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Abstract

In applying large-momentum effective theory, renormalization of the Euclidean correlators in lattice reg-
ularization is a challenge due to linear divergences in the self-energy of Wilson lines. Based on lattice QCD 
matrix elements of the quasi-PDF operator at lattice spacing a = 0.03 fm ∼ 0.12 fm with clover and over-
lap valence quarks on staggered and domain-wall sea, we design a strategy to disentangle the divergent 
renormalization factors from finite physics matrix elements, which can be matched to a continuum scheme 
at short distance such as dimensional regularization and minimal subtraction. Our results indicate that the 
renormalization factors are universal in the hadron state matrix elements. Moreover, the physical matrix 
elements appear independent of the valence fermion formulations. These conclusions remain valid even 
with HYP smearing which reduces the statistical errors albeit reducing control of the renormalization pro-
cedure. Moreover, we find a large non-perturbative effect in the popular RI/MOM and ratio renormalization 
scheme, suggesting favor of the hybrid renormalization procedure proposed recently.
© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Parton distribution functions (PDFs) provide an effective description of quarks and gluons 
inside a light-traveling nucleon [1,2]. They play an essential role in calculating hardronic cross 
sections involving the nucleons [3], and their uncertainties from phenomenological extractions 
have been one of the major sources of errors in the theoretical predictions at Large Hadron 
Collider (LHC) and other hadron facilities. Thus, a precise knowledge of PDFs is very important 
both for the accurate tests of the Standard Model (SM) and for the search of new physics beyond 
the SM. On the other hand, the densities of partons in the nucleon provide direct information on 
its intrinsic properties such as the origin of the nucleon spin and mass, as well as the role of sea 
quarks for various physical quantities [4].

However, directly calculating parton physics from first principles of quantum chromodynam-
ics (QCD) has been a difficult task. A review on various efforts of doing so can be found in 
Ref. [5]. The proposal of the large-momentum effective field theory (LaMET) has been an impor-
tant step toward meeting the challenge [6–8]. So far, LaMET has been widely used in calculating 
quark isovector distribution functions [9–24], generalized parton distributions [25,26], distribu-
tion amplitudes (DAs) [27–29], and transverse-momentum-dependent distributions [30–32].

LaMET suggests to calculate time-independent physical distributions in a finite momentum 
nucleon, which are Euclidean observables. Such finite-momentum quantities can then be matched 
to light-front (LF) parton properties using effective field theory techniques [33]. For example, 
for the collinear quark distributions, it has been suggested to first compute a Euclidean space 
correlation (or quasi-light-front (quasi-LF) correlation) on the lattice,

h̃(z,Pz) = 〈P |Oγt (z)|P 〉, (1)

where |P 〉 is the nucleon state with a large momentum P and the non-local operator is

O�(z) = ψ̄(0)�U(0, z)ψ(z), (2)

where ψ , ψ̄ denote the bare quark field, � is a Dirac structure, and U(0, z) =
exp(−ig

∫ z

0 dz′Az(z
′)) is the Wilson link along the direction z, where Aμ is the gluon gauge 

potential. After renormalizing h̃ properly and matching it to some continuum scheme such as 
2

http://creativecommons.org/licenses/by/4.0/


Lattice Parton Collaboration (LPC) Nuclear Physics B 969 (2021) 115443
dimensional regularization and (modified) minimal subtraction (MS), one obtains the so-called 
quark quasi-PDF via a Fourier transform, from which the quark PDF can be extracted through 
perturbative QCD matching.

Renormalizing the quasi-LF correlation h̃ under lattice regularization is a non-trivial task. To 
see this, let us take, as a simple example, the matrix element of O�(z) in an off-shell quark state 
|q〉 with large Euclidean momentum p2 (actually an off-shell truncated Green’s function). It has 
the following form at 1-loop level [34],

〈O�(z)〉 = �
(

1 + γg2log(z2/a2) − m−1
z

a
+ . . .. . .

)
, (3)

where g is the bare gauge coupling and a is the lattice spacing. Unlike the coefficient of the loga-
rithm γ , the coefficient of the linear divergence m−1 can be sensitive to the details of the fermion 
and gauge actions on the lattice as those actions themselves define the lattice regularization. The 
linear-divergence term is proportional to the Wilson link length z/a in lattice units, and it can be 
exponentially large at large z or small a, when higher-order corrections are included. Thus, the 
linear divergence effect has to be removed before the lattice calculated quasi-PDF can be extrap-
olated to the continuum limit a → 0 and eventually matched to the continuum-scheme PDF.

Theoretical studies so far have shown that the quasi-PDF operator is multiplicatively renor-
malizable [35–38] in a continuum theory. On the lattice, due to non-commutativity of the limit 
z → 0 and a → 0, it has been suggested recently [39] to use a hybrid scheme to renormalize the 
large and short distance correlations separately, which has the advantage of avoiding certain dis-
cretization effects and undesired infrared effects introduced in the renormalization stage. At small 
z where a short distance expansion is valid, one can use various ratio schemes, such as dividing 
by an off-shell quark matrix element of the quasi-PDF operator in the regularization-independent 
momentum subtraction (RI/MOM) scheme [34,38,40] or by a hadron matrix element in the rest 
frame h̃(z, Pz = 0) [41,42]. At large distance, one can directly remove the Wilson line self-energy 
effect by subtracting the power divergence [36–38,43]. Apart from using the RI/MOM factor or 
the rest-frame hadron matrix element, other methods have been suggested to extract the linear 
divergence, including Wilson loop [27,43], vacuum expectation values 〈O�(z)〉 [44], and gauge 
fixed Wilson link [8], and so on [39].

However, numerically subtracting the linear divergence is an extremely delicate exercise. 
First, linear divergence could be sensitive to computational systematics in lattice calculations. 
In data, there may be slight differences between two matrix elements with the same linear di-
vergence. These differences may lead to a failure of the suggested methods, especially for small 
lattice spacings. Second, some of the renormalization factors have other problems. For example, 
the leading contribution to the vacuum expectation value of 〈O�(z)〉 at short distance vanishes 
and therefore, it is numerically very challenging to obtain the relevant linear divergence. Finally, 
as we shall see, linearly-divergent chiral symmetry breaking effects for Wilson fermions may 
render the linear divergence non-universal [45].

To understand better the effects of the linear divergence in LaMET applications, we study 
systematically the linear divergences of matrix elements for sets of lattice data, generated with 
different lattice actions. We propose a self-renormalization method to eliminate all divergences 
and discretization errors when data for several different lattice spacings are available. The idea of 
this method is to extract the renormalization factor and the residual contribution directly from the 
matrix element we want to renormalize, without using an additional matrix element for renormal-
ization. We then match the empirically renormalized matrix elements to those in the continuum. 
Our method is largely model-independent, and each term of our fitting functions is motivated by 
physics considerations. Tests show that our method works well for all data sets considered, which 
3
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include matrix elements calculated with the lattice spacings from 0.03 fm to 0.12 fm using the 
valence clover and overlap actions on the MILC [46] Nf = 2 + 1 + 1 and RBC [47] Nf = 2 + 1
configurations. We also find that the method works for matrix elements after applying smearing 
which is needed to improve the statistical precision.

The rest of the paper is organized as follows. We present the theory of perturbative renormal-
ization in Sec. 2. The definition of the matrix elements we calculate and the simulation setup 
can be found in Sec. 3. In Sec. 4 the linear divergence is analyzed for the different ensembles. 
Sec. 5 presents our strategy to self-renormalize a matrix element and collects the results for the 
Oγt (z) matrix elements in different states and calculated with different valence fermion actions. 
Sec. 6 discusses other fitting options, which mainly differ in the treatment of higher-order terms. 
In Sec. 4, 5, and 6, we only analyze matrix elements without HYP smearing. In Sec. 7, we extend 
our method to HYP smeared cases. In Sec. 8, we test the linear divergence in some vacuum state 
matrix elements, including Wilson loop, quasi-PDF operator, and gauge fixed Wilson link, for 
the HYP smeared cases. In Sec. 9, we summarize the results and discuss issues to be addressed 
in further studies.

2. Renormalization in perturbation theory

According to the standard renormalization in local quantum field theories [48], the renor-
malization of the matrix elements of an operator does not depend on the external states but is 
only related to the short-distance property of the operator itself. Therefore, one can study the 
renormalization property of the operator in perturbative Green’s functions, or off-shell quark and 
gluon matrix elements. For LaMET applications to PDFs, we are interested in the non-local op-
erator O�(z) = ψ̄(0)�U(0, z)ψ(z) in Eq. (2). There are two types of divergences: The linear 
divergence associated with the Wilson link (its self-energy) and the logarithmic divergences as-
sociated with the renormalization of the vertices involving the Wilson line and light quark. The 
renormalization is multiplicative, and only the linear divergence has a (linear) z dependence. 
Therefore the renormalized operator is [36–39]

O�(z)R = Z−1
O eδm̄zO�(z), (4)

where eδm̄z contains the linear divergence and ZO the logarithmic ones. δm̄ is not uniquely 
defined apart from the linear divergence, introducing a subtraction scheme dependence which 
affects the z-dependence of the renormalized operator [39].

