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Geometric scaling is well confirmed for transverse-momentum distributions observed in proton-proton
collisions at Large Hadron Collider (LHC) energies. We introduced multiplicity dependence on a saturation
momentum of the geometrical scaling, assuming the scaling holds for semi-inclusive distributions as well as for
inclusive distributions. The saturation momentum is usually given by Bjorken’s x variable, but redefinition of the
scaling variable can make the saturation momentum a function of collision energy W . We treat the energy as a
free parameter (denoted W ∗ to distinguish it from W ) and associate the energy-dependent saturation momentum
Qsat (W ∗) with particle number density. By using Qsat (W ∗) for a scaling variable τ , we show semi-inclusive
distributions can be geometrically scaled, i.e., all semi-inclusive spectra observed at W = 0.90, 2.76, and
7.00 TeV overlap one universal function. The particle density dependencies of mean transverse momentum
〈pT 〉 for LHC energies scales in terms of Qsat (W ∗). Furthermore, our model explains a scaling property of
event-by-event pT fluctuation measure

√
Cm/〈pT 〉 at LHC energies for pp collisions, where Cm is a two-particle

transverse-momentum correlator. Our analysis of the pT fluctuation makes possible to evaluate a nonperturbative
coefficient of the gluon correlation function.

DOI: 10.1103/PhysRevC.100.034906

I. INTRODUCTION

Studies of small collision systems in high-multiplicity
events is attracting considerable interest [1] because of the
collective phenomena which attribute to the formation of
a strongly interacting collectively expanding quark-gluon
medium [2–5]. A remarkable similarity has been observed
between strange particles production in pp collisions and that
in Pb-Pb collisions, suggesting the possibility of deconfined
QCD phase formation in small systems [6]. In such pp col-
lisions, the charged particle pseudorapidity density rises as a
power of energy [7,8], which can be explained by the theory
of gluon saturation [9,10]. Recombination of gluons [11] in
high-particle-number density state causes the saturation, and
the gluon distribution function ceases growing from some
intrinsic scale of the transverse momentum Qs [12]. The color
glass condensate (CGC) [13–15] is an effective theory to
describe saturated gluons with small x as classical color fields
radiated by color sources at higher rapidity. The existence of
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Qs which separates the degree of freedom into fast frozen
color sources and slow dynamical color fields [16] is the
underlying assumption of the effective theory. The scaling of
the limiting fragmentation curves [17] is one of the crucial
pieces of evidence for the picture of the CGC [18,19].

Another experimental evidence of CGC hypothesis is a ge-
ometrical scaling [20,21] (GS) confirmed originally in results
on total γ ∗ p cross section [22]. A term of the “geometrical”
of this GS comes from that survival probability of a color
dipole [23–25] is determined by the geometric relationship
between the dipole size and the saturation radius given by
Q−1

s (x) [16,26], where x is a Bjorken variable. In this article,
since we will deal with multiparticle production in the central
rapidity region of high-energy pp collisions, we have x =
pT /W , where pT and W are the transverse momentum and
colliding energy of the incident proton, respectively. With x0,
Q0, and λ as constants (see, Sec. II for details), the saturation
momentum is given by [27]

Qs(x) ≡ Q0

(
x

x0

)−λ/2

. (1)

If such momentum is the only scale that controls pT distri-
bution, then it should exhibit GS behavior; i.e., when one
normalizes inclusive transverse-momentum spectra observed
with an appropriate constant ST (interpreted later as reaction
effective transverse cross-sectional area), the data points lie
on a characteristic curve F (τ ) which is only depends on the
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scaling variable τ ≡ p2
T /Q2

s and the curve does not depend
on W . In particular, the scaling property has been vigorously
studied for pp collisions obtained at the Large Hadron Col-
lider (LHC) energies [28–31] and GS is observed in single
inclusive distributions of charged hadrons [28] and recently
observed direct photons from heavy-ion collisions [32]. Since
Qs(x) includes pT dependence via Bjorken x; i.e.,

Qs

(
pT

W

)
= Q0(x0W )

