themodel validity for describing the basic
characteristics of particle production in the interactions of
nuclei with emulsion at 4.1–4.5 AGeV/c, mainly beams of

4.1 AGeV/c 22Ne and 4.5 AGeV/c ( 4He, 12C, 16O, and 28Si)
from Dubna Synchrophasotron.

2. Multisource Thermal Model

2.1. Multiplicity Distribution. The physics picture of the
following discussions is based on the multisource thermal
model [31–34], which is mainly used in the descriptions of
particle (fragment) emission angles, azimuthal angles, and
transverse flows in nucleus-nucleus (NN) collisions. In the
model, many emission sources of particles and fragments are
assumed to be formed in high energy collisions. According
to the interaction mechanisms or event sample, the sources
are divided into 𝑙 groups (subsamples). The source number
in the 𝑗th group is assumed to be𝑚

𝑗
. Each source contributes

multiplicity distribution to be an exponential distribution.
The multiplicity (𝑛

𝑖𝑗
) distribution contributed by the 𝑖th

source in the 𝑗th group is an exponential function:

𝑃
𝑖𝑗
(𝑛
𝑖𝑗
) =

1

⟨𝑛
𝑖𝑗
⟩
exp(−

𝑛
𝑖𝑗

⟨𝑛
𝑖𝑗
⟩
) , (1)

where

⟨𝑛
𝑖𝑗
⟩ = ∫𝑛

𝑖𝑗
𝑝
𝑖𝑗
(𝑛
𝑖𝑗
) 𝑑𝑛
𝑖𝑗

(2)

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2014, Article ID 403504, 12 pages
http://dx.doi.org/10.1155/2014/403504

http://dx.doi.org/10.1155/2014/403504


2 Advances in High Energy Physics

is the mean multiplicity contributed by the 𝑖th source in the
𝑗th group. As in [31], we assume that

⟨𝑛
1𝑗
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2𝑗
⟩ = ⟨𝑛

3𝑗
⟩ = ⋅ ⋅ ⋅ ⟨𝑛

𝑚𝑗𝑗
⟩ . (3)

The multiplicity (𝑛ch) distribution contributed by the 𝑗th
group is the fold of𝑚

𝑗
exponential functions; that is,
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It is an Erlang distribution.The total multiplicity distribution
contributed by the 𝑙 groups can be written as
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where 𝑘
𝑗
is the relative weight contributed by the 𝑗th group.

In the Monte Carlo calculation, let 𝑅
𝑖𝑗
denote random

variable in [0, 1]. For the 𝑗th group, we have
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The multiplicity distribution is obtained by a statistical
method. Meanwhile, the mean multiplicities contributed by
the 𝑗th group and the 𝑙 groups are given by

⟨𝑛ch⟩ = 𝑚
𝑗
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respectively.
Generally speaking [35], 𝑗 = 1 for 𝑒−𝑒+, 𝑝𝑝(𝑝𝑝−), and 𝑒−𝑝

collisions at not too high energies (less than a few hundred
GeV). The parameters for the collisions are ⟨𝑛

𝑖𝑗
⟩ and𝑚

𝑗
. For

the mentioned collisions at very high energies (greater than a
few hundred GeV), 𝑗 = 2 or 3 due to the different interaction
mechanisms existing in the event samples. For 𝑝𝐴 and N-N
collisions at a fixed impact parameter, 𝑚

𝑗
can be regarded as

the number of participant nucleons. The weight 𝑘
𝑗
in (5) is

obtained by the geometrical weight of the impact parameter.
This formula was first proposed by Liu et al. to describe the
multiplicity distributions of final-state particles produced in
“elementary” particle interactions and heavy ion collisions at
high energies.The basis of the formula is amultisourcemodel

and each source contributes multiplicity distribution to be
an exponential form. The model treats uniformly the final-
state particles and nuclear fragments by the same formula.
It is shown that the model is successful in the descriptions
of multiplicity distributions of different types of particles and
projectile fragments.

