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We disclose the effects of the logarithmic nonlinear electrodynamics on the holographic conductivity 
of Lifshitz dilaton black holes/branes. We analyze thermodynamics of these solutions as a necessary 
requirement for applying gauge/gravity duality, by calculating conserved and thermodynamic quantities 
such as the temperature, entropy, electric potential and mass of the black holes/branes. We calculate the 
holographic conductivity for a (2 +1)-dimensional brane boundary and study its behavior in terms of the 
frequency per temperature. Interestingly enough, we find out that, in contrast to the Lifshitz–Maxwell-
dilaton black branes which have conductivity for all z, here in the presence of nonlinear gauge field, the 
holographic conductivity does exist provided z ≤ 3 and vanishes for z > 3. It is shown that independent of 
the nonlinear parameter β , the real part of the conductivity is the same for a specific value of frequency 
per temperature in both AdS and Lifshitz cases. Besides, the behavior of real part of conductivity for large 
frequencies has a positive slope with respect to large frequencies for a system with Lifshitz symmetry 
whereas it tends to a constant for a system with AdS symmetry. This behavior may be interpreted as 
existence of an additional charge carrier rather than the AdS case, and is due to the presence of the 
scalar dilaton field in model. Similar behavior for optical conductivity of single-layer graphene induced 
by mild oxygen plasma exposure has been reported.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The idea of correspondence between gravity in an anti-de Sit-
ter (AdS) spaces and a conformal field theory (CFT) living on its 
boundary (AdS/CFT) [1–3] has been successful in many theories 
like superconductors, quark-gluon plasma and entanglement en-
tropy. In recent years, the extension of AdS/CFT correspondence to 
other gauge field theories and various spacetimes (gravity theories) 
have got a lot of enthusiasm and usually is called gauge/grav-
ity duality in the literatures. It has been well established that 
the gauge/gravity duality provides powerful tools for exploring dy-
namics of strongly coupled field theories and physics of our real 
Universe. Recently, an interesting application of gauge/gravity du-
ality in condensed matter physics was suggested by Hartnoll, et al.
[4,5] who demonstrated that some properties of strongly coupled 
superconductors have dual gravitational descriptions. Such strongly 
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coupled superconducting phases of the boundary field theory are 
termed holographic superconductors in the literatures.

On the other hand, the dynamics of many condensed matter 
systems near the critical point can be described by a relativistic 
CFT or a more subtle scaling theory respecting the Lifshitz sym-
metry [6]

t → λzt, �x → λ�x. (1)

The spacetime which supports the above symmetry on its r-infinity 
boundary is known as Lifshitz spacetime and has the line element 
[6]

ds2 = − r2z

l2z
dt2 + l2dr2

r2
+ r2d�x2, (2)

where z is dynamical critical exponent. Black hole spacetime 
with asymptotic Lifshitz symmetry has been widely investigated 
in the literature. For example, thermodynamics of asymptotic Lif-
shitz black solutions in the presence of massive gauge fields have
been studied in [7]. The generalization to include the higher curva-
ture corrections terms to Einstein gravity and thermodynamics of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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asymptotically Lifshitz black hole spacetimes was explored in [8]. 
The studies were also extended to dilaton gravity. In this regards, 
thermal behavior of uncharged [9] and linearly charged [10] Lif-
shitz black holes in the context of dilaton gravity has been ex-
plored. When the gauge field is in the form of power-law Maxwell 
field, a new class of analytic topological Lifshitz black holes with 
constant curvature horizon in four and higher dimensional space-
time were constructed in [11]. A class of black brane solutions of 
an effective supergravity action in the presence of a massless gauge 
field, which contains Gauss–Bonnet term as well as a dilaton field, 
with Lifshitz asymptotic have been investigated in [12].

It is also interesting to study other physical properties of sys-
tems with Lifshitz symmetry such as conductivity by applying 
the gauge/gravity duality [13–17]. The holographic conductivity of 
an Abelian Higgs model in a gravity background which is dual 
to a strongly coupled system at a Lifshitz-fixed point, was ex-
plored in [14]. Other studies on the holographic superconductors 
with asymptotic Lifshitz symmetry were carried out in [18–21]. 
The behavior of holographic conductivity for linearly charged Lif-
shitz black branes has been studied in [22,23] for 1 ≤ z ≤ 2. It 
is also of great importance to investigate the effects of nonlinear 
electrodynamics on the holographic conductivity. In [17], the holo-
graphic conductivity for 4-dimensional Lifshitz black branes in the 
presence of nonlinear exponential electrodynamics [24] has been 
explored. The pioneering study on the nonlinear electrodynamics 
was done by Born and Infeld (BI) in 1934 [25] who considered a 
Lagrangian of the form [25]