λ
2 p

− λ
2

T , (2)

we unify the terms of pT contained in τ and redefine the
rest that depends on W as an energy-dependent saturation
momentum Qsat (W ) [33]. Namely, the scaling variable can be
rewritten as

τ =
[

pT

Qsat (W )

]2+λ

, (3a)

Qsat (W ) ≡ Q0

(
x0W

Q0

) λ
λ+2

, (3b)

and the GS is expressed as [34]

1

ST

d2Nch

d p2
T dy

= F (τ ), (3c)

where F (τ ) is a so-called universal function of GS. Under
an assumption that a local parton hadron duality [35] as a
hadronization model is appropriate, the particle density at the
central rapidity region (y ≈ 0) relates to Qsat (W ) as follows:〈

dNch

dy

〉
∝ ST Q2

sat (W ), (4)

where 〈· · · 〉 denotes the average over single inclusive distribu-
tion (or over minimum bias events). Since the particle number
density is known to increases gradually with collision energy
W , we expect Qsat (W ) to also increases gradually with W .

Let us suppose that GS holds not only for inclusive
distributions but also for the semi-inclusive distributions, i.e.,
inclusive distribution with fixed multiplicity or limited multi-
plicity class [36,37]. For the semi-inclusive spectra d2nch

d p2
T dy

, as
the case of inclusive one, we assume that there exists a satu-
ration momentum for the spectrum classified by multiplicity
as well and we propose to represent it by effective energy W ∗;
i.e.,

1

S∗
T

d2nch

d p2
T dy

= F (τ ), (5a)

where, instead of Eq. (3a), we use

τ =
[

pT

Qsat (W ∗)

]2+λ

. (5b)

It should be noted here that the universal function F in
Eq. (5a) is the same as that in Eq. (3c). Here S∗

T and W ∗
are determined to reproduce the spectrum obtained by the
experiment. In particular, this W ∗ is a fit parameter introduced
replacing the actual beam energy W in Eq. (3b). Hence, we
intend to check whether GS found in inclusive distribution is
restored even in semi-inclusive distribution.

It may be appropriate to give some explanations for W ∗
here. As discussed in detail later in Sec. II, the energy-
dependent saturation momentum Qsat gives a typical scale of
transverse momentum pT . That is, Qsat is the solution pT of
an equation Qs(pT /W ) = pT for each colliding energy W .
Because Qsat itself is a scale of transverse momentum, the
inverse of it is a typical transverse size scale of saturated glu-
ons. Hence as seen in Eq. (4), the ratio of effective interaction
cross-sectional area ST to the cross-sectional area per gluon
Q−2

sat governs the mean charged particle density of the inclusive
distribution. On the other hand, for semi-inclusive collisions
classified by multiplicity, S∗

T and Qsat (W ∗) should be related
to each other by the constraint of the fixed multiplicity. We
will discuss the relation between Qsat (W ∗) and S∗

T of the
semi-inclusive distribution in some detail in Sec. III and also
comment on the physical meaning of W ∗.

This article is organized as follows. In Sec. II, we briefly
review GS hypothesis and we confirm that it holds well for
inclusive transverse spectra observed in pp collisions at LHC
energies. Then we determine the universal function of GS
used throughout this article. In Sec. III, the effective energy
W ∗ is determined from the semi-inclusive transverse spectra.
By using the scaling variables with Qsat (W ∗), we show that
the transverse-momentum spectra observed in the different
multiplicity classes at the different collision energies scale to
the universal function found in Sec. II. We also show that the
multiplicity dependence of the mean transverse momentum
scales with Qsat (W ∗). Furthermore, we analyze the scaling
behavior of a normalized fluctuation measure of transverse
momentum and consider it as a result of the correlation
between particles generated from color flux tubes. We close
with Sec. IV containing the summary and some concluding
remarks.

