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Conformal basis, optical theorem, and the bulk point singularity
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We study general properties of the conformal basis, the space of wave functions in (d + 2)-dimensional
Minkowski space that are primaries of the Lorentz group SO(1,d + 1). Scattering amplitudes written in
this basis have the same symmetry as d-dimensional conformal correlators. We translate the optical
theorem, which is a direct consequence of unitarity, into the conformal basis. In the particular case of a tree-
level exchange diagram, the optical theorem takes the form of a conformal block decomposition on the
principal continuous series, with operator product expansion (OPE) coefficients being the three-point
coupling written in the same basis. We further discuss the relation between the massless conformal basis
and the bulk point singularity in AdS/CFT. Some three- and four-point amplitudes in (2 + 1) dimensions
are explicitly computed in this basis to demonstrate these results.
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I. INTRODUCTION

The Lorentz group of (d + 2)-dimensional Minkowski
space is the same as the Euclidean conformal group in d
dimensions. This makes it possible to interpret a (d + 2)-
dimensional scattering amplitude as a conformal correlator
in d dimensions. Recently, building on the earlier work of
[1], a basis of flat space wave functions has been con-
structed in [2—4], where scattering amplitudes in R4+!
take the form of d-dimensional conformal correlators. This
basis, called the conformal primary basis, or simply the
conformal basis, serves as a natural basis for the study of
two-dimensional conformal symmetries in four-dimen-
sional flat space scattering amplitudes [2,5-17] (see [18]
for discussions in general dimensions).

More explicitly, we consider scalar wave functions in
R!4+! that transform as d-dimensional conformal primar-
ies under SO(1,d + 1) constructed in [1-4]. These wave
functions, called the conformal primary wave functions, are
labeled by a conformal dimension A and a point X € R,
rather than an on-shell momentum in R"¥*!. Consequently,
scattering amplitudes of these wave functions are functions
of A, X; and transform covariantly as d-dimensional
conformal correlators under SO(1,d + 1). Through the
study of their inner products, it was further shown in [4]
that the continuum of conformal primary wave functions
with A € ‘5’ + iR forms a basis of normalizable solutions to
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the wave equation. This range of the conformal dimension
is known as the principal continuous series of unitary
irreducible representations of SO(1, d + 1), which plays an
important role in the study of conformal field theory (CFT)
(see, for example, [19-23]).

In this paper we further explore general properties of
scattering amplitudes in the conformal basis. One interest-
ing question is the implication of unitarity of the S-matrix
in this basis. We approach this question by translating the
optical theorem, which is a direct consequence of unitarity,
into the conformal basis. In the case of a tree-level massive
scalar exchange diagram, the optical theorem in the
conformal basis takes the form of a conformal block
decomposition on the principal continuous series':

oo d
Imf(z,z) = ﬂmd/ dy,u(y)C<A1,A2;2+ iu>

<C(anagg-i) b ()
where f(z,Z) is the four-point amplitude in the conformal
basis and z, zZ are the cross ratios. m is the mass of the
intermediate particle. C(A;, A,; A) is the coefficient of the
three-point amplitude written in the conformal basis. u(v) is
a measure factor given in (4.4). Finally, W,(z,2) is the
shadow-symmetric conformal partial wave [24-27]. The
derivation of this conformal block decomposition follows
from the completeness relation of the conformal primary
wave functions on the principal continuous series

'In taking the imaginary part of the four-point function f(z, z),
we have assumed all the conformal dimensions are analytically
continued to be real.

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.025020&domain=pdf&date_stamp=2018-07-27
https://doi.org/10.1103/PhysRevD.98.025020
https://doi.org/10.1103/PhysRevD.98.025020
https://doi.org/10.1103/PhysRevD.98.025020
https://doi.org/10.1103/PhysRevD.98.025020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

HO TAT LAM and SHU-HENG SHAO

PHYS. REV. D 98, 025020 (2018)

Ae % + iR. The final expression is very reminiscent of the
split representation for Witten diagrams in AdS [28,29].
To verify the above optical theorem in concrete examples,
we consider scalar scattering amplitudesin (2 + 1) spacetime
dimensions with a cubic coupling. The corresponding
conformal correlators are one-dimensional with SL(2, R)
covariance. The three-point function takes the form of a
standard CFT three-point function with coefficient
C(A;, Ay; A3) given in terms of the gamma functions:

R e L G )

I'(A3)
1
A+A,—A, A +A5—A, A+As—A; "
) |x12\ \X13| |x23|

9 2A1+4,

(1.2)

The four-point function with identical external dimension A
also takes a particularly simple form

Z : 3 3 Z 2893
N’ em(ZAr/'_E) + ZZA{/)—E N (. ,
S i1 z—1

f(z) =
(1.3)

where z > 1 is the real cross ratio” parametrizing the
scattering angle and A, is the conformal dimension we
assign to the four external particles. A/, , 18 a normalization

constant given in the main text. We show that the imaginary
part of this four-point function can indeed be expanded
on the conformal partial waves with coefficients being
C(Ay. Ay;d/2 +iv)C(Ay, Ay d/2 — iv). We further dis-
cuss the implication of crossing symmetry of the two-to-two
scattering amplitudes in the conformal basis.

Various properties of the conformal basis have been
explored recently. In [2] the soft photon and graviton
theorems are studied in the conformal basis in (3 + 1)
spacetime dimensions. The massive scalar three-point ampli-
tude is shown to be equal to the standard scalar CFT three-
point function in the special mass limit in [3]. The tree-level
gluon low-point amplitudes in the conformal basis have
been computed in [30]. The Britto-Cachazo-Feng-Witten
(BCFW) relation [31,32] in this basis and its potential
interpretation as the conformal block decomposition were
explored in [30,33]. The factorization singularity has also
been investigated in [34,35].

We then turn to the relation between the massless
conformal basis in R""“*! and the bulk point singularity
in AdS,,,/CFT,; [28,36-39]. The bulk point singularity
is a singularity of perturbative holographic correlators in
AdS/CFT that arises from Landau diagrams in the bulk. It
has been used to probe the flat space limit of AdS/CFT

*Recall that in one dimension there is only one independent
cross ratio of a four-point function. Here the four-point function
f(z) [what we call f,.,34(z) in the main text] is computed in the
crossing channel where particles 1 and 2 are incoming while 3
and 4 are outgoing. The other ranges of the cross ratio on the real
line are realized by the other two crossing channels.