LBI = 4β2

⎛
⎝1 −

√
1 + F 2

2β2

⎞
⎠ , (3)

where β is called the nonlinear parameter with dimension of mass, 
F = Fμν F μν and Fμν = ∂[μ Aν] in which Aν is the gauge potential. 
It has been shown that BI nonlinear electrodynamics is capable to 
remove the divergency of the electric field of a point-like charged 
particle at its location as well as the divergency of its self-energy. 
In addition to BI Lagrangian, other BI-like nonlinear electrody-
namics in the context of gravitational field have been introduced. 
Among them, the so called logarithmic nonlinear, which intro-
duced by Soleng [26], have got a lot of attention, in recent years. 
The Lagrangian density of the logarithmic gauge field is given by 
[26]

L (F ) = −8β2 ln

(
1 + F

8β2

)
. (4)

In the framework of dilaton gravity, thermal stability and thermo-
dynamic geometry of a class of black hole spacetimes in the pres-
ence of logarithmic nonlinear electrodynamics have been explored 
in four [27] and higher dimensional spacetime [28]. Also, a class of 
spinning magnetic dilaton string solutions which produces a lon-
gitudinal nonlinear electromagnetic field, in the presence of log-
arithmic nonlinear source, were explored in [29]. These solutions 
have no curvature singularity and no horizon, but have a conic 
geometry [29]. In this paper, we would like to consider a class 
of asymptotically Lifshitz black hole/brane solutions of Einstein-
dilaton gravity in the presence of logarithmic nonlinear electro-
dynamics and study the thermodynamics of them as a necessary 
requirement for a system on which we intend to apply gauge/grav-
ity duality. We shall also calculate the holographic conductivity of 
linearly and nonlinearly charged 4-dimensional black brane solu-
tions for all values of z and disclose the effects of nonlinear gauge 
field on the conductivity.

This paper is structured as follows. In the next section, we in-
troduce the action and construct a new class of asymptotic Lifshitz 
black hole/brane solutions of Einstein-dilaton gravity in the pres-
ence of logarithmic nonlinear electrodynamics. In section 3, we 
study thermodynamics of the nonlinear Lifshitz black hole/brane 
solutions and calculate conserved and thermodynamics quantities. 
We also verify the validity of the first law of thermodynamics on 
the horizon. In section 4, we study the holographic conductivity 
of two-dimensional systems for both linear Maxwell and logarith-
mic nonlinear electrodynamics. We also plot the behavior of real 
and imaginary parts of holographic conductivity for asymptotic 
AdS and Lifshitz solutions. We finish our paper with concluding 
remarks in the last section.

2. Action and Lifshitz solutions

One of the properties of dilaton field is that it couples with 
gauge fields. In the presence of dilaton field �, the Lagrangian of 
the logarithmic electrodynamics get modified as well. In this case, 
the Lagrangian density of the logarithmic gauge field coupled to 
the dilaton field in (n + 1)-dimensions can be written as [28]

L (F ,�) = −8β2e4λ�/(n−1) ln

(
1 + e−8λ�/(n−1) F

8β2

)
, (5)

where β is the nonlinear parameter and λ is a constant. The large 
β limit of L (F ,�) reproduces the linear Maxwell electrodynamics 
coupled to the dilaton field [30,31]

L(F ,�) = −e−4λ�/(n−1) F + e−12λ�/(n−1)F 2

16β2
+ O

(
1

β4

)
. (6)

In this paper, we look for asymptotic Lifshitz topological black hole 
solutions. Thus we assume the line elements of the metric is [10,
32]

ds2 = − r2z

l2z
f (r)dt2 + l2

r2

dr2

f (r)
+ r2d�

(n−1)

k , (7)

where z is dynamical critical exponent and k = 0, ±1 determines 
the sign of constant curvature (n −1)(n −2)k of (n −1)-dimensional 
hypersurface with the line element d�

(n−1)

k and volume ωn−1. In 
order to respect the Lifshitz symmetry, we require f (r) → 1 as 
r → ∞. We desire to consider the string-generated Einstein-dilaton 
model [33] with two Maxwell and one logarithmic gauge fields. 
The Lagrangian density of this theory in Einstein frame is

L = 1

16π

(
R− 4

n − 1
(∇�)2 − 2
 + L(F ,�)

−
2∑

i=1

e−4/(n−1)λi�Hi

)
, (8)

where R is Ricci scalar and 
 and λi ’s are some constants. Hi =
(Hi)μν(Hi)

μν in which (Hi)μν = ∂[μ(Bi)ν] where (Bi)ν are the 
gauge potentials. Varying the action S = ∫

dn+1x
√−gL with re-

spect to metric gμν , dilaton field � and gauge potentials Aμ and 
(Bi)μ ’s, one can derive the corresponding equations of motion as

Rμν = gμν

n − 1

[
2
 + 2L F F − L(F ,�) −

2∑
i=1

Hie
−4λi�/(n−1)

