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We study general properties of the conformal basis, the space of wave functions in (dþ 2)-dimensional
Minkowski space that are primaries of the Lorentz group SOð1; dþ 1Þ. Scattering amplitudes written in
this basis have the same symmetry as d-dimensional conformal correlators. We translate the optical
theorem, which is a direct consequence of unitarity, into the conformal basis. In the particular case of a tree-
level exchange diagram, the optical theorem takes the form of a conformal block decomposition on the
principal continuous series, with operator product expansion (OPE) coefficients being the three-point
coupling written in the same basis. We further discuss the relation between the massless conformal basis
and the bulk point singularity in AdS=CFT. Some three- and four-point amplitudes in (2þ 1) dimensions
are explicitly computed in this basis to demonstrate these results.
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I. INTRODUCTION

The Lorentz group of (dþ 2)-dimensional Minkowski
space is the same as the Euclidean conformal group in d
dimensions. This makes it possible to interpret a (dþ 2)-
dimensional scattering amplitude as a conformal correlator
in d dimensions. Recently, building on the earlier work of
[1], a basis of flat space wave functions has been con-
structed in [2–4], where scattering amplitudes in R1;dþ1

take the form of d-dimensional conformal correlators. This
basis, called the conformal primary basis, or simply the
conformal basis, serves as a natural basis for the study of
two-dimensional conformal symmetries in four-dimen-
sional flat space scattering amplitudes [2,5–17] (see [18]
for discussions in general dimensions).
More explicitly, we consider scalar wave functions in

R1;dþ1 that transform as d-dimensional conformal primar-
ies under SOð1; dþ 1Þ constructed in [1–4]. These wave
functions, called the conformal primary wave functions, are
labeled by a conformal dimension Δ and a point x⃗ ∈ Rd,
rather than an on-shell momentum inR1;dþ1. Consequently,
scattering amplitudes of these wave functions are functions
of Δi; x⃗i and transform covariantly as d-dimensional
conformal correlators under SOð1; dþ 1Þ. Through the
study of their inner products, it was further shown in [4]
that the continuum of conformal primary wave functions
with Δ ∈ d

2
þ iR forms a basis of normalizable solutions to

the wave equation. This range of the conformal dimension
is known as the principal continuous series of unitary
irreducible representations of SOð1; dþ 1Þ, which plays an
important role in the study of conformal field theory (CFT)
(see, for example, [19–23]).
In this paper we further explore general properties of

scattering amplitudes in the conformal basis. One interest-
ing question is the implication of unitarity of the S-matrix
in this basis. We approach this question by translating the
optical theorem, which is a direct consequence of unitarity,
into the conformal basis. In the case of a tree-level massive
scalar exchange diagram, the optical theorem in the
conformal basis takes the form of a conformal block
decomposition on the principal continuous series1:

Imfðz; z̄Þ ¼ πmd

Z
∞

−∞
dνμðνÞC

�
Δ1;Δ2;

d
2
þ iν

�

× C

�
Δ3;Δ4;

d
2
− iν

�
Ψd

2
þiνðz; z̄Þ; ð1:1Þ

where fðz; z̄Þ is the four-point amplitude in the conformal
basis and z, z̄ are the cross ratios. m is the mass of the
intermediate particle. CðΔ1;Δ2;ΔÞ is the coefficient of the
three-point amplitude written in the conformal basis. μðνÞ is
a measure factor given in (4.4). Finally, ΨΔðz; z̄Þ is the
shadow-symmetric conformal partial wave [24–27]. The
derivation of this conformal block decomposition follows
from the completeness relation of the conformal primary
wave functions on the principal continuous series
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1In taking the imaginary part of the four-point function fðz; z̄Þ,
we have assumed all the conformal dimensions are analytically
continued to be real.

PHYSICAL REVIEW D 98, 025020 (2018)

2470-0010=2018=98(2)=025020(16) 025020-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.025020&domain=pdf&date_stamp=2018-07-27
https://doi.org/10.1103/PhysRevD.98.025020
https://doi.org/10.1103/PhysRevD.98.025020
https://doi.org/10.1103/PhysRevD.98.025020
https://doi.org/10.1103/PhysRevD.98.025020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Δ ∈ d
2
þ iR. The final expression is very reminiscent of the

split representation for Witten diagrams in AdS [28,29].
To verify the above optical theorem in concrete examples,

we consider scalar scattering amplitudes in (2þ 1) spacetime
dimensions with a cubic coupling. The corresponding
conformal correlators are one-dimensional with SLð2;RÞ
covariance. The three-point function takes the form of a
standard CFT three-point function with coefficient
CðΔ1;Δ2;Δ3Þ given in terms of the gamma functions:

g
mΔ1þΔ2−3

2Δ1þΔ2

ΓðΔ1þΔ3−Δ2

2
ÞΓðΔ2þΔ3−Δ1

2
Þ

ΓðΔ3Þ
×

1

jx12jΔ1þΔ2−Δ3 jx13jΔ1þΔ3−Δ2 jx23jΔ2þΔ3−Δ1
: ð1:2Þ

The four-point functionwith identical external dimensionΔϕ

also takes a particularly simple form

fðzÞ ¼ N Δϕ

zffiffiffiffiffiffiffiffiffiffi
z − 1

p
�
eiπð2Δϕ−3

2
Þ þ z2Δϕ−3

2 þ
�

z
z − 1

�
2Δϕ−3

2

�
;

ð1:3Þ
where z > 1 is the real cross ratio2 parametrizing the
scattering angle and Δϕ is the conformal dimension we
assign to the four external particles. N Δϕ

is a normalization
constant given in the main text. We show that the imaginary
part of this four-point function can indeed be expanded
on the conformal partial waves with coefficients being
CðΔϕ;Δϕ; d=2þ iνÞCðΔϕ;Δϕ; d=2 − iνÞ. We further dis-
cuss the implication of crossing symmetry of the two-to-two
scattering amplitudes in the conformal basis.
Various properties of the conformal basis have been

explored recently. In [2] the soft photon and graviton
theorems are studied in the conformal basis in (3þ 1)
spacetime dimensions. Themassive scalar three-point ampli-
tude is shown to be equal to the standard scalar CFT three-
point function in the special mass limit in [3]. The tree-level
gluon low-point amplitudes in the conformal basis have
been computed in [30]. The Britto-Cachazo-Feng-Witten
(BCFW) relation [31,32] in this basis and its potential
interpretation as the conformal block decomposition were
explored in [30,33]. The factorization singularity has also
been investigated in [34,35].
We then turn to the relation between the massless

conformal basis in R1;dþ1 and the bulk point singularity
in AdSdþ2=CFTdþ1 [28,36–39]. The bulk point singularity
is a singularity of perturbative holographic correlators in
AdS=CFT that arises from Landau diagrams in the bulk. It
has been used to probe the flat space limit of AdS=CFT

[40–46] and diagnose bulk locality. We discuss how the
bulk point singularity of a Witten diagram in AdSdþ2, under
certain assumptions, is computed by the same amplitude in
the massless conformal basis in R1;dþ1.
In the example of scalar four-point amplitudes in (2þ 1)

dimensions, the relation to the bulk point singularity in
AdS3=CFT2 suggests that the one-dimensional correlators in
the conformal basis shouldbe interpreted as two-dimensional
Lorentzian correlators, restricted to the configuration with
real cross ratio. In the Appendix we present such a candidate
2dEuclidean four-point functionwhoseLorentzianversions,
when restricted to the bulk point singularity configuration,
reproduce these one-dimensional correlators from different
crossing channels. We further show that this 2d correlator
satisfies the crossing equation and has a positive SLð2;CÞ
block decomposition with a simple spectrum of single-trace
and double-trace intermediate operators. The physical origin
of this 2d extension remains to be understood.
This paper is organized as follows. In Sec. II we review

both the massive and massless conformal bases. In Sec. III
we present explicit results for the three- and four-point
correlators in a simple scalar (2þ 1)-dimensional model. In
Sec. IV we translate the optical theorem into the conformal
basis in general spacetime dimensions, and verify it
explicitly for the scalar model in (2þ 1) dimensions. In
Sec. V we discuss the relation between the massless
conformal basis and the bulk point singularity in
AdS=CFT. In the Appendix, we consider a 2d extension
of the 1d correlators for the scalar model considered above.

