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Abstract We present the first global analysis of parton dis-
tribution functions (PDFs) at approximate N3LO in the strong
coupling constant αs , extending beyond the current highest
NNLO achieved in PDF fits. To achieve this, we present a
general formalism for the inclusion of theoretical uncertain-
ties associated with the perturbative expansion in the strong
coupling. We demonstrate how using the currently available
knowledge surrounding the next highest order (N3LO) in αs

can provide consistent, justifiable and explainable approx-
imate N3LO (aN3LO) PDFs. This includes estimates for
uncertainties due the currently unknown N3LO ingredients,
but also implicitly some missing higher order uncertainties
(MHOUs) beyond these. Specifically, we approximate the
splitting functions, transition matrix elements, coefficient
functions and K -factors for multiple processes to N3LO. Cru-
cially, these are constrained to be consistent with the wide
range of already available information about N3LO to match
the complete result at this order as accurately as possible.
Using this approach we perform a fully consistent approx-
imate N3LO global fit within the MSHT framework. This
relies on an expansion of the Hessian procedure used in pre-
vious MSHT fits to allow for sources of theoretical uncertain-
ties. These are included as nuisance parameters in a global fit,
controlled by knowledge and intuition based prior distribu-
tions. We analyse the differences between our aN3LO PDFs
and the standard NNLO PDF set, and study the impact of
using aN3LO PDFs on the LHC production of a Higgs boson
at this order. Finally, we provide guidelines on how these
PDFs should be used in phenomenological investigations.
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1 Introduction

In recent years, the level of precision achieved at the LHC
has reached far beyond what was once thought possible. This
has initiated a new era of high precision phenomenology that
has pushed the need for a robust understanding of theoreti-
cal uncertainty to new levels. Due to the perturbative nature
of calculations in Quantum Chromodynamics (QCD), with
respect to the strong coupling constant αs , a leading theo-
retical uncertainty arises from the truncation of perturbative
expansions [1,2]. The current state of the art for parton dis-
tribution functions (PDFs) is next-to-next-to leading order
(NNLO) [3–10]. However, these PDF sets do not generally
include theoretical uncertainties arising from the truncation
of perturbative calculations that enter the fit. The consider-
ation of these so-called Missing Higher Order Uncertainties

(MHOUs), and how to estimate them, is the topic of much
discussion among groups involved in fitting PDFs [11–14].

More recently, a method of utilising a scale variation
approach to estimating these uncertainties has been included
in an NLO PDF fit [11]. This approach is based upon the fact
that to all orders, a physical calculation must not depend on
any unphysical scales introduced into calculations. There-
fore varying the factorisation and renormalisation scales is,
in principle, a first attempt at estimating the level of theory
uncertainty from missing higher orders (MHOs). Motivated
by the renormalisation group invariance of physical observ-
ables, this method is theoretically grounded to all orders.
However, the method of scale variations has been shown to
be less than ideal in practice [12,15]. An obvious difficulty
is the arbitrary nature in the chosen range of the scale varia-
tion, as well as the choice of central scale. Expanding on this
further, even if a universal treatment of scale variations was
agreed upon, these variations are unable to predict the effect
of various classes of logarithms (e.g. small-x , mass threshold
and leading large-x contributions) present at higher orders.
As an example, studies of fits including small-x resumma-
tion have recently been done [16,17], showing significant
PDF changes. Since it is these type of contributions that are
often the most dominant at higher orders, this is an especially
concerning pitfall in the use of scale variations to estimate
MHOUs. Rather more subtle are the challenges encountered
when considering and accounting for correlations between
fit and predictions of PDFs [12,14]. An alternative method
to the above is to parameterise the missing higher orders
with a set of nuisance parameters, using the available (albeit
incomplete) current knowledge [18,19].