]

+ 4

n − 1
∂μ�∂ν� − 2L F Fμλ Fν

λ

+ 2
2∑

e−4λi�/(n−1) (Hi)μλ (Hi)ν
λ, (9)
i=1
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∇2� + n − 1

8
L� +

2∑
i=1

λi

2
e−4λi�/(n−1)Hi = 0, (10)

�μ

(
L F F μν

) = 0, (11)

�μ

(
e−4λi�/(n−1) (Hi)

μν
)

= 0, (12)

where L F = ∂L/∂ F and L� = ∂L/∂�. Lifshitz black hole solutions 
of Einstein-dilaton gravity with Maxwell [10], power Maxwell [11]
and exponential nonlinear [17] electrodynamics have been ex-
plored. Clearly, in the limiting case where β → ∞, one may expect 
that our solutions reduce to linear Maxwell case constructed in 
[10] and in [11] when the power of electrodynamics Lagrangian is 
equal to 1. It is notable to mention that our definitions are so that 
in the linear limit, our solutions directly reproduce the results of 
[11] for p = 1. First of all, we solve differential equations (11) and 
(12) by using the metric (7). We find

Frt = 2qe4λ�/(n−1)

(ϒ + 1)rn−z
, (13)

(Hi)rt = qi

rz−n
e4λi�/(n−1), (14)

where

ϒ ≡
√

1 + q2l2z−2

β2r2n−2
(15)

and q and qi ’s are some integration constants. As we will see, q is 
related to the electric charge of the black hole. Expanding (13) for 
β → ∞, yields

Frt = qe4λ�/(n−1)

rn−z
− q3l2z−2e4λ�/(n−1)

4r3n−z−2β2
+ O

(
1

β4

)
. (16)

The first term in Eq. (16) is the linear Maxwell one presented 
in [11]. The second term is the leading order nonlinear correc-
tion term to the Maxwell field. Substituting solutions (13) and (14)
into the field equations (9) and (10), one arrives at four differential 
equations

(n − 1)
(
rn f

)′

2l2rn−1
+ 2r2 f �′2

(n − 1)l2
+ 
 − (n − 1)(n − 2)k

2r2

+
2∑

i=1

q2
i e4λi�/(n−1)

l2(1−z)r2(n−1)
+ � = 0, (17)

(n − 1)
(
rn+2(z−1) f

)′

2l2rn+2z−3
− 2r2 f �′2

(n − 1)l2
+ 
 − (n − 1)(n − 2)k

2r2

+
2∑

i=1

q2
i e4λi�/(n−1)

l2(1−z)r2(n−1)
+ � = 0, (18)

r2 f ′′

2l2
+ (2n + 3z − 3)r f ′

2l2
+ 2r2 f �′2

(n − 1)l2

+ (2z2 + 2(n − 2)z + (n − 1)(n − 2)) f

2l2

+ 
 − (n − 3)(n − 2)k

2r2
−

2∑
i=1

q2
i e4λi�/(n−1)

l2(1−z)r2(n−1)

− 4β2e4λ�/(n−1) ln

(
ϒ + 1

2

)
= 0, (19)

(
rn+z f �′)′

l2rn+z−2
−

2∑ q2
i λie4λi�/(n−1)

l2(1−z)r2(n−1)
− λ� = 0, (20)
i=1
where � = � (r) and

� ≡ 4β2e4λ�/(n−1)

[
ϒ − 1 − ln(

ϒ + 1

2
)

]
.

Combining (17) and (18), we find

4r2�′2 = (n − 1)2 (z − 1) , (21)

which has the solution

�(r) = ln
( r

b

)ξ

, ξ = (n − 1)
√

z − 1

2
, (22)

where b is an integration constant with dimension of length. So-
lution (22) implies z ≥ 1. With � (r) at hand, we can obtain the 
function f (r) form Eqs. (17)–(20) as

f (r) = − 2l2


(n + z − 1) (n + z − 2)
− m

rn+z−1
+ (n − 2)2kl2

(n + z − 3)2r2

+ 8β2l2b2z−2

(n − 1)(n − z + 1)r2z−2

×
{

2n − z

n − z + 1
+ ln

(
1 + ϒ

2

)

− (n − 1)

(n − z + 1)
F
(

1

2
, X, X + 1,1 − ϒ2

)

− F
(

−1

2
, X, X + 1,1 − ϒ2

)}
, (23)

where

X = z − n − 1

2n − 2
,

F is the hypergeometric function and m is a constant related to the 
mass of the black hole. Using the hypergeometric identities [34]

(y − w − 1)F (w, x, y, s) + wF (w + 1, x, y, s)