2.2. Emission Angle of Particles. According to themultisource
thermal model suggested by Liu et al. [31–36], many emission
sources are assumed to be formed in the interactions. Let the
beam direction of the incoming projectile be the oz-axis, and
let the reaction plane be the xoz plane. Each source is assumed
to emit particles isotropically in the source rest frame. As
the first approximation, the three components 𝑝\

𝑥,𝑦,𝑧
of the

particle momentum in the source rest frame are assumed to
obey Gaussian distributions with the same deviation width
𝜎 [37]. Considering the motion of the emission source
and the interactions among emission sources, the particle
momentumcomponents𝑝

𝑥
,𝑝
𝑦
, and𝑝

𝑧
in the final state in the

laboratory reference frame are different from those in the rest
frame of the emission source. The simplest relations between
𝑝
𝑥
and 𝑝\

𝑥
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where 𝐵
𝑥
, 𝐵
𝑦
, and 𝐵

𝑧
are free parameters and 𝜎

𝑖
is the

parameter that characterizes the width of the momentum
distribution in the source reference frame. 𝑎
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because 𝑝\
𝑥
, 𝑝\
𝑦
, and 𝑝\

𝑧
obey a Gaussian distribution law.

The emission angle 𝜃of a target fragment in the laboratory
reference frame is given by
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Table 1: The average multiplicities of the charged secondary particles emitted in 4He-, 12C-, 16O-, 22Ne-, and 28Si-Em interactions and those
emitted in the interactions with the different groups of target nuclei (H, CNO, Em, and AgBr) compared with those obtained by the model.