In this paper we present the first study of an approxi-
mate N3LO (aN3LO) PDF fit. In particular, we first consider
approximations to the N3LO structure functions and DGLAP
evolution of the PDFs, including the relevant heavy flavour
transition matrix elements. We make use of all available
knowledge to constrain an approximate parameterisation of
the N3LO theory, including the calculated Mellin moments,
low-x logarithmic behaviour and the full results where they
exist. Then for the case of hadronic observables (where less
N3LO information is available), we include approximate
N3LO K -factors which are guided by the size of known
NLO and NNLO corrections. Based on the uncertainty in
our knowledge of each N3LO function, we obtain a theoret-
ical confidence level (C.L.) constrained by a prior. The cor-
responding theoretical uncertainties are therefore regulated
by our theoretical understanding or lack thereof. Applying
the above procedure, we have performed a full global fit at
approximate N3LO, with a corresponding theoretical uncer-
tainty included within a nuisance parameter framework. As
we will show, adopting this procedure allows the correlations
and sources of uncertainties to be easily controlled. The pre-
ferred form of the aN3LO corrections is determined from the
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fit quality to data, subject to theoretical constraints from the
known information about higher orders.

We note that the source of the above uncertainty is due
the (currently unknown) missing ingredients at N3LO, and
hence to be precise this corresponds to a ‘missing N3LO’
uncertainty. However under the common assumption that the
dominant uncertainty from missing higher orders (MHOs) is
due this uncertainty at the next not fully known N3LO order,
one can also expect this to provide a reasonable estimate of
MHOs in the fit. Indeed, by allowing the unknown theory
parameters to be determined by the fit to data, sensitivity to
orders beyond N3LO is explicitly introduced. As we will see,
this is particularly transparent in the case of the hadronic K -
factors, which are more directly interpreted as giving a full
MHO uncertainty, although a similar sensitivity to higher
orders (in particular at low x) is observed in the DGLAP
evolution of the PDFs. Therefore, while we assume that the
majority of this uncertainty is due to the missing information
at N3LO, it is the case that some is associated with orders
even beyond this, most obviously further effects due to small-
x logarithms. Nonetheless, there is in general a distinction
between the missing N3LO uncertainty we explicitly include
and the uncertainty from MHOs beyond this and hence we
will take care throughout this paper to distinguish the two
where appropriate, even if the separation is not always clear
cut. At present we assume that the majority of this uncertainty
is due to the missing information at N3LO, but that some
is associated with orders even beyond this, most obviously
further effects due to small-x resummation. We will discover
that, indeed, the results support this interpretation. As we
will show, adopting this procedure allows the correlations and
sources of uncertainties to be easily controlled. The preferred
form of the aN3LO corrections is determined from the fit
quality to data, subject to theoretical constraints from the
known information about higher orders.

The outline of this paper is as follows. In Sect. 2 we present
the theoretical framework, describing the method and con-
ventions used for the rest of the paper. Section 3 describes
the structure functions and their role in QCD calculations.
In Sects. 4, 5 and 6 we present our approximations for the
N3LO DIS theory functions, while in Sect. 7 we present the
K -factors at aN3LO. In Sect. 8 we present the MSHT aN3LO
PDFs with theoretical uncertainties and analyse the implica-
tions of the approximations in terms of a full MSHT global
fit. Section 9 contains examples of using these aN3LO PDFs
in predictions up to N3LO. Finally in Sects. 10 and 11 we
present recommendations for how to best utilise these PDFs
and summarise our results.

2 Theoretical procedures

In this section we describe the mathematical procedures used
to implement N3LO approximations into the MSHT PDF
framework. These procedures are discussed in terms of the
Hessian minimisation method employed by the MSHT fit and
extended by theoretically grounded arguments to accommo-
date theoretical uncertainties.

The above will be achieved by adapting the underlying
theory description of the data from NNLO to N3LO (a for-
mal description of how this will be done for the F2 structure
function is discussed in Sect. 3). Not all the ingredients nec-
essary for full N3LO theory predictions are known, where
there is missing information the N3LO theory predictions
will therefore include additional theoretical nuisance param-
eters, allowing their variation via an additional degree of free-
dom in specific theoretical pieces. These theoretical nuisance
parameters will be constrained via an additional χ2 penalty
in the global fit and will accommodate a level of uncertainty
for each added approximate N3LO ingredient (more infor-
mation on how these prior variations are decided is included
in Sects. 4.1, 6.1 and 7.1). From this point, the fitting proce-
dure remains similar to previous MSHT fits with a number
of extra theory nuisance parameters which are treated in the
same manner as experimental nuisance parameters inherent
in PDF fits i.e. they can be fit to the data via an expanded
Hessian matrix.