[40-46] and diagnose bulk locality. We discuss how the
bulk point singularity of a Witten diagram in AdS,, ,, under
certain assumptions, is computed by the same amplitude in
the massless conformal basis in R4+,

In the example of scalar four-point amplitudes in (2 + 1)
dimensions, the relation to the bulk point singularity in
AdS;/CFT, suggests that the one-dimensional correlators in
the conformal basis should be interpreted as two-dimensional
Lorentzian correlators, restricted to the configuration with
real cross ratio. In the Appendix we present such a candidate
2d Euclidean four-point function whose Lorentzian versions,
when restricted to the bulk point singularity configuration,
reproduce these one-dimensional correlators from different
crossing channels. We further show that this 2d correlator
satisfies the crossing equation and has a positive SL(2, C)
block decomposition with a simple spectrum of single-trace
and double-trace intermediate operators. The physical origin
of this 2d extension remains to be understood.

This paper is organized as follows. In Sec. II we review
both the massive and massless conformal bases. In Sec. I1I
we present explicit results for the three- and four-point
correlators in a simple scalar (2 + 1)-dimensional model. In
Sec. IV we translate the optical theorem into the conformal
basis in general spacetime dimensions, and verify it
explicitly for the scalar model in (2 + 1) dimensions. In
Sec. V we discuss the relation between the massless
conformal basis and the bulk point singularity in
AdS/CFT. In the Appendix, we consider a 2d extension
of the 1d correlators for the scalar model considered above.

II. CONFORMAL PRIMARY BASES

In this section we review scalar conformal primary wave
functions introduced in [1-4]. The construction of these
wave functions in flat space proceeds naturally through the
embedding space formalism in CFT [29,47-52].

The flat space coordinates of R'¥*! will be denoted by
X with y =0,1,...,d+ 1. Our convention on the space-
time signature is (—+---+). We will parametrize an
outgoing/incoming null momentum k* in R!“4*1 as

= tog' () = to(1 + 7225 1= FP). (2.1

where X € R? labels the direction of the null momentum
and @ > 0 is a scale. On the other hand, an outgoing/
incoming timelike momentum will be parametrized in
terms of y > 0 and 7 € R as

1+ 32+ |7
2y

-y - IZI2>

z
Ty 2y

P = £mply.3) = im(
(2.2)

Note that p* = —1.

Scattering amplitudes are usually written in the basis of
plane waves e**X. which are eigenfunctions of trans-
lations. In this paper we consider an alternative basis of
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wave functions ¢% (X*; X) that are labeled by a “conformal
dimension” A and a point X € R¢, instead of an on-shell
momentum in R"4*!, The + superscript distinguishes an
outgoing (4) wave function from an incoming (—) one.
Conformal primary wave functions are defined such that,
under a Lorentz group SO(1,d + 1) transformation, the
wave function @3 (X#; X) transforms covariantly as a scalar
conformal primary operator in d spacetime dimension:

o
O%

—A/d

pa(A XX (X)) = pa(Xt: %), (2.3)

where X' (x) is a nonlinear SO(1, d + 1) transformation on
¥ € R? and A¥, is the associated group element in the
(d + 2)-dimensional representation.

In the massless case, the conformal primary wave
function ¢ (X*; X) can be easily written down [1-4,53,54]:

1
(=q(¥) - X F ie)*’

where we have introduced an ie prescription to circumvent
the singularity on the lightsheet ¢-X = 0. Here N =
(F i)AT’(A) is a normalization constant we choose for
later convenience. The massless conformal primary wave
function can be expanded on the plane waves via a Mellin
transform of the scale w in (2.1):

(X" X) =N

(2.4)

PE (X X) = /oo dow?~leTiverX-co (2.5)
0

In [4] it was shown that the continuum of conformal
primary wave functions on the A € % + iR spans a com-
plete set of delta-function-normalizable solutions (with
respect to the Klein-Gordon inner product) to the massless
Klein-Gordon equation.3 This range of A is known as the
principal continuous series of SO(1,d + 1).

Let us now proceed to the massive case. Similar to the
massless case, we define a massive scalar conformal
primary wave function ¢+ (X*;X) as a solution to the
massive Klein-Gordon equation of mass m in R'4+! that
transforms covariantly as (2.3) under the Lorentz group
SO(1,d + 1). We can always expand an outgoing/incom-
ing solution ¢ (X#;X) to the massive Klein-Gordon
equation on the plane waves as [3]:

#500:7) = [laplGs(p e, (20
with some Fourier coefficient G, (p;X). Here [[dp] is a
Lorentz invariant integral over all the outgoing unit timelike
vectors, which form a copy of two-dimensional hyperbolic
space H ;. :

There is another basis of massless conformal primary wave
functions that is the shadow of (2.4). We will not discuss this
shadow basis in this paper.

d+1

0)2 + Z(ﬁz)z =1, i)O > 0.
)

We can write this measure [dp] more explicitly in terms of
the hyperbolic coordinates (y, X) in (2.2) as

dd+1f)
[dp] / / P 0s
Jua= [ T @8)

It now remains to determine the Fourier coefficient
Ga(p;X). Requiring the conformal covariance (2.3) of
¢x(X#;X), the Fourier coefficient is determined to be
the scalar bulk-to-boundary propagator in the (d + 1)-
dimensional hyperbolic space H,, [55]:

y A
2l %) (y2+ IZ—XI2>

Similar to the massless case, it was shown in [4] that the
continuum of massive conformal primary wave functions
on A e§+ iRy spans a complete set of normalizable
solutions to the massive Klein-Gordon equation.

So far we have been talking about the wave function, but
the above discussion can be immediately carried over to
arbitrary scattering amplitudes in R'“*!. Consider an n-
point scattering amplitude® 7 (k,, p; )82 (3 ks +3 iPj)
of scalars in momentum space where k, and p; are the null
and timelike momenta, respectively, for the external par-
ticles. This amplitude can be transformed into the conformal
primary basis via a Mellin transform for each massless
external null momentum and an integral over H;,; (2.6) for
each massive external momentum:

A(Ai’}i) = ( H A dCUfCU?f_1>
¢: massless

x( 11/ [dfo,-]GAj(ﬁj;f,-))

Jj : massive
% T (kp. )84+ <Zkf + Zp]> (2.10)

where k¥ = +wg*(X) and p¥ = £mp*. Due to the con-
formal covariance of the conformal primary wave functions
(2.3), the amplitude A(A,,%;) in the conformal basis is
guaranteed to transform like a d-dimensional conformal
correlator of scalar primaries with conformal dimensions A;
under SO(1,d + 1):

() = <k1

“The amplitude 7 is related to the connected part of the
S-matrix as Seopy = i(27) 2T (k;)82) (3 ,k;) in R4

Hyy: — (P (2.7)

(2.9)

8 —’/

A(A;, X an

—Ay/d\ .
)A(A,»,Ec’,-). (2.11)
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III. ONE-DIMENSIONAL CONFORMAL
CORRELATORS

In this section we consider conformal bases in (2 + 1)
spacetime dimensions. The amplitudes in the conformal
basis take the form of one-dimensional conformal corre-
lators with SL(2,R) symmetry. This is the simplest non-
trivial spacetime dimension where the resulting correlators
are simple to analyze.