− (y − 1)F (w, x, y − 1, s) = 0, (24)

and

F (w, x, x, s) = (1 − s)−w , (25)

one can rewrite f (r) in a more simple form

f (r) = − 2l2


(n + z − 1) (n + z − 2)
− m

rn+z−1
+ (n − 2)2kl2

(n + z − 3)2r2

+ 8β2l2b2z−2

(n − 1)(n − z + 1)r2z−2

×
{

2n − z

n − z + 1
+ ln

(
1 + ϒ

2

)
+ (n − z + 1)ϒ

z − 2

− (n − 1)2

(z − 2)(n − z + 1)

× F
(

1

2
,

z − n − 1

2n − 2
,

n + z − 3

2n − 2
,1 − ϒ2

)}
. (26)

Let us note that although at the first glance relation (26) seems 
divergent in z = 2, f (r) is not really diverging at this point as one 
can see from (23). The above solutions will fully satisfy the system 
of Eqs. (17)–(20) provided,
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Fig. 1. The behavior of f (r) versus r for l = 1.5, b = 0.4, q = 1.4, z = 1.5 and m = 1.5.
λ = −√
z − 1, λ1 = n − 1√

z − 1
, λ2 = n − 2√

z − 1
,

q2
1 = − 
(z − 1)b2(n−1)

(z + n − 2)l2(z−1)
,

q2
2 = k(n − 1)(n − 2)(z − 1)b2(n−2)

2(z + n − 3)l2(z−1)
. (27)

Note that q is hidden in ϒ = √
1 + q2l2z−2/(β2r2n−2) in (26). The 

reality of q2 requires that k �= −1 except for z = 1. Thus, hereafter, 
we consider the black branes (k = 0) and black holes (k = 1) in 
the general cases with z �= 1. Also, reality of q1 implies 
 < 0. As 
we mentioned above the asymptotic Lifshitz behavior implies that 
f (r) → 1 as r → ∞. However, from Eq. (26) we have

lim
r→∞ f (r) = − 2l2


(n + z − 1) (n + z − 2)
.

Therefore, in order to have appropriate asymptotic behavior for 
f (r) we fix 
 as


 = − (n + z − 1)(n + z − 2)

2l2
, (28)

which is negative (
 < 0), as the reality of q1 implies. Hence, the 
final form of f (r) is

f (r) = 1 − m

rn+z−1
+ (n − 2)2kl2

(n + z − 3)2r2
+ 8β2l2b2z−2

(n − 1)(n − z + 1)r2z−2

×
{

2n − z

n − z + 1
+ (n − z + 1)ϒ

z − 2
+ ln

(
1 + ϒ

2

)

− (n − 1)2

(z − 2)(n − z + 1)

× F
(

1

2
,

z − n − 1

2n − 2
,

n + z − 3

2n − 2
,1 − ϒ2

)}
. (29)

The behavior of f (r) for large β , may be written

f (r) = 1 − m

rn+z−1
+ (n − 2)2kl2

(n + z − 3)2r2

+ 2q2b2z−2l2z

(n − 1) (n + z − 3) r2n+2z−4

− q4b2z−2l4z−2

4 (n − 1) (3n + z − 5)β2r4n+2z−6
+ O

(
1

β4

)
. (30)

When β → ∞, this solution recovers the Lifshitz black holes in 
Einstein–Maxwell-dilaton gravity [10,11], as expected. Fig. 1 shows 
the behavior of f (r) for different values of β correspond to Lifshitz 
black branes (k = 0) and black holes (k = 1). This figure exhibits 
that it is possible to have black solutions with one or two horizons. 
We can calculate the Hawking temperature of outermost horizon 
r+ as

T = rz+1+ f ′ (r+)

4π lz+1
= (n + z − 1)rz+

4π lz+1
+ (n − 2)2krz−2+

4π(n + z − 3)lz−1

+ 2β2l1−zb2z−2

π(n − 1)rz−2+

[
1 − ϒ+ + ln

(
ϒ+ + 1

2

)]
, (31)

where ϒ+ = ϒ(r+). In the next section we shall study thermody-
namics of Lifshitz black branes/holes we obtained in this section.

3. Thermodynamics OF Lifshitz solutions

In this section, we want to study thermodynamics of Lifshitz 
black holes/branes. The temperature of our solutions on the hori-
zon was calculated in previous section. In order to find the entropy 
of these Lifshitz solutions we can use the so-called area law which 
states that the entropy of the black hole is quarter of the event 
horizon area [35]. The entropy of almost all kinds of black holes in 
Einstein gravity including dilaton ones is computed by using this 
near universal law [36]. Hence, the entropy of the obtained Lifshitz 
solutions per unit volume ωn−1 can be calculated as

S = rn−1+
4

. (32)

Now, we turn to calculation of electric charge of Lifshitz black 
holes. We use the nonlinear logarithmic electrodynamics. The well-
known Gauss law for this nonlinear electrodynamics can be given 
by