2.1 Hessian method with nuisance parameters

Following the notation and description from [14], in the Hes-
sian prescription, the Bayesian probability can be written as

P(T |D) ∝ exp

(
−1

2
(T − D)T H0(T − D)

)
(2.1)

where H0 is the Hessian matrix and T = {Ti } is the set
of theoretical predictions fit to N experimental data points
D = {Di } with i = 1, . . . , N . In this section we explicitly
show the adaptation of this equation to accommodate extra
theoretical parameters (with penalties) into the total χ2 and
Hessian matrices.

To adapt this equation to include a single extra theory
parameter, we can make the transformation T → T + tu =
T ′, where t is the chosen central value of the theory parame-
ter considered and u is some non-zero vector such that uuT is
the theory covariance matrix for t . In defining this new theo-
retical prescription T ′, we are making the general assumption
that the underlying theory is now not necessarily identical to
our initial NNLO theory1 T .

1 For the aN3LO prescription defined in this paper this is indeed the
case, although for any extra theory parameters that do not inherently
change the theory from T (for example where there is no known N3LO

123



185 Page 4 of 108 Eur. Phys. J. C (2023) 83 :185

We now seek to include a nuisance parameter θ , centered
around t , to allow the fit to control this extra theory addition.
We demand that when θ = t , T ′ remains unaffected with the
theory addition unaltered from its central value t . This leads
us to the expression,

T ′ + (θ − t)u = T + tu + (θ − t)u. (2.2)

Redefining the nuisance parameter as the shift from its central
value t (θ ′ = θ − t) we define θ ′ centered around 0. To
constrain θ ′ within the fitting procedure, we must also define
a prior probability distribution P(θ ′) centered around zero
and characterised by some standard deviation σθ ′ ,

P(θ ′) = 1√
2πσθ ′

exp(−θ ′ 2/2σ 2
θ ′). (2.3)

Throughout this paper, we refer to the chosen variation of the-
ory predictions in the language of the standard deviation σθ ′
presented here. A caveat to this however is that technically
speaking, this standard deviation is chosen with a level of
arbitrariness based on general assumptions and known infor-
mation about the theory (we will show how this is done in
more detail in Sects. 4.1, 6.1 and 7.1). Although this defini-
tion of σθ ′ lacks the full extent of statistical meaning of a true
standard deviation, the same is also true for scale variations as
well as various experimental systematic uncertainties, which
are often not strictly Gaussian. Furthermore, a more robust
statistical meaning is recovered for the constraints on vari-
ous theoretical parameters after a fit is performed, where we
become less sensitive to a prior. Using this information and
making the redefinition u → u/σθ ′ (in order to normalise
the covariance matrix), we can update Eq. (2.1) to be

P(T |Dθ) ∝ exp

(
−1

2

(
T ′ + (θ − t)

σθ ′
u − D

)T

× H0

(
T ′ + (θ − t)

σθ ′
u − D

))
(2.4)

P(T ′|Dθ ′) ∝ exp

(
−1

2

(
T ′ + θ ′

σθ ′
u − D

)T

× H0

(
T ′ + θ ′

σθ ′
u − D

))
. (2.5)

From here, Bayes theorem tells us

P(T ′|Dθ ′)P(θ ′|D) = P(θ ′|T ′D)P(T ′|D) (2.6)

where our nuisance parameter θ ′ is assumed to be indepen-
dent of the data i.e. P(θ ′|D) = P(θ ′). Integrating over θ ′

information to be included), this transformation still holds in the case
that t = 0.

gives

P(T ′|D) =
∫

dθ ′P(θ ′|T ′D)

︸ ︷︷ ︸
=1

P(T ′|D)

=
∫

dθ ′P(T ′|Dθ ′)P(θ ′). (2.7)

Combining Eqs. (2.3), (2.5) and (2.7) it is possible to show
that,

P(T ′|D) ∝
∫

dθ exp

(
−1

2

[(
T ′ + θ ′

σθ ′
u − D

)T

× H0

(
T ′ + θ ′

σθ ′
u − D

)
+ θ ′ 2/σ 2

θ ′

])
. (2.8)

To make progress with this equation we consider the expo-
nent and refactor terms in powers of θ ′,
(
uT H0u + 1

) θ ′ 2

σ 2
θ ′

+ 2uT H0(T
′ − D)

θ ′

σθ ′

+ (T ′ − D)T H0(T
′ − D). (2.9)

Defining M−1 = 1
σ 2

θ ′

(
uT H0u + 1

)
and completing the

square gives,

M−1
[
θ ′ + 1

σθ ′
MuT H0(T

′ − D)

]2

− 1

σ 2
θ ′
M
(
uT H0(T

′ − D)
)2 + (T ′ − D)T H0(T

′ − D).