The linearly-divergent mass renormalization can be calculated in perturbation theory. At one-
loop order, the result is independent of lattice action [43],

δm̄ = 2π

3a
(αs +O(α2

s ) + ...) . (5)

The energy scale of αs can be chosen as 1/a to match the lattice results,

αs(1/a,�QCD) = 2π

b0 ln[1/(a�QCD)] , (6)

where b0 = 11 − 2
3nf (we will take nf = 3) is the QCD β function at one-loop order with nf

species of fermions. �QCD is the non-perturbative QCD scale. Including higher-orders in the β
function will lead to a more complicated expression. Different choices of energy scale amount 
to including high-order corrections. �QCD and higher-order αs terms in δm̄ also depend on the 
lattice action.
4
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The perturbation theory does not converge due to infrared renormalons, see from exam-
ple [49–52]. The existence of the renormalons signals a non-perturbative term in δm̄ which is 
independent of a,

δm̄ = m−1(a)/a − m0 , (7)

where the minus sign is just a convention. The uncertainty in summing the perturbation series to 
get m−1(a) is compensated by the same uncertainty in the non-perturbative m0, leaving the total 
independent of the renormalon uncertainty.

Additional uncertainty in m0 comes from the subtraction scheme, or equivalently from the 
matching to the continuum scheme. To reduce the subtraction scheme dependence, we require 
the renormalized lattice correlation function to be consistent with the MS result from continuum 
perturbation theory at short-distances z. To be more concrete, we determine m0 by matching the 
lattice result to the MS one within a window a � z < zS , where zS < 1/μ is the point beyond 
which perturbation theory ceases to work and μ is a perturbative scale. The condition a � z

ensures that the discretization effect on lattice results is small. For this special choice m0c, the 
LaMET expansion does not have a linear term in 1/P z [39].

At one-loop order and in dimensional regularization, the renormalization factor of the loga-
rithmic divergence is [8,53],

ZO = 1 + 3CF αs

2π

1

4 − d
, (8)

where CF = 4/3 is the Casimir operator for the fundamental representation of SU(3) and d is 
the space-time dimension. One can resum the logarithmic divergence through solving the renor-
malization group equation,

dZO(ε,μ)

d ln(μ)
= γZO(ε,μ), (9)

where ε = (4 − d)/2 and γ = − 3CF

2π
αs(μ, �QCD) is the leading anomalous dimension, which is 

independent of the regularization method. The form of the leading-order solution of Eq. (9) is 
independent of regularization scheme and, on the lattice, is

ZO(1/a,μ) =
(

ln[1/(a�QCD)]
ln[μ/�QCD]

) 3CF
b0

, (10)

where the bare ultraviolet (UV) cut-off is 1/a, and the renormalization scale is μ.
If one considers the contributions from sub-leading logarithms to the anomalous dimension γ

when solving the renormalization group equation Eq. (9), we obtain [54]

ZO(1/a,μ) =
(

ln[1/(a�QCD)]
ln[μ/�QCD]

) 3CF
b0

(
1 + d

ln[a�QCD]
)

, (11)

where �QCD and the constant d depend on the specific lattice action.

3. Lattice matrix elements and simulation setup

The standard non-perturbative renormalization of lattice matrix elements is through calculat-
ing some auxiliary matrix elements of the operator (which can also be computed in perturbation 
theory) and using them as the renormalization factor to approach the continuum limit. In this 
5
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paper, we focus on the study of the auxiliary matrix elements potentially useful for the renor-
malization of quasi-LF correlations. We mainly consider the matrix elements of the quasi-PDF 
operators in the following cases: 1) in a large Euclidean momentum quark state, 2) in the physi-
cal zero-momentum state of a hadron such as the pion or nucleon. We will also study the matrix 
element in the vacuum [44] (case 3). Moreover, since the z-dependent renormalization is mainly 
associated with the Wilson link, we shall also consider the matrix elements of Wilson loop as 
well as the Wilson link in a fixed gauge (case 4).

We calculate the pion and nucleon matrix elements h̃0
H(z) = 〈H |Oγt (z)|H 〉 	P=0 in the rest 

frame evaluating the following three-point function,

RH (t2, t, z) ≡ 〈OH (t2)
∑

	x Oγt (z; (	x, t))O
†
H (0)〉

〈OH (t2)O
†
H (0)〉

= 〈H |Oγt (z)|H 〉
+O(e−δmt ) +O(e−δm(t2−t)) +O(e−δmt2), (12)

where Oγt (z, (	x, t)) = ψ̄(	x, t)γtU((	x, t), (	x + n̂zz, t))ψ(	x + n̂zz, t), n̂z is the unitary vector 
along the z direction, and OH is the interpolation field of a hadron such as a pion and a nucleon. 
t2 corresponds to the source-sink separation.

To obtain h̃0
H (z) accurately, we need both t and t2 − t to be large enough to suppress excited-

state contaminations, or fit the three point function with a proper parametrization on the excited-
state contaminations. We can use the first strategy for the pion case since the signal-to-noise ratio 
will not decay for the pion in the rest frame; while the second strategy is essential for the other 
cases where the statistical uncertainty increases exponentially with t and t2. Due to (anti)periodic 
boundary conditions we can use at most t2 = T/2 which is larger than 2 fm on most modern 
lattice ensembles. Since the mass gap δm ∼ 1 GeV between the ground and first exited state of 
pion 〈h̃0

π(z)〉 can be extracted with sufficient accuracy. At small perturbative z, 〈h̃0
π(z)〉−1 acts 

as a renormalization factor up to certain O(�2
QCDz2) power corrections [41].

A common non-perturbative renormalization method for lattice QCD matrix elements with 
local operators is the RI/MOM scheme [55] and its modified versions [56]. One can calculate 
the bare matrix element with given operators in an off-shell quark state, for both the lattice 
and dimensional regularizations, and renormalize their difference in the MS scheme to get the 
renormalization factor for the bare quantities. For the quasi-PDF, such a renormalization constant 
(the RI/MOM renormalization factor) is defined through the Oγt (z) matrix element in the off-
shell quark state with given momentum p2 [34,38,40,57]:

ZRI (z,μR) = 1

4Nc

Tr[γt 〈q|Oγ t (z)|q〉]|p2=−μ2
R,pz=pt=0, (13)

where Nc = 3 is the number of colors, μR is the RI/MOM renormalization scale. We will take 
μR = 3 GeV since the RI/MOM factor has little dependence on the renormalization scale in a 
certain range [45]. We work with Landau gauge fixed configurations, and choose pz = pt = 0 to 
eliminate the difference between the projections [16].

Factor ZRI can be calculated non-perturbatively for any lattice regularization, or equivalently 
for any quark and gluon action defined on the lattice. However, the current lattice QCD calcu-
lation is limited to the Landau gauge. The perturbative matching with off-shell states in Landau 
gauge can be complicated beyond one-loop level [58].
6
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Table 1
Setup of the MILC ensembles, including the bare 
coupling constant g, lattice size L3 × T , and lat-
tice spacing a.

Symbol 6/g2 L T a (fm)

a12m310 3.60 24 64 0.1213(9)
a09m310 3.78 32 96 0.0882(8)
a06m310 4.03 48 144 0.0574(5)
a04m310 4.20 64 192 0.0425(4)
a03m310 4.37 96 288 0.0318(3)

Table 2
Setup of the RBC ensembles, including the bare 
coupling constant g, lattice size L3 × T , and lat-
tice spacing a.

Symbol 6/g2 L T a (fm)

DW11 2.13 24 64 0.1105(3)
DW08 2.25 32 64 0.0828(3)
DW06 2.37 32 64 0.0627(3)

The z-dependent part of renormalization comes from the Wilson line, therefore one may ex-
tract the linear divergences from matrix elements of pure Wilson lines. First one can consider a 
Wilson loop [27,28,38,43,59],

U(r, t) = 〈U(	r, t; 	r,0)U(	r,0; 	0,0)U(	0,0; 	0, t)U(	0, t; 	r, t)〉, (14)

Ref. [43] proposed this scheme to renormalize the pion DA, and the linear divergence coefficient 
was extracted precisely based on the calculation with several lattice spacings in the following 
Kaon DA study [27]. But most of subsequent lattice QCD calculations have switched to the 
RI/MOM scheme or used a hadronic matrix element.