II. GS FOR INCLUSIVE pT DISTRIBUTION

The transverse-momentum spectra of various energies for
pp collisions never scale with variable pT because their inten-
sities and slopes depend on the colliding energy W . However,
for high-energy collisions in which the number of soft gluons
inside the proton saturates, the transverse-momentum spec-
trum depends only on a scaling variable defined by Eq. (3a)
with Eq. (3b). Let us examine the quantitative difference
between Qs(x) and Qsat (W ) at LHC energies. We show them
as a function of pT in Fig. 1 for the case of λ = 0.22,
x0 = 1.0 × 10−3, Q0 = 1.0 GeV/c [34], and we will fix the
values from now on. Since Qs is less dependent on pT for
pT � 0.5 GeV/c, one may use Qsat (W ) instead of Qs as a typ-
ical momentum scale. The values of Qsat (W ) obtained from
inclusive pT spectra at energy W = 0.90, 2.76, 7.00 TeV are
0.99, 1.11, and 1.21 GeV/c, respectively. As shown in Fig. 2,
experimental data observed by the ALICE [38] and CMS
Collaborations [39] suggests the validity of GS especially
for τ 1/(2+λ) � 10. The curve emerging from a plot of the pT

spectra with using the scaling variable τ can be fitted well by
the so-called Tsallis-type function [40,41];

F (τ ) =
[

1 + (q − 1)
τ 1/(λ+2)

κ

]−1/(q−1)

, (6)
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FIG. 1. Saturation momentum Qs (dotted curve with triangle and
circle symbols) and energy-dependent saturation momentum Qsat

(horizontal solid lines) for W = 0.90, 2.76, and 7.00 TeV. The long-
and-short-dashed line represents Qs = pT . The intersections of the
line and the dotted curve give Qsat at each W . For W = 0.90, 2.76
and 7.00 TeV, Qsat = 0.99, 1.11, 1.21 GeV/c, respectively.

where the nonextensive parameter q = 1.134 and κ = 0.1293
are used. The effective cross-sectional area in Eq. (3c) is
determined as ST = 22.66 GeV−2. In this way, the transverse-
momentum distribution indeed exhibits GS behavior for pp
collisions in the LHC energies. It seems appropriate to shortly
comment on the energy-dependent saturation momentum Qsat

and an effective temperature Teff (or a slope parameter)
[29,42] here. In case of a Tsallis-type distribution function,

FIG. 2. The transverse-momentum distributions exhibit geomet-
rical scaling behavior for pp collisions at W = 0.90, 2.76, and
7.00 TeV. Experimental data (indicated by triangles or circles) are
observed by the ALICE Collaboration [38] and CMS Collaboration
[39]. The solid curve is the universal function F (τ ) with q = 1.134,
κ = 0.1293, and λ = 0.22 [see Eq. (6)]. The effective interaction
cross-sectional area ST = 22.66 GeV−2 is used.

Teff can be defined as

1

2π pT

d2Nch

d pT dy
= C

[
1 + (q − 1)

pT

Teff

]−1/(q−1)

. (7)

Here one may interpret the constant C as ST . Since the
transverse spectra experimentally observed exhibits good GS
behavior, the effective temperature Teff must have energy
dependence to cancel the energy dependence of

pT = Q0

(
x0W

Q0

) λ
λ+2

τ
1

2+λ , (8)

which is obtained from Eq. (3a). Hence, the property of the GS
determined the energy dependence of Teff and that Teff should
be proportional to Qsat [29]. Substituting Eq. (8) into Eq. (7)
yields the expression of the universal function of Eq. (6) in the
case of

Teff = κQsat. (9)

The gluon saturation is physics of the intermediate energy
scale Qsat, while GS observed in the final state is physics of
the energy scale Teff which is much lower than Qsat. Therefore,
the parameter κ in Eq. (9) [or equivalently Eq. (6)] may have
a physical meaning of a linkage between two energy scales of
Qsat and Teff . Before closing Sec. II, let us check ST and Qsat

obtained here. By integrating Eq. (7), we obtain the average
multiplicity density [43],〈

dNch

dy

〉
= 2πST [κQsat]2

(2 − q)(3 − 2q)
= 3.76

(GeV/c)2
Q2

sat, (10)

which gives 3.68, 4.63, and 5.50 for W = 0.90, 2.76, and
7.00 TeV, respectively. These values should be compared with
values obtained by experiments [44], i.e., 3.75+0.06

−0.05, 4.76+0.08
−0.07,

5.98+0.09
−0.07 for

√
s = 0.90, 2.76, and 7.00 TeV, respectively.