A. Three-point function

Consider a perturbative theory in (2 4 1) dimensions
consisting of one real massless scalar field ® and one real
massive scalar @,, of mass m, interacting through a cubic
vertex g<I>2<Dm.5 In momentum space, the tree-level three-
point amplitude of a massive scalar with momentum p#* =
—mpt decaying into a pair of massless scalars with
momenta k}, = w,q"(x,) (¢ =1, 2) is
where ¢ is the three-point coupling. Using (2.10), the three-
point amplitude written in the conformal basis is

A“x _gH/ Af l

L (y i)

x 8% (@1¢* (x1) + wrq* (x2) = mp*).

C(A1, Asz Ay)

The §-function can be used to localized the integrals in y, z
and w,:

83 (wg"(x1) + w2g" (x3)

3
:—2( ! 2)25(2—2 )6(y — y*)8(w, — w3),
meo, |x; — x|

- mp*)

(3.2)

where
. X twox, m . m?
= Y =5 0= 2
)+, 2(0) + @) 4o |x; =]
(3.3)
The remaining integration in w; is
28+45-3
gm 2 3 [e4]
As (B x;) = 228851y — x2|2A2—2A3A do,
) wlAl—A2+A3—l |
(m?xy = x3]* +4|x; = xo|?|x) — x5 @)™
(3.4)
The integration converges if Re(A; — A, — A3) <0 and

Re(A; — Ay + A3) > 0. The final three-point function
takes the form of a standard three-point function in an
one-dimensional conformal theory

A3(Ai’xi) =

where the three-point function coefficient is,®

Aj+A,-3 F(A|+A23—A2)F(A2+A23—A1)
I'(A3)

m
9 2A1+A2

C(A, Ay A;) =

(3.7)

Recall that Aj is the conformal dimension we assign to the
massive particle.

5Cornputationally, the change of basis integral is usually easier
for the massless conformal basis than the massive one. However,
the three-point amplitude with all massless particles suffers from
either an UV or IR divergence (depending on the conformal
dimensions) in the change of basis integral. We will hence
consider the next simplest case where there is one massive
particle, whose mass regulates the divergence, and two massless
particles in (2 + 1) dimensions.

T 1 P o e | I

(3.5)

B. Four-point function

Let us now move on to a general discussion of four-point
amplitudes written in the massless conformal basis in R!-2.
Consider a massless scalar two-to-two scattering amplitude

T (s,1)5% (Zeiwiq" (xi)>

i

(3.8)

in (24 1) dimensions. Here we parametrize the null
momenta k! = e;w;q*(x;) as in (2.1) and ¢; = £1 for an

6Although we only consider the case of (2 4 1) dimensions,
the three-point function coefficient can be easily generalized to
that in RL4+1:
mAitAy—d-2 F(Al +A23—A2)F(A2+A3—A1>

2
2A1+A2 F(A3)

C(A1L Ay A;) =g . (3.6)

025020-4



CONFORMAL BASIS, OPTICAL THEOREM, AND THE ...

PHYS. REV. D 98, 025020 (2018)

outgoing/incoming particle. s, t, u are the Mandelstam
variables defined as s = —(k; + k)%, t = —(k; + k3),
u = —(k; + k4)?. Constrained by the massless kinematics,
the nontrivial scattering process only exists if two of the ¢;’s
have the opposite signs than the other two. Depending on
which two of the particles are incoming and which two are
outgoing, we have six different crossing channels for the two-
to-two scattering process. Using charge conjugation-parity-
time reversal (CPT), the six crossing channels reduce to
three, which will be denoted as 12 <> 34, 13 <> 24, and
14 < 23. The Mandelstam variables s, ¢, u have fixed signs
in a given crossing channel. For example, s > Oand #,u < 0
in the 12 <> 34 channel.

Importantly, the amplitudes in the conformal basis
depend on the choice of the crossing channels. We will
specify the crossing channel under consideration in the
following discussion. The crossing relations between these
amplitudes will be discussed in Sec. III C.

In the massless conformal basis, the amplitude takes the
form

4

A(A;x;) = H A ” dw™ " T (5.1)6) (Zeiwiqﬁf (x,-)).
: (3.9)

Three of the four integrals can be done by solving the delta
functions:

_ X13X14 _ X12X14
W) =—€6—— W, W3=€€3— W0,
X23X24 X23X34
X12X13
Wy = —€1€y wy, (310)
X24X34

where x;; = x; — x;. On the support of the delta function,
the Mandelstam variables are

2
X, X13X 1 1-z2
§ = —4 127071 2 t=——s, u= s,
X23X24 Z Z
(3.11)
where the real cross ratio is
X19X
=" eR, (3.12)

X13X24

The delta functions only have support when all the w;’s are
positive. This constrains the real cross ratio z in the
following way

12 <> 34 channel: z € (1, o),
13 <> 24 channel: z € (0, 1),

(
14 <> 23 channel: z € (—,0). (3.13)

Indeed, for example in the 12 <> 34 channel, the scattering
angle 6 is related to the cross ratio z as z7!=
sin?(0/2) < 1.

Let ¢; = €y¢€,, which is +1 in the 12 <> 34 channel and
—1 in the other two channels. Define w as
o= ./e;s =\/|s]|. (3.14)

We then obtain

v 27 A x13X14 227 x| A5
A(Ai’xi>:
| X23X04%34 | X304 X23X34
1 3
XX 3| A xp3x04 DI
2
X24X34 X12X13X14

0 1
x/ do@2—*T <€Sa)2,—esa)2). (3.15)
0 z

For simplicity, let us consider the case when all four
conformal dimensions are the same A; = A . Then we have

~ 1
A(Ay. xi) = ——55 1 |2A,,,f(z)’

= (3.16)
|x12 |22 X34

where f(z) is

oo 1
f(Z) — 2—4A¢+1L/ do o*Pe=3T (eswz, —es—a)2> .
Vl0z=1|Jo z

(3.17)

Recall that e, = +1 in the 12 <> 34 channel and ¢; = —1 in
the 13 <> 24 and 14 <> 23 channels.

Let us present an alternative formula in the case of tree-
level scattering amplitudes. We will focus on the 12 < 34
channel but the discussion can be easily generalized to
other channels. The four-point function in this channel is

z oo 1
— dww*®*T <w2,——w2>,
\/Z—IA Z

(3.18)

[1ae3a(z) =274H
z>1.