II. CONFORMAL PRIMARY BASES

In this section we review scalar conformal primary wave
functions introduced in [1–4]. The construction of these
wave functions in flat space proceeds naturally through the
embedding space formalism in CFT [29,47–52].
The flat space coordinates of R1;dþ1 will be denoted by

Xμ with μ ¼ 0; 1;…; dþ 1. Our convention on the space-
time signature is ð−þ � � � þÞ. We will parametrize an
outgoing/incoming null momentum kμ in R1;dþ1 as

kμ ¼ �ωqμðx⃗Þ≡�ωð1þ jx⃗j2; 2x⃗; 1 − jx⃗j2Þ; ð2:1Þ
where x⃗ ∈ Rd labels the direction of the null momentum
and ω > 0 is a scale. On the other hand, an outgoing/
incoming timelike momentum will be parametrized in
terms of y > 0 and z⃗ ∈ Rd as

pμ ¼ �mp̂ðy; z⃗Þ≡�m

�
1þ y2 þ jz⃗j2

2y
;
z⃗
y
;
1 − y2 − jz⃗j2

2y

�
:

ð2:2Þ
Note that p̂2 ¼ −1.
Scattering amplitudes are usually written in the basis of

plane waves e�ikμXμ which are eigenfunctions of trans-
lations. In this paper we consider an alternative basis of

2Recall that in one dimension there is only one independent
cross ratio of a four-point function. Here the four-point function
fðzÞ [what we call f12↔34ðzÞ in the main text] is computed in the
crossing channel where particles 1 and 2 are incoming while 3
and 4 are outgoing. The other ranges of the cross ratio on the real
line are realized by the other two crossing channels.
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wave functions φ�
ΔðXμ; x⃗Þ that are labeled by a “conformal

dimension” Δ and a point x⃗ ∈ Rd, instead of an on-shell
momentum in R1;dþ1. The � superscript distinguishes an
outgoing (þ) wave function from an incoming (−) one.
Conformal primary wave functions are defined such that,
under a Lorentz group SOð1; dþ 1Þ transformation, the
wave function φ�

ΔðXμ; x⃗Þ transforms covariantly as a scalar
conformal primary operator in d spacetime dimension:

φΔðΛμ
νXν; x⃗0ðx⃗ÞÞ ¼

���� ∂x⃗
0

∂x⃗
����
−Δ=d

φΔðXμ; x⃗Þ; ð2:3Þ

where x⃗0ðx⃗Þ is a nonlinear SOð1; dþ 1Þ transformation on
x⃗ ∈ Rd and Λμ

ν is the associated group element in the
(dþ 2)-dimensional representation.
In the massless case, the conformal primary wave

function φ�
ΔðXμ; x⃗Þ can be easily written down [1–4,53,54]:

φ�
ΔðXμ; x⃗Þ ¼ N

1

ð−qðx⃗Þ · X ∓ iϵÞΔ ; ð2:4Þ

where we have introduced an iϵ prescription to circumvent
the singularity on the lightsheet q · X ¼ 0. Here N ¼
ð∓ iÞΔΓðΔÞ is a normalization constant we choose for
later convenience. The massless conformal primary wave
function can be expanded on the plane waves via a Mellin
transform of the scale ω in (2.1):

φ�
ΔðXμ; x⃗Þ ¼

Z
∞

0

dωωΔ−1e�iωq·X−ϵω: ð2:5Þ

In [4] it was shown that the continuum of conformal
primary wave functions on the Δ ∈ d

2
þ iR spans a com-

plete set of delta-function-normalizable solutions (with
respect to the Klein-Gordon inner product) to the massless
Klein-Gordon equation.3 This range of Δ is known as the
principal continuous series of SOð1; dþ 1Þ.
Let us now proceed to the massive case. Similar to the

massless case, we define a massive scalar conformal
primary wave function ϕ�

ΔðXμ; x⃗Þ as a solution to the
massive Klein-Gordon equation of mass m in R1;dþ1 that
transforms covariantly as (2.3) under the Lorentz group
SOð1; dþ 1Þ. We can always expand an outgoing/incom-
ing solution ϕ�

ΔðXμ; x⃗Þ to the massive Klein-Gordon
equation on the plane waves as [3]:

ϕ�
ΔðXμ; x⃗Þ ¼

Z
½dp̂�GΔðp̂; x⃗Þe�imp̂·X; ð2:6Þ

with some Fourier coefficient GΔðp̂; x⃗Þ. Here
R ½dp̂� is a

Lorentz invariant integral over all the outgoing unit timelike
vectors, which form a copy of two-dimensional hyperbolic
space Hdþ1:

Hdþ1∶ − ðp̂0Þ2 þ
Xdþ1

i¼1

ðp̂iÞ2 ¼ −1; p̂0 > 0: ð2:7Þ

We can write this measure ½dp̂� more explicitly in terms of
the hyperbolic coordinates ðy; x⃗Þ in (2.2) as

Z
½dp̂� ¼

Z
∞

0

dy
ydþ1

Z
Rd

ddz⃗ ¼
Z

ddþ1p̂
p̂0

: ð2:8Þ

It now remains to determine the Fourier coefficient
GΔðp̂; x⃗Þ. Requiring the conformal covariance (2.3) of
ϕ�
ΔðXμ; x⃗Þ, the Fourier coefficient is determined to be

the scalar bulk-to-boundary propagator in the (dþ 1)-
dimensional hyperbolic space Hdþ1 [55]:

GΔðy; z⃗; x⃗Þ ¼
�

y
y2 þ jz⃗ − x⃗j2

�
Δ
: ð2:9Þ

Similar to the massless case, it was shown in [4] that the
continuum of massive conformal primary wave functions
on Δ ∈ d

2
þ iR≥0 spans a complete set of normalizable

solutions to the massive Klein-Gordon equation.
So far we have been talking about the wave function, but

the above discussion can be immediately carried over to
arbitrary scattering amplitudes in R1;dþ1. Consider an n-
point scattering amplitude4 T ðkl;pjÞδðdþ2ÞðPlklþ

P
jpjÞ

of scalars in momentum space where kl and pj are the null
and timelike momenta, respectively, for the external par-
ticles. This amplitude can be transformed into the conformal
primary basis via a Mellin transform for each massless
external null momentum and an integral overHdþ1 (2.6) for
each massive external momentum:

ÃðΔi; x⃗iÞ≡
� Y

l∶massless

Z
∞

0

dωlω
Δl−1
l

�

×

� Y
j∶massive

Z
½dp̂j�GΔj

ðp̂j; x⃗jÞ
�

× T ðkl; pjÞδðdþ2Þ
�X

l

kl þ
X
j

pj

�
; ð2:10Þ

where kμ ¼ �ωqμðx⃗Þ and pμ ¼ �mp̂μ. Due to the con-
formal covariance of the conformal primary wave functions
(2.3), the amplitude ÃðΔi; x⃗iÞ in the conformal basis is
guaranteed to transform like a d-dimensional conformal
correlator of scalar primaries with conformal dimensions Δi
under SOð1; dþ 1Þ:

ÃðΔi; x⃗0iðx⃗iÞÞ ¼
�Yn

k¼1

���� ∂x⃗
0
k

∂x⃗k
����
−Δk=d

�
ÃðΔi; x⃗iÞ: ð2:11Þ

3There is another basis of massless conformal primary wave
functions that is the shadow of (2.4). We will not discuss this
shadow basis in this paper.

4The amplitude T is related to the connected part of the
S-matrix as Sconn ¼ ið2πÞdþ2T ðkiÞδðdþ2ÞðPikiÞ in R1;dþ1.
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III. ONE-DIMENSIONAL CONFORMAL
CORRELATORS

In this section we consider conformal bases in (2þ 1)
spacetime dimensions. The amplitudes in the conformal
basis take the form of one-dimensional conformal corre-
lators with SLð2;RÞ symmetry. This is the simplest non-
trivial spacetime dimension where the resulting correlators
are simple to analyze.

A. Three-point function

Consider a perturbative theory in (2þ 1) dimensions
consisting of one real massless scalar field Φ and one real
massive scalar Φm of mass m, interacting through a cubic
vertex gΦ2Φm.