Projectile ⟨𝑛
𝑖
⟩ H CNO Em AgBr

4He

MSTM ⟨𝑛
𝑠
⟩ 1.623 3.3263 3.903 5.78

EXP ⟨𝑛
𝑠
⟩ 1.619 ± 0.1 3.112 ± 0.133 3.757 ± 0.096 5.77 ± 0.151

MSTM ⟨𝑛
𝑔
⟩ 0.288 2.35 5.372 9.474

EXP ⟨𝑛
𝑔
⟩ 0.288 ± 0.03 2 ± 0.066 4.3899 ± 0.17 9.38 ± 0.3

MSTM ⟨𝑛
𝑏
⟩ 0.163 2.5 4.86 9.519

EXP ⟨𝑛
𝑏
⟩ 0.172 ± 0.024 2.25 ± 0.07 4.395 ± 0.149 9.223 ± 0.21

12C

MSTM ⟨𝑛
𝑠
⟩ 2.014 6.22 8.897 13.975

EXP ⟨𝑛
𝑠
⟩ 2.062 ± 0.186 6 ± 0.25 8.0 ± 0.24 13.975 ± 0.4

MSTM ⟨𝑛
𝑔
⟩ 0.288 2.35 5.274 10.882

EXP ⟨𝑛
𝑔
⟩ 0.293 ± 0.03 2.04 ± 0.1 5.081 ± 0.22 10.753 ± 0.4

MSTM ⟨𝑛
𝑏
⟩ 0.205 2.5 4.6346 9.519

EXP ⟨𝑛
𝑏
⟩ 0.204 ± 0.027 2.28 ± 0.075 4.57 ± 0.16 9.293 ± 0.21

16O

MSTM ⟨𝑛
𝑠
⟩ 2.196 6.621 9.741 16.664

EXP ⟨𝑛
𝑠
⟩ 2.454 ± 0.145 6.679 ± 0.197 9.417 ± 0.206 16.426 ± 0.349

MSTM ⟨𝑛
𝑔
⟩ 0.268 2.35 6.284 12.6

EXP ⟨𝑛
𝑔
⟩ 0.264 ± 0.02 2.154 ± 0.06 6.353 ± 0.17 12.454 ± 0.29

MSTM ⟨𝑛
𝑏
⟩ 0.243 2.5 4.315434 9.217

EXP ⟨𝑛
𝑏
⟩ 0.24 ± 0.02 2.17 ± 0.05 4.421 ± 0.097 8.58 ± 0.13

22Ne

MSTM ⟨𝑛
𝑠
⟩ 2.11 6.605 10.769 18.919

EXP ⟨𝑛
𝑠
⟩ 2.24 ± 0.0898 6.66 ± 0.151 10.254 ± 0.113 18.482 ± 0.29

MSTM ⟨𝑛
𝑔
⟩ 0.249 2.35 6.752 13.547

EXP ⟨𝑛
𝑔
⟩ 0.252 ± 0.013 2.2 ± 0.04 6.188 ± 0.295 13.495 ± 0.214

MSTM ⟨𝑛
𝑏
⟩ 0.243 2.301 4.288 8.978

EXP ⟨𝑛
𝑏
⟩ 0.238 ± 0.013 2.05 ± 0.034 4.151 ± 0.103 8.482 ± 0.09

28Si

MSTM ⟨𝑛
𝑠
⟩ 2.461 7.836 11.776 21.007

EXP ⟨𝑛
𝑠
⟩ 2.887 ± 0.22 7.51 ± 0.297 11.784 ± 0.343 20.163 ± 0.602

MSTM ⟨𝑛
𝑔
⟩ 0.249 2.39 6.071 13.156

EXP ⟨𝑛
𝑔
⟩ 0.2474 ± 0.03 2.266 ± 0.07 6.405 ± 0.228 13.224 ± 0.383

MSTM ⟨𝑛
𝑏
⟩ 0.163 2.5 4.678 9.504

EXP ⟨𝑛
𝑏
⟩ 0.165 ± 0.022 2.2 ± 0.064 4.449 ± 0.1244 8.651 ± 0.17

3. Results and Discussions

3.1. Multiplicity Characteristics. To study the multiplicity
behavior of the target fragmentation as function of mass
number of the target nucleus 𝐴

𝑇
, we classify the emulsion

nuclei based on 𝑛
ℎ
(𝑛
ℎ
= 𝑛
𝑔
+ 𝑛
𝑏
) into three groups [38]:

two types of light nuclei (H and CNO) and one type of heavy
nuclei (AgBr). Collisions with H target nuclei are events with
𝑛
ℎ
= 0, 1, collisions with only one bound nucleon in CNO

or AgBr target nuclei these events having 2 ≤ 𝑛
ℎ
≤ 7 are

mostly interactions with CNO targets with some admixture
of peripheral AgBr interactions. All events with 𝑛

ℎ
≥ 8 are

only due to AgBr interactions. It should be noted that the
classification of events in emulsion is not unique; however,
there is no perfect method for classifying events due to the
limitations of the emulsion technique [39].

Table 1 illustrates the average values of shower, grey, black,
and heavy particles produced in interactions of different

projectiles with Em at momentum 4.1–4.5 AGeV/c. The
experimental data has been taken from [40] and the data
available from the High Energy Physics Group at Sana’a
University.

The comparison between the average values of the mul-
tiplicities ⟨𝑛

𝑠
⟩, ⟨𝑛
𝑔
⟩, and ⟨𝑛

𝑏
⟩ obtained experimentally and

those obtained by multisource thermal model shows a fair
agreement between the model and the experiment for a wide
range of projectiles.

It can be noticed from this table that the values of ⟨𝑛
𝑏
⟩

are nearly independent of the nature of incident projectiles,
while ⟨𝑛

𝑠
⟩, ⟨𝑛
𝑔
⟩, and ⟨𝑛

ℎ
⟩ show their dependence on the

projectile mass number𝐴
𝑝
. This fact indicates that the target

evaporation fragments do not seem to depend on the mass of
the projectile.

Figure 1 presents the multiplicity distributions of shower
particles in interactions of 28Si, 22Ne, 16O, 12C, and 4He
with (a) Em, (b) H, (c) CNO, and (d) AgBr. For comparison,
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Figure 1: The normalized multiplicity distributions for shower particles produced in the interactions of projectiles with (a) Em, (b) H, (c)
CNO, and (d) AgBr, respectively. The histograms represent the experimental data, while the curves are the corresponding ones calculated
according to the multisource thermal model.

distributions obtained by the multisource thermal model
calculations are also shown as curves. All the distributions are
normalized to one. 4He is represented by solid histogram, 12C
by dashed one, 16O by dotted one, 22Ne by dash-dotted one,
and 28Si by beaded one. It can be noticed from this figure that

the model is in good agreement with the experimental data
for the projectiles. The height of the multiplicity distribution
of 𝑛
𝑠
decreases with increase in projectile mass, while the

position of the peak moves to higher multiplicities with
increasing𝐴

𝑇
.Thedistributions getwiderwith increasing𝐴

𝑇
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Figure 2: The normalized multiplicity distributions for the grey particles produced in the interactions of projectiles with (a) Em, (b) H,
(c) CNO, and (d) AgBr, respectively. The histograms represent the experimental data, while the curves are the corresponding ones calculated
according to the multisource thermal model.

where the distributions have larger tails. This may reflect the
effect of the target mass number on the number of collisions
of 28Si, 22Ne, 16O, 12C, and 4He with the target nuclei.