One can also consider the matrix element of a single Wilson Link 〈U(0, z)〉 in a fixed gauge 
such as the Landau gauge. As the simplest choice without any external state, 〈U(0, z)〉 can pro-
vide a reference to identify whether the linearly divergent behavior is sensitive to the existence of 
the external state, as suggested in the multiplicative renormalizability studies of the quasi-PDF 
operator [35–38].

Our lattice calculations are performed using the Chroma software suite [60] and QUDA [61–
63] in the HIP programming model [64]. We use 2+1+1 flavors (degenerate up and down, strange, 
and charm degrees of freedom) of highly improved staggered quarks (HISQ) [65] ensembles 
generated by the MILC Collaboration [46] at five lattice spacings (see Table 1), and 2+1 flavor 
domain wall (DW) quarks and Iwasaki gauge ensembles from the RBC/UKQCD collabora-
tion [47] at three lattice spacings (see Table 2). The pion mass for all ensembles are tuned to 
be roughly 310 MeV based on the pion mass of the light sea quark mass on the corresponding 
ensemble. The lattice spacings for the MILC ensembles are determined using Wilson flow based 
on the parameters determined by Ref. [66].

We use the matrix elements without hyper-cubic (HYP) smearing in order to test the pertur-
bative renormalization analysis (Sec. 4, 5, and 6). However, since in practical calculations the 
results without smearing can be rather noisy, it is standard to use some type of smearing in lattice 
simulations. It is unclear to us how strongly the smearing will interfere with renormalization. 
7
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Fig. 1. The bare ratio Rπ (t2 = T/2, t, z) for the pion (upper panel) and RN (t2 � 0.72fm, t, z) for the nucleon (lower 
panel) with z ∼ 0.36 fm. For the pion case, we can see that the data in the region between t − t2/2 ∈ [−1, 1] fm are 
consistent with each other up to statistical fluctuations. For the nucleon case the ratio is also flat around t ∼ t2/2.

Therefore, we regard our method as a purely phenomenological approach for the time being to 
analyze data with one step HYP smearing [67] in Sec. 7 and 8, hoping that the gain in statistical 
precision outweighs the additional systematic uncertainty from moderate smearing.

We use two kinds of fermion actions for the valence quarks: clover and overlap fermions. 
Clover fermions break chiral symmetry and the action is defined by

Sclv
q =

∑
x

ψ̄(x)

[
1 − γμ

2a
Uμ(x, x + n̂μ)ψ(x + n̂μ)

+ 1 + γμ

2a
Uμ(x, x − n̂μ)ψ(x − n̂μ)

−
(

4

a
+ cswσμνFμν(x)a + m0

q

)
ψ(x)

]
, (15)

where n̂μ is the unit vector along the μ direction, the clover coefficient csw is the tadpole im-
proved tree level value, and m0

qa is the bare quark mass which is determined by requiring the 
pion mass to be roughly 310 MeV. Parameters csw and m0

qa should approach 1 and 0 respectively 
in the continuum, while the lattice spacing dependence is weaker than the O(a) discretization 
effect in the present range of a, and closer to that of the gauge coupling g2 as predicted by lattice 
perturbative theory.
8
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Fig. 2. The normalized bare nucleon matrix element in the rest frame, h̃0
N

(z)/h̃0
N

(0) as the function of the Wilson link 
length z. The matrix element has a fast exponential decay at large z and the decay process accelerates with smaller lattice 
spacings.

The overlap action preserves chiral symmetry but the simulation is rather expensive. We use 
it to test the dependence of renormalization on the fermion action. The overlap fermion action is 
defined by [68,69]

Sov
q =

∑
x,y

ψ̄(x)Dov(x, y)ψ(y), (16)

Dov = ρ
(

1 + Dw(−ρ)√
D

†
w(−ρ)Dw(−ρ)

)
,

where

Dw(mw
q ;x, y) = 1−γμ

2a
U(x, x + n̂μ)δx+n̂μ,y

+ 1+γμ

2a
U(x, x − n̂μ)δx−n̂μ,y − ( 4

a
+ mw

q )δx,y, (17)

and −ρ should be smaller than the bare quark mass for which vanishes the pion mass to make 
Dov to be the same as the standard Dirac operator in the continuum limit. We choose −ρ = 1.5.

Although different active and sea fermion formulations will in general introduce non-unitarity, 
the effect shall vanish in the continuum limit. However, at finite a, the difference will generate 
systematic uncertainties which can affect the final results.

We start with nucleon and pion matrix elements for the MILC ensembles and clover action. 
For the pion matrix element, we average the Rπ(t2, t, z) data with t2 = T/2 and t ∈ [T/8, 3T/8]
to get a precise estimate of the ground state matrix element, and it should be also precise since T
is between 7.7 and 9.1 fm in the ensembles we used, as shown in the upper panel of Fig. 1. Note 
that Rπ(T /2, T/4, z) equals to 〈π |Oγt (z)|π〉/2 in such a case. The additional factor 1/2 corrects 
for the fact that there are forward and backward propagating states for (anti)periodic boundary 
conditions. The nucleon case is known to be much noisier especially at large t2. Thus, we just 
consider t2 = 2t � 0.72 fm in all cases, and plot RN(t2, t, z) in the lower panel of Fig. 1.

The normalized bare h̃0
N(z)/h̃0

N(0) where h̃0
N(z) is approximated by RN(t2, t, z) with t2 =

2t � 0.72 fm is plotted in Fig. 2, with a normalization factor 1/h̃0
N(0) using jackknife resampling 

to make it to be exactly one at z = 0 at all lattice spacings. As in the figure, the linear divergence 
9
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makes h̃0
N(z)/h̃0

N(0) decay exponentially with both z and a, and thus one cannot obtain any 
meaningful continuum limit when a → 0. A renormalization is necessary to recover a good 
continuum limit.

4. Simple test of linear divergence

To study the renormalization properties of the quasi-PDF operator, we need to calculate matrix 
elements at several different lattice spacings. To ensure the data to be useful for a refined high-
precision analysis, we start by testing whether they approximately show the linear divergence 
predicted by perturbation theory. In particular, one needs to show that the z-dependence of the 
linearly divergent term is linear.

To achieve this, we first extract the factor e−δm̄z from the bare matrix element to test the 1/a

dependence in δm̄ in Eq. (5). Based on Eqs. (4), (5), and (6), if we take the natural log on a bare 
matrix element M, we have,

lnM(z, a) = e(z)

a ln[a�QCD] + g(z), (18)

where the first term is linearly divergent and g(z) is the residual. We have ignored the logarithmic 
divergence and discretization error here because these terms are much smaller and thus have little 
influence on this simple test of the linear divergence.

We use Eq. (18) to fit the bare matrix elements as a function of a. We treat e(z) and g(z)

as unknown functions of z so that our fitting is performed at each value of z at which they are 
treated as free parameters. We need to do linear interpolation on the data lnM(z, a) with respect 
to z. Here are the steps we perform in detail:

1. We do the linear interpolation with neighborhood two data points to obtain the central value 
and uncertainty at z = 0.06 × n fm (n = 3, 4, 5, ..., 16).

2. For each z, we fit the dependence on a, treating e(z), g(z) as fitted parameters. For this 
initial test, we fix �QCD at 0.2 GeV, which is a reasonable guess to start with [70].

3. We plot the fitted e(z) with respect to z to see if e(z) has a linear z dependence.
If we obtain a reasonable fit in step 2, we then see approximately the 1/a dependence of the 

divergences. In step 3, we can test the linear z dependence. The fitting results for the bare Oγt (z)

matrix element in the off-shell quark state for valence overlap and clover actions without HYP 
smearing are shown in Fig. 3 and Fig. 4, respectively. There are eight different lattice spacings. 
The range of z is taken from 0.18 fm to 0.96 fm and we analyze 14 different z values in this 
range.

The 1/a dependence in both cases is fitted very well, although due to the high precision of the 
data, chi-square is large. However, this is not our concern at this initial step. The z dependence 
of the divergent coefficients shows nicely the linear feature, approximately going through zero 
at z = 0. This is a strong indication that the linear divergence follows roughly the prediction 
of perturbation theory which gives us confidence to perform more refined analyses in the next 
sections.

5. Self-renormalization of lattice matrix elements

5.1. The strategy

The non-perturbative matrix elements contain the following important contributions: a) the 
linear divergence, b) a finite term coming from non-perturbative renormalon physics, and c) the 
10
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Fig. 3. Upper Panel: Using Eq. (18) to fit the bare Oγt (z) matrix element in the off-shell quark state for overlap action 
without HYP smearing. Blue points are interpolated data and colorful curves are fitted curves for each z. �QCD is fixed 
at 0.2 GeV. Lower Panel: e(z) with respect to z. Blue points are the fitted parameters e(z) from the upper panel. The blue 
curve is the no-bias linear fit for e(z). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

residual contribution encoding intrinsic non-perturbative physics. It is part c) that is required to 
extract the partonic structure information. Thus, it is important to separate out the latter from the 
former in a systematic way and with high precision.