5 In momentum space, the tree-level three-
point amplitude of a massive scalar with momentum pμ ¼
−mp̂μ decaying into a pair of massless scalars with
momenta kμl ¼ ωlqμðxlÞ (l ¼ 1, 2) is

iT 3 ¼ ig; ð3:1Þ

where g is the three-point coupling. Using (2.10), the three-
point amplitude written in the conformal basis is

Ã3ðΔi; xiÞ ¼ g
Y2
l¼1

Z
∞

0

ωΔl−1
l dωl

×
Z

∞

0

dy
y2

Z
∞

−∞
dz

�
y

y2 þ jz − x3j2
�

Δ3

× δð3Þðω1qμðx1Þ þ ω2qμðx2Þ −mp̂μÞ:

The δ-function can be used to localized the integrals in y, z
and ω2:

δð3Þðω1qμðx1Þ þ ω2qμðx2Þ −mp̂μÞ

¼ y3ðω1 þ ω2Þ
m2ω1jx1 − x2j2

δðz − z�Þδðy − y�Þδðω2 − ω�
2Þ; ð3:2Þ

where

z� ¼ω1x1þω2x2
ω1þω2

; y� ¼ m
2ðω1þω2Þ

; ω�
2¼

m2

4ω1jx1−x2j2
:

ð3:3Þ

The remaining integration in ω1 is

Ã3ðΔi; xiÞ ¼
gm2Δ2þΔ3−3

22Δ2−Δ3−1jx1 − x2j2Δ2−2Δ3

Z
∞

0

dω1

×
ωΔ1−Δ2þΔ3−1
1

ðm2jx2 − x3j2 þ 4jx1 − x2j2jx1 − x3j2ω2
1ÞΔ3

:

ð3:4Þ

The integration converges if ReðΔ1 − Δ2 − Δ3Þ < 0 and
ReðΔ1 − Δ2 þ Δ3Þ > 0. The final three-point function
takes the form of a standard three-point function in an
one-dimensional conformal theory

Ã3ðΔi; xiÞ ¼
CðΔ1;Δ2;Δ3Þ

jx1 − x2jΔ1þΔ2−Δ3 jx1 − x3jΔ1þΔ3−Δ2 jx2 − x3jΔ2þΔ3−Δ1
; ð3:5Þ

where the three-point function coefficient is,6

CðΔ1;Δ2;Δ3Þ ¼ g
mΔ1þΔ2−3

2Δ1þΔ2

ΓðΔ1þΔ3−Δ2

2
ÞΓðΔ2þΔ3−Δ1

2
Þ

ΓðΔ3Þ
:

ð3:7Þ

Recall that Δ3 is the conformal dimension we assign to the
massive particle.

B. Four-point function

Let us now move on to a general discussion of four-point
amplitudes written in the massless conformal basis in R1;2.
Consider a massless scalar two-to-two scattering amplitude

T ðs; tÞδð3Þ
�X

i

ϵiωiqμðxiÞ
�

ð3:8Þ

in (2þ 1) dimensions. Here we parametrize the null
momenta kμi ¼ ϵiωiqμðxiÞ as in (2.1) and ϵi ¼ �1 for an

6Although we only consider the case of (2þ 1) dimensions,
the three-point function coefficient can be easily generalized to
that in R1;dþ1:

CðΔ1;Δ2;Δ3Þ ¼ g
mΔ1þΔ2−d−2

2Δ1þΔ2

ΓðΔ1þΔ3−Δ2

2
ÞΓðΔ2þΔ3−Δ1

2
Þ

ΓðΔ3Þ
: ð3:6Þ

5Computationally, the change of basis integral is usually easier
for the massless conformal basis than the massive one. However,
the three-point amplitude with all massless particles suffers from
either an UV or IR divergence (depending on the conformal
dimensions) in the change of basis integral. We will hence
consider the next simplest case where there is one massive
particle, whose mass regulates the divergence, and two massless
particles in (2þ 1) dimensions.
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outgoing/incoming particle. s, t, u are the Mandelstam
variables defined as s ¼ −ðk1 þ k2Þ2; t ¼ −ðk1 þ k3Þ2;
u ¼ −ðk1 þ k4Þ2. Constrained by the massless kinematics,
the nontrivial scattering process only exists if two of the ϵi’s
have the opposite signs than the other two. Depending on
which two of the particles are incoming and which two are
outgoing,wehave six different crossing channels for the two-
to-two scattering process. Using charge conjugation-parity-
time reversal (CPT), the six crossing channels reduce to
three, which will be denoted as 12 ↔ 34, 13 ↔ 24, and
14 ↔ 23. The Mandelstam variables s, t, u have fixed signs
in a given crossing channel. For example, s > 0 and t; u < 0
in the 12 ↔ 34 channel.
Importantly, the amplitudes in the conformal basis

depend on the choice of the crossing channels. We will
specify the crossing channel under consideration in the
following discussion. The crossing relations between these
amplitudes will be discussed in Sec. III C.
In the massless conformal basis, the amplitude takes the

form

ÃðΔi;xiÞ¼
Y4
i¼1

Z
∞

0

dωiω
Δi−1
i T ðs;tÞδð3Þ

�X
i

ϵiωiq
μ
i ðxiÞ

�
:

ð3:9Þ
Three of the four integrals can be done by solving the delta
functions:

ω2¼−ϵ1ϵ2
x13x14
x23x24

ω1; ω3 ¼ ϵ1ϵ3
x12x14
x23x34

ω1;

ω4¼−ϵ1ϵ4
x12x13
x24x34

ω1; ð3:10Þ

where xij ¼ xi − xj. On the support of the delta function,
the Mandelstam variables are

s ¼ −4
x212x13x14
x23x24

ω2
1; t ¼ −

1

z
s; u ¼ 1 − z

z
s;

ð3:11Þ
where the real cross ratio is

z ¼ x12x34
x13x24

∈ R: ð3:12Þ

The delta functions only have support when all the ωi’s are
positive. This constrains the real cross ratio z in the
following way

12 ↔ 34 channel∶ z ∈ ð1;∞Þ;
13 ↔ 24 channel∶ z ∈ ð0; 1Þ;
14 ↔ 23 channel∶ z ∈ ð−∞; 0Þ: ð3:13Þ

Indeed, for example in the 12 ↔ 34 channel, the scattering
angle θ is related to the cross ratio z as z−1 ¼
sin2ðθ=2Þ < 1.

Let ϵs ≡ ϵ1ϵ2, which is þ1 in the 12 ↔ 34 channel and
−1 in the other two channels. Define ω as

ω≡ ffiffiffiffiffiffi
ϵss

p ¼
ffiffiffiffiffi
jsj

p
: ð3:14Þ

We then obtain

ÃðΔi;xiÞ¼
2−
P

i
Δiþ1

jx23x24x34j
����x13x14x23x24

����
Δ2−1

����x12x14x23x34

����
Δ3−1

×

����x12x13x24x34

����
Δ4−1

���� x23x24
x212x13x14

����
1
2

P
i
Δi−3

2

×
Z

∞

0

dωω
P

i
Δi−4T

�
ϵsω

2;−ϵs
1

z
ω2

�
: ð3:15Þ

For simplicity, let us consider the case when all four
conformal dimensions are the sameΔi ¼ Δϕ. Then we have

ÃðΔϕ; xiÞ ¼
1

jx12j2Δϕ jx34j2Δϕ
fðzÞ; ð3:16Þ

where fðzÞ is

fðzÞ¼2−4Δϕþ1
jzjffiffiffiffiffiffiffiffiffiffiffiffijz−1jp

Z
∞

0

dωω4Δϕ−4T
�
ϵsω

2;−ϵs
1

z
ω2

�
:

ð3:17Þ

Recall that ϵs ¼ þ1 in the 12 ↔ 34 channel and ϵs ¼ −1 in
the 13 ↔ 24 and 14 ↔ 23 channels.
Let us present an alternative formula in the case of tree-

level scattering amplitudes. We will focus on the 12 ↔ 34
channel but the discussion can be easily generalized to
other channels. The four-point function in this channel is

f12↔34ðzÞ¼2−4Δϕþ1
zffiffiffiffiffiffiffiffiffi
z−1

p
Z

∞

0

dωω4Δϕ−4T
�
ω2;−

1

z
ω2

�
;

z>1: ð3:18Þ

Let us discuss the analytic property of this integral. For tree-
level amplitudes, T only has poles in ω2. In addition, the
integrand has a branch cut emitting from ω ¼ 0. We can
choose the branch cut to be almost aligned with the negative
real line, but slightly below it. With this choice of the branch
cut, we can extend the integral to be over the full real line

f12↔34ðzÞ ¼
2−4Δϕþ1

1þ e4πiΔϕ

zffiffiffiffiffiffiffiffiffiffi
z − 1

p

×
Z

∞

−∞
dωω4Δϕ−4T

�
ω2;−

1

z
ω2

�
; z > 1:

ð3:19Þ
See Fig. 1 for the example of exchange diagrams (3.26). Ifwe
further assume the following fall-off condition on the upper
half plane of ω,
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lim
jωj→∞

ω4Δϕ−3T
�
ω2;−

1

z
ω2

�
→ 0; ð3:20Þ

and that there is no singularity atω ¼ 0, then the contour can
be closed from above. We obtain

ftree12↔34ðzÞ ¼ 2−4Δϕþ1
2πi

1þ e4πiΔϕ

zffiffiffiffiffiffiffiffiffiffi
z − 1

p

×
X
ω�

Resω¼ω�ω4Δϕ−4T
�
ω2;−

1

z
ω2

�
;

z > 1; ð3:21Þ

where the sum is over all poles on the upper half ω-plane.