III. GS FOR SEMI-INCLUSIVE pT DISTRIBUTION

A. Extraction of saturation momentum scale

In this section, we will extract the multiplicity depen-
dence of saturation momentum Qsat from the semi-inclusive
spectrum observed. Our central assumption is that the semi-
inclusive pT distribution scales to the same universal function
F (τ ) as the inclusive one [i.e., Eq. (6) with q = 1.134,
κ = 0.1293, and λ = 0.22], providing that the appropriate
Qsat (W ∗) is used. Since ST in Eq. (3c) now depends on the
multiplicity, we require GS for the semi-inclusive spectra as
shown by Eq. (5a) with (5b) in Sec. I,

1

S∗
T

1

2π pT

d2nch

d pT dy
= F (τ )

and

τ 1/(2+λ) = pT

Qsat (W ∗)
.

These two parameters, W ∗ and S∗
T , are determined by fitting

to the experimental data on the semi-inclusive pT distribution.
Note that, in this case, Eq. (4) should be modified as

dnch

dy
∝ S∗

T Q2
sat (W

∗). (11)
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FIG. 3. Fit results of S∗
TF [solid curves; see Eqs. (5a) and (5b)]

to pT spectra with nacc = 3, 7, and 17 in pp collisions at energy
0.90 TeV observed by the ALICE Collaboration [45]. The pseudo-
rapidity range is −0.8 � η � +0.8.

Since the universal function in Eq. (5a) is the same as that
in Eq. (3c), the proportionality constants in Eqs. (4) and (11)
are equal. Therefore, using Eq. (3b), the ratio of W ∗ to W is
given by

W ∗

W
=

[
ST

/〈 dNch
dy

〉
S∗

T

/ dnch
dy

] 2+λ
2λ

=

⎧⎪⎨
⎪⎩

[
0.23 (fm2)/s∗

T

]5.05
(W = 0.90 TeV)[

0.18 (fm2)/s∗
T

]5.05
(W = 2.76 TeV)[

0.16 (fm2)/s∗
T

]5.05
(W = 7.00 TeV)

, (12)

where s∗
T ≡ S∗

T / dnch
dy . As can be seen from Eq. (12), W ∗ and

S∗
T are not independent parameters. Hence, whether W ∗/W

becomes larger or smaller than unity depends on whether
a cross-sectional area per gluon s∗

T in the semi-inclusive
distribution is larger or smaller than that in the inclusive
distribution. Even if W ∗ has a value greater than W , it does
not mean an unphysical situation.

In order to determine the multiplicity dependence of W ∗
in Eq. (5b), we fit Eq. (5a) to pT spectra at energy 0.90 TeV
for the accepted number of charged particles nacc = 3, 7, and
17 observed by the ALICE Collaboration [45] and at energies
0.90, 2.76, and 7.00 TeV for the average track multiplicity
ntracks = 40, 63, 75, 98, 120, and 131 observed by the CMS
Collaboration [39]. Figures 3 and 4 show the results of fitting
with S∗

TF to the ALICE and CMS data, respectively. In
addition, Table I shows the values of W ∗ (multiplied by x0)
and effective radius RT ≡ √

S∗
T /π obtained by the fit. Table I

also shows the value of Qsat (W ∗) and the minimum value of
χ2 (denoting by χ2

min) in each fitting. As shown in Fig. 5, we
confirm that the semi-inclusive transverse-momentum spectra
depicted in Figs. 3 and 4 scale in terms of the scaling variable
τ of Eq. (5b). Note that the solid curve (the universal function
F) in Fig. 5 is exactly the same as that obtained in the
inclusive distribution in Fig. 1. We also show Qsat and RT

as functions of dnch/dy in Fig. 6. It is found that Qsat (W ∗)
and RT are proportional to (dnch/dy)1/6 and (dnch/dy)1/3,

FIG. 4. The same as Fig. 3 but to data on pT spectra for multi-
plicity selections with ntracks = 40 ∼ 131 in pp collisions at energies
(a) 0.90 TeV, (b) 2.76 TeV, and (c) 7.00 TeV observed by the CMS
Collaboration [39]. The pseudorapidity range is −2.4 � η � +2.4.