Here we develop a self-renormalization method to extract the residual intrinsic non-
perturbative physics and renormalization factor from a matrix element itself without using a 
different matrix element. The extraction of the residual is much harder than the extraction of the 
linear divergence term because after we take the logarithm of the matrix element (Eq. (18)), the 
linear divergence term is dominant and the residual is very sensitive to the subtraction. We need 
to properly take into account the fine features of the data, including logarithmic divergences and 
discretization errors.

Based on Eq. (11), we modify the fitting function Eq. (18) to be,

lnM(z, a) = kz

a ln[a�QCD] + g(z) + f1,2(z)a

+ 3CF

b0
ln

[
ln[1/(a�QCD)]

ln[μ/�QCD]
]

+ ln

[
1 + d

ln(a�QCD)

]
, (19)
11
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Fig. 4. Same as Fig. 3, except for the clover valence quark.

where the first term is linearly divergent. g(z) is the residual, which contains the non-perturbative 
m0 effect and the intrinsic non-perturbative physics. f1,2(z)a takes into account the discretization 
errors, which we allow to be different for the data calculated from MILC and RBC ensembles 
(f1(z) for MILC and f2(z) for RBC). The last two terms come from the resummation of leading 
and sub-leading logarithmic divergences, which only affect the overall normalization at different 
lattice spacings.

We use Eq. (19) to fit the logarithms to the data for the bare matrix elements for each z. The 
z points can be chosen in a large range where the lattice discretization error is small and, at the 
same time, the statistical error is limited. We fit the dependence on a, treating g(z), f1(z), f2(z)

as free parameters and fixing μ at 2 GeV, which is the renormalization scale we choose to use. 
We will discuss k and �QCD in detail in Sec. 5.2 and d in Sec. 5.3. We obtain the residual g(z)

from the fit.
The g(z) obtained this way does not correspond to what is in the perturbative MS scheme be-

cause it contains a non-perturbative m0 effect. We need to eliminate this effect through matching 
the lattice result to the continuum scheme at short distance z. Based on Eq. (4) and Eq. (7), we 
use the following equation within a window a � z < 1/μ to extract m0,

g(z) − ln[ZMS(z,μ,�MS)] = m0z, (20)

where ZMS is the perturbative matrix element in the MS scheme. For the Oγt (z) matrix elements 
in the pion, nucleon, and off-shell quark state, we take Z at one loop [42],
MS

12
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ZMS(z,μ,�MS) = 1 + αs(μ,�MS)CF

2π

[
3

2
ln

z2μ2

4e−2γE
+ 5

2

]
, (21)

from operator product expansion, where we fix μ = 2 GeV and �MS = 0.3 GeV. The renormal-
ized physical matrix element is then obtained from

M(z)R = exp[g(z) − m0z], (22)

and is expected to be consistent with ZMS at small z.
One could consider higher-order MS matrix elements for matching, including summing over 

large logarithms. We choose not to do this here as it does not affect the procedure for the sub-
sequent analysis, and therefore does not change the main conclusions of the paper. However, to 
obtain physical results at high precisions, one might need to examine this more carefully.

We thus define a renormalization factor

Z(z, a)R = exp
[ kz

a ln[a�QCD] + m0z + f1,2(z)a

+ 3CF

b0
ln

[
ln[1/(a�QCD)]

ln[μ/�QCD]
]

+ ln[1 + d

ln(a�QCD)
]
]

, (23)

which includes the discretization error as well. All the parameters here are either fixed, fitted 
or fine-tuned through the renormalization procedure from the matrix element M(z, a) itself. 
Dividing the bare matrix element M(z, a) by Z(z, a)R , we get

M̃R(z) = M(z, a)/Z(z, a)R. (24)

If our procedure eliminates all the divergences and discretization errors, we should expect that 
M̃R(z) is a-independent and the same as M(z)R (Eq. (22)). The degree to which this is the case 
can be used as a test of the self-renormalization procedure.

5.2. Renormalon uncertainty

Now let us turn to the parameter k and �QCD in Eq. (19). In Eq. (19), we have only considered 
the leading order perturbative term for the linear divergence and neglected higher-order ones. 
These can be included partially by a proper choice of �QCD. For example, the coupling constants 
with different choices of � are related to each other by perturbation theory [70],

αs(Q,�QCD) ∼ αs(Q,�) + c2α
2
s (Q,�) + c3α

3
s (Q,�) + ... (25)

In principle, �QCD depends on the specific lattice action, and one needs to perform multi-loop 
calculations to relate them. In our analysis, we treat �QCD as a fitting parameter which, therefore, 
can effectively take into account some higher-order effects.

Next we want to discuss the coefficient k of the linear divergence. QCD perturbation theory 
not only predicts the 1/a dependence and linear z dependence (which we have tested in Sec. 4), 
but also the value of k. Comparing Eq. (5) and Eq. (19), we get the one-loop perturbative value 
of k:

k = (2π)2

3b0
= 1.46 = 7.4 GeV−1 fm−1. (26)

Next, we check whether this value is consistent with our data.
We use Eq. (19) to fit the bare Oγt (z) matrix element in the pion state for the clover action 

without HYP smearing, treating g(z), f1(z), f2(z) as fitted parameters. If we take (k, �QCD) to 
13



Lattice Parton Collaboration (LPC) Nuclear Physics B 969 (2021) 115443
Fig. 5. Using Eq. (19) to fit the bare Oγt (z) matrix element in the pion state for the clover action without HYP smearing. 
Blue points are interpolated data and colorful curves are fitted curves for each z. The fitted curves are broken lines because 
f1(z) and f2(z) are allowed to be different. k, �QCD, and d are fixed at 7.4 GeV−1fm−1 (1.46 if dimensionless), 0.09 
GeV, and −1 respectively. The χ2/d.o.f. of the fitting for each z is listed in the plot legend.

Fig. 6. χ2 map with respect to k and �QCD. 〈χ2/d.o.f.〉z is the average of χ2/d.o.f. among the fitting for each z. The 
“small-χ2 band” shows that k and �QCD are strongly correlated and uncertain for the chosen data.

be one set of values, e.g., (7.4 GeV−1fm−1, 0.09 GeV), we can perform a fitting for each z, as 
seen in Fig. 5. There is a χ2/d.o.f. for the fit at each z and we calculate the average of them, 
denoted as 〈χ2/d.o.f.〉z. Varying (k, �QCD) generates a χ2 map, as seen in Fig. 6.

The sets of (k, �QCD) of small χ2 lie in a band, which we call the “small-χ2 band”. That 
means that k and �QCD are strongly correlated, while there is a large uncertainty for k and �QCD

separately. If we choose some sets of values from the “small-χ2 band” to do the fitting, we find 
the fitted residuals Exp[g(z)] are very different, as seen in Fig. 7. However, after eliminating the 
non-perturbative m0 effect, the renormalized matrix elements Exp[g(z) − m0z] are all the same 
(see Fig. 8). Therefore, the uncertainty in k and �QCD will not significantly influence the final 
physical result.

The reason for this uncertainty lies in the behavior of k
a ln[a�QCD] (the term related to the linear 

divergence in Eq. (19)) in the a range of our data. Varying along the “small-χ2 band” effectively 
shifts k by a constant C, see Fig. 9. The Cz term is absorbed into g(z) automatically 
a ln[a�QCD]

14
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Fig. 7. The fitted residual Exp[g(z)] for different sets of (k, �QCD) along the “small-χ2 band”.

Fig. 8. The renormalized matrix element Exp[g(z) − m0z] for different sets of (k, �QCD) along the “small-χ2 band”.

during fitting so there is a large uncertainty for k and �QCD. However, when we eliminate the 
m0 effect, the Cz term has been taken into account, and the final result does not change.

Another way to interpret this is that the perturbative value of k is consistent with the 
“small-χ2” band and therefore is consistent with the fit. As a consequence, we can fix k at 
the one-loop perturbative value, 7.4 GeV−1fm−1 (or 1.46 if dimensionless) in the subsequent 
analysis. Even with this choice of k, �QCD can still vary within a reasonable range of χ2 while 
the physical result is stabilized by the choice of m0. We call this correlation between �QCD
and m0 the “phenomenological renormalon uncertainty”, in the sense that �QCD is character-
istic for the different truncation/resummation schemes for the perturbation series, but that the 
non-perturbative m0 compensates the effects of the differences [49–52].