C. Crossing symmetry

In (3.16) we have presented a general formula for the two-
to-twomassless scalar amplitude in the conformal basis. The
resulting correlator depends explicitly on the crossing
channel; i.e., it depends on which particles we take to be
outgoing and incoming. Thus given a single amplitude in
momentum space T ðs; tÞ, we end upwith three correlators in
the conformal basis f12↔34ðzÞ; f13↔24ðzÞ; f14↔23ðzÞ.
Let us study what crossing symmetry in momentum

space implies on these three four-point functions in the
conformal basis. We will consider scattering amplitudes of
identical particles and assume the amplitude in momentum
space has the s ↔ t ↔ u crossing symmetry,

T ðs; tÞ ¼ T ðt; sÞ ¼ T ð−s − t; tÞ: ð3:22Þ

The amplitude crossing symmetry implies that of the
correlator in the conformal basis. Indeed,

f13↔24ð1−zÞ¼2−4Δϕþ1
1−zffiffiffi

z
p

Z
∞

0

dωω4Δϕ−4

×T
�
−

z
1−z

ω2;
1

1−z
ω2

�

¼2−4Δϕþ1

�
1−z
z

�
2Δϕ zffiffiffiffiffiffiffiffiffi

1−z
p

×
Z

∞

0

dω0ω04Δϕ−4T
�
−ω02;

1

z
ω02

�
; ð3:23Þ

where in the first line we have used T ðs; tÞ ¼ T ð−s − t; tÞ,
and in the second line we have rescaled ω0 ¼ ffiffiffiffiffiffiz

1−z
p

ω.
Hence we conclude that f13↔24 satisfies the crossing
equation:

f13↔24ð1− zÞ¼
�
1− z
z

�
2Δϕ

f13↔24ðzÞ; 0<z< 1:

ð3:24Þ

Using a similar argument, crossing symmetry also relates
the three correlators from different crossing channels:

f13↔24ðzÞ¼ z2Δϕf12↔34ð1=zÞ

¼ f14↔23

�
z

z−1

�
; 0<z< 1: ð3:25Þ

There is one caveat regarding the relation between f14↔23

and f13↔24. In both the 14 ↔ 23 and 13 ↔ 24 channels,
we have ϵs ¼ −1 in (3.16). One might then naively equate
f13↔24ðzÞ with −f14↔23ðzÞ, with the latter extended to
0 < z < 1. This is generally ambiguous because the latter
was originally defined only for z < 0 in (3.16), and the
extension to 0 < z < 1 requires a choice of the iϵ pre-
scription. More explicitly, the iϵ prescription should be
such that both t ¼ 1

zω
2 and u ¼ z−1

z ω2 get shifted by þiϵ,
which is the standard iϵ prescription in momentum space.
However, one can easily see that there is no such iϵ
prescription for z such that tðzÞ → tðzÞ þ iϵ and

FIG. 1. The analytic structure of the integral (3.19) for the tree-level exchange four-point function f12↔34ðzÞ. Left: the s-channel
contribution. Right: the t-channel contribution.
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uðzÞ → uðzÞ þ iϵ.7 In other words, f13↔24ðzÞ with
−f14↔23ðzÞ are not related by an analytic continuation in
the real cross ratio z. One can verify this explicitly in the
examples of tree-level exchange amplitude in (3.29) and
(3.30) below.

D. Tree-level exchange amplitude

Let us return to the scalar theory considered in Sec. III A.
The tree-level amplitude with massless external scalar
particles exchanging a massive scalar is

T ðs; tÞ ¼ g2

−sþm2 − iϵ
þ g2

−tþm2 − iϵ
þ g2

−uþm2 − iϵ
:

ð3:26Þ

The massive scalar exchange amplitude is in some sense
simpler than other tree-level amplitudes, for example the
contact four-point or the massless exchange amplitudes.
Indeed, the latter two suffer from either the UV or IR
divergence for positive Δϕ in the change of basis integral
(3.17). On the other hand, for the massive exchange
amplitude, the mass m of the intermediate particle provides
an IR cutoff so that there is range of Δϕ where the
amplitude in the conformal basis is well-defined. In fact,
for sufficiently positive Δϕ, there is a good physical reason
for the divergence of the contact four-point and the
massless exchange amplitudes in the conformal basis: they
are exactly the bulk point singularity in AdS3=CFT2 of the
corresponding Witten diagrams. We will come back to this
point in Sec. V.
Let us start with the 12 ↔ 34 channel where we take

particles 1 and 2 to be incoming while 3 and 4 to be
outgoing. Assuming 3=4 < ReΔϕ < 5=4, this amplitude
(3.26) satisfies the fall-off condition (3.20), we can directly
apply the residue formula (3.21) to obtain the amplitude in
the 12 ↔ 34 channel:

f12↔34ðzÞ¼N Δϕ

zffiffiffiffiffiffiffiffiffiffi
z−1

p
�
eiπαþ zαþ

�
z

z−1

�
α
�
; z> 1;

ð3:27Þ

where N Δϕ
¼ g2 πm4Δϕ−5

2
4Δϕ cosð2πΔϕÞ

and

α≡ 2Δϕ −
3

2
: ð3:28Þ

Similarly, in the 13 ↔ 24 channel, the four-point function
is given by

f13↔24ðzÞ ¼ N Δϕ

zffiffiffiffiffiffiffiffiffiffi
1 − z

p
�
1þ eiπαzα þ

�
z

1 − z

�
α
�
;

0 < z < 1: ð3:29Þ

Finally in the 14 ↔ 23 channel, the four-point function is
given by

f14↔23ðzÞ ¼ N Δϕ

ð−zÞffiffiffiffiffiffiffiffiffiffi
1 − z

p
�
1þ ð−zÞα þ eiπα

�
−z
1 − z

�
α
�
;

z < 0: ð3:30Þ

Even though the change of basis integral only converges for
3=4 < ReΔϕ < 5=4, we can analytically continue the final
expression to all complex Δϕ except for Δϕ ∈ 1

4
þ Z.

One feature of these correlators is that they are complex
even if we assume Δϕ to be real. This is of course expected
because the amplitude is already complex in momentum
space because of the iϵ prescription. It follows that the
imaginary part of these correlators should obey the optical
theorem in the conformal basis, which we will discuss
in Sec. IV.

IV. OPTICAL THEOREM AND CONFORMAL
BLOCK DECOMPOSITION

In this section we translate the optical theorem into the
conformal basis. In the case of the tree-level exchange
amplitude, the optical theorem takes the form of a con-
formal block decomposition on the principal continuous
series, with coefficients being the three-point amplitude in
the conformal basis. We then verify this explicitly in a
scalar theory in (2þ 1) dimensions.

A. Conformal optical theorem

Let us start with the simplest example of a tree-level
massive scalar exchange amplitude T ðs; tÞ in (3.26) in
R1;dþ1. The optical theorem relates the imaginary part of
the four-point amplitudes to the product of two three-point
amplitudes

2ImAk1;k2→k3;k4 ¼ π

Z
ddþ1p⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p Ak1;k2→pAk3;k4→p;

ð4:1Þ
where Ak1;k2→k3;k4 ¼ T ðs; tÞδðdþ2Þðk1 þ k2 − k3 − k4Þ and
Ak1;k2→p ¼ gδðdþ2Þðk1 þ k2 − pÞ. Note that this simplest
optical theorem follows from the identity:

Im
1

−sþm2 − iϵ
¼ πδðs −m2Þ: ð4:2Þ

Since we take particles 1 and 2 to be incoming while 3 and 4
to be outgoing, only the s-channel can go on-shell and
contribute to the imaginary part of the amplitude.