Similarly the multiplicity distributions of grey particles
are illustrated in Figure 2. It can be seen that the dependence
of the height of the distributions on 𝐴

𝑝
gets weaker than

that in case of shower particles. Also one can notice that the
distributions for 28Si, 22Ne, 16O, 12C, and 4He with AgBr
interactions are broader than those for 28Si, 22Ne, 16O, 12C,
and 4He with Em, H, and CNO.

The same features can be observed for black particles (𝑛
𝑏
)

distributions given in Figure 3 as for 𝑛
𝑔
. Figure 3(a) shows
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Figure 3:The normalizedmultiplicity distributions for black particles produced in the interactions of projectiles with (a) Em, (b) H, (c) CNO,
and (d) AgBr, respectively.The histograms represent the experimental data, while the curves are the corresponding ones calculated according
to the multisource thermal model.

a tow-peak structure. The two peaks are around 0 and 10;
this could be due to interactions with light- and heavy-target
nuclei, respectively.

Finally, in Figure 4, we investigate the heavy particles
(𝑛
ℎ
= 𝑛
𝑔
+ 𝑛
𝑏
) distribution. Two obvious peaks are observed

here, one around multiplicity 0 and the other one at 5.
The first peak could be due to interactions with H and
the second one with CNO. There is one around 20, but
it is flattened, and this could represent the collision with
AgBr. In all the above distributions, the model can reproduce
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Figure 4: Normalized multiplicity distributions for heavy particles produced in the interactions of projectiles with Em at (4.1–4.5) AGeV/c.
The histograms represent the experimental data, while the curves are the corresponding ones calculated according to themultisource thermal
model.

Table 2: Parameter values for multiplicity distributions for shower, grey, black, and heavy particles. The values of ⟨𝑛
𝑖1
⟩, ⟨𝑛
𝑖2
⟩, and ⟨𝑛

𝑖3
⟩ and

𝑚
1
,𝑚
2
, and𝑚

3
, and 𝑘

1
, 𝑘
2
, and 𝑘

3
for 4He-, 12C-, 16O-, and 28Si-Em at 4.5 AGeV/c and 22Ne-Em at 4.1 AGeV/c.