5.3. Tuning parameter-d to match the continuum scheme

In principle, the parameter d in Eq. (19) is determined by the lattice action. In our data, 
there are two different dynamical lattice ensembles (MILC and RBC) and two different valence 
fermion actions (overlap and clover). Here we treat d as a fine-tuning parameter to make sure 
15
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Fig. 9. The linear divergent term in the a range of our data for different sets of (k, �QCD) along the “small-χ2 band”.

that (g(z) − ln[ZMS(z, μ, �MS)]) in Eq. (20) is proportional to z within a window a � z < 1/μ. 
As shown in Fig. 10, this is quite effective. We have also tested that d has little influence on χ2

since the effect of tuning d shifts g(z) simply by a constant.
Fig. 11 shows that the renormalized matrix element Exp[g(z) −m0z] (blue) for clover quarks 

is consistent with ZMS (black) at small z. However, at large z, there is a significant discrepancy 
between Exp[g(z) −m0z] and ZMS. That means that there is a significant non-perturbative effect 
at large z in the popular RI/MOM and ratio renormalization schemes used previously. To our 
knowledge, this is the first time that this difference has been studied in the literature. This finding 
supports the usage of the hybrid renormalization procedure proposed recently [39].

5.4. Self-renormalization procedure

The procedure developed in the previous subsections forms our self-renormalization strat-
egy. This procedure can overcome some of the problems encountered in the renormalization of 
the linear divergence due to the numerical uncertainties associated with exponentially-amplified 
small errors. There are three steps in this process:

1. Use Eq. (19) to fit the data of the bare matrix elements M. For each z (here z can be 
chosen in a large range and linear interpolation with respect to z might be needed for the data 
in lnM(z, a)), fit the dependence on a, treating �QCD as a global parameter, namely the same 
for all z, and g(z), f1(z), f2(z) as fit parameters, with fixing k = 7.4 GeV−1fm−1 (or 1.46 if 
dimensionless), and μ = 2 GeV. Fine-tune d to make sure that g(z) − ln[ZMS] is proportional to 
z within a window a � z < 1/μ. We obtain the residual g(z) through fitting;

2. Use Eq. (20) to fit the dependence on z (within a window a � z < 1/μ) to extract m0. Then 
calculate the renormalized matrix element Exp[g(z) −m0z] (Eq. (22)), which is considered valid 
for a large range of z;

3. Calculate M(z, a)/Z(z, a)R (Eq. (24)) to see if showing any dependence on the lattice 
constant a and compare with Exp[g(z) − m0z].

In step 1 and 2, one can use another way to get d and m0: Modify Eq. (19) through replacing 
g(z) with (ln[ZMS(z, μ, �MS)] + m0z), and then use the modified fitting function to fit the bare 
matrix element at small z to extract d and m0. This way should be equivalent to the procedure 
outlined above and we will not follow it here.
16
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Fig. 10. The fitting to extract m0 based on Eq. (20) for the bare Oγt (z) matrix element in the off-shell quark state for 
the clover action without HYP smearing. Red points are g(z) − ln[ZMS], where g(z) is extracted through fitting the data 
for the bare matrix element using Eq. (19) and ZMS given in Eq. (21). The blue line is the linear fit of the red points 
(where the fitting function is m0z + C0). The fitted m0 is given in the plot legend. k is fixed at 7.4 GeV−1fm−1 (1.46 if 
dimensionless) and �QCD is chosen as the best fit value 0.118 GeV. In the upper panel, d is zero and g(z) − ln[ZMS] is 
in a linear relationship with z but not proportional to z. (It does not go through the origin). In the lower panel, we tune d
to make sure that g(z) − ln[ZMS] is proportional to z.

In step 3, we need to calculate Z(z, a)R as well as estimate its error. We shall not propagate 
the fitting error of �QCD to Z(z, a)R because the effect of slight variation of �QCD can be 
compensated by m0 and will not influence our result as we have discussed in Sec. 5.2.

Since the lattice data we use do not provide systematic errors, we will add a dummy systematic 
error δsys to the data during our fitting [45]

(σlnM)new =
√

(σlnM)2
old + (δsysaμ)2, (27)

where we assume that there is an aμ dependence as well. This choice is intended to give more 
weight to the small lattice spacing data in the fitting.

5.5. Comparing results from different actions and matrix elements

In this subsection, we apply the self-renormalization method to the Oγt (z) matrix elements 
in the pion, nucleon, and off-shell quark state with valence clover and overlap actions without 
HYP smearing. We compare the renormalization factors and physics results. We find that apart 
17



Fig. 11. Renormalized Oγt (z) matrix element in the off-shell quark state for the clover action without HYP smearing. 
Blue points are the renormalized matrix element Exp[g(z) − m0z]. The black curve denotes ZMS and the red points are 
their ratio. k is fixed at 7.4 GeV−1fm−1 (1.46 if dimensionless) and �QCD is chosen as the best fitted value 0.118 GeV. 
The parameter d is fine-tuned to be −1.184.

from the case of the RI/MOM matrix element with clover valence fermion, all other renormal-
ization factors are similar. Despite this difference in renormalization factor, the physical results 
are independent of fermion actions.

Figs. 12 through 16 show the detailed results of applying the self-renormalization method 
for different cases. For the RI/MOM factor with overlap and clover fermions, we analyze eight 
different lattice spacings from two different types of gauge ensembles. For the pion matrix ele-
ment calculated with the overlap fermion action, we analyze three different lattice spacings from 
MILC ensembles. In the clover pion case, we use six different lattice spacings from two differ-
ent types of gauge ensembles. For the nucleon matrix element with clover fermion action, we 
analyze five different lattice spacings from MILC ensembles.

Subfigure (a) in each figure is used to estimate the best fitted value of the global parameter 
�QCD as well as its error. For each chosen �QCD, we can use Eq. (19) to fit the bare matrix 
element. The fitting for each z gives us a separate χ2. We can calculate the averaged χ2 for 
different z, denoted as 〈χ2〉z. Subfigure (a) shows 〈χ2〉z − [〈χ2〉z]min with respect to �QCD. 
〈χ2〉z − [〈χ2〉z]min = 0 gives us the best fitted �QCD and 〈χ2〉z − [〈χ2〉z]min = 1 gives us its 
error. If the data points for different z were independent, we should use the total χ2 for the fits at 
different z to estimate the error of �QCD. However, since we have done linear interpolations of 
the original data points, some of the points are correlated to each other. So here we just use 〈χ2〉z
to estimate the error of �QCD. The range of z starts from 0.18 fm here but not 0.06 fm because 
the χ2 for z = 0.06 or 0.12 fm is much larger than others. d is fixed to be −1 since it has little 
influence on χ2.

For δsys = 0.002, the best fitted values of �QCD are 0.1086(17), 0.1350(21), 0.093(10), 
0.086(14), 0.0926(61) GeV for the correlations in the overlap quark, clover quark, overlap pion, 
clover pion, and clover nucleon, respectively. As one can see, they are quite similar except for the 
correlation in the clover quark state. While the size of the systematic error has some effects for 
the correlation in the quark case, it has little influence on the correlation in the physical states.

In subfigure (b) in each figure, after taking �QCD to be the best fitted value, we use Eq. (19)
to fit the bare matrix elements to extract g(z). The range of z is taken from 0.06 fm to 1.02 fm 
Lattice Parton Collaboration (LPC) Nuclear Physics B 969 (2021) 115443
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Fig. 12. Self-renormalizing the Oγt (z) correlator in the off-shell quark state calculated for the overlap action without 
HYP smearing, using Eq. (19). (a) shows 〈χ2〉z − [〈χ2〉z]min with respect to �QCD. The best fitted �QCD with its error 
can be estimated here. (b), (c) and (d) show the procedure to get the renormalized matrix element Exp[g(z) − m0z]. (b) 
shows the fitting of the bare matrix element to extract g(z). Blue points are interpolated data and colorful curves are 
fitted curves. (c) shows the fitting to extract m0. (d) shows Exp[g(z) − m0z] (blue), compared with ZMS (black). (e) is 
the comparison of Exp[g(z) − m0z] for different δsys. (f) is the ratio of bare matrix element and renormalization factor 
(connected with solid lines), compared with Exp[g(z) − m0z] (connected with dashed lines).
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Fig. 13. Same as Fig. 12, with the Oγt (z) correlator in the off-shell quark state calculated for the clover action.
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Fig. 14. Same as Fig. 12, with quasi-LF correlation in zero-momentum pion state calculated with the overlap fermion 
action.
21
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Fig. 15. Same as Fig. 12, with quasi-LF correlation in zero-momentum pion state calculated with the clover fermion 
action.
22
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Fig. 16. Same as Fig. 12, with quasi-LF correlation in zero-momentum nucleon state calculated with the clover fermion 
action.
23
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with 17 different z values for correlations in the overlap quark case, from 0.06 fm to 1.14 fm, 
with 19 different z values for correlations in the overlap pion and clover pion cases, from 0.06 
fm to 0.96 fm, with 16 different z in the clover quark case, from 0.06 fm to 0.9 fm, and with 15 
different z values in the clover nucleon case. We fine-tune d to make sure that g(z) − ln[ZMS]
is proportional to z within the window 0.06 fm ≤ z ≤ 0.24 fm. The fine-tuned d values are 
−1.29, −1.35, −1.17, −0.92, −0.97 in the five cases, respectively. They are all close to −1.