7For example, in the 14 ↔ 23 channel where z < 0, if one
chooses to continue z → z − iϵ, then tðzÞ → tðzÞ þ iϵ but
uðzÞ → uðzÞ − iϵ.
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To go to the conformal basis, we use the following
orthogonality condition of the AdS bulk-to-boundary
propagator [29] (see also [4]):Z

∞

−∞
dνμðνÞ

Z
ddx⃗Gd

2
þiνðp̂1; x⃗ÞGd

2
−iνðp̂2; x⃗Þ

¼ ðp̂1Þ0δðdþ1Þðp̂1 − p̂2Þ; ð4:3Þ
where p̂i are unit timelike vectors in R1;dþ1 and the right-
hand side is the SOð1; dþ 1Þ invariant delta-function. The
measure μðνÞ is

μðνÞ ¼ Γðd
2
þ iνÞΓðd

2
− iνÞ

4πdþ1ΓðiνÞΓð−iνÞ : ð4:4Þ

We can then insert 1 ¼ R
ddþ1l̂
l̂0

l̂0δðdþ1Þðl̂ − p̂Þ into the
right-hand side of (4.1) and use (4.3) to obtain

2ImAk1;k2→k3;k4

¼ πmd

Z
∞

−∞
dνμðνÞ

Z
ddx⃗

Z
ddþ1p̂
p̂0

Ak1;k2→pGd
2
þiνðp̂; x⃗Þ

×
Z

ddþ1l̂

l̂0
Ak3;k4→lGd

2
−iνðl̂; x⃗Þ: ð4:5Þ

Now we perform the change of basis integral (2.10) on the
external particles k1, …; k4. In the conformal basis, the
optical theorem is then translated into8

2ImÃ4ðΔi; x⃗iÞ

¼ πmd

Z
∞

−∞
dνμðνÞ

Z
ddx⃗Ã3

�
Δ1;Δ2;

d
2
þ iν; x⃗1; x⃗2; x⃗

�

× Ã3

�
d
2
− iν;Δ3;Δ4; ; x⃗; x⃗3; x⃗4

�
; ð4:6Þ

where we have assigned conformal dimensionΔi to the i-th
external particle. The optical theorem can be further
simplified by using the explicit positions dependence of
the three-point functions:

Ã3ðΔi; x⃗iÞ ¼
CðΔ1;Δ2;Δ3Þ

jx⃗12jΔ1þΔ2−Δ3 jx⃗13jΔ1þΔ3−Δ2 jx⃗23jΔ2þΔ3−Δ1
:

ð4:7Þ

The integral over x⃗ gives the shadow representation of the
conformal partial wave ΨΔðz; z̄Þ [24–27]:

ΨΔðz; z̄Þ
jx⃗12jΔ1þΔ2 jx⃗34jΔ3þΔ4

���� x⃗24x⃗14

����
Δ12

���� x⃗14x⃗13

����
Δ34 ¼ 1

2

Z
ddw⃗

jx⃗12jΔ−Δ1−Δ2 jx⃗34jd−Δ−Δ3−Δ4

jw⃗ − x⃗1jΔ12þΔjw⃗ − x⃗2jΔ21þΔjw⃗ − x⃗3jΔ34þd−Δjw⃗ − x⃗4jΔ43þd−Δ ; ð4:8Þ

where x⃗ij ¼ x⃗i − x⃗j and Δij ¼ Δi − Δj. z, z̄ are the cross
ratios:

zz̄¼ jx⃗12j2jx⃗34j2
jx⃗13j2jx⃗24j2

; ð1− zÞð1− z̄Þ¼ jx⃗14j2jx⃗23j2
jx⃗13j2jx⃗24j2

: ð4:9Þ

ΨΔðz; z̄Þ is an eigenfunction of the conformal Casimir
operator that is shadow symmetric, i.e., ΨΔ ¼ Ψd−Δ. It is

related to the scalar conformal blocks Gðl¼0Þ
Δ ðz; z̄Þ with

intermediate scalar primaries as [26],

ΨΔðz; z̄Þ¼
cΔG

ðl¼0Þ
Δ ðz; z̄Þþcd−ΔG

ðl¼0Þ
d−Δ ðz; z̄Þ

2ΓðΔþΔ21

2
ÞΓðΔ−Δ21

2
ÞΓðd−ΔþΔ34

2
ÞΓðd−Δ−Δ34

2
Þ ;

ð4:10Þ

where the coefficient cΔ is

cΔ ¼ πd=2
Γðd

2
− ΔÞΓðΔþΔ34

2
ÞΓðΔ−Δ34

2
ÞΓðΔþΔ21

2
ÞΓðΔ−Δ21

2
Þ

ΓðΔÞ :

ð4:11Þ
If we write the four-point function as

Ã4ðΔi; x⃗iÞ ¼ jx⃗12jΔ1þΔ2 jx⃗34jΔ3þΔ4

���� x⃗24x⃗14

����
Δ12

���� x⃗14x⃗13

����
Δ34

fðz; z̄Þ;

ð4:12Þ
then the optical theorem gives the conformal block decom-
position for the imaginary part of fðz; z̄Þ on the principal
continuous series

Imfðz; z̄Þ ¼ πmd

Z
∞

−∞
dνμðνÞC

�
Δ1;Δ2;

d
2
þ iν

�
C

�
Δ3;Δ4;

d
2
− iν

�
Ψd

2
þiνðz; z̄Þ; ð4:13Þ

with the coefficient being the three-point amplitude written in the conformal basis (4.7).

8We assume the conformal dimensions Δi of the external operators can be analytically continued to be real.
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The derivation can be extended to the general optical theorem straightforwardly,

2ImT fpg→fqg ¼
X
fkg

Y
j

�Z
ddþ1k⃗j

ð2πÞdþ12k0j

�
T fpg→fkgT fqg→fkgð2πÞdþ2δðdþ2Þ

�X
p −

X
k

�
; ð4:14Þ

where p, q, k are the sets of momenta of the initial, final and intermediate particles. The sum in fkg is over all possible
intermediate particle states. The general optical theorem when translated into the conformal basis is9

2ImÃðΔI;ΔF; x⃗iÞ ¼ ð2πÞdþ2
X
fkg

Y
j

�
md

j

2ð2πÞdþ1

Z
∞

−∞
dνjμðνjÞ

Z
ddw⃗j

�
Ã
�
ΔI;

d
2
þ iνj; x⃗I; w⃗j

�
Ã
�
d
2
− iνj;ΔF; w⃗j; x⃗F

�
;

ð4:15Þ

where I and F are the subscripts for the conformal dimen-
sions and the positions of the initial and final conformal
primary wave functions, respectively.

B. Example: Tree-level exchange amplitude

We now explicitly show that, in the case of the exchange
diagram in (2þ 1) dimensions, the conformal block

decomposition of the four-point function in (3.27)
reproduces the three-point function coefficient in (3.7).
In one dimension, the conformal partial wave Ψd

2
þiνðzÞ,

defined for z > 0, has been worked out in [56] (see
also [21])

ΨΔðzÞ ¼

8>>>>>><
>>>>>>:

tan πΔ
2 tanπΔ

2

ΓðΔÞ2
Γð2ΔÞ z

Δ
2F1ðΔ;Δ; 2Δ; zÞ þ ðΔ ↔ 1 − ΔÞ; 0 < z < 1;

Γð1
2
−Δ

2
ÞΓðΔ

2
Þffiffi

π
p

2F1

�
Δ
2
; 1
2
− Δ

2
; 1
2
;
ð2−zÞ2
z2

	
; 1 < z < 2;

ΨΔ

�
z

z−1

	
; 2 < z:

ð4:16Þ

ΨΔðzÞ’s on the principal discrete series Δ ∈ 2N together
with the principal continuous series Δ ∈ 1

2
þ iR≥0 form an

orthogonal basis for the space of functions with the
following boundary conditions: (1) fðzÞ ¼ fð z

z−1Þ for z ∈
ð1;∞Þ which in particular implies f0ð2Þ ¼ 0, and (2) fðzÞ
vanishes no slower than z1=2 as z → 0. The inner product on
this space of functions is

hg; fi ¼
Z

2

0

dz
z2

g�ðzÞfðzÞ ¼
�Z

1

0

þ 1

2

Z
∞

1

�
dz
z2

g�ðzÞfðzÞ;