Projectile ⟨𝑛
𝑖1
⟩ ⟨𝑛

𝑖2
⟩ ⟨𝑛

𝑖3
⟩ 𝑚

1
𝑚
2

𝑚
3

𝑘
1

𝑘
2

𝑘
3

𝜒
2/dof

4He

𝑛
𝑠

2.2 — — 2 — — 1 0 0 1.026
𝑛
𝑔

2.5 9.2 — 1 1 — 0.5 0.5 0 1.379
𝑛
𝑏

0.87 0.96 1.16 1 4 10 0.33 0.4 0.27 1.711
𝑛
ℎ

0.74 0.59 5 2 10 4 0.32 0.32 0.36 1.663

12C

𝑛
𝑠

4.6 7.1 — 1 2 — 0.5 0.5 0 1.143
𝑛
𝑔

2.3 9.2 — 1 1 — 0.5 0.5 0 1.232
𝑛
𝑏

0.89 0.96 1.12 1 4 10 0.32 0.38 0.30 0.658
𝑛
ℎ

0.75 0.63 5.5 2 9 4 0.31 0.38 0.31 1.416

16O

𝑛
𝑠

4.9 7.8 — 1 2 — 0.5 0.5 0 0.642
𝑛
𝑔

2.45 5.38 3.1 1 1 7 0.42 0.42 0.26 0.887
𝑛
𝑏

0.93 0.88 1.05 1 4 10 0.32 0.38 0.30 0.692
𝑛
ℎ

0.74 0.63 7.75 2 9 3 0.31 0.31 0.38 0.611

22Ne

𝑛
𝑠

4.2 9.2 — 1 2 — 0.5 0.5 0 0.476
𝑛
𝑔

2.2 14.2 — 1 1 — 0.5 0.5 0 0.688
𝑛
𝑏

0.93 0.75 1.24 1 4 8 0.32 0.33 0.35 0.584
𝑛
ℎ

0.74 0.81 4.83 2 7 5 0.32 0.32 0.36 0.43

28Si

𝑛
𝑠

1.8 9.3 — 2 2 — 0.42 0.58 0 0.917
𝑛
𝑔

2.6 11 — 1 1 — 0.5 0.5 0 1.161
𝑛
𝑏

0.8 0.7 1.35 1 5 8 0.31 0.35 0.34 1.84
𝑛
ℎ

0.64 0.82 6 2 7 4 0.28 0.35 0.37 0.843
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Table 3: Parameter values for multiplicity distributions for shower, grey, and black particles. The values of ⟨𝑛
𝑖1
⟩, ⟨𝑛
𝑖2
⟩,𝑚
1
,𝑚
2
, and 𝑘

1
, 𝑘
2
for

4He-, 12C-, 16O-, and 28Si-H at 4.5 AGeV/c and 22Ne-H at 4.1 AGeV/c.

Projectile ⟨𝑛
𝑖1
⟩ ⟨𝑛

𝑖2
⟩ 𝑚

1
𝑚
2

𝑘
1

𝑘
2

𝜒
2/dof

4He
𝑛
𝑠

1.16 — 2 — 1 0 1.248
𝑛
𝑔

0.14 — 6 — 1 0 0.02
𝑛
𝑏

0.12 — 6 — 1 0 0.049

12C
𝑛
𝑠

0.85 1.36 1 3 0.5 0.5 1.153
𝑛
𝑔

0.14 — 6 — 1 0 0.039
𝑛
𝑏

0.127 — 6 — 1 0 0.006

16O
𝑛
𝑠

0.9 1.1 1 4 0.5 0.5 1.622
𝑛
𝑔

0.137 — 6 — 1 0 0.003
𝑛
𝑏

0.133 — 6 — 1 0 0.004

22Ne
𝑛
𝑠

0.89 0.06 1 4 0.5 0.5 1.074
𝑛
𝑔

0.134 — 6 — 1 0 0.02
𝑛
𝑏

0.133 — 6 — 1 0 0.008

28Si
𝑛
𝑠

1.41 0.89 1 5 0.5 0.5 0.912
𝑛
𝑔

0.134 — 6 — 1 0 0.006
𝑛
𝑏

0.12 — 6 — 1 0 0.009

Table 4: Parameter values for multiplicity distributions for shower, grey, and black particles. The values of ⟨𝑛
𝑖1
⟩, ⟨𝑛
𝑖2
⟩,𝑚
1
,𝑚
2
, and 𝑘

1
, 𝑘
2
for

4He-, 12C-, 16O-, and 28Si-CNO at 4.5 AGeV/c and 22Ne-CNO at 4.1 AGeV/c.

Projectile ⟨𝑛
𝑖1
⟩ ⟨𝑛

𝑖2
⟩ 𝑚

1
𝑚
2

𝑘1 𝑘
2

𝜒
2/dof

4He
𝑛
𝑠

0.9 1.62 3 3 0.5 0.5 1.783
𝑛
𝑔

0.95 — 3 — 1 0 1.29
𝑛
𝑏

0.75 — 4 — 1 0 1.41

12C
𝑛
𝑠

1.72 2.35 2 4 0.45 0.55 1.293
𝑛
𝑔

0.95 — 3 — 1 0 1.027
𝑛
𝑏

0.75 — 4 — 1 0 1.408

16O
𝑛
𝑠

1.75 2.52 2 4 0.45 0.55 1.223
𝑛
𝑔

0.95 — 3 — 1 0 1.475
𝑛
𝑏

0.75 — 4 — 1 0 1.853

22Ne
𝑛
𝑠

1.78 3 2 4 0.58 0.42 0.736
𝑛
𝑔

0.95 — 3 — 1 0 1.29
𝑛
𝑏

0.75 — 4 — 1 0 1.776

28Si
𝑛
𝑠

2.35 2.1 2 8 0.70 0.30 1.831
𝑛
𝑔

0.96 — 3 — 1 0 0.136
𝑛
𝑏

0.75 — 4 — 1 0 1.964

the multiplicity characteristics for the different particles,
and the experimental distributions are in agreement (within
errors) with the theoretical ones.