(2.10)

In Eq. (2.10), we are able to simplify the first term by defining,

θ
′
(T, D) = 1

σθ ′
MuT H0(D − T ′). (2.11)

Expanding the second term leaves us with,
(
uT H0(T

′ − D)
)2 = (T ′ − D)T H0uu

T H0(T
′ − D).

(2.12)

The second and third term in Eq. (2.10) can then be combined
to give,

(T ′ − D)T

(
H0 − 1

σ 2
θ ′
MH0uu

T H0

)
(T ′ − D). (2.13)

Further to this we note that the following is true:

(H−1
0 + uuT )

(
H0 − 1

σ 2
θ ′
MH0uu

T H0

)

= 1 + uuT H0 − 1

σ 2
θ ′
MuuT H0

− 1

σ 2
θ ′
MuuT H0uu

T H0
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= 1 + uuT H0 − 1

σ 2
θ ′
MuuT H0

− 1

σ 2
θ ′
Mu(σ 2

θ ′M−1 − 1)uT H0 = 1. (2.14)

Using Eq. (2.14) we are finally able to rewrite Eq. (2.8) as,

P(T ′|D) ∝
∫

dθ ′ exp

(
−1

2
M−1(θ ′ − θ

′
)2

−1

2
(T ′ − D)T (H−1

0 + uuT )−1(T ′ − D)

)
.

(2.15)

At this point we can make a choice whether to redefine our
Hessian matrix as H = (H−1

0 + uuT )−1, or keep the contri-
butions completely separate. By redefining the Hessian we
can include correlations between the standard set of MSHT
parameters included in H0 and the new theoretical parameter
θ ′ contained within uuT . However, by doing so we lose infor-
mation about the specific contributions to the total uncer-
tainty i.e. we cannot then decorrelate the theoretical and stan-
dard PDF uncertainties a posteriori. Whereas for the decor-
related choice, although we sacrifice knowledge related to
the correlations between the separate sources of uncertainty,
we are able to treat the sources completely separably. Inter-
preting Eq. (2.15) as in Eq. (2.1) we can write down the two
χ2 contributions,

χ2
1 = (T ′ − D)T (H−1

0 + uuT )−1(T ′ − D)

= (T ′ − D)T H(T ′ − D), (2.16)

χ2
2 = M−1(θ ′ − θ

′
)2, (2.17)

where χ2
1 is the contribution from the fitting procedure, χ2

2
is the posterior penalty contribution applied when the theory
addition strays too far from its fitted central value and M is
the posterior error matrix for this contribution. This will be
discussed further in following sections.

2.2 Multiple theory parameters

In the case of multiple Nθ ′ theory parameters, Eq. (2.5)
becomes

P(T ′|Dθ ′) ∝ exp

⎛
⎝−1

2

Npts∑
i, j

(
T ′
i +

Nθ ′∑
α=1

θ ′
α

σθ ′
α

uα,i − Di

)

× H0
i j

(
T ′
j +

Nθ ′∑
β=1

θ ′
β

σθ ′
β

uβ, j − Dj

)⎞⎠ (2.18)

where we have explicitly included the sum over the number
of data points Npts in the matrix calculation for completeness.

The prior probability for all N3LO nuisance parameters
also becomes

P(θ ′) =
Nθ ′∏
α=1

1√
2πσθ ′

α

exp(−θ ′ 2
α /2σ 2

θ ′
α
). (2.19)

Constructing P(T ′|D) using Bayes theorem as before,
results in the expression,

P(T ′|D)

∝
∫

dNθ ′ θ ′ exp

(
− 1

2

[ Npts∑
i, j

(
T ′
i +

Nθ ′∑
α=1

θ ′
α

σθ ′
α

uα,i − Di

)
H0
i j

×
(
T ′
j +

Nθ ′∑
β=1

θ ′
β

σθ ′
β

uβ, j − Dj

)
+

Nθ ′∑
α,β

θ ′
α

σθ ′
α

θ ′
β

σθ ′
β

δαβ

])
. (2.20)