ð4:17Þ

where the integral between (1,2) is replaced by an integral
between ð1;∞Þ using the symmetry fðzÞ ¼ fð z

z−1Þ. The
inner products of ΨΔ are

hΨΔ;ΨΔ0 i ¼ π2

4Δ − 2
δΔ;Δ0 ; Δ;Δ0 ∈ 2N

hΨΔ;ΨΔ0 i ¼ π2 tan πΔ
2Δ − 1

δðΔ − Δ0Þ; Δ;Δ0 ∈
1

2
þ iR≥0:

ð4:18Þ

Let us decompose the four-point function f12↔34ðzÞ in
(3.27) on this basis. The imaginary part of f12↔34 can be
written as

2Imf12↔34ðzÞ ¼ 2N Δϕ
sin

�
2πΔϕ −

3π

2

�
FðzÞ;

FðzÞ ¼

 zffiffiffiffiffiffi

z−1
p ; 1 < z

0; 0 < z < 1:
ð4:19Þ

Recall that the real cross ratio z in 12 ↔ 34 channel is
constrained by the flat space kinematics to be z > 1. This
function satisfies the two boundary conditions: FðzÞ ¼
Fð z

z−1Þ for z ∈ ð1;∞Þ and limz→0F0ðzÞ=z1=2 ¼ 0. Thus it
can be expanded on the basis with the coefficients propor-
tional to the inner product

9Here for simplicity we have assumed all the intermediate
particles are massive scalars with masses mj. A similar formula
holds true for massless intermediate scalars with the measure
factor md

jμðνjÞ replaced by 2d. The apparent mass dimension
mismatch comes from our normalization of the massless versus
massive conformal primary wave functions.
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hF;ΨΔi ¼
1

2

Z
∞

1

dz
z2

zffiffiffiffiffiffiffiffiffiffi
z − 1

p ΨΔðzÞ

¼ π3

sinðπΔÞΓð2−Δ
2
Þ2ΓðΔþ1

2
Þ2 : ð4:20Þ

Since the inner products vanishes on the principal discrete
series h ∈ 2N, FðzÞ can be expanded just on the principal
continuous series,

FðzÞ¼
Z 1

2
þi∞

1
2
−i∞

dΔ
2πi

2Δ−1

π tanðπΔÞ
π3

sinðπΔÞΓð2−Δ
2
Þ2ΓðΔþ1

2
Þ2ΨΔðzÞ;

ð4:21Þ

where we have used the symmetry Δ ↔ 1 − Δ of the
integrand to extend the integration from 1

2
þ iR≥0 to 1

2
þ iR.

The coefficient of the above decomposition can be written
in terms of the three-point function coefficient (3.7) as

Imf12↔34ðzÞ ¼ πm
Z

∞

−∞
dνμðνÞC

�
Δ1;Δ2;

d
2
þ iν

�

× C

�
Δ1;Δ2;

d
2
− iν

�
Ψd

2
þiνðz; z̄Þ; ð4:22Þ

where CðΔϕ;Δϕ;ΔÞ ¼ g m2Δϕ−3

2
2Δϕ

ΓðΔ=2Þ2
ΓðΔÞ . Hence we have

checked the conformal block decomposition (4.13)
in the (2þ 1)-dimensional scalar theory with cubic
coupling.

V. THE BULK POINT SINGULARITY
IN AdS=CFT

In this section we discuss the relation between
the massless conformal basis in R1;dþ1 and the bulk
point singularity in AdSdþ2=CFTdþ1 in Lorentzian sig-
nature. In particular we argue that scalar exchange
amplitudes in the conformal basis discussed in
Sec. III D arise from approaching the bulk point singu-
larity at the same time scaling the intermediate
conformal dimension to infinite in the exchange Witten
diagram.
Let us begin with a general review on the bulk point

singularity in AdS=CFT and its relation to the flat space
limit [28,36–39,41,42]. Consider AdSdþ2 embedded in
R2;dþ1 as the locus YIYI ¼ −R2, where R is the AdS
radius. Here we use YI with I ¼ −1; 0; 1;…; dþ 1 as the
flat coordinates of the embedding space R2;dþ1 and the
index I is raised and lowered by the flat metric
ηIJ ¼ diagð−1;−1;þ1;…;þ1Þ. On the other hand, a point
on the boundary of AdSdþ2 is represented by a null ray
PI ∼ λPI with PIPI ¼ 0.
Consider an n-point Witten diagram with boundary

operators located at PI
a, a ¼ 1;…; n. We will restrict

ourselves to the case10 n ¼ dþ 3 so that in this case the
vertex of the Landau diagram is only a point in AdSdþ2.
The conditions for the bulk point singularity are that there
exists a bulk point Y0 such that
(1) Y0 is lightlike separated from all the boundary

points Pa,

ηIJYI
0P

J
a ¼ 0; ∀ a ¼ 1; 2;…; n: ð5:1Þ

(2) There exist n “frequencies” ωa > 0 such that the
momentum is conserved at Y0:

Xn
a¼1

ωaPI
a ¼ 0: ð5:2Þ

In general such a bulk point Y0 does not exist for generic
boundary points Pa. In other words, the bulk point
singularity only arises when we place the boundary points
at some specific configuration. For example, in the case of
four-point functions, the second condition (5.2) implies that
the 4 × 4 matrix Pa · Pb has a zero eigenvector ωa, and
hence it has a vanishing determinant. This in turns implies
the cross ratios are real at the bulk point singularity
configuration, i.e., z ¼ z̄.
The bulk point singularity configuration is related to the

flat space scattering kinematics in R1;dþ1. Let us take our
reference bulk point to be at Y0 ¼ ðR; 0;…; 0Þ. Then the
first condition (5.1) constrains the boundary points PI

a to be

PI
a ¼ ð0;�qμaÞ; ð5:3Þ

where qμa is a null ray in R1;dþ1 with μ ¼ 0; 1;…; dþ 1.
Here we take the time component of qμ to be positive, so
that the plus/minus sign above corresponds to a null vector
in the future/past light cone of R1;dþ1 in the embedding
space, respectively. In other words, the boundary points are
restricted to two constant time slices in AdSdþ2 at the bulk
point singularity configuration (see Fig. 2). The null vectors
qμa are later identified as the directions of null momenta in
the flat space scattering process. Now the second condition
(5.2) states that there exists n frequencies ωa such that the
flat space momentum conservation

P
a � ωaq

μ
a ¼ 0 holds

true. In the case of the bulk point singularity for four-point
functions, the real cross ratio z ¼ z̄ parametrizes the
scattering angle.
We now argue that perturbative scattering amplitudes in

the massless conformal basis in R1;dþ1 can be embedded
into the AdSdþ2 Witten diagram with the same interaction
at the bulk point singularity. The scalar bulk-to-boundary
propagator in AdSdþ2 between a bulk point Y and a
boundary point P with conformal dimension Δϕ is

10This in particular applies to the four-point function in AdS3,
which we will pay special attention to later on.
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GΔϕ
ðY; PÞ ¼ CΔ

R
d
2

1

ð−2P · Y=Rþ iϵÞΔϕ
; ð5:4Þ

where CΔ ¼ ΓðΔÞ=ð2πdþ1
2 ΓðΔ − d−1

2
ÞÞ. At the bulk point

singularity configuration, from (5.3), the null ray PI
a in

R2;dþ1 is restricted to a null ray qμa in R1;dþ1. Furthermore,
the contribution to the Witten diagram receives dominant
contributions from around Y0, and we can approximate the
bulk point integral in Y by a flat space integral in Xμ ∈
R1;dþ1 around Y0. In this limit, the AdSdþ2 bulk-to-
boundary propagator becomes proportional to the massless
conformal primary wave function φ�

Δϕ
(2.4) in R1;dþ1:

GΔϕ
ðY; PÞ ⟶

bulk point singularity
φ�
Δϕ
ðX; qÞ: ð5:5Þ

Whether the corresponding conformal primary wave func-
tion is incoming or outgoing is determined by which of the
past and future time slices the boundary point PI

a is located
at [i.e., the sign in (5.3)].