The parameter values of ⟨𝑛
𝑖1
⟩, ⟨𝑛
𝑖2
⟩, and ⟨𝑛

𝑖3
⟩, 𝑚
1
, 𝑚
2
,

and 𝑚
3
, and 𝑘

1
, 𝑘
2
, and 𝑘

3
for multiplicity distributions for

shower, grey, black, and heavy particles along with 𝜒
2/dof

are illustrated in Tables 2–5. Table 2 shows these parameter
values for Em, while the parameter values for H, CNO, and
AgBr are given in Tables 3, 4, and 5, respectively.

3.2. Angular Distributions. The angular distributions for the
different secondary charged particles 𝜃

𝑠
, 𝜃
𝑔
, and 𝜃

𝑏
emitted

in 28Si, 22Ne, 16O, 12C, and 4He interactions with Em,
together with their corresponding distributions obtained by

the multisource thermal model, are given in Figures 5–7.
It is evident from these figures that the values of 𝜃

𝑠
, 𝜃
𝑔
,

and 𝜃
𝑏
are nearly independent of the nature of incident

projectiles. Figure 5 illustrated the angular distributions of
shower particles.The curves are the distributions obtained by
the model calculations. From Figure 5, it can be noticed that
the peak increases with increase in projectile mass and the
model is in agreement with experimental data in describing
angular distributions of the shower particles.

The angular distributions of grey particles, 𝜃
𝑔
, are illus-

trated in Figure 6. For comparison, distributions obtained by
themodel calculations are also shown.Themodel agrees with
experimental data in describing angular distributions for the
grey particles. Also, it is notable that the angular distributions
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Figure 5: Angular distributions of shower particle produced in 4He- (solid triangle), 12C- (open square), 16O- (solid square), 22Ne- (open
circles), and 28Si- (solid circles) Em collisions at (4.1–4.5) AGeV/c. The symbols represent the experimental data. Capone the curves are our
calculated results by multisource thermal model.
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Figure 6: Angular distributions of grey particle produced in 4He- (solid triangle), 12C- (open square), 16O- (solid square), 22Ne- (open
circles), and 28Si- (solid circles) Em collisions at (4.1–4.5) AGeV/c. The symbols represent the experimental data. Capone the curves are our
calculated results by multisource thermal model.
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Table 5: Parameter values for multiplicity distributions for shower, grey, and black particles. The values of ⟨𝑛
𝑖1
⟩, ⟨𝑛
𝑖2
⟩,𝑚
1
,𝑚
2
, and 𝑘

1
, 𝑘
2
for

4He-, 12C-, 16O-, and 28Si-AgBr at 4.5 AGeV/c and 22Ne-AgBr at 4.1 AGeV/c.