Following the same procedure as laid out in the previous
section, defining M−1

αβ = (δαβ + uα,i H0
i j uβ, j )/σθ ′

α
σθ ′

β
and

completing the square leaves us with,

(T ′
i − D′

i )H
0
i j (T

′
j − D′

j )

+
Nθ ′∑
α,β

M−1
αβ

⎡
⎢⎣
⎛
⎝θ ′

α +
Npts∑
i, j

Nθ ′∑
δ=1

1

σθ ′
α

Mαδuδ,i H
0
i j (T

′
j − Dj )

⎞
⎠

2

−
⎛
⎝

Npts∑
i, j

Nθ ′∑
δ=1

1

σθ ′
α

Mαδuδ,i H
0
i j (T

′
j − Dj )

⎞
⎠

2
⎤
⎥⎦ , (2.21)

where the summation over the β index in M−1
αβ is implicit in

the squared terms of the squared bracket expressions.
As in the previous section for a single parameter, we can

define,

θ
′
α(T ′, D) =

Npts∑
i, j

Nθ ′∑
δ=1

1

σθ ′
α

Mαδuδ,i H
0
i j (Dj − T ′

j ) (2.22)

Hi j =
⎛
⎝(H0

i j

)−1 +
Nθ ′∑
α=1

uα,i uα, j

⎞
⎠

−1

(2.23)

which leads to the final expression for P(T |D),

P(T ′|D)

∝
∫

dNθ ′ θ ′ exp

⎛
⎝−1

2

⎡
⎣ Nθ ′∑

α,β

(
θ ′
α − θ

′
α

)
M−1

αβ

(
θ ′
β − θ

′
β

)

+
Npts∑
i, j

(
T ′
i − Di

)
Hi j

(
T ′
j − Dj

)
⎤
⎦
⎞
⎠ . (2.24)

which can be interpreted analogously to the single parameter
case in (2.15).
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2.3 Decorrelated parameters

In the treatment above we investigated the case of corre-
lated parameters whereby the Hessian matrix was redefined
in Eq. (2.23). In performing this redefinition we sacrifice
the information contained within uα,i uα, j in order to gain
information about the correlations between the original PDF
parameters making up H0

i j and any new N3LO nuisance
parameters. As stated earlier, in this case, we can perform
a fit to find Hi j but one is unable to separate this Hessian
matrix into individual contributions.

As will be discussed in later sections, the K -factors we
include in the N3LO additions are somewhat more separate
from other N3LO parameters considered. The reason for this
is that not only are they concerned with the cross section data
directly, they are also included for processes separate from
inclusive DIS.2

Hence, we have some justification to include the aN3LO
K -factors’ nuisance parameters as completely decorrelated
from other PDF parameters (including other N3LO theory
parameters). To do this we rewrite Eq. (2.23) as,

⎛
⎝(H0

i j

)−1 +
Nθ ′∑
α=1

uα,i uα, j +
Np∑
p=1

NθK∑
δ=1

u p
δ,i u

p
δ, j

⎞
⎠

−1

=
⎛
⎝H−1

i j +
Np∑
p=1

K−1
i j,p

⎞
⎠

−1

= H ′
i j (2.25)

where Nθ ′ → Nθ ′ +NθK , Ki j,p defines the extra decorrelated
contributions from the N3LO K -factor’s parameters, stem-
ming from Np processes; Hi j is the Hessian matrix including
correlations with parameters associated with N3LO struc-
ture function theory; and H ′

i j is the fully correlated Hessian
matrix. It is therefore possible to construct these matrices
separately and perform the normal Hessian eigenvector anal-
ysis (described in Sect. 8.3) on each matrix in turn. In doing
this, we maintain a high level of flexibility in our description
by assuming the sets of parameters (contained in H−1

i j and
Ki j,p) to be suitably orthogonal.

3 Structure functions at N3LO

The general form of a structure function F(x, Q2) is a convo-
lution between the PDFs fi (x, Q2) and some defined process

2 It is true that we may still expect some indirect correlation with the
parameters controlling the N3LO splitting functions, which are univer-
sal across all processes. However, as we will show, these correlations
are small and can be ignored.

dependent coefficient function C(x, αs(Q2)),

F(x, Q2) =
∑

i=q,q̄,g

[
Ci (αs(Q

2)) ⊗ fi (Q
2)
]
(x) (3.1)

where we have the sum over all partons i and implicitly set the
factorisation and renormalisation scales as μ2

f = μ2
r = Q2, a

choice that will be used throughout this paper for DIS scales.
We also note that the relevant charge weightings are implicit
in the definition of the coefficient function for each parton.