Subfigure (c) in each figure shows the fitting to extract m0. For δsys = 0.002, the fitted values 
of m0 are 0.2339(81), 0.7667(83), −0.181(24), −0.363(25), and −0.257(20) fm−1 in the five 
cases, respectively. They are all about the order of �QCD ∼ 0.1 GeV (about 0.5 fm−1), which 
supports the argument in Sec. 2 that m0 originates from the non-perturbative renormalon effect.

In subfigure (d) in each figure, we show our result for the renormalized matrix element 
Exp[g(z) − m0z] in blue points connected by lines. As z increases, Exp[g(z) − m0z] increases 
first, following the perturbative result, and then decreases from about z = 0.25 fm on. In all 
the cases, Exp[g(z) − m0z] is consistent with ZMS at small z. However, at large z, there is a 
significant discrepancy between Exp[g(z) − m0z] and ZMS. This means that there is a large 
non-perturbative effect at large z in the popular RI/MOM and ratio renormalization scheme used 
previously, which supports the hybrid renormalization procedure proposed recently [39]. We 
have already briefly discussed this in Sec. 5.3.

Subfigure (e) shows the renormalized matrix element Exp[g(z) − m0z] for different δsys. 
A change in δsys does not influence the central values of Exp[g(z) − m0z] for most cases ex-
cept for the clover pion. In the clover pion case, the increase of δsys can slightly decrease the 
renormalized matrix element Exp[g(z) − m0z].

Finally, subfigure (f) shows the ratio of bare matrix element and renormalization factor 
M(z, a)/Z(z, a)R , compared with the renormalized matrix element Exp[g(z) − m0z]. Z(z, a)R
here is not extracted from a different matrix elements but from M(z, a) itself. This subfigure is 
a consistency check of our method. In all cases, M(z, a)/Z(z, a)R has little dependence on a
within error and is consistent with Exp[g(z) −m0z]. Therefore, our self-renormalization method 
can isolate the residual intrinsic physics from the linear divergence, renormalon uncertainty, log 
divergence and discretization error with a reasonable precision.

Although the ratio M(z, a)/Z(z, a)R has a good behavior for most of the lattice spacings, it 
may have large errors for small lattice spacings like 0.0318 fm or 0.0574 fm. Therefore we do not 
recommend using M(z, a)/Z(z, a)R as the renormalized matrix element. Since Exp[g(z) −m0z] 
is achieved through our fitting, the large-error data points have little influence on it. We take this 
as the renormalized matrix element, while using M(z, a)/Z(z, a)R only to test consistency.

We show in Fig. 17 a comparison of renormalized Oγt (z) correlation in the pion state between 
overlap and clover actions. Before we add the systematic error, both results show appreciable 
difference, which may indicate that two different valence fermions will lead to different results. 
After we add a small dummy systematic error during the fitting, the correlations in both cases 
lead to similar results. That means that the systematic error is important, and the residual intrinsic 
non-perturbative physics is independent of valence quark formulations if it is properly included.

Finally, for curiosity, we show in Fig. 18 the renormalized correlations as well as parame-
ters related to the divergence for all cases we studied. As mentioned before, the fitted �QCD for 
overlap quark, overlap pion, clover pion and clover nucleon are similar to each other. But for the 
clover quark, it is markedly different. We do not yet understand the theoretical reason, but it could 
be due to the combination of chiral symmetry breaking and the linearly-divergent quark mass. 
We plan to investigate this in the future, but for the time being, at least based on these numeri-
cal observations we understand why we cannot eliminate the linear divergence using RI/MOM 
24



Lattice Parton Collaboration (LPC) Nuclear Physics B 969 (2021) 115443
Fig. 17. Comparison of renormalized Oγt (z) correlator in the zero-momentum pion state between overlap and clover 
actions without HYP smearing. Points connected by solid lines are renormalized matrix elements Exp[g(z) − m0z]. 
Black curve is ZMS. In the upper panel, δsys = 0. In the lower panel, δsys = 0.002.

for the clover action [45]. Quite surprisingly, the residual intrinsic non-perturbative correlations 
for overlap quark, pion and nucleon are very similar to each other, which we also do not fully 
understand.

6. Fits with other options and stability

In a phenomenological analysis, the amount of information and the accuracy one can obtain 
depends, obviously, on the quality of the lattice data. Given the data we have, we would like to 
push the limit of the analysis by including more physics in the fit until the analysis no longer 
yields useful information.

The first question we would like to address is whether one can get more accurate information 
about the linear divergence. We have used so far the one-loop perturbative QCD prediction, but 
treated �QCD as a free parameter to partially take into account higher order corrections. However, 
one might consider directly including at least the second-order corrections. Our strategy here is 
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Fig. 18. Comparison of renormalized Oγt (z) correlations for all the cases without HYP smearing. Points connected by 
solid lines are renormalized matrix elements Exp[g(z) − m0z]. Black curve is ZMS.

to fix k to its perturbative value, and to vary �QCD and the explicit second order correction 
characterized by a new parameter λ

lnM(z, a) = k′z
a

α̃s(1 + λα̃s) + g(z) + ... (28)

where the terms omitted are the same as those we had before in Eq. (19). k′ is related to k by 
−2π/b0 (since −k′2π/b0 = k). On the other hand, one might use the λ parameter to include 
some higher order corrections [51],

lnM(z, a) = k′z
a

α̃s

1 − λα̃s

+ g(z) + ... (29)

To be consistent, we now have to use the QCD running coupling constant α̃s up to the second 
order β function b1 = 102 − 38

3 nf ,

α̃s = 4π

b0 ln( 1
a2�2

QCD
)

⎛
⎝1 − b1

b2
0

×
ln[ln( 1

a2�2
QCD

)]
ln( 1

a2�2
QCD

)

⎞
⎠ . (30)

Therefore, again we have two global parameters λ and �QCD in the fit.
The fitting process with the above parametrization is similar to what is described in Sec. 5.4. 

The results are shown in Figs. 19 and 20. As one can see, the range of λ and �QCD are rather 
large, and strongly correlated. After picking several correlated values of the pair, matching to the 
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Fig. 19. Using Eq. (28) to renormalize the Oγt (z) matrix element in the pion state for the clover action without HYP 
smearing. Upper Panel: χ2 map with respect to λ and �QCD. 〈χ2/d.o.f.〉z is the average of χ2/d.o.f. from fitting for 
each z. Lower Panel: renormalized matrix element for several sets of (�QCD, λ) along the ‘small-χ2 band’.

perturbative result, the resulting residual matrix elements are shown in the lower panel. One can 
hardly see any difference between the different choices. Moreover, the results are essentially the 
same as the fit without the extra λ parameter (Fig. 22). Therefore, we conclude that with the data 
at hand, our result is stable with respect to the higher order corrections. Only with more accurate 
data, one might be able to see the difference of a higher-order fit.

Another possibility one can explore is that the higher-order corrections represented by �QCD

might be different for different ensembles. Therefore, one can discuss different �QCD values for 
MILC and RBC data,

lnM(z, a) = kz

a ln[a�QCD1,2] + g(z) + f1,2(z)a

+ 3CF

b0
ln[ ln[1/(a�QCD1,2)]

ln[μ/�QCD1,2] ] + ln[1 + d

ln(a�QCD1,2)
], (31)

where we fix the k parameter and obtain a two parameter fit, �QCD1 and �QCD2. The results of 
using the above equation is shown in Fig. 21. As shown, the two parameters are strongly corre-
lated and proportional to each other. The difference of the two is limited to a very small range. 
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Fig. 20. Same as Fig. 19, fit using Eq. (29).

Furthermore, with different choices of the correlated pair (�QCD1, �QCD2), the final renormal-
ized results do not change.

In Fig. 22, we show the results of renormalized matrix elements based on different fitting 
functions. All of these fitting functions lead to the same result. Thus, given the data, it is unnec-
essary to consider other high-order terms in the fitting function and Eq. (19) is good enough. This 
also supports the argument made in Sec. 5.2 that we can use the fitted �QCD in leading order to 
partially represent higher order corrections.

Finally, we consider O(a2) corrections to our fitting formula. These fits were unstable, which 
indicates that we introduce too many fit parameters for the given data quality. The conclusion is 
that higher precision data is needed to constrain O(a2) terms. One can also make fits by including 
O(a2) instead of the linear correction. The physics for doing it is weak in our cases.