Following the same argument in [36,39], let us see how
this works explicitly for the tree-level scalar exchange
Witten diagram in AdS3=CFT2. We will focus only on the
s-channel diagram, while the other two follow identically.
The scalar bulk-to-bulk propagator with intermediate

conformal dimension Δ is (see, for example, [57])

ΠΔðY1; Y2Þ ¼
1

2πR
e−Δσ

1 − e−2σ
; ð5:6Þ

where σ is the geodesic distance between Y1, Y2:

σðY1; Y2Þ ¼ log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2 þ iϵ

p
ξ

�
;

ξ ¼ −
R2

Y1 · Y2

: ð5:7Þ

The s-channel tree-level scalar Witten diagram with inter-
nal dimension Δ and identical external operator dimension
Δϕ is

I4 ¼ g2
Z
AdS3

dY1

Z
AdS3

dY2GΔϕ
ðY;P1ÞGΔϕ

ðY;P2ÞΠΔðY1; Y2ÞGΔϕ
ðY;P3ÞGΔϕ

ðY;P4Þ

¼ g2
�

e−iπΔϕ=2

2Δϕþ1πR1=2ΓðΔϕÞ
�

4 Z
AdS3

dY1

Z
AdS3

dY2

�Y4
a¼1

Z
∞

0

dωaω
Δϕ−1
a

�
e−iY1·ðω1P1þω2P2Þ−iY2·ðω3P3þω4P4Þ−ϵ

P
a
ωaΠΔðY1; Y2Þ:

ð5:8Þ

Let us now approach the bulk point singularity by tuning
the boundary points to be close to the configuration (5.1)
and (5.2). We will choose P1;2 to be ð0;−qμ1;2Þ and while
P3;4 to be ðδ; qμ3;4Þ. If we also choose qμa to be such that (5.2)
is obeyed, then we reach the bulk point singularity
configuration as δ → 0. In this limit we expect the con-
tribution of the integral in (5.8) to be dominated by Y1, Y2

close to Y0 ¼ ðR; 0; 0; 0Þ, which can then be approximated
by integrals over R1;d. To be more explicit, near Y0, we can
parametrize a bulk point Y as YI ≃ ðRþ XμXμ

2R ; XμÞ, where
every component of Xμ is much less than R. Equivalently,
we can take R → ∞ and allow Xμ ∈ R1;2 to be integrated to
infinity in (5.8).
In this limit, the Witten diagram becomes

I4 ≃ g2
�

e−iπΔϕ=2

2Δϕþ1πR1=2ΓðΔϕÞ
�

4
�Y4

a¼1

Z
∞

0

dωaω
Δϕ−1
a

�Z
R1;2

d3X1

Z
R1;2

d3X2

× eiX1·ðω1q1þω2q2Þ−iX2·ðω3q3þω4q4ÞþiRðω3þω4Þδ−ϵ
P

a
ωaΠΔðY1; Y2Þ: ð5:9Þ

If we keep the intermediate conformal dimension Δ finite
as taking R → ∞, then the bulk-to-bulk propagator
ΠΔðY1; Y2Þ is approximated by the massless Feynman
scalar propagator in R1;2, i.e., ΠΔ ≃ 1

4π
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX1−X2Þ2þiϵ
p . The

ωa integrals then give rise to a singularity 1=δ4Δϕ−5 as
δ → 0. This is indeed the singularity computed in [36]
using the explicit expression for I4 in terms of the D-
function for special values of Δ. In the strict δ ¼ 0 case, the
above integral is identical to the massless scalar exchange
amplitude in R1;2 written in the massless conformal basis.
As discussed in Sec. III D, the change of basis integral

(3.17) to the conformal basis suffers from an UV diver-
gence (for sufficiently positive Δϕ). Now we have an
alternative understanding of this singularity: it comes from
the bulk point singularity of the same interaction in AdS3.
If instead we scale the intermediate conformal dimension

Δ to infinite at the same rate as sending R → ∞, while
holding the ratio m≡ Δ=R fixed,11 then the AdS3 bulk-to-
bulk propagator is approximated by the massive scalar
Feynman propagator in R1;2:

11This flat space limit was considered, for example, in [28,58].
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ΠΔðY1; Y2Þ ≃
1

4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1 − X2Þ2 þ iϵ

p e−m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1−X2Þ2þiϵ

p
:

ð5:10Þ
The second line of (5.9) is nothing but the Fourier trans-
form from position space to momentum space for the flat
space amplitude 1

s−m2þiϵ δ
ð3ÞðPakaÞ with null momenta

ka ¼ �ωaqa. Thus the scalar exchange Witten diagram
(5.9) in this double scaling limit exactly reproduces the
same Feynman diagram in R1;2 written in the massless
conformal basis, which we computed in Sec. III D:

I4∝
�Y4

a¼1

Z
∞

0

dωaω
Δϕ−1
a

�
δð3Þðω1q

μ
1þω2q

μ
2−ω3q

μ
3−ω4q

μ
4Þ

s−m2þiϵ
;

s¼−ðω1q1þω2q2Þ2: ð5:11Þ

The infinite intermediate conformal dimension Δ limit
regulates the ωa integrals near the would-be bulk point
singularity, while it damps the contribution from the AdS
integrals away from the point Y0.
From this perspective, the (2þ 1)-dimensional flat space

amplitudes written in the massless conformal basis fðzÞ
should perhaps be interpreted as two-dimensional
Lorentzian conformal correlators, restricted to the bulk
point singularity configuration z ¼ z̄. In the Appendix, we
present a 2d Euclidean correlator whose Lorentzian
versions, when restricted to z¼ z̄, are exactly the (2þ1)-
dimensional tree-level exchange amplitudes in the con-
formal basis f12↔34ðzÞ; f13↔24ðzÞ; f14↔23ðzÞ. We leave the
physical origin of this 2d Euclidean correlator for future
investigation.
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APPENDIX: TWO-DIMENSIONAL CROSSING
SYMMETRIC FOUR-POINT FUNCTIONS WITH

POSITIVE BLOCK DECOMPOSITIONS

In this Appendix we present a 2d Euclidean correlator
f2dðz; z̄Þ whose Lorentzian versions, obtained via different

analytic continuations in z, z̄, are the (2þ 1)-dimensional
amplitudes from three crossing channels f12↔34ðzÞ;
f13↔24ðzÞ; f14↔23ðzÞ. We checked to high orders that this
2d correlator admits a positive SLð2;CÞ block decom-
position. For a special value of the external conformal
dimension Δϕ, f2dðz; z̄Þ reduces to the four-point function
in the 2d free boson theory.

1. A two-dimensional extension

We now present an observation that in the example of the
tree-level exchange diagram, the correlators in the three
crossing channels f12↔34; f13↔24; f14↔23 are restrictions of
different analytic continuations of a single 2d Euclidean
correlator f2dðz; z̄Þ.
Let the two cross ratios z, z̄ of a 2d four-point function be

defined as

z ¼ z12z34
z13z24

; z̄ ¼ z̄12z̄34
z̄13z̄24

: ðA1Þ

In the Euclidean signature, z, z̄ are complex conjugated to
each other, i.e., z̄ ¼ z�. On the other hand, in the Lorentzian
signature, z, z̄ are two independent real variables. Starting
from an Euclidean 2d four-point function, its Lorentzian
version can be obtained by analytic continuing the cross
ratios z, z̄ independently. The precise analytic continuation
depends on the time ordering between the four operators in
the Lorentzian spacetime.
If we place operators 1 and 2 in the past while 3 and 4 in

the future, this corresponds to the following analytic
continuation in z, z̄ (see, for example, [39,59] for explan-
ations of this analytic continuation):

12 → 34∶ ðz − 1Þ → e2πiðz − 1Þ; 1

z̄
→ e2πi

1

z̄
: ðA2Þ

If instead we want to have 1 and 3 in the past while 2 and 4
in the future, we should analytically continue the cross
ratios as

13 → 24∶ z → e2πiz; ðz̄ − 1Þ → e2πiðz̄ − 1Þ: ðA3Þ
In addition, due to the overall factor 1

jz12j2Δϕ jz34j2Δϕ
, one needs

to further multiply the four-point function fðz; z̄Þ by
e−2πiΔϕ . This is because jz12j2 crosses the light cone in
the analytic continuation. Finally, if we place 1 and 4 in the
past, 2 and 3 in the future, we analytically continue the
cross ratios as

14 → 23∶
1

z
→ e2πi

1

z
; z̄ → e2πiz̄: ðA4Þ

In addition, we need to multiply the four-point function by
a phase e−2πiΔϕ .
Now consider the following two-dimensional Euclidean

four-point function
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Aðz; z̄Þ ¼ 1

jz12j2Δϕ jz34j2Δϕ
f2dðz; z̄Þ; ðA5Þ

f2dðz; z̄Þ ¼ N Δϕ
eiπð2Δϕ−1

2
Þ ðzz̄Þ12
½ð1 − zÞð1 − z̄Þ�14

×

�
1þ ðzz̄ÞΔϕ−3

4 þ
�

zz̄
ð1 − zÞð1 − z̄Þ

�
Δϕ−3

4

�
:

ðA6Þ

This 2d Euclidean correlator satisfies the crossing
equation (A9) and admits a positive SLð2;CÞ block
decomposition as discussed in the next subsection.
If we first analytically continue f2dðz; z̄Þ to the
Lorentzian regime as (A2)–(A4), and then restrict to
z ¼ z̄, we exactly reproduce the (2þ 1)-dimensional
tree-level exchange amplitudes f12↔34; f13↔24; f14↔23

(3.27), (3.29), (3.30) in three different crossing channels,
respectively:

f12↔34ðzÞ ¼ f2dðz; z̄Þjðz−1Þ→e2πiðz−1Þ;1z̄→e2πi1z̄
jz¼z̄;

f13↔24ðzÞ ¼ e−2πiΔϕf2dðz; z̄Þjz→e2πiz;ðz̄−1Þ→e2πiðz̄−1Þjz¼z̄;

f14↔23ðzÞ ¼ e−2πiΔϕf2dðz; z̄Þj1
z→e2πi1z;z̄→e2πi z̄jz¼z̄; ðA7Þ

where the phase e−2πiΔϕ comes from the prefactor
1

jz12j2Δϕ jz34j2Δϕ
in our definition of f̃ðz; z̄Þ in relation

to the full four-point function. This implies that the
one-dimensional four-point functions are restrictions
of fðz; z̄Þ to the Lorentzian configurations similar
to Fig. 2.

2. Positive conformal block decompositions

In fact, the Euclidean 2d four-point function f2dðz; z̄Þ
(A5) belongs to a larger family of solutions to the crossing
equation. In this section we provide numerical evidence
that this family of crossing solutions has positive conformal
block decompositions.
Let us consider a generalization of the 2d scalar four-

point function (A5) considered above:

fΔϕ;bðz; z̄Þ ¼
ðzz̄ÞΔϕ−b

2

ðð1 − zÞð1 − z̄ÞÞb2
× ½ðzz̄Þ−Δϕþ3b

2 þ 1þ ðð1 − zÞð1 − z̄ÞÞ−Δϕþ3b
2 �:

ðA8Þ
This four-point function comes with a two-parameter
family, labeled by the external operator dimension Δϕ

(which will be taken to be positive in this Appendix) and a
real parameter b. The four-point function fΔϕ;b is crossing
symmetric for all Δϕ; b:

fΔϕ;bðz; z̄Þ ¼
�

zz̄
ð1 − zÞð1 − z̄Þ

�
Δϕ

fΔϕ;bð1 − z; 1 − z̄Þ

¼ ðzz̄ÞΔϕfΔϕ;bð1=z; 1=z̄Þ: ðA9Þ

For general Δϕ and b, the operator spectrum in the
Operator product expansion (OPE) channel z; z̄ → 0 can be
separated into towers of “single-trace” and the “double-
trace” operators:

Single-trace∶ Δ ¼ 2bþ lþ 4m; m ∈ Z≥0;

Double-trace∶ Δ ¼ 2Δϕ − bþ lþ 2m; m ∈ Z≥0;

ðA10Þ

where l ∈ 2Z≥0 is the spin. We distinguish a double-trace
operator from a single-trace one by the dependence of their
conformal dimensions on Δϕ. The conformal block expan-
sion of the four-point function can be separated into single-
and double-trace operators:

fΔϕ;bðz; z̄Þ ¼
X∞
l¼0;
even

X∞
m¼0

clþ4m;lG
ðlÞ
2bþlþ4mðz; z̄Þ

þ
X∞
l¼0;
even

X∞
m¼0

cdlþ2m;lG
ðlÞ
2Δϕ−bþlþ2mðz; z̄Þ; ðA11Þ

FIG. 2. The bulk point singularity in AdS3. At the bulk
point singularity configuration for a four-point function in
AdS3=CFT2, the boundary points are restricted to two constant
time slices in AdS3, which are the future and past celestial circles
(shown in blue) in the flat space limit to R1;2. The contribution to
the Witten diagram is dominated by the integral around the bulk
point Y0, which can then be approximated by the flat space
scattering process in the massless conformal basis.
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where the SLð2;CÞ block with identical external scalar
primaries of dimension Δϕ and intermediate conformal
dimension Δ and spin l ≥ 0 is [25,26,60,61]

GðlÞ
Δ ðz; z̄Þ ¼ 1

1þ δl;0

�
z
1
2
ðΔþlÞz̄12ðΔ−lÞ

× 2F1

�
Δþ l
2

;
Δþ l
2

;Δþ l; z
�

× 2F1

�
Δ − l
2

;
Δ − l
2

;Δ − l; z̄
�

þ ðz ↔ z̄Þ
�
: ðA12Þ

The first few coefficients are

c0;0 ¼ 1; c4;0 ¼
b4

64ð1þ 2bÞ2 ; c2;2 ¼
b2

8ð2bþ 1Þ ;

c6;2 ¼
b4ðbþ 2Þ2

1024ð2bþ 1Þð2bþ 3Þð2bþ 5Þ ;

c8;0 ¼
b4ðbþ 2Þ4

16384ð2bþ 3Þ2ð2bþ 5Þ2 ;

c4;4 ¼
b2ðbþ 2Þ2

128ð2bþ 3Þð2bþ 5Þ ;…; ðA13Þ

cd0;0¼2; cd2;0¼
1

8
ð3b−2ΔϕÞ2;

cd4;0¼
ð9b3−10b2ð3Δϕþ1Þþ4bΔϕð7Δϕþ4Þ−8Δ2

ϕðΔϕþ1ÞÞ2
512ðb−2Δϕ−1Þ2

;

cd2;2¼
9b3−10b2ð3Δϕþ1Þþ4bΔϕð7Δϕþ4Þ−8Δ2

ϕðΔϕþ1Þ
16ðb−2Δϕ−1Þ

;���:

ðA14Þ

We numerically checked that these conformal block coef-
ficients are non-negative if

2Δϕ ≥ b≥ 0: ðA15Þ
Note that this constraint also arises from requiring the
leading single-trace and double-trace operators (A10) to
have positive conformal dimensions.
The intermediate spectrum contains the identity

operator only if b ¼ 0 or b ¼ 2Δϕ, which are the lower
and upper bounds of b (A15). In fact, at these values of b
the four-point function fΔϕ;bðz; z̄Þ reduces to known
examples:

(i) b ¼ 0. In this case fΔϕ;b¼0ðz; z̄Þ reduces to the
four-point function in the 2d generalized free field
theory:

fΔϕ;b¼0ðz; z̄Þ¼ 1þðzz̄ÞΔϕ þ
�

zz̄
ð1− zÞð1− z̄Þ

�
Δϕ

:

ðA16Þ

(ii) b ¼ 2Δϕ. In this case fΔϕ;b¼2Δϕ
reduces to the four-

point function of scalar primaries cosð ffiffiffiffiffiffi
Δϕ

p
XÞ in the

2d free boson theory12:

fΔϕ;b¼2Δϕ
ðz; z̄Þ ¼ 1

2ðð1 − zÞð1 − z̄ÞÞΔϕ

× ½ðzz̄Þ2Δϕ þ 1

þ ðð1 − zÞð1 − z̄ÞÞ2Δϕ �: ðA17Þ

Here we have normalized the four-point function by
a factor of 1=2 so that the identity channel comes
with unit OPE coefficient. The radius of the free
boson does not affect the four-point function as long

FIG. 3. The two-parameter space for the solution
fΔϕ;bðz; z̄Þ to the 2d crossing equation. In the shaded region

between 0 ≤ b ≤ 2Δϕ we find numerical evidence that the four-
point function fΔϕ;bðz; z̄Þ has a non-negative expansion on the

SLð2;CÞ blocks. At the two boundaries b ¼ 0 and b ¼ 2Δϕ,
fΔϕ;bðz; z̄Þ reduces to the four-point functions in the 2d gener-

alized free field theory and that in the free boson theory,
respectively.

12We thank Ying-Hsuan Lin for discussions about this
point.
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as the operator cosð ffiffiffiffiffiffi
Δϕ

p
XÞ exists in the spectrum of

primaries.
To conclude, fΔϕ;b provides an interpolation between

the four-point function in the 2d generalized free

field theory and that in the free boson theory (see Fig. 3).
Even thoughfΔϕ;b has no identity channel away from the two

limiting cases, we find numerical evidence that it admits a
non-negative SLð2;CÞ block decomposition.
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