In Eq. (3.1), the perturbative and non-perturbative regimes
are separated out into coefficient functions Ci and PDFs fi
respectively. Since these coefficient functions are perturba-
tive quantities, they are an important aspect to consider when
transitioning to N3LO.

The PDFs fi (x, Q2) in Eq. (3.1) are non-perturbative
quantities. However, their evolution in Q2 is perturbatively
calculable. In a PDF fit, the PDFs are parameterised at a cho-
sen starting scale Q2

0, which is in general different to the scale
Q2 at which an observable (such as F(x, Q2)) is calculated.
It is therefore important that we are able to accurately evolve
the PDFs from Q2

0 to the required Q2 to ensure a fully con-
sistent and physical calculation. To permit this evolution, we
introduce the standard factorisation scale μ f .

The flavour singlet distribution is defined as,

	(x, μ2
f ) =

n f∑
i=1

[
qi (x, μ

2
f ) + qi (x, μ

2
f )
]
, (3.2)

where qi (x, μ2
f ) and qi (x, μ

2
f ) are the quark and anti-quark

distributions respectively, as a function of Bjorken x and the
factorisation scale μ2

f . The summation in Eq. (3.2) runs over
all flavours of (anti-)quarks i up to the number of available
flavours n f .

This singlet distribution is inherently coupled to the gluon
density. Because of this, we must consider the gluon care-
fully when describing the evolution of the flavour singlet dis-
tribution with the energy scale μ f . The Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) [20] equations that gov-
ern this evolution are:

d f

d ln μ2
f

≡ d

d ln μ2
f

(
	

g

)

=
(
Pqq n f Pqg
Pgq Pgg

)
⊗
(

	

g

)
≡ P ⊗ f (3.3)

where Pi j : i, j ∈ q, g are the splitting functions and the
factorisation scale μ f is allowing the required evolution up
to the physical scale Q2. The matrix of splitting functions P
appropriately couples the singlet and gluon distribution by
means of a convolution in the momentum fraction x . We note
here that Pqq ≡ Pq→gq is decomposed into non-singlet (NS)
and a pure-singlet (PS) parts defined by,

Pqq(x) = P+
NS(x) + PPS(x), (3.4)
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where the P+
NS is a non-singlet distribution splitting func-

tion which has been calculated approximately to four loops
in [21].3 The non-singlet part of Pqq dominates at large-x
but as x → 0, this contribution is highly suppressed due to
the relevant QCD sum rules. On the other hand, due to the
involvement of the gluon in the pure-singlet splitting func-
tion (as described above), this contribution grows towards
small-x and therefore begins to dominate.

Turning to the splitting function matrix, each element can
be expanded perturbatively as a function of αs up to N3LO
as,

P(x, αs) = αs P (0)(x) + α2
s P

(1)(x)

+α3
s P

(2)(x) + α4
s P

(3)(x) + · · · , (3.5)

where we have omitted the scale argument of αs(μ
2
r =

μ2
f ) ≡ αs for brevity and P (0), P (1), P (2) are known [20,22–

27]. P (3) are the four-loop quantities which we approximate
in Sect. 4 using information from [21,28–36].

Considering Eq. (3.1), 	(Q2) and g(Q2) are the singlet
and gluon PDFs respectively, evolved to the required Q2

energy of the process via Eq. (3.3). For more information on
the relevant formulae used in this convolution, the reader is
referred to [37].

Thus far, we have limited our discussion to only light quark
flavours. However, as we move through the full range of Q2

values, the number of partons which are kinematically acces-
sible increases. More specifically, as we pass over the charm
and bottom mass thresholds (where Q2 = m2

c,b) we must
account for the heavy quark PDFs and their corresponding
contributions.