Q = 1

4π

∫
rn−1L F Fμνnμuνd�, (33)

where uν and uμ are the unite timelike and spacelike normals to 
a sphere of radius r given as

nμ = 1√−gtt
dt = lz

rz
√

f (r)
dt,

uν = 1√
grr

dr = r
√

f (r)

l
dr. (34)

Therefore, the electric charge per unit volume ωn−1 is obtained as

Q = qlz−1

4π
. (35)

Another conserved quantity of our solutions is mass. We can ob-
tain this conserved quantity by applying the modified subtraction 
method of Brown and York [37]. Thus, the mass per unit volume is 
computed as (see Ref. [11] for more details)
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M = (n − 1)m

16π lz+1
, (36)

where m can be calculated by using this fact that f (r+) = 0. There-
fore, one obtains

m = rn+z−1+ + (n − 2)2kl2rn+z−3+
(n + z − 3)2

+ 8β2l2b2z−2rn−z+1+
(n − 1)(n − z + 1)

×
{

2n − z

n − z + 1
+ (n − z + 1)ϒ+

z − 2
+ ln

(
1 + ϒ+

2

)

− (n − 1)2

(z − 2)(n − z + 1)

× F
(

1

2
,

z − n − 1

2n − 2
,

n + z − 3

2n − 2
,1 − ϒ2+

)}
. (37)

Since from one side m = m(r+, q) (note that q is hidden in ϒ+) 
and from another side r+ and q are related to entropy and charge 
through (32) and (35), respectively, one can re-express m and con-
sequently M in terms of extensive quantities S and Q . The desired 
Smarr formula M(S, Q ) is therefore

M (S, Q ) = (n − 1) (4S)(n+z−1)/(n−1)

16π lz+1

+ (n − 1) (n − 2)2k(4S)(n+z−3)/(n−1)

16π lz−1 (n + z − 3)2

+ β2b2z−2 (4S)(n−z+1)/(n−1)

2π(n − z + 1)lz−1

×
{

2n − z

n − z + 1
+ (n − z + 1)�

z − 2
+ ln

(
1 + �

2

)

− (n − 1)2

(z − 2)(n − z + 1)

× F
(

1

2
,

z − n − 1

2n − 2
,

n + z − 3

2n − 2
,1 − �2

)}
, (38)

where � = √
1 + π2 Q 2/(β2 S2). One can expand M(S, Q ) for large 

values of β to arrive at

M(S, Q ) = (n − 1)(4S)(n+z−1)/(n−1)

16π lz+1

+ (n − 1)(n − 2)2k(4S)(n+z−3)/(n−1)

16π(n + z − 3)2lz−1

+ 2π Q 2b2z−2(4S)(3−n−z)/(n−1)

(n + z − 3)lz−1

− 16π3 Q 4b2z−2(4S)(5−3n−z)/(n−1)

4(3n + z − 5)lz−1β2

+ O

(
1

β4

)
, (39)

which is the Smarr-type formula obtained for the Lifshitz black 
holes of EMd theory in the limit of β → ∞ [11]. We also introduce 
the conjugate intensive quantities corresponding to entropy and 
charge namely temperature and electric potential as

T =
(

∂M

∂ S

)
Q

and U =
(

∂M

∂ Q

)
S
. (40)

The electric potential U , measured at infinity with respect to the 
horizon r+ , is principally defined as

U = Aμχμ
∣∣r→∞ − Aμχμ

∣∣ , (41)
r=r+
where χ = ∂t is the null generator of the horizon. In order to 
find electric potential U , we first have to calculate the gauge po-
tential At . The gauge potential At corresponding to the electro-
magnetic field (13) is given by At(r) =

∫
Frtdr. It is a matter of 

calculations to show that

At = μ + 2β2b2z−2l2−2zrn−z+1

(n − z + 1)q
(ϒ − 1)

− 2q(n − 1)b2z−2

(1 + n − z)(n + z − 3)rn+z−3

× F
(

1

2
,

z + n − 3

2n − 2
,

n + z − 5

n − 1
,1 − ϒ2

)
. (42)

One can check that At reduces to finite value μ at infinity. Requir-
ing the fact that At (r+) = 0, one gets

μ = −2β2b2z−2l2−2zrn−z+1+
(n − z + 1)q

(ϒ+ − 1)

+ 2q(n − 1)b2z−2

(1 + n − z)(n + z − 3)rn+z−3+

× F
(

1

2
,

z + n − 3

2n − 2
,

n + z − 5

n − 1
,1 − ϒ2+

)
. (43)

Note that μ is commonly referred to as chemical potential of the 
thermodynamical system lives on boundary. Using Eqs. (41) and 
(42) the electric potential may be obtained as

U = μ. (44)

If we consider S and Q as a complete set of extensive quantities 
for M(S, Q ), it is confirmed numerically that the intensive quanti-
ties corresponding to S and Q namely temperature T and electric 
potential U , coincide with Eqs. (31) and (44), respectively. Thus, 
the first law of thermodynamics

dM = T dS + UdQ , (45)

is satisfied for our obtained Lifshitz black branes/holes. In the re-
maining part of this paper, we turn to study the holographic con-
ductivity of a (2 + 1)-dimensional system lives on the boundary of 
brane of a four dimensional bulk.