7. Renormalization of lattice smeared matrix elements

In many lattice calculations, the data can be very noisy which calls for more statistics. How-
ever, large statistics means more resources which are hard to come by sometimes. Therefore, 
lattice practitioners have invented phenomenological approaches to quench the short-distance 
fluctuations: smearing. However, smearing might lead to configurations that are not connected 
with fundamental theory. On the other hand, smearing in some sense just makes the effective UV 
Lattice Parton Collaboration (LPC) Nuclear Physics B 969 (2021) 115443
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Fig. 21. Using Eq. (31) to renormalize the Oγt (z) matrix element in the pion state for the clover action without HYP 
smearing. Upper Panel: χ2 map with respect to �QCD1 and �QCD2. 〈χ2/d.o.f.〉z is the average of χ2/d.o.f. from fitting 
for each z. Lower Panel: renormalized matrix element for several sets of (�QCD1, �QCD2) along the ‘small-χ2 band’.

Fig. 22. Renormalized Oγt (z) correlations in the pion state for the clover action without HYP smearing based on different 
fitting functions: Eq. (19) (purple), Eq. (28) (red), Eq. (29) (blue), Eq. (31) (green).
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Fig. 23. Using Eq. (32) to fit Oγt (z) matrix element for HYP smearing cases. �QCD is fixed at 0.39 GeV.

cutoff (the inverse of the lattice spacing) smaller, and in the limit a → 0, all smearing becomes 
local effects which can be taken into account properly through some kind of renormalization. 
In this section, we check if the procedure we discussed in the previous section still works for 
smeared matrix elements.

To ensure that the HYP smearing data are useful for refined analysis, we can do a simple test 
on whether the HYP smearing data show the properties of the linear divergence predicted by 
perturbation theory, as we have done in Sec. 4. Here we use the following function to fit the bare 
matrix element M to extract the linear divergence factor,

lnM(z, a) = e(z)

a ln[a�QCD] + g(z) + f1,2(z)a, (32)

where we allow for a discretization error to get a better fit. We fix �QCD at 0.39 GeV in this 
simple test. Fig. 23 shows the fits for different actions and states which all look reasonable. We 
have not shown χ2 which will be considered in the extraction of the renormalization factor.
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Fig. 24. e(z) with respect to z. e(z) is extracted from the fitting in Fig. 23. The slopes are labeled in the plot legend.

Fig. 24 shows the extracted e(z) with respect to z. The linear z dependence is approximately 
reproduced but some deviations are seen at large z. We can perform a linear fitting of e(z) and 
compare the fitted slopes. Overall, the quality of the fits is not as good as in the unsmeared 
cases, although it is still rather impressive. The slope extracted for the linear divergence for the 
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Fig. 25. Using Eq. (19) to fit the Oγt (z) matrix element for HYP smearing. The plot shows the χ2 map with respect to k
and �QCD for different actions and states. 〈χ2/d.o.f.〉z is the average of χ2/d.o.f. from fitting for each z.

clover quark is totally different from the others, which explains why we cannot use the RI/MOM 
factor to eliminate it in the clover case for HYP smearing data [45]. These are numerical ob-
servations but the theoretical reasons require further investigation. Although the slopes for the 
overlap quark and pion, clover pion and nucleon are similar to each other, there are some small 
discrepancies. Using the RI/MOM factor for these cases may leave small residual linear diver-
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Fig. 26. Comparison between renormalized matrix elements Exp[g(z) − m0z] for unsmearing (hyp0, red) and HYP 
smearing (hyp1, blue) cases.

gences, and the self-renormalization method provides a better way to renormalize the matrix 
elements.

Next, we extend our self-renormalization method to the HYP smeared data. Our fitting func-
tion, Eq. (19) may have no clear physical meanings for the HYP smeared date, but it may be 
regarded as a phenomenological model.
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We start with a fit function with two parameters in the linearly divergent part, k and �QCD. 
Fig. 25 shows the χ2 map with respect to them. It is clear from the plots that in the “small-χ2

band”, we cannot find a solution for k with the one-loop perturbative value 7.4 GeV−1fm−1 (1.46 
if dimensionless, see Eq. (26)) any more. This is expected because the lattice space is enlarged 
by a factor of two, and therefore the values of k in the “small-χ2 band” are expected to be at 
most half of this, named 3.7 GeV−1fm−1 (0.73 if dimensionless). In fact, most probable k is 
now around 3.0 GeV−1fm−1 (0.59 if dimensionless) or below. Another way of saying this is 
HYP smearing smooths out the short-range behaviors such as the linear divergence. The value of 
�QCD, on the other hand, has a larger range, possibly corresponding again to a larger effective 
lattice spacing.

So for the HYP smearing cases, we choose a set of (k, �QCD) near the center of the “small-χ2

band”. We choose k = 2.5 GeV−1fm−1 (0.49 if dimensionless) for overlap quark and clover 
quark, and k = 2.6 GeV−1fm−1 (0.51 if dimensionless) for overlap pion, clover pion and clover 
nucleon. The corresponding �QCD shows a larger dispersion, with �QCD = 0.43 and 0.38 GeV 
for overlap quark and pion correlations respectively, and �QCD = 0.61, 0.37 and 0.35 GeV for 
clover quark, pion and nucleon correlations, respectively.

Once the (k, �QCD) parameters are chosen, we subtract the linear divergences, and match the 
result to the perturbative matrix elements to determine possible further subtractions for the non-
perturbative mass effect. Fig. 26 shows that the renormalized matrix elements for HYP smearing 
in blue ticks and lines, in comparison with the cases without HYP smearing.

The large difference between smeared and unsmeared matrix elements is seen in the case of 
clover quark correlation at large z. Again, we speculate that due to the chiral symmetry breaking 
effects, the linear divergence has some curious behavior there. However, the difference is smaller 
in the pion matrix element where the error bars are also bigger. For the overlap case, the cor-
relations for quark and pion show no substantial change due to smearing effects. On the other 
hand, the matrix element in the nucleon case shows a much smaller error bar in the smeared case, 
which demonstrates the power of smearing.

To conclude, our analysis method to renormalize the linear divergent matrix elements can 
successfully be used for smeared matrix elements as well. Smearing does not seem to change the 
behavior of renormalization qualitatively, but only quantitatively. The intrinsic physics does not 
seem to change under (moderate) smearing, consistent with the expectation that smearing is an 
alternative method to reduce the statistical noise in lattice calculations.

8. Linear divergence of correlations in QCD vacuum

In this section, we analyze the linear divergence of the Wilson line in the matrix elements 
taken in the QCD vacuum. We try to test if the divergence is universal and if the divergent mass 
can be extracted successfully from these matrix elements. We consider three new types of matrix 
elements: 1) large-size Wilson loop that has been used to extract heavy-quark potential, 2) the 
vacuum matrix element of the quasi-PDF operator, 3) the vacuum matrix element of Wilson link 
operator in a fixed gauge. The data are for MILC ensembles and, when applicable, with the clover 
action. According to the last section, smearing does not change the form of renormalization, and 
therefore, we consider here the higher-precision data with one step smearing. Since we just want 
to test the linear divergence, we can use the simple function Eq. (32) in our fitting.
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Fig. 27. Test of linear divergence for a Wilson Loop for HYP smearing cases. The slope is consistent approximately with 
hadronic matrix elements from the previous section.

8.1. Wilson loop

To extract the linear divergence from lattice data, a Wilson loop is a good choice because it is 
easy to calculate, gauge invariant, and has high precision. It has been extensively studied in the 
literature [27,28,38,43,59], particularly in relation to the heavy quark potential.

In our analysis, we will not consider the heavy quark potential interpretation but simply con-
sider a Wilson loop as a matrix element and fit its 1/a divergence by looking at the logarithm of 
the matrix element, as shown in Fig. 27. The lattice spacing dependence has been fitted well with 
our formula with a choice of �QCD = 0.39 GeV, which is a value favored by our fitting in the 
previous section. After isolating the linear divergent coefficient, we plot it as a function of r + t , 
for which half of the slope gives us the divergent coefficient. Our value is about 2.5 GeV−1fm−1

(0.49 if dimensionless). This value is very similar to the value we found in the previous section 
(Fig. 24), demonstrating that the linear divergence can be very well extracted from the Wilson 
loop.

8.2. Vacuum matrix element of quasi-PDF operator

Here we consider the vacuum matrix elements of a quasi-PDF operator which were suggested 
as choices for the renormalization factor in Ref. [44].

One can consider the vacuum expectation value (VEV) of Oγt (t). As a gauge invariant choice 
proposed in Ref. [44]. 〈O�(t)〉 can be obtained through the following stochastic estimation:
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Fig. 28. Test of linear divergence for the vacuum matrix of the quasi-PDF operator. The matrix element is much sup-
pressed and there is no leading twist contribution.