To deal with the heavy quark contributions to the total
structure function, whilst remaining consistent with the light
quark picture described above, we consider

f
n f +1
α (x, Q2) =

[
Aαi (Q

2/m2
h) ⊗ f

n f
i (Q2)

]
(x), (3.6)

where we have an implied summation over partons i and
Aαi are the heavy flavour transition matrix elements [38,39]
which explicitly depend on the heavy flavour mass threshold
mh , where these contributions are activated.4 We also denote
the PDFs as f

n f
i and f

n f +1
i to indicate whether the PDF has

been evolved with only light flavours (n f ) or also with heavy
flavours (n f +1). In this work we only consider contributions
at heavy flavour threshold i.e. where Q2 = m2

h . We then
define the PDFs:

f
n f +1
q (x, Q2) =

[
Aqq,H (Q2/m2

h) ⊗ f
n f
q (Q2)

3 In this discussion, we only consider the P+
NS non-singlet distribution

as this is the distribution which contributes to the singlet evolution.
Other non-singlet distributions are briefly discussed in Sect. 4.
4 The indices here run as α ∈ {H, q, g} and i ∈ {q, g}, since n f is the
number of light flavours.

+Aqg,H (Q2/m2
h) ⊗ f

n f
g (Q2)

]
(x) (3.7a)

f
n f +1
g (x, Q2) =

[
Agq,H (Q2/m2

h) ⊗ f
n f
q (Q2)

+Agg,H (Q2/m2
h) ⊗ f

n f
g (Q2)

]
(x) (3.7b)

f
n f +1
H (x, Q2) =

[
AHq(Q

2/m2
h) ⊗ f

n f
q (Q2)

+AHg(Q
2/m2

h) ⊗ f
n f
g (Q2)

]
(x) (3.7c)

where we have an implicit summation over light flavours of
q and a generalised theoretical description to involve heavy
flavour contributions.5 Equations (3.7a) and (3.7b) are the
light flavour quark and gluon PDFs defined earlier, modified
to include contributions mediated by heavy flavour loops.
Whereas in Eq. (3.7c) we describe the heavy flavour PDF, per-
turbatively calculated from the light quark and gluon PDFs.

By considering the number of vertices (and hence orders
of αs) required for each of these transition matrix elements
to contribute to their relevant ‘output’ partons, we are imme-
diately able to show:

Aqq,H = δ(1 − x) + O(α2
s ) Agg,H = δ(1 − x) + O(αs)

Aqg,H = O(α2
s ) AHq = O(α2

s )

Agq,H = O(α2
s ) AHg = O(αs) (3.8)

where Aqq,H and Agg,H include LO δ-functions to ensure
this description is consistent with the light quark picture dis-
cussed earlier. It is therefore the AHg transition matrix ele-
ment which provides our lowest order contribution to the
heavy flavour sector (i.e. g → HH ).

The insertion of scale independent contributions to Aαi

introduce unwanted discontinuities at NNLO into the PDF
evolution. In order to ensure the required smoothness and
validity of the structure functions across (x, Q2), these dis-
continuities must be accounted for elsewhere in the structure
function picture. Equating the coefficient functions above the
mass threshold m2

h (describing the total number of flavours
including heavy flavour quarks) and those below this thresh-
old, discontinuities are able to be absorbed by a suitable
redefinition of the coefficient functions. This procedure pro-
vides the foundation for the description of different flavour
number schemes.

There are two number schemes which are preferred at
different points in the Q2 range. Towards Q2 ≤ m2

h we
adopt the Fixed Flavour Number Scheme (FFNS). Towards
Q2

m2
h

→ ∞, the heavy contributions can be considered mass-

less and therefore the Zero Mass Variable Flavour Number

5 Note that the notation Aαi,H is exactly equivalent to Aαi . When H is
not present in the final state of matrix element interactions, we opt for
the Aαi,H notation. This is to remind the reader that these elements are
considering only those interactions involving a heavy quark.
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Scheme (ZM-VFNS) is assumed. In order to join the FFNS
and ZM-VFNS schemes seamlessly together, we ultimately
wish to describe the General Mass Variable Number Scheme
(GM-VFNS) [40] (which is valid across all Q2). This scheme
can then account for discontinuities from transition matrix
elements and re-establish a smooth description of the struc-
ture functions.