4. Holographic electrical conductivity

In this section, we will focus on studying gauge/gravity duality 
for Lifshitz black brane solutions. In particular, we obtain the AC 
conductivity as a function of frequency for a (2 + 1)-dimensional 
system lives on the boundary of brane. In order to make the ef-
fects of nonlinearity on the conductivity more clear, we first review 
the calculation of this quantity for the linear Maxwell case [22,23]. 
Then, we turn to the case with nonlinear logarithmic electrody-
namics. In what follows, we set l = b = r+ = 1. We take the planar 
(3 + 1)-dimensional metric for the bulk as

ds2 = −F(u)u−2zdt2 +
[
F(u)u2

]−1
du2 + u−2(dx2 + dy2), (46)

which can be obtained from (7) by defining u = 1/r. Therefore, the 
black brane horizon sits at u = 1 and the three-dimensional system 
lives at u = 0 (brane boundary). For linear Maxwell case, F(u) in 
(46) is calculated by substituting u = 1/r, n = 3 and k = 0 in (30)
and taking the β → ∞ limit. Thus, we get

F(u) = 1 − muz+2 + q2z−1u2z+2. (47)

Now, we perturb the vector potential and the metric by turning on 
Ax(u)e−iωt and gtx (u) e−iωt and arrive at two additional equations 
as
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A′′
x +

[
F ′F−1 + 3(1 − z)u−1

]
A′

x

+ u2z−2F−2
[
ω2 Ax − quzF

(
2gtx + ug′

tx

)] = 0, (48)

and

2gtx + ug′
tx = 4qu2−z Ax, (49)

where the prime indicates the derivative with respect to u. Elim-
inating gtx from Eq. (48) through (49), we can easily obtain a 
linearized equation for the gauge field Ax

A′′
x +

[
F ′F−1 + 3(1 − z)u−1

]
A′

x

+ u2z−2F−2
[
ω2 − 4q2u2F

]
Ax = 0. (50)

From gauge/gravity duality, we know that the expectation value of 
current is given by [38]

〈 J x〉 = ∂L

∂ (∂uδAx)

∣∣∣∣
u=0

, (51)

where L = √−gL in which L was introduced in (8) and δAx =
Axe−iωt . Therefore, we can calculate conductivity through Ohm’s 
law as

σ (ω) = 〈 J x〉
Ex

= − 〈 J x〉
∂tδAx

= − i 〈 J x〉
ωδAx

. (52)

In order to compute conductivity σ (ω), we need to know the 
asymptotic behavior of the perturbative field Ax governed by (50)
near the boundary u = 0. This reads

A′′
x − 3(z − 1)u−1 A′

x + ω2u2(z−1) Ax + · · · = 0, (53)

which has the solutions

Ax (u) =
⎧⎨
⎩

A0 + A0ω2

2z(z−2)
u2z + A1u3z−2 + · · · for z �= 2,

A0 − A0ω2

4 ln (u) u4 + A1u4 + · · · for z = 2,

(54)

where A0 and A1 are two constants. Thus, the conductivity for the 
linear Maxwell electrodynamics is obtained as [22,23]

σ =
⎧⎨
⎩

(3z−2)A1

4π iωA0 for z �= 2,

16A1−A0ω2

16π iωA0 for z = 2.

(55)

It is remarkable to note that for z ≥ 2, there is a divergence term 
in L when we use (51) and (52) to calculate conductivity, σ . How-
ever, these terms do not effect on the value of conductivity and 
can be easily eliminated by using holographic re-normalization ap-
proach [22,23,39]. In this method, the divergence is canceled by 
adding appropriate counterterms to the action. In [23], conductiv-
ity has been studied for (3 + 1)-dimensional black branes in the 
presence of linear Maxwell electrodynamics where 1 ≤ z ≤ 2. Here, 
in (55), we generalize those results to z > 2.