respectively. The curves depicted by broken lines in the left
panel (for Qsat) and the right panel (for RT ) of Fig. 6 are given
by

Qsat

(GeV/c)
=

⎧⎪⎪⎨
⎪⎪⎩

0.232 + 0.532
( dnch

dy

) 1
6 (W = 0.90 TeV)

0.049 + 0.669
( dnch

dy

) 1
6 (W = 2.76 TeV)

0.031 + 0.688
( dnch

dy

) 1
6 (W = 7.00 TeV)

,

(13a)

RT

(fm)
=

⎧⎪⎪⎨
⎪⎪⎩

0.039 + 0.400
( dnch

dy

) 1
3 (W = 0.90 TeV)

0.006 + 0.396
( dnch

dy

) 1
3 (W = 2.76 TeV)

0.006 + 0.392
( dnch

dy

) 1
3 (W = 7.00 TeV)

.

(13b)

These dnch/dy dependencies are consistent with Eq. (11)
when dnch/dy is sufficiently large and the constant term can
be ignored. Here it is interesting to find a particle number
density dnch/dy to give W ∗(dnch/dy) = W . Using Eqs. (12)
and (13b), we can evaluate s∗

T that satisfies W ∗/W = 1. For
simplicity, ignoring the constant term of Eq. (13b), we obtain
W ∗ = W when dnch/dy = 10.4, 20.5, and 27.4 for 0.90, 2.76,
and 7.00 TeV, respectively. In fact, for CMS event classes with
ntracks = 63, 98, and 131 in |	η| < 2.4 at W = 0.90, 2.76,
and 7.00 TeV, respectively, it can be seen from Table I that
W ∗ > W is realized.

B. Mean transverse momentum

Next we turn our attention to the average transverse mo-
mentum 〈pT 〉 obtained from the semi-inclusive distributions.
The energy-dependent saturation momentum Qsat (W ∗) should
be proportional to 〈pT 〉 in a GS framework [43]. As seen
in the left panel of Fig. 7, dnch/dy dependencies of 〈pT 〉 at
0.90, 2.76, and 7.00 TeV observed by ALICE [46] and CMS
[39] do not show scaling behavior in terms of dnch/dy. How-
ever, since GS holds for the semi-inclusive distributions, one
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TABLE I. The values of x0W ∗, Qsat , RT , and minimum chi-squared χ 2
min obtained from the fitting to the semi-inclusive transverse-

momentum distribution observed by ALICE [45] with multiplicity class nacc = 3, 7, 17 (accepted number of charged particles per inelastic
event in the range |η| < 0.8) and by CMS [39] with multiplicity class ntracks = 40, 63, 75, 98, 120, and 131 (average number of true tracks
multiplicity in the range |η| < 2.4). For assignment from nacc to 〈nch〉 in ALICE data, we use results presented in Table 2 of Ref. [45]. The
particle densities dnch/dy at central rapidity region are estimated by 〈nch〉/	η for simplicity. X +a

−b denotes X (= x0W ∗, Qsat, RT ) giving χ 2
min

and a, b mean a boundary X − b � X � X + a giving χ2 = 1.5 χ 2
min.