Projectile ⟨𝑛
𝑖1
⟩ ⟨𝑛

𝑖2
⟩ 𝑚

1
𝑚
2

𝑘
1

𝑘
2

𝜒
2/dof

4He
𝑛
𝑠

2.45 0.9 2 8 0.4 0.6 0.72
𝑛
𝑔

1.23 2.3 5 6 0.5 0.5 0.878
𝑛
𝑏

1.67 — 6 — 1 0 1.109

12C
𝑛
𝑠

2.6 2.4 3 8 0.42 0.58 0.702
𝑛
𝑔

1.35 3.2 5 5 0.5 0.5 1.217
𝑛
𝑏

1.67 — 6 — 1 0 0.744

16O
𝑛
𝑠

3.55 2.96 3 8 0.5 0.5 1.883
𝑛
𝑔

1.28 2.5 6 8 0.56 0.44 1.983
𝑛
𝑏

1.62 — 6 — 1 0 1.296

22Ne
𝑛
𝑠

6.3 5.25 2 5 0.5 0.5 1.102
𝑛
𝑔

1.6 3.35 5 6 0.5 0.5 1.018
𝑛
𝑏

1.58 — 6 — 1 0 1.083

28Si
𝑛
𝑠

5.8 6.3 2 5 0.5 0.5 1.146
𝑛
𝑔

1.46 4 5 5 0.5 0.5 1.69
𝑛
𝑏

2 — 5 — 1 0 1.127
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Figure 7: Angular distributions of black particle produced in
4He- (solid triangle), 12C- (open square), 16O- (solid square),
22Ne- (open circles), and 28Si- (solid circles) Em collisions at (4.1–
4.5) AGeV/c.The symbols represent the experimental data. Capone
the curves are our calculated results by multisource thermal model.

of grey particles become wider than those of shower particles
with displacement of the peak position to higher values of 𝜃.

Figure 7 illustrated the angular distributions of black
particles, 𝜃

𝑏
. For comparison, distributions obtained by the

Table 6:The peak position of angular distributions for shower, grey,
and black particles.

Projectile 𝜃
𝑠𝑝

𝜃
𝑔𝑝

𝜃
𝑏𝑝

4He 20 60 90
12C 20 60 90
16O 20 60 90
22Ne 20 60 90
28Si 20 60 90

multisource thermal model calculations are also shown. The
model agrees with experimental data. It can be noticed
that the angular distributions for black particles are nearly
symmetrical around the peak position.

From Figure 5 to Figure 7, we observe that the angular
distributions of shower, grey, and black particles produced
are independent of projectile mass. The peak position shifts
towards higher values of 𝜃with increase in productmass, that
is, 𝜃
𝑠𝑝
< 𝜃
𝑔𝑝

< 𝜃
𝑏𝑝
, which is clear in Table 6. The parameter

values for angular distributions for shower, grey, and black
particles 𝑎

𝑥
, 𝑎
𝑦
, and 𝑎

𝑧
and 𝑏
𝑥
, 𝑏
𝑦
, and 𝑏

𝑧
are given in Table 7.

4. Conclusion

We conclude that multisource thermal model gives uniform
description of the target fragmentation in interaction of 4He,
12C, 16O, 22Ne, and 28Si with emulsion at 4.1–4.5 AGeV/c.
This model has succeeded in reproduction of the general
characteristics of interactions of nuclei with emulsion such as
average multiplicities, multiplicity distributions, and angular
distributions of particles produced in N-N collisions.
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Table 7: Parameter values for angular distributions for shower, grey, and black particles. The values of 𝑎
𝑥
, 𝑎
𝑦
, and 𝑎

𝑧
and 𝑏

𝑥
, 𝑏
𝑦
, and 𝑏

𝑧
for

4He-, 12C-, 16O-, and 28Si-Em at 4.5 AGeV/c and 22Ne-Em at 4.1 AGeV/c.

Projectile 𝑎
𝑥

𝑎
𝑦

𝑎
𝑧

𝑏
𝑥

𝑏
𝑦

𝑏
𝑧

4He
𝑛
𝑠

1 1 1.3 0 0 1.7
𝑛
𝑔

1.25 1 1 0 0 0.47
𝑛
𝑏

1.2 1 1 0 0 −0.15

12C
𝑛
𝑠

1 1 1.3 0 0 1.7
𝑛
𝑔

1.25 1 1 0 0 0.47
𝑛
𝑏

1.2 1 1 0 0 −0.15

16O
𝑛
𝑠

1 1 1.3 0 0 1.85
𝑛
𝑔

1.25 1 1 0 0 0.47
𝑛
𝑏

1.2 1 1 0 0 −0.15

22Ne
𝑛
𝑠

1 1 1.3 0 0 1.9
𝑛
𝑔

1.25 1 1 0 0 0.47
𝑛
𝑏

1.2 1 1 0 0 −0.15

28Si
𝑛
𝑠

1 1 1.3 0 0 2
𝑛
𝑔

1.25 1 1 0 0 0.47
𝑛
𝑏

1.2 1 1 0 0 −0.15
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