Let us discuss the analytic property of this integral. For tree-
level amplitudes, 7 only has poles in w”. In addition, the
integrand has a branch cut emitting from @ = 0. We can
choose the branch cut to be almost aligned with the negative
real line, but slightly below it. With this choice of the branch
cut, we can extend the integral to be over the full real line

2—4A4,+1 z
f12<—>34(z) = 1 + €4m‘A“’ \/Z_—l
0 1
x/ dwaw*®*T <a)2,—a)2>, z> 1.
—0 Z

(3.19)

See Fig. 1 for the example of exchange diagrams (3.26). If we
further assume the following fall-off condition on the upper
half plane of w,

025020-5
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v

bimy/z

m — i€

FIG. 1.
contribution. Right: the 7-channel contribution.

1
lim w4A¢‘3T(w2, ——co2> -0, (3.20)

|| >0 Z

and that there is no singularity at @ = 0, then the contour can
be closed from above. We obtain

tree (Z) — 2—4A¢+1 27l - Z
12<34 1 + 647”A‘/’ 7 — 1
4A,—4 2 1 2
X E Res,_, 0" T [ 0, ——w* |,
" Z
[ON

z>1, (3.21)

where the sum is over all poles on the upper half w-plane.

C. Crossing symmetry

In (3.16) we have presented a general formula for the two-
to-two massless scalar amplitude in the conformal basis. The
resulting correlator depends explicitly on the crossing
channel; i.e., it depends on which particles we take to be
outgoing and incoming. Thus given a single amplitude in
momentum space 7 (s, t), we end up with three correlators in
the conformal basis f15.,34(2), f13624(2)s f14023(2)-

Let us study what crossing symmetry in momentum
space implies on these three four-point functions in the
conformal basis. We will consider scattering amplitudes of
identical particles and assume the amplitude in momentum
space has the s <> t <> u crossing symmetry,

T(s,t)=T(t,s) =T (-s—11). (3.22)

The amplitude crossing symmetry implies that of the
correlator in the conformal basis. Indeed,

o —im\/z

The analytic structure of the integral (3.19) for the tree-level exchange four-point function f,.34(z). Left: the s-channel

1— ©
f13<—>24(1 - Z) = 2_4A¢+1 —Z/ da)a)4A¢‘4
z Jo

Z 1
T2 ?,—— 2
x ( 1—zw l—zw>
_2—4A¢+1<1_Z>2A¢ <
Z -z

o 1
x/ da' w'*A=4T <—a)’2,—a)’2>, (3.23)
0

Z

where in the first line we have used 7 (s, 1) = 7 (—s — t, 1),
and in the second line we have rescaled o' = , /T50.

Hence we conclude that fi3.,,4 satisfies the crossing
equation:

1-z

24,
f13<—>24(]_z): <Z) f13<_>24(Z), O0<z<l1.
(3.24)

Using a similar argument, crossing symmetry also relates
the three correlators from different crossing channels:

F13004(2) =222 f12034(1/2)

Z

=f14023 (Z_—1> 0<z<l.  (3.25)

There is one caveat regarding the relation between f4.,13
and f3.4. In both the 14 <> 23 and 13 <> 24 channels,
we have ¢, = —1 in (3.16). One might then naively equate
f13024(2) with —f14.13(2), with the latter extended to
0 < z < 1. This is generally ambiguous because the latter
was originally defined only for z < 0 in (3.16), and the
extension to 0 < z < 1 requires a choice of the ie pre-
scription. More explicitly, the ie prescription should be
such that both # = 1? and u = <L w? get shifted by +ie,
which is the standard ie prescription in momentum space.
However, one can easily see that there is no such ie
prescription for z such that #(z) — #(z) +ie and

025020-6
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u(z) = u(z) +ie. In other words, fi3.04(z) with
—f14523(2) are not related by an analytic continuation in
the real cross ratio z. One can verify this explicitly in the
examples of tree-level exchange amplitude in (3.29) and
(3.30) below.

D. Tree-level exchange amplitude

Let us return to the scalar theory considered in Sec. IIT A.
The tree-level amplitude with massless external scalar
particles exchanging a massive scalar is

2 2 2
T(s,1) = 92 —+ 92 —+ 92 —.
—s+m-—ie —t+m-—ie —u-+m-—ie

(3.26)

The massive scalar exchange amplitude is in some sense
simpler than other tree-level amplitudes, for example the
contact four-point or the massless exchange amplitudes.
Indeed, the latter two suffer from either the UV or IR
divergence for positive Ay in the change of basis integral
(3.17). On the other hand, for the massive exchange
amplitude, the mass m of the intermediate particle provides
an IR cutoff so that there is range of A, where the
amplitude in the conformal basis is well-defined. In fact,
for sufficiently positive A, there is a good physical reason
for the divergence of the contact four-point and the
massless exchange amplitudes in the conformal basis: they
are exactly the bulk point singularity in AdS;/CFT, of the
corresponding Witten diagrams. We will come back to this
point in Sec. V.

Let us start with the 12 <> 34 channel where we take
particles 1 and 2 to be incoming while 3 and 4 to be
outgoing. Assuming 3/4 < ReA, < 5/4, this amplitude
(3.26) satisfies the fall-off condition (3.20), we can directly
apply the residue formula (3.21) to obtain the amplitude in
the 12 <> 34 channel:

e (] o
z—1 z—1

T12e3a(2) = NA¢

(3.27)
here A, = g g
where NV, = g mand
3

Similarly, in the 13 <> 24 channel, the four-point function
is given by

"For example, in the 14 <> 23 channel where z < 0, if one
chooses to continue z — z—ie, then #(z) — #(z) + ie but
u(z) = u(z) — ie.

fl3<—>24(z) —NA¢\/+TZ|:1+ei7zaZa+ (i) :|,

0<z<l. (3.29)

Finally in the 14 <> 23 channel, the four-point function is
given by

(1_Z—)z [1 + (=2)" + e (1_—_ZZ> a] :

(3.30)

f1ae3(2) = NA¢

z<0.

Even though the change of basis integral only converges for
3/4 <ReAy < 5/4, we can analytically continue the final
expression to all complex A except for Ay € i + Z

One feature of these correlators is that they are complex
even if we assume A, to be real. This is of course expected
because the amplitude is already complex in momentum
space because of the ie prescription. It follows that the
imaginary part of these correlators should obey the optical
theorem in the conformal basis, which we will discuss
in Sec. IV.

IV. OPTICAL THEOREM AND CONFORMAL
BLOCK DECOMPOSITION

In this section we translate the optical theorem into the
conformal basis. In the case of the tree-level exchange
amplitude, the optical theorem takes the form of a con-
formal block decomposition on the principal continuous
series, with coefficients being the three-point amplitude in
the conformal basis. We then verify this explicitly in a
scalar theory in (2 4 1) dimensions.