Now, we turn to calculate the conductivity on the boundary of 
the Lifshitz black branes when the bulk gauge field is in the form 
of logarithmic nonlinear electrodynamics. The motivation is to dis-
close the effects of nonlinearity on the holographic conductivity in 
comparison with linear Maxwell case. In this case, by transforming 
r → u = 1/r in Eq. (29), F(u) can be rewritten as

F(u) = 1 − muz+2 + 4β2u2z−2

(4 − z)

{
6 − z

4 − z
+ (4 − z)ϒu

z − 2

+ ln

(
1 + ϒu

2

)
− 4

(z − 2)(4 − z)

× F
(

1
,

z − 4
,

z
,1 − ϒ2

u

)}
, (56)
2 4 4
where ϒu = √
1 + q2u4/β2. Perturbative equations of motion com-

ing from turning on Ax(u)e−iωt and gtx (u) e−iωt in the bulk for 
nonlinear electrodynamics are

A′′
x +

[
3(1 − z)

u
+ F ′

F
+ 4q2u3

q2u4 + β2(1 + ϒu)2

]
A′

x

+ ω2u2z−2

F2
Ax = 2qu3z−2

(1 + ϒu)F
(
2gtx + ug′

tx

)
, (57)

and

2gtx + ug′
tx = 4qu2−z Ax, (58)

which give rise to the decoupled equation for the gauge field Ax

A′′
x +

[
3(1 − z)

u
+ F ′

F
+ 4q2u3l2z−2

q2u4 + β2(1 + ϒu)2

]
A′

x

+ u2z−2

F2
Ax

[
ω2 − 8q2u2F

(1 + ϒu)

]
= 0. (59)

One can check that the general behavior of Eq. (59) near the 
boundary u = 0 is

A′′
x − 3(z − 1)u−1 A′

x + ω2u2(z−1) Ax + · · · = 0, (60)

which cause the same behavior for the gauge potential near the 
boundary as (54). Now, we can compute conductivity in the pres-
ence of logarithmic electrodynamics. Using Eq. (52), we arrive at

σ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(3z−2)A1

4π iωA0

[
1 +

(
ωA0u3−z

2β

)2
]−1

∣∣∣∣∣
u=0

for z �= 2,

16A1−A0ω2

16π iωA0

[
1 +

(
ωA0u

2β

)2
]−1

∣∣∣∣∣
u=0

for z = 2.

(61)

Consequently, the conductivity σ in this case for different ranges 
of dynamical critical exponent z is

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3z−2)A1

4π iωA0 for z < 3 ( �= 2),

16A1−A0ω2

16π iωA0 for z = 2,

(3z−2)A1

4π iωA0

[
1 +

(
ωA0

2β

)2
]−1

for z = 3,

0 for z > 3.

(62)

It is notable to mention that the same comments as linear Maxwell 
case given in the end of previous paragraph about the diverging 
terms are also valid here. The above result indicates that for z < 3, 
the conductivity has the same expression as linear Maxwell field. 
For z = 3 the conductivity get modified due to the nonlinear pa-
rameter β and reduces to the Maxwell case as β → ∞. However, 
in contrast to the linear Maxwell field, the conductivity is zero for 
z > 3. The media show the behavior like the latter case (z > 3) 
in which σ = 0 are known as “lossless” since conductivity repre-
sents power loss within a medium. In such a media which is called 
also as “perfect dielectrics”, J = 0 regardless of the electric field E . 
This means that the electric field E cannot move the charge car-
riers. This result shows that, for z > 3 the media in gauge side of 
gauge/gravity duality represents lossless behavior if the nonlinear 
electrodynamics is employed.

In order to have further understanding on the behavior of the 
conductivity, we depict the conductivity in terms of the frequency 
by solving Eq. (59), numerically. For this purpose, we need initial 
conditions. Let us look at the solution for the gauge potential Ax
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Fig. 2. The behaviors of real and imaginary parts of electrical conductivity σ versus ω/T for z = 1, β = 1 and different values of q with l = b = r+ = 1.

Fig. 3. The behaviors of real and imaginary parts of electrical conductivity σ versus ω/T for z = 1, q = 0.9 and different values of β with l = b = r+ = 1.

Fig. 4. The behaviors of real and imaginary parts of electrical conductivity σ versus ω/T for z = 1.1, β = 1 and different values of q with l = b = r+ = 1.
near the horizon r+ . In order to take into account the causal be-
havior, we solve Eq. (59) for Ax near horizon by performing ingoing 
wave boundary condition. Therefore, we receive

Ax (u) = F(u)−i4πω/T �(u), (63)

where T is temperature and

�(u) = 1 + a(u − 1) + b(u − 1)2 + · · · , (64)

where a, b, . . . are some constants to be determined numerically 
and considered as initial conditions required for solving differential 
equation (59), numerically. Substituting Eq. (63) into Eq. (59), one 
can obtain the differential equation for � . Therefore, a, b, . . . can 
be found by looking for Taylor series expansions of Eq. (59) near 
the horizon r+ . With these initial conditions, we are able to plot 
the behavior of the conductivity in terms of frequency.