√
s (TeV) nacc 〈nch〉/	η x0W ∗ (GeV) Qsat (GeV/c) RT (fm) χ 2

min/dof

0.90 3 4.8/1.6 0.18+0.16
−0.09 0.84+0.06

−0.06 0.63+0.09
−0.07 97.5/33

0.90 7 10.0/1.6 1.39+0.60
−0.43 1.03+0.04

−0.04 0.69+0.05
−0.04 20.5/33

0.90 17 22.5/1.6 9.03+7.70
−4.32 1.24+0.08

−0.08 0.82+0.08
−0.07 23.2/33

√
s (TeV) ntracks 〈nch〉/	η x0W ∗ (GeV) Qsat (GeV/c) RT (fm) χ 2

min/dof

0.90 40 40/4.8 0.77+0.16
−0.14 0.97+0.02

−0.02 0.84+0.04
−0.02 10.5/18

0.90 63 63/4.8 1.45+0.53
−0.39 1.04+0.03

−0.03 0.98+0.05
−0.04 21.8/18

0.90 75 75/4.8 1.72+0.22
−0.45 1.06+0.04

−0.03 1.05+0.05
−0.05 17.6/18

2.76 40 40/4.8 1.05+0.33
−0.24 1.00+0.03

−0.03 0.81+0.04
−0.03 19.8/18

2.76 63 63/4.8 2.23+1.15
−0.80 1.08+0.05

−0.05 0.93+0.07
−0.05 41.0/18

2.76 75 75/4.8 2.92+1.79
−1.17 1.11+0.05

−0.06 0.99+0.07
−0.06 46.4/18

2.76 98 98/4.8 3.94+2.24
−1.54 1.15+0.05

−0.05 1.10+0.07
−0.06 32.4/18

7.00 40 40/4.8 1.06+0.35
−0.19 1.01+0.03

−0.02 0.81+0.03
−0.03 19.1/18

7.00 63 63/4.8 2.47+1.25
−0.88 1.09+0.05

−0.05 0.92+0.07
−0.05 41.1/18

7.00 75 75/4.8 3.24+1.71
−1.17 1.12+0.05

−0.05 0.98+0.07
−0.05 40.9/18

7.00 98 98/4.8 4.95+3.20
−2.00 1.17+0.06

−0.06 1.07+0.07
−0.07 47.1/18

7.00 120 120/4.8 6.25+3.92
−2.17 1.20+0.06

−0.05 1.17+0.07
−0.07 30.1/18

7.00 131 131/4.8 8.25+5.67
−3.25 1.23+0.07

−0.06 1.18+0.07
−0.07 35.6/18

expects that 〈pT 〉 is linearly proportional to Qsat (W ∗) and
those data lie on a straight line regardless of the collid-
ing energy W . Figure 7 shows results of the conversion of
the dnch/dy dependence of 〈pT 〉 on the left panel into the

FIG. 5. Geometrical scaling of the semi-inclusive transverse-
momentum spectra in terms of the scaling variable τ defined by
Eq. (5b) for (a) 0 < τ < 5.0 and (b) the same as (a) but 0 < τ < 1.2.
The experimental data are observed by ALICE [45] (open symbols)
with multiplicity class nacc = 3, 7, 17 and by CMS [39] (closed
symbols) with multiplicity class ntracks = 40, 63, 75, 98, 120, and
131.

dependence of Qsat (W ∗) on the right panel. The difference in
scaling curves between ALICE and CMS seems to be due to
differences in the acceptance employed. Thus, the behavior
of GS is observed not only in the inclusive distributions but
also in the semi-inclusive distributions in high-energy pp
collisions.

FIG. 6. (a) The energy-dependent saturation momentum
Qsat (W ∗) and (b) effective interaction radius RT extracted from the
semi-inclusive transverse spectra for pp collisions at energy 0.90,
2.76, and 7.00 TeV. The range of χ 2 < 1.5χ 2

min is represented as
error bars. The dashed curves are fit results (see Eqs. (13a) and
(13b)].
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FIG. 7. Average transverse momentum 〈pT 〉 of pp collisions
observed by the ALICE Collaboration [46] and CMS Collaboration
[39] as a function of (a) dnch/dy and (b) a function of Qsat (right
panel). Since ALICE and CMS select their events with different
acceptance, different scaling functions appear.

C. Normalized fluctuation measure of transverse momentum

A prominent scaling behavior emerges in event-by-event
mean pT fluctuations in pp collisions at LHC energies
[47–49]. In our previous work [43], we studied it focusing
only on the energy W = 0.90 TeV, and we did not discuss
the GS behavior by extending the analysis to other energies.
In this article, we analyze data on transverse-momentum
fluctuations observed at

√
s = 0.90, 2.76, 7.00 TeV using

Qsat (W ∗) and S∗
T without changing the basic idea of the model

proposed in Ref. [43]. The fluctuation measure is essentially a
two-particle distribution as defined below,