A. Conformal optical theorem
Let us start with the simplest example of a tree-level
massive scalar exchange amplitude 7 (s,¢) in (3.26) in
R!4+1 The optical theorem relates the imaginary part of
the four-point amplitudes to the product of two three-point
amplitudes

dd'Hﬁ

=7 2 Aklskz_’PAkBs]%_)p’
Vp t+m

(4.1)

2111'1./4k1‘1{2_,]%_1(4 =T

where Akl.k2—>k3.k4 = T(S, [)5(d+2) (kl =+ k2 - k3 - k4) and
Ak, kyop = 982 (k) 4+ ky — p). Note that this simplest
optical theorem follows from the identity:

1

Im————— = 76(s — m?).

4.2
—s +m?—ie ( )

Since we take particles 1 and 2 to be incoming while 3 and 4
to be outgoing, only the s-channel can go on-shell and
contribute to the imaginary part of the amplitude.
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To go to the conformal basis, we use the following = Now we perform the change of basis integral (2.10) on the

orthogonality condition of the AdS bulk-to-boundary  external particles ki, ..., k4. In the conformal basis, the
propagator [29] (see also [4]): optical theorem is then translated into®
|7 ) [ 456400196 (9 S Ay (A7)
— (3 P o S d . - - .
= (p1)°8“ I (py = pa). (4.3) = ﬂmd/ dvu(v) / diX A, (Al, A2,§+ w;xl,xz,x>

where p; are unit timelike vectors in R!“*! and the right- y
hand side is the SO(1, d + 1) invariant delta-function. The x As <_ —iv, Ay, Ay, R X, )?4> , (4.6)
measure u(v) is 2

_ F(%l + )F(% —iv) (4.4) where we have assigned conformal dimension A; to the i-th
4T (iv)T(=iv) ' external particle. The optical theorem can be further
PN N simplified by using the explicit positions dependence of

We can then insert 1 = [4£2%@H0 (2~ p) into the  he three-point functions:

right-hand side of (4.1) and use (4.3) to obtain

pu(v)

: C(A,, Ay Ay)
2Im ) — 1) =2, =23
Ak kyks ks . Az (A, %) = |1 [B1F82= 83 7 5 [Ar+As=0a |7 | AoFAs=A,
o . d ﬁ =
= zm* / dvp(v) / d'% / 5 Ak ky=pGasin (D3 X) (4.7)
—00
dz - The integral over ¥ gives the shad ion of th
x / 20 Ak},k“—»fGL’—iy(f ;). (4.5) € Integra OV_erx gives the s_a ow representation of the
conformal partial wave W, (z,7) [24-27]:
|
Wal(z.2) Xog|B2] Xig| B _ 1/ dy Y i S (4.8)
|£12|A]+A2|£34|A3+A4 }]4 5513 2 |V_1;_5C’1|A12+A|v_‘;_22‘A21+A|W_£3|A24+d—A|w_56’4‘A4g+d—A ’ '

|
where X;; = X; —X; and A;; = A; — A;. z, Z are the cross ~ where the coefficient c, is
ratios:

o D¢ = ANEEME e arEp
):|x,4| %23 (4.9) r(a) ’
[%13[? %24 ] (4.11)

CA :ﬂ'd/2

_ |)?12|2|)_C}34|2 _
B LR (TIUE

WA(z,Z) is an eigenfunction of the conformal Casimir

! e . If we write the four-point function as
operator that is shadow symmetric, i.e., ¥ = W _a. It is

related to the scalar conformal blocks G(Afzo)(z z) with % > S A4 [ Xpg|B| X |
, A %) = 1+4, Ay+A, | 22 s
intermediate scalar primaries as [26], Ay(Ai %) = X1 34| XYuul | X3 f(z.2),
~ _ (4.12)
Wy (2.7) = CAGXo 0)(Z’Z)+Cd—AGElf;AO>(Z’Z)
Al QF(A+2A21 )F(A—zAzl)r(d—A;Am)F(d—Az—Asa) ’ then the optical theorem gives the conformal block decom-
position for the imaginary part of f(z,Zz) on the principal
(4.10) continuous series
|
- a [® da . da . -
Imf(z,Z) = 7m i dvu(v)C AI,A2,§+ iv|C A3,A4,§— iv | Wa,,,(2,2), (4.13)

with the coefficient being the three-point amplitude written in the conformal basis (4.7).

*We assume the conformal dimensions A; of the external operators can be analytically continued to be real.
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The derivation can be extended to the general optical theorem straightforwardly,

2T gy = > [ ] ( / o d+12k0) T ()=t T (=i (2) 260042 <Z P Zk),

{k} J

(4.14)

where p, g, k are the sets of momenta of the initial, final and intermediate particles. The sum in {k} is over all possible
intermediate particle states. The general optical theorem when translated into the conformal basis is’?

2ImA(A;, Af. %;
{k}

where I and F are the subscripts for the conformal dimen-
sions and the positions of the initial and final conformal
primary wave functions, respectively.

B. Example: Tree-level exchange amplitude

We now explicitly show that, in the case of the exchange
diagram in (24 1) dimensions, the conformal block
|

tanzA T'(A)?
2tan%r 2A)

wa(o) - { M

¥ ()

WA (z)’s on the principal discrete series A € 2N together
with the principal continuous series A € % + iR, form an
orthogonal basis for the space of functions with the
following boundary conditions: (1) f(z) = f(%;) for z €
(1, c0) which in particular implies f'(2) = 0, and (2) f(z)

vanishes no slower than z'/? as z — 0. The inner product on

this space of functions is
24 L1 [fe\d
)= [Gearo - ([ +3[7) Fe@re
(4.17)

where the integral between (1,2) is replaced by an integral
between (1,c0) using the symmetry f(z) = f(;Z). The

inner products of ¥, are

Here for simplicity we have assumed all the intermediate
particles are massive scalars with masses m;. A similar formula
holds true for massless intermediate scalars with the measure
factor m_‘f,u(z/j) replaced by 2% The apparent mass dimension
mismatch comes from our normalization of the massless versus
massive conformal primary wave functions.