Figs. 2 and 3 show the behavior of conductivity σ with re-
spect to frequency per temperature, ω/T , for asymptotic AdS case 
(z = 1). In Fig. 2, this behavior is depicted for different values of q. 
From Fig. 2(a) we see that σDC = Re[σ (0)] decreases as q (tem-
perature T ) increases (decreases). This figure also shows that the 
effects of increasing of frequency is more for larger values of q
(lower temperatures). Furthermore, inspite of different values of q
(T ) there is an asymptotic value for Re[σ ] in large frequencies. 
Such behavior for conductivity has been reported in [40] for a 
graphene system. It is important to note that the behaviors of real 
and imaginary parts of conductivity are not independent and is re-
lated to each other via Kramers–Kronig relations. Fig. 3 illustrates 
the behavior of conductivity versus frequency for different values 
of the nonlinear parameter β . This figure again confirms that σDC

decreases with decreasing the temperature. As one can see from 
Fig. 3(a), there is a specific ω/T (between 5 and 10) that inspite 
of different values of β , the conductivity is the same for it.

In Figs. 4 and 5, previous cases are illustrated for a system with 
Schrodinger-like symmetry, namely z = 1.1. For small frequencies, 
σDC has the same behavior as previous case i.e., it increases as 
temperature does. However, the behavior of conductivity for large 
frequencies is different. In fact, real part of conductivity has a pos-
itive slope with respect to frequency for large ones. This behavior 
may be interpreted as existence of an additional charge carrier 
rather than the previous case. This is due to existence of dila-
ton scalar field in model in comparison with asymptotic AdS case. 
Similar behavior for optical conductivity of single-layer graphene 
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Fig. 5. The behaviors of real and imaginary parts of electrical conductivity σ versus ω/T for z = 1.1, q = 0.9 and different values of β with l = b = r+ = 1.
induced by mild oxygen plasma exposure has been reported in 
[41]. Fig. 4 shows that we have more near behavior for conduc-
tivity for smaller q’s (higher temperatures). Finally, from Fig. 5, we 
see that for a specific value of ω/T (near 10), the conductivity has 
the same behavior, independent of the nonlinear parameter β . This 
occurs for isotropic symmetrical systems (z = 1) too (see Fig. 3(a)).

5. Closing remarks

To summarize, we have constructed a new class of (n + 1)-di-
mensional Lifshitz dilaton black holes/branes in the presence of 
logarithmic nonlinear electrodynamics. The obtained solutions in 
this paper obey the scaling symmetry t → λzt and xi → λxi , comes 
from the generalized gauge/gravity duality, at r-infinity bound-
ary. We found that the horizon of these spacetime can be an 
(n − 1)-dimensional hypersurface with positive (k = 1) or zero 
(k = 0), constant curvature. Therefore, our solutions rule out the 
case with negative curvature (k = −1). We studied thermodynam-
ics of Lifshitz dilaton black holes/branes and calculated the temper-
ature, entropy, charge, electric potential and mass of the spacetime. 
We have also confirmed that these conserved and thermodynamic 
quantities satisfy the first law of thermodynamics on the horizon. 
This is a necessary requirement for a system in which one can ap-
ply gauge/gravity duality.

Then, we investigated the gauge/gravity duality of Lifshitz black 
branes by calculating the holographic conductivity as a function of 
frequency for a (2 + 1)-dimensional system lives on the boundary 
of a (3 + 1)-dimensional bulk. First, we reviewed the calculations 
of the conductivity on the boundary of Einstein–Maxwell-dilaton 
black branes and found that it holds for all values of the dynam-
ical exponent z. In this part, we generalized the study of [23] to 
z > 2. Then, we extended our study to the case with logarithmic 
nonlinear electrodynamics. We found that for z < 3, the conduc-
tivity has the same expression as linear Maxwell field. For z = 3
the conductivity get modified due to the nonlinear parameter β
as given in Eq. (62), and reduces to the Maxwell case as β → ∞. 
However, in contrast to the linear Maxwell case, in the presence 
of logarithmic nonlinear gauge field the conductivity is zero for 
z > 3. Taking suitable initial conditions, we have plotted the be-
havior of the conductivity in terms of frequency per temperature. 
We found that for asymptotic AdS case (z = 1), σDC = Re[σ (0)] de-
creases as q (temperature T ) increases (decreases). Latter behavior 
holds for asymptotic Lifshitz solutions (z > 1). However, the be-
havior of conductivity for large frequencies is different. In fact, real 
part of conductivity has a positive slope with respect to large fre-
quency for asymptotic Lifshitz solutions whereas it tends to a con-
stant for asymptotic AdS ones. This behavior may be interpreted as 
existence of an additional charge carrier for systems respecting Lif-
shitz symmetry rather than the AdS case. This is due to existence 
of dilaton scalar field in our model, comparing with asymptotic 
AdS case. Similar behavior for optical conductivity of single-layer 
graphene induced by mild oxygen plasma exposure has been re-
ported in [41]. Finally, we observed that for a specific value of 
ω/T , the conductivity has the same value, independent of the non-
linear parameter β , for both asymptotic Lifshitz and asymptotic 
AdS solutions.
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