Cm =
∫

d2pT1

∫
d2pT2

m(m − 1)

d4nch

dp2
T1

dp2
T2

(
pT1 − 〈pT 〉)(pT2 − 〈pT 〉),

(14)

where m = dnch
dη

× |	η| is the multiplicity in the pseudora-
pidity window |	η|. Since the universal function of GS is
essentially one-particle distribution, the two-particle correla-
tion function [50] as shown below is required to obtain the
two-particle distribution in Eq. (14),

C
(
pT1 , pT2

) ≡ d4nch

dp2
T1

dp2
T2

/
d2nch

dp2
T1

d2nch

dp2
T2

. (15)

It is known that a gluon two-particle correlation function takes
the following simple geometrical form in the CGC/Glasma
framework [51–53]:

CGFT
(
pT1 , pT2

) = 1 + κ2

ST Q2
sat

, (16)

where κ2 is a nonperturbative constant, and the evaluation of
this constant is a challenging problem in theoretical physics.
On the other hand, we consider an extreme model in which
the correlation in momentum space between gluons is in-
herited to that between hadrons in the final state. Since the
transverse size of color flux tubes stretching between the

FIG. 8. Experimental data on event-by-event mean transverse-
momentum fluctuation [47] and fit results of our model [Eq. (17)]
to the data observed at (a)

√
s = 0.90 TeV, (b) 2.76 TeV, and

(c) 7.00 TeV. The pseudorapidity window is |	η| = 0.8. Table II
shows the values of the parameters that give the least chi-square for
the fitting of

√
Cm/〈pT 〉. We have excluded two small dNch/dy (=1.8

and 2.4) data points from the fits.

receding protons is expected to be of order in 1/Qsat, one may
write the following correlation function commonly found in
Bose-Einstein correlation (BEC) analysis:

C
(
pT1 , pT2

) = 1 + (S∗
T [κQsat]

2)n exp

[
−

(
pT1 − pT2

)2

σ [κQsat]2

]
,

(17)

where n and σ are model parameters. Here κ is the parameter
that appears in the universal function Eq. (6) which connects
intermediate energy scale Qsat and hadronization energy scale
Teff . Since κ and Qsat always appear together in the inclusive
distribution, there must also be such a property in the two-
particle distribution in Eq. (17). Note also that the term S∗

T Q2
sat

in Eq. (17) is proportional to the number of flux tubes [23],
especially when n = −1; it can be interpreted as chaoticity of
the BEC effect [43]. Another parameter σ is for adjusting the
size of the flux tube. When σ ≈ 1, it means that the size of
the color flux tube is expanded by about 1/κ ≈ 7.7 times in
the transverse direction and the source size scale is the inverse
of the temperature of the system ∼1/Teff . As seen in Fig. 8,
ALICE observed a normalized fluctuation measure

√
Cm/〈pT 〉

at W = 0.90, 2.76, and 7.00 TeV, and they found almost no
energy dependence in them. Our model, based on GS, easily
explains the reason the measure

√
Cm/〈pT 〉 hardly depends

on the collision energy: i.e., by noting that pT = Qsatτ
1/(2+λ),

〈pT 〉 ∝ Qsat, and m ∝ S∗
T Q2

sat, one can represent the measure
as a function of the scaling variable τ except for the term
S∗

T Q2
sat in the correlation function Eq. (17). However, as shown

by Eqs. (13a) and (13b), the energy dependence of both Qsat

and S∗
T are considerably small. Moreover, recall that S∗

T Q2
sat is

the number of color flux tubes. Since the gluon in the incident
proton is saturated regardless of the energy, it is natural that
the energy dependence of this factor is small. Therefore,
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TABLE II. The best fit values of the parameters σ and n to
the experimental data on the event-by-event fluctuation of mean pT

observed by the ALICE Collaboration [47] and results of evaluation
of κ2 by Eq. (18).