S\ d . - _\-/[d
(27) HZH( d+1/ d’/j”(’/j)/dde)J‘l(Athr”/j;thj)A<2—

A F (A A2A:7) + (A < 1= A),

) A1_A.
2Fi(3.2-2

i, AF§WJ'7XF>,

(4.15)

|

decomposition of the four-point function in (3.27)
reproduces the three-point function coefficient in (3.7).
In one dimension, the conformal partial wave ¥y, (z),

defined for z > 0, has been worked out in [56] (see
also [21])

0<z<l,
'(2;)2>, l<z<2, (4.16)
2 <z
[
(Pa, Par) = 4A2—25A’AI’ A A €2N
(W, W) = ”;f’l”f S(A-A), AAEe % + iRy,

(4.18)

Let us decompose the four-point function f,.,34(z) in
(3.27) on this basis. The imaginary part of f,.,34 can be
written as

) 3z
2Imf1p034(2) = 2N, sin (Z”Af/; - 7) F(z),

2
F(z)z{”_7
0, 0<z<l1.

1<z
(4.19)

Recall that the real cross ratio z in 12 <> 34 channel is
constrained by the flat space kinematics to be z > 1. This
function satisfies the two boundary conditions: F(z) =
F(Z%5) for z € (1,00) and lim,_(F'(z)/z'/* = 0. Thus it
can be expanded on the basis with the coefficients propor-
tional to the inner product
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(Fws) =5 [T G A=)

271
3

~ sin(zA)T (G2 T (A2

(4.20)

Since the inner products vanishes on the principal discrete
series h € 2N, F(z) can be expanded just on the principal
continuous series,

- )_/%Hoocm 28-1 2
97 )i 2mimtan(zA) sin(zA)T (B8)°T (AL

2lPA (Z)v
(421)

where we have used the symmetry A <> 1 —A of the
integrand to extend the integration from § + iR to 1 + iR.
The coefficient of the above decomposition can be written
in terms of the three-point function coefficient (3.7) as

& d
Imf12934(2) = ﬂm/ dVﬂ(V)C<A17A2;§ + iy)

d
X C<A1,A2,2— il/>Tg+ib(Z, Z), (422)

24,43 2
where C(A¢, Ay; A) = gmzzAl),/, F(FA(/AZ)) :

checked the conformal block decomposition (4.13)
in the (2+ 1)-dimensional scalar theory with cubic
coupling.

Hence we have

V. THE BULK POINT SINGULARITY
IN AdS/CFT

In this section we discuss the relation between
the massless conformal basis in R'¥*! and the bulk
point singularity in AdS,,,/CFT,,; in Lorentzian sig-
nature. In particular we argue that scalar exchange
amplitudes in the conformal basis discussed in
Sec. III D arise from approaching the bulk point singu-
larity at the same time scaling the intermediate
conformal dimension to infinite in the exchange Witten
diagram.

Let us begin with a general review on the bulk point
singularity in AdS/CFT and its relation to the flat space
limit [28,36-39,41,42]. Consider AdS,,, embedded in
R>4+1 as the locus Y'Y, = —R?, where R is the AdS
radius. Here we use Y/ with I = —1,0,1,...,d + 1 as the
flat coordinates of the embedding space R>¢*! and the
index [/ is raised and lowered by the flat metric
n; = diag(—1,—1,+1,...,+1). On the other hand, a point
on the boundary of AdS,,, is represented by a null ray
P! ~ \P" with PP, = 0.

Consider an n-point Witten diagram with boundary
operators located at P,’l, a=1,...,n. We will restrict

ourselves to the case'® n = d + 3 so that in this case the

vertex of the Landau diagram is only a point in AdS,,,.

The conditions for the bulk point singularity are that there
exists a bulk point Y, such that

(1) Y, is lightlike separated from all the boundary

points P,
nIJY(I)P‘KIl:O’ v a:1,2,...,n. (51)
(2) There exist n “frequencies” w, > 0 such that the
momentum is conserved at Y:

z": w,P, =0.
a=1

(5.2)

In general such a bulk point Y, does not exist for generic
boundary points P,. In other words, the bulk point
singularity only arises when we place the boundary points
at some specific configuration. For example, in the case of
four-point functions, the second condition (5.2) implies that
the 4 x 4 matrix P, - P, has a zero eigenvector w,, and
hence it has a vanishing determinant. This in turns implies
the cross ratios are real at the bulk point singularity
configuration, i.e., 7 = Z.

The bulk point singularity configuration is related to the
flat space scattering kinematics in R!4*1. Let us take our
reference bulk point to be at Y, = (R, 0, ...,0). Then the
first condition (5.1) constrains the boundary points P, to be

P = (0. q0). (5.3)
where ¢% is a null ray in R"*! with y =0,1,...,d + 1.
Here we take the time component of g to be positive, so
that the plus/minus sign above corresponds to a null vector
in the future/past light cone of R'¥*! in the embedding
space, respectively. In other words, the boundary points are
restricted to two constant time slices in AdS,,, at the bulk
point singularity configuration (see Fig. 2). The null vectors
qﬁ are later identified as the directions of null momenta in
the flat space scattering process. Now the second condition
(5.2) states that there exists n frequencies w, such that the
flat space momentum conservation Y, + w,qg% = 0 holds
true. In the case of the bulk point singularity for four-point
functions, the real cross ratio z =7 parametrizes the
scattering angle.

We now argue that perturbative scattering amplitudes in
the massless conformal basis in R'¥*! can be embedded
into the AdS, , Witten diagram with the same interaction
at the bulk point singularity. The scalar bulk-to-boundary
propagator in AdS,,, between a bulk point Y and a
boundary point P with conformal dimension A, is

"This in particular applies to the four-point function in AdS;,
which we will pay special attention to later on.
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Ga,(Y.P) =

= : (5.4)

(=2P-Y/R + ie)™’
where C, = T'(A)/(227T(A —451)). At the bulk point
singularity configuration, from (5.3), the null ray P! in
R>4+! is restricted to a null ray ¢4 in R14*!. Furthermore,
the contribution to the Witten diagram receives dominant
contributions from around Y, and we can approximate the
bulk point integral in Y by a flat space integral in X* €
R'“¥*! around Y,. In this limit, the AdS,,, bulk-to-
boundary propagator becomes proportional to the massless
conformal primary wave function (ijE¢ (2.4) in RL+1:

Gy (Y, P —
A"’( ’ ) bulk point singularity

oi (X.q).  (55)

Whether the corresponding conformal primary wave func-
tion is incoming or outgoing is determined by which of the
past and future time slices the boundary point P/, is located
at [i.e., the sign in (5.3)].

|

Following the same argument in [36,39], let us see how
this works explicitly for the tree-level scalar exchange
Witten diagram in AdS;/CFT,. We will focus only on the
s-channel diagram, while the other two follow identically.