〈O�(t)〉 = 1

L3
s

〈
∑

	x
Tr[U(	x,0; 	x, t)�Sw(	x, t)]〉

= 1

L3
s

〈
∑

	x
Tr[U(	x,0; 	x, t)�S(	x, t; 	x,0)]〉

+ 1

L3
s

∑
	x,	y,	y �=	x

〈Tr[U(	x,0; 	x, t)�S(	x, t; 	y,0)]〉 (33)

where the second term on the right hand side of the second line vanishes as it is not gauge 
invariant, and Sw(	x, t) = ∑

	y S(	x, t; 	y, 0) is a wall source quark propagator without gauge fixing. 
Such a proposal can only be applied for the non-vanishing cases with � = γt or I . We will apply 
it to Oγt .

However, it is simple to see that the Oγt matrix element in the vacuum vanishes at small 
t using operator product expansion. Therefore the matrix element is susceptible to large O(a) 
correction. But it is not clear at what value of t the correlator starts to converge towards zero. 
Only at very large t , one might see the correct slope.

Results of a test of the linear divergence for the vacuum matrix element of the PDF operator is 
shown in Fig. 28. The slope at large t appears to be consistent with that from the Wilson loop case 
but only within uninterestingly large errors. Here we just provide some numerical observations 
about VEV. And we haven’t understood the theoretical reasons for the behavior of VEV.
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Fig. 29. Test of linear divergence for Landau gauge fixed Wilson link for HYP smearing cases. At small-z, it can be 
calculated in perturbation theory where the linear divergence works well. For large-z, the matrix element does not have 
a transfer-matrix interpretation in this gauge.

8.3. Landau-gauge-fixed Wilson link

For the gauge-dependent matrix elements, we consider the Wilson line in Landau gauge as 
the simplest choice.

The result of our test of the linear divergence is shown in Fig. 29. At small-z, where pertur-
bation theory works well, the slope roughly agrees with the prediction from perturbation theory. 
For large-z, the matrix element does not have a transfer-matrix interpretation in this gauge.

Finally, Fig. 30 is a comparison of the linearly divergent term for Wilson Loop, VEV and Wil-
son link. At small z, the linear divergence terms of Wilson Loop and Wilson link are consistent 
while at large z they disagree strongly. The linear divergence term of VEV is different from the 
others because the large discretization errors make the extraction of the linear divergence very 
imprecise.

9. Summary

The proper renormalization of quasi-LF correlations calculated on the lattice has been a main 
challenge for the applications of LaMET to studying parton physics. Such correlations contain 
linear divergences associated with Wilson lines which have to be eliminated with high preci-
sion to extract the desired physics information. In this work, we propose a self-renormalization 
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Fig. 30. Comparison of linear divergences in different vacuum matrix elements.

Table 3
Renormalization parameters based on the fitting functions Eq. (19) and 
Eq. (20) for the cases without HYP smearing for MILC and RBC en-
sembles, where δsys = 0.002. k is dimensionless here.

Cases k �QCD (GeV) d m0 (GeV)

overlap quark 1.46 0.109(02) −1.29 0.0462(16)
clover quark 1.46 0.135(02) −1.35 0.1513(16)
overlap pion 1.46 0.093(10) −1.17 −0.0357(46)
clover pion 1.46 0.086(14) −0.92 −0.0715(50)
clover nucleon 1.46 0.093(06) −0.97 −0.0508(40)

method to eliminate both the linear and the logarithmic divergence, as well as the discretization 
error, from a quasi-LF matrix element which can be matched to a continuum scheme at short 
distance. As a paradigmatic example, we show that our method works well for Oγt matrix ele-
ments in the pion, nucleon, and off-shell quark state. Our analysis shows that the renormalization 
factors are universal in the hadron state considered. Moreover, the renormalized correlations in 
the pion state for clover and overlap fermions are similar to each other. Besides, we find a large 
non-perturbative effect in the popular RI/MOM and ratio renormalization scheme used previ-
ously, which has to and can be avoided in the hybrid renormalization scheme proposed recently. 
It is certainly interesting to see that our method works also for HYP smeared matrix elements. 
This paves the way to do a phenomenological renormalization for smeared high-precision lattice 
data.

For the convenience of the reader, we collect the parameters related to renormalization for 
various matrix elements discussed in the previous sections, see Tables 3 and 4. For HYP smearing 
cases, there is much freedom for the choice of �QCD. We choose �QCD = 0.39 GeV in Table 4. 
But we also find that �QCD = 0.1 GeV gives us smaller fitted discretization errors.

For comparison purposes, we also show results based on 2+1 flavor clover quark and 
Luescher-Weisz (equivalent to Symanzik) gauge ensembles from CLS collaboration [71]. We 
choose valence fermion action to be clover action, the same as sea fermion action. The renor-
malization parameters for CLS ensembles are shown in Table 5. The parameters k and �QCD

for pion matrix elements for CLS ensembles are similar to those for MILC and RBC ensembles, 
suggesting consistency between results using mixed actions or not.
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Table 4
Renormalization parameters based on the fitting functions Eq. (32) for 
the cases with HYP smearing for MILC and RBC ensembles. k is the 
slope of e(z) (half of the slope for Wilson Loop) and is dimensionless 
here.

Cases k �QCD (GeV)

overlap quark 0.5521(07) 0.39
clover quark 0.6328(05) 0.39
overlap pion 0.5191(14) 0.39
clover pion 0.5178(18) 0.39
clover nucleon 0.5139(54) 0.39
Wilson Loop 0.4921(02) 0.39
VEV 0.39(21) 0.39
Wilson Link 0.5402(04), 0.7099(09) 0.39

Table 5
Renormalization parameters based on the fitting functions Eq. (19) and Eq. (20)
for CLS ensembles, where δsys = 0.002. “hyp0” is the unsmearing cases and 
“hyp1” is the HYP smearing cases. k is dimensionless here.

Cases k �QCD (GeV) d m0 (GeV)

clover quark hyp0 1.46 0.170(06) −0.68 0.1936(26)
clover pion hyp0 1.46 0.113(09) −2.24 −0.0941(49)
clover quark hyp1 0.573(05) 0.39 0.53 0.2298(26)
clover pion hyp1 0.486(10) 0.39 −0.21 0.0312(29)

We would like to stress that the application of our method is not limited to the matrix elements 
discussed in this paper. Instead, it can be applied to any matrix element of an operator in the 
form of Eq. (2). It can also be generalized, in principle, to any matrix element with a Wilson 
line in LaMET applications [8]. Of course, in these cases one also needs to consider the physical 
interpretations of the matrix elements and the details related to lattice calculations and fitting 
steps carefully.

Our fitting formulas are motivated by first principles lattice QCD renormalization theory. 
There are systematic errors in the data coming mostly from different lattice actions, such as over-
lap or clover, which are expected to vanish in the continuum limit. We have taken into account 
finite lattice spacing effects in our fits. Three parameters k, �QCD and m0 have correlations. 
However, since the renormalon uncertainty will not change the residual intrinsic physics (see 
Fig. 8), the two parameters k and �QCD can be varied in a large region, which will not change 
the residual intrinsic physics. Hence, the final result is not very sensitive to the variation of k
and �QCD, and it is not necessary to propagate the error of k and �QCD into the final result. The 
important systematic error comes from m0, which could depend on the order of the perturba-
tive matching at small z. This is not the problem of the method itself, and the specific cases we 
consider can be improved with improved perturbation results as discussed in the paper. The key 
point is that the systematic error is not an intrinsic problem of the method itself.

The proposed framework can be applied only if the lattice calculation is performed on several 
lattice spacings, which is necessary to get any result in the continuum limit, as in other similar 
cases, while many exploratory studies are made in one lattice spacing. To have high precision 
calculations, several lattice spacings are necessary, as some works in this direction have appeared 
recently.
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As pointed out in a recent phenomenological calculation [72], the bare quasi-PDF matrix 
elements at large z are seen to be statistically consistent with zero and even change the sign in 
some of the previous lattice QCD calculations. The lattice matrix elements in some of the current 
calculations at large z are noisy and unreliable. For gluon cases, it is even worse. However, with 
improvement in computation strategy and statistics, this situation will improve. Our method will 
be needed when high precision data becomes available, a precision renormalization method does 
not help very noisy data. We have made suggestions to improve by physically extrapolating the 
small z data to large z through making use of some asymptotic forms, such as eq. (40) in [39].

ETMC is one of the leading collaborations that is performing quasi-PDF calculations us-
ing twisted mass fermion. In their recent work [73], they use RI’-MOM and RI-xMOM to do 
renormalization. Some elements of their approach are similar to the hybrid approach [39] but 
not entirely. Since linear divergence is sensitive to the lattice calculation details and dominant 
in a matrix element, slight differences between two matrix elements may lead to the failure of 
elimination of linear divergences. We will discuss with the ETMC collaboration to compare and 
contract the renormalization approaches.
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