√
s (TeV) σ n χ 2

min/dof κ2

0.90 1.14 −0.71 4.93/23 1.79

2.76 1.01 −0.73 14.0/45 1.14

7.00 1.01 −0.81 20.4/64 1.14

it is explained that
√

Cm/〈pT 〉 is almost independently of
the colliding energy W in our model. The fit results to the
experimental data of Eq. (17) are shown by solid lines in
Fig. 8. We also show values of the parameter both σ and
n giving χ2

min in Table II. The values of n obtained by the
fits are from −0.71 to −0.81, which are larger than −1, but
Eq. (17) can be compared with the Eq. (16) in the Glasma
framework. Evaluating the typical momentum scale of BEC
as |pT1 − pT2 |2 ∼ [2κQsat]2 ≈ [200 MeV]2, the comparison
leads us to a rough estimation of κ2 as follows:

κ2 ∼ 1

κ2
exp

(
− 4

σ

)
. (18)

Table II also shows the values of κ2 evaluated by Eq. (18).
Since there are considerable variations in the extracted values
of κ2 from experimental data based on the Glasma framework,
its value is not known to be as accurate as an order of 1 [52].
It is interesting to note that the values of κ2 extracted from
our model are comparable to the estimation by the Glasma
framework, although the picture for particle correlation of
each other is different.

IV. SUMMARY AND CONCLUDING REMARKS

In this article, we have phenomenologically investigated
multiplicity dependence on the gluon saturation momentum
in high-energy pp collisions. This result makes it possible
to classify events by energy-dependent saturation momentum
Qsat (W ∗), which in turn can provide a new research approach
to high-energy multiparticle production.

If the local parton-hadron duality hypothesis is correct,
then Qsat (W ∗) must link to observables in the final state of
the charged hadrons. In order to extract Qsat (W ∗) that governs
the multiplicity of the final states, we assumed the semi-
inclusive transverse-momentum spectra exhibit geometrical
scaling behavior independently of its fixed multiplicity and
its colliding energy. Furthermore, the universal function is
assumed to be the same as that of the inclusive distribution.
Through the effective energy W ∗ defined by Eq. (5b), we
determined Qsat (W ∗) for the semi-inclusive distributions. We

have shown that the transverse-momentum distribution of
various multiplicity class at

√
s = 0.90, 2.76, and 7.00 TeV do

scale in terms of the scaling variable τ 1/(2+λ) = pT /Qsat (W ∗).
We have also confirmed that Qsat (W ∗) dependence on the
average transverse momentum also scales to a linear function
of Qsat (W ∗), which is consistent with the behavior expected
from GS.

It is meaningful to note works by Korus and Mrówczyński
[54,55] and to compare with the model we have proposed.
Korus and Mrówczyński have introduced a multiplicity-
dependent temperature and related the nontrivial behavior
of fluctuations in the transverse momentum to that in the
multiplicity distribution. In our model, on the other hand, the
energy-dependent saturation momentum Qsat (W ∗) is related
to the multiplicity of the final state via the effective energy
W ∗ and is also related to the temperature evaluated from
the semi-inclusive spectra by Eq. (9). As for fluctuation of
transverse momentum, Korus and Mrówczyński argue that
the reason for this is that the fluctuation in the multiplicity
distribution is almost independent of energy. In fact, the
normalized q-moment values of C2,C3,C4 for the multiplicity
distribution in the central rapidity region |η| < 0.5 are almost
independent of the collision energy [44,56]. On the other
hand, in our model, the reason there is almost no dependence
on collision energy in the fluctuation measure

√
Cm/〈pT 〉

is that the energy dependencies on Qsat (W ∗) and ST are
considerably small (see Fig. 6) in addition to the fact that
the semi-inclusive transverse-momentum spectrum shows the
behavior of geometrical scaling.

In this article, we thought that the two-particle Bose-
Einstein correlation between identical gluons produced from
color flux tubes could explain the experimental results of the
fluctuation measure. The measure

√
Cm/〈pT 〉 can be fitted

by Eq. (17) nicely, in which the correlation between glu-
ons is considered to remain between charged particles after
hadronization. Comparing Eq. (16) with our model Eq. (17)
we can estimate the value of the nonperturbative constant
of the gluon correlation function κ2. If a typical value for
|pT1 − pT2 | in Eq. (20) as 200 MeV/c is adopted, one obtain
κ2 = 1.4 − 1.8. It is interesting to extract Qsat from other reac-
tion such as pA [57] and AA [58] collisions and to discuss the
relationship between the fluctuation of multiplicity and that
of the saturation momentum. However, we plan to investigate
those issues at some other opportunity.
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