The scalar bulk-to-bulk propagator with intermediate
conformal dimension A is (see, for example, [57])

My(t). 1) = = (5.6)
AT TR — 2 '
where o is the geodesic distance between Y, Y5:

1 1-&8+i

O'(Yl,Yz)—log< + : 4 +le>’
R2
E=— R (5.7)
1742

The s-channel tree-level scalar Witten diagram with inter-
nal dimension A and identical external operator dimension
A¢ is

Li=¢ /AdS dy, [xds dY,Ga, (Y. P1)Gy, (Y, Po)TIA (Y1, Y2)Gy (Y, P3)Ga, (Y. Py)
3 3

—inA,)2
= 2( S ) / dY‘/ dY2< / dw, wa"” 1> _IY].(WIPI+w2p2)_iyz.(%Pﬁwm‘)_ezﬂw”HA(Yl,Yz).
281 2RV ( (Ay) AdS; AdS;

Let us now approach the bulk point singularity by tuning
the boundary points to be close to the configuration (5.1)
and (5.2). We will choose P, to be (0, ¢} ,) and while

P54 tobe (8, g5 4). If we also choose ¢4 to be such that (5.2)

is obeyed, then we reach the bulk point singularity
configuration as 6 — 0. In this limit we expect the con-
tribution of the integral in (5.8) to be dominated by Y, Y,

(5.8)

|

close to Yy = (R, 0,0,0), which can then be approximated
by integrals over R!“. To be more explicit, near Y, we can
parametrize a bulk point ¥ as Y/ ~ (R + st" . X*), where
every component of X* is much less than R. Equivalently,
we can take R — oo and allow X* € R!? to be integrated to
infinity in (5.8).

In this limit, the Witten diagram becomes

e~ inhy/2 4 s 4 % A1
~ ¢ 3 3
14 (zAdHrl Rl/2F A¢ > <¢]1;11:/) dwawa > /RI_Z d Xl /%1,2 d X2

% elxl'(wl‘Il+0’242)—lxz'(0’3113+w4‘I4)+1R(“’3+w4)5—ezawaHA(YI .Y5).

If we keep the intermediate conformal dimension A finite
as taking R — oo, then the bulk-to-bulk propagator
I, (Y,,Y,) is approximated by the massless Feynman

scalar propagator in R'2, ie., Iy~L——L _ The
propag A= (X1=Xp)*+ie

w, integrals then give rise to a singularity 1/8**75 as
0 — 0. This is indeed the singularity computed in [36]
using the explicit expression for I, in terms of the D-
function for special values of A. In the strict 6 = 0O case, the
above integral is identical to the massless scalar exchange
amplitude in R!? written in the massless conformal basis.
As discussed in Sec. I D, the change of basis integral

4z

(5.9)

I
(3.17) to the conformal basis suffers from an UV diver-
gence (for sufficiently positive Ay). Now we have an
alternative understanding of this singularity: it comes from
the bulk point singularity of the same interaction in AdS;.
If instead we scale the intermediate conformal dimension
A to infinite at the same rate as sending R — oo, while
holding the ratio m = A/R fixed,"' then the AdS; bulk-to-
bulk propagator is approximated by the massive scalar
Feynman propagator in R'2:

"This flat space limit was considered, for example, in [28,58].
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1 1
A (Y, Y,) =~— —m
A( | 2) 4 (Xl — X2)2 n iee

(X1=X;)>+ie

(5.10)

The second line of (5.9) is nothing but the Fourier trans-
form from position space to momentum space for the flat
space amplitude s_mlz — 83 (3°,k,) with null momenta
k, = £w,q,. Thus the scalar exchange Witten diagram
(5.9) in this double scaling limit exactly reproduces the
same Feynman diagram in R!'? written in the massless
conformal basis, which we computed in Sec. Il D:

4
. N\ s® H H_ o H
I4°<<H/ dwawsl/, 1) (a)lql"‘a)ﬂ]zz 0-)3513 a’4‘14>’
1o s—m-—+1e

s=—(w19, +®295)*. (5.11)
The infinite intermediate conformal dimension A limit
regulates the w, integrals near the would-be bulk point
singularity, while it damps the contribution from the AdS
integrals away from the point Y.

From this perspective, the (2 + 1)-dimensional flat space
amplitudes written in the massless conformal basis f(z)
should perhaps be interpreted as rwo-dimensional
Lorentzian conformal correlators, restricted to the bulk
point singularity configuration z = Z. In the Appendix, we
present a 2d Euclidean correlator whose Lorentzian
versions, when restricted to z=7Z, are exactly the (2+1)-
dimensional tree-level exchange amplitudes in the con-
formal basis f15.34(2), f13624(2), f14023(2). We leave the
physical origin of this 2d Euclidean correlator for future
investigation.
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APPENDIX: TWO-DIMENSIONAL CROSSING
SYMMETRIC FOUR-POINT FUNCTIONS WITH
POSITIVE BLOCK DECOMPOSITIONS

In this Appendix we present a 2d Euclidean correlator
£?4(z,z) whose Lorentzian versions, obtained via different

analytic continuations in z, Z, are the (2 4+ 1)-dimensional
amplitudes from three crossing channels f5.34(2),
F13024(2)s f1423(2). We checked to high orders that this
2d correlator admits a positive SL(2,C) block decom-
position. For a special value of the external conformal
dimension A, f?4(z,z) reduces to the four-point function
in the 2d free boson theory.

1. A two-dimensional extension

We now present an observation that in the example of the
tree-level exchange diagram, the correlators in the three
crossing channels f 5,34, 130245 f 144503 are restrictions of
different analytic continuations of a single 2d Euclidean
correlator f24(z, 7).

Let the two cross ratios z, Z of a 2d four-point function be
defined as

2122 _ Iz
- 12234 7 — 12834 (A1)

213224 213224

In the Euclidean signature, z, Z are complex conjugated to
each other, i.e., 7 = z*. On the other hand, in the Lorentzian
signature, z, 7 are two independent real variables. Starting
from an Euclidean 2d four-point function, its Lorentzian
version can be obtained by analytic continuing the cross
ratios z, z independently. The precise analytic continuation
depends on the time ordering between the four operators in
the Lorentzian spacetime.

If we place operators 1 and 2 in the past while 3 and 4 in
the future, this corresponds to the following analytic
continuation in z, Z (see, for example, [39,59] for explan-
ations of this analytic continuation):

2ni

125 34: (z—1) = e¥i(z—1), (A2)

NI | —
NI | —

If instead we want to have 1 and 3 in the past while 2 and 4
in the future, we should analytically continue the cross
ratios as

13 = 24: 7 — &7z, (z—1)—-e(z—-1). (A3)

In addition, due to the overall factor ;> One needs

1
\212\2% [234]

to further multiply the four-point function f(z,Z) by
e~"%_This is because |z1,|* crosses the light cone in
the analytic continuation. Finally, if we place 1 and 4 in the
past, 2 and 3 in the future, we analytically continue the
cross ratios as

7 — eZﬂi Z.

1 1
14 - 23: —— ¥~ (A4)
Z

Z
In addition, we need to multiply the four-point function by
a phase e=2%4,
Now consider the following two-dimensional Euclidean
four-point function
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FIG. 2. The bulk point singularity in AdS;. At the bulk
point singularity configuration for a four-point function in
AdS;/CFT,, the boundary points are restricted to two constant
time slices in AdS3, which are the future and past celestial circles
(shown in blue) in the flat space limit to R!-2. The contribution to
the Witten diagram is dominated by the integral around the bulk
point Y, which can then be approximated by the flat space
scattering process in the massless conformal basis.

1

.A(Z, Z) = szd(zv Z), (AS)
de(Z,Z) =N, ein(28,=3) (z—f)%l
’ [(1-2)(1=2)
RVVES - B
« [1 () ((1 - _Z)> }
(A6)

This 2d Euclidean correlator satisfies the crossing
equation (A9) and admits a positive SL(2,C) block
decomposition as discussed in the next subsection.
If we first analytically continue f?¥(z,Z) to the
Lorentzian regime as (A2)-(A4), and then restrict to
z =17, we exactly reproduce the (2 + 1)-dimensional
tree-level exchange amplitudes fir.34, f130045 14023
(3.27), (3.29), (3.30) in three different crossing channels,
respectively:

fraon(z) = e727% f24(z, Z)|§—>ezﬂf§,z_>e“"z =2 (A7)

where the phase e 2%% comes from the prefactor

W in our definition of f(z,z) in relation

to the full four-point function. This implies that the
one-dimensional four-point functions are restrictions
of f(z,z) to the Lorentzian configurations similar
to Fig. 2.

2. Positive conformal block decompositions

In fact, the Euclidean 2d four-point function f29(z,7%)
(A5) belongs to a larger family of solutions to the crossing
equation. In this section we provide numerical evidence
that this family of crossing solutions has positive conformal
block decompositions.

Let us consider a generalization of the 2d scalar four-
point function (AS5) considered above:

(z2)%7%
((1-2)(1-2))
X [(22)7™87F + 1+ (1= 2)(1 —2))~2 7],
(A8)

fa,(2.2) =

This four-point function comes with a two-parameter
family, labeled by the external operator dimension A,
(which will be taken to be positive in this Appendix) and a
real parameter b. The four-point function f, b is crossing

symmetric for all A(/,, b:

2z

fAd,,b(Z,Z) = (m)A(ﬁfAdﬁb(l —-z,1-3)

= (2% fa,5(1/2.1/3). (A9)

For general A, and b, the operator spectrum in the
Operator product expansion (OPE) channel z, 7 — 0 can be
separated into towers of “single-trace” and the “double-
trace” operators:

Single-trace: A =2b+ ¢ + 4m, m e Zs,
Double-trace: A =2Ay, — b + ¢ + 2m, m € Zs,
(A10)

where £ € 27 is the spin. We distinguish a double-trace
operator from a single-trace one by the dependence of their
conformal dimensions on A. The conformal block expan-
sion of the four-point function can be separated into single-
and double-trace operators:

o0 o0
— 4 -
fap(z2) =D > CorimeGSpspram(27)
=0, m=0

even

o0 o0 57 ~
+ Z Z C?JerngA)(/,—bJrf‘FZm (z.2), (All)

7=0. =0

even
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where the SL(2,C) block with identical external scalar
primaries of dimension A, and intermediate conformal
dimension A and spin £ > 0 is [25,26,60,61]

@), 5y _ 1 La+e)4(a-¢)
G ) =——— |22 2
A (2.2) 35,0 [z Z
A+7?¢ A+7C
Fi|——.,——:A+7;
X5 1< ) ) + Z>
A-7¢ A=Y
Fi|—,—A-7;%
2 1( 2 0 2 Z)
+(z < Z)] (A12)
The first few coefficients are
b* b?
pr— 1’ = N P EE——— N
€00 AOT a1y 202 PPT82b+1)
b*(b +2)?
C =
27 1024(2b 4+ 1)(2b + 3)(2b +5)°
b*(b+2)*
g0 = ,
%07 16384(2b +3)2(2b 4 5)?
b*(b +2)?

_ Al3
“44 T 128(2b + 3)(2b + 5) (AL3)

1
cd =2, cg’ozg(%—zA,ﬁ)z,

Cﬁf,o:
(953 =107 (38 +1)+4bA(TA 4 +4)—8A% (Ay+1))?
512(b—2A¢,—1)2 ’

3=
96> —10b*(3A4+1)+4bA4(TA;+4)—8A%(Ay+1)
16(b—24A,-1) ’

(Al14)

We numerically checked that these conformal block coef-
ficients are non-negative if

204> b>0. (A15)

Note that this constraint also arises from requiring the
leading single-trace and double-trace operators (A10) to
have positive conformal dimensions.

The intermediate spectrum contains the identity
operator only if b =0 or b = 2A,, which are the lower
and upper bounds of b (A15). In fact, at these values of b
the four-point function f M(Z,Z) reduces to known

examples:

b b=2A,

080 5

4,
Ca
&

b=0

Ay
Generalized Free Field

FIG. 3. The two-parameter space for the solution
fa,»(2,Z) to the 2d crossing equation. In the shaded region

between 0 < b < 2A, we find numerical evidence that the four-
point function fy, »(z,Z) has a non-negative expansion on the
SL(2,C) blocks. At the two boundaries b = 0 and b = 24,
fa,»(2,Z) reduces to the four-point functions in the 2d gener-

alized free field theory and that in the free boson theory,
respectively.

(i) b=0. In this case fa,,—0(z,Z) reduces to the
four-point function in the 2d generalized free field
theory:

f (2.2) =1+ —)A/+< &4 >A¢
=0\%,2) = Z)7r 1 N/1 =v .
Bob=0 (1-2)(1-2)
(A16)
(i) b =2A,. In this case f pb=2, reduces to the four-

point function of scalar primaries cos(/A,X) in the
2d free boson theoryu:

_ 1
fA¢,b:2A¢(Zv Z) = 2((1=2)(1-z2))%

x [(z2)*% +1

+(1=2)(1=2))*].  (A17)

Here we have normalized the four-point function by
a factor of 1/2 so that the identity channel comes
with unit OPE coefficient. The radius of the free
boson does not affect the four-point function as long

We thank Ying-Hsuan Lin for discussions about this
point.
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as the operator cos(/A,X) exists in the spectrum of
primaries.

To conclude, f b provides an interpolation between

the four-point function in the 2d generalized free

field theory and that in the free boson theory (see Fig. 3).
Even though f 5 b has no identity channel away from the two
limiting cases, we find numerical evidence that it admits a
non-negative SL(2, C) block decomposition.
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