In [41] an ambiguity in the definition of the GM-VFNS
scheme was pointed out (namely the freedom to swap
O(m2

h/Q
2) terms without violating the definition of the

GM-VFNS). We note here that since [42], MSHT PDFs
have employed the TR scheme to define the distribution of
O(m2

h/Q
2) terms, the specific details of which are found in

[41,43,44]. The general method to relate the FFNS and GM-
VFNS number schemes is to compare the prediction for a
result e.g. the F2 structure function in the FFNS scheme:

F2(x, Q
2) = F2,q(x, Q

2) + F2,H (x, Q2)

= C
FF, n f
q,i ⊗ f

n f
i (Q2) + C

FF, n f
H,i ⊗ f

n f
k (Q2)

= C
FF, n f
q,q ⊗ f

n f
q (Q2) + C

FF, n f
q,g ⊗ f

n f
g (Q2)

+ C
FF, n f
H,q ⊗ f

n f
q (Q2) + C

FF, n f
H,g ⊗ f

n f
g (Q2)

(3.9)

and the GM-VFNS scheme,

F2(x, Q
2)

=
∑

α∈{H,q,g}

(
C

VF, n f +1
q,α ⊗ Aαi (Q

2/m2
h) ⊗ f

n f
i (Q2)

+C
VF, n f +1
H,α ⊗ Aαi (Q

2/m2
h) ⊗ f

n f
i (Q2)

)
, (3.10)

where F2,q and F2,H are the light and heavy flavour struc-
ture functions respectively.6 CFF,n f and CVF,n f +1 are the
FFNS (known up to NLO [45,46] with some information
at NNLO [47–49] including high-Q2 transition matrix ele-
ments at O(α3

s ) [49–55]) and GM-VFNS coefficient func-
tions respectively, and Aαi (Q2/m2

h) are the transition matrix
elements. We note that the above also applies to other struc-
ture functions and for clarity, in the following we consider
the light and heavy structure functions separately.

F2,q

Expanding the first term in Eq. (3.10) in terms of the transition
matrix elements results in,

F2,q(x, Q
2) = C

VF, n f +1
q,H ⊗

[
AHq(Q

2/m2
h) ⊗ f

n f
q (Q2)

6 The extra contribution from F2,H allows for the possibility of final
state heavy flavours.

+ AHg(Q
2/m2

h) ⊗ f
n f
g (Q2)

]

+ C
VF, n f +1
q,q ⊗

[
Aqq,H (Q2/m2

h) ⊗ f
n f
q (Q2)

+ Aqg,H (Q2/m2
h) ⊗ f

n f
g (Q2)

]

+ C
VF, n f +1
q,g ⊗

[
Agq,H (Q2/m2

h) ⊗ f
n f
q (Q2)

+ Agg,H (Q2/m2
h) ⊗ f

n f
g (Q2)

]
, (3.11)

which is valid at all orders. The first term in Eq. (3.11) is
the contribution to the light quark structure function from
heavy quark PDFs (since the term contained within square
brackets is exactly our definition in Eq. (3.7c)). Due to this,
the coefficient function Cq,H describes the transition of a
heavy quark to a light quark via a gluon and is therefore
forbidden to exist below NNLO. The second and third terms
here are the purely light quark and gluon contributions, with
extra corrections from heavy quark at higher orders.

Using the definitions in Eq. (3.8) we can obtain an equation
for F2,q(x, Q2) up to O(α3

s ) as,

F2,q (x, Q2) = CVF, (0)
q,q ⊗ fq (Q2)

+ αs

4π

{
CVF, (1)
q,q, n f +1 ⊗ fq (Q2) + CVF, (1)

q,g, n f +1 ⊗ fg(Q
2)

}

+
( αs

4π

)2
{[

CVF, (2)
q,q, n f +1 + CVF, (0)

q,q ⊗ A(2)
qq,H

]
⊗ fq (Q2)

+
[
CVF, (2)
q,g, n f +1 + CVF, (1)

q,g, n f +1 ⊗ A(1)
gg,H

+CVF, (0)
q,q ⊗ A(2)

qg,H

]
⊗ fg(Q

2)

}

+
( αs

4π

)3
{[

CVF, (3)
q,q, n f +1 + CVF, (1)

q,q, n f +1 ⊗ A(2)
qq,H

+CVF, (1)
q,g, n f +1 ⊗ A(2)

gq,H + CVF, (0)
q,q ⊗ A(3)

qq,H

]
⊗ fq (Q2)

+
[
CVF, (3)
q,g, n f +1 + CVF, (1)

q,g, n f +1 ⊗ A(2)
gg,H + CVF, (1)

q,q, n f +1 ⊗ A(2)
qg,H

+CVF, (2)
q,g, n f +1 ⊗ A(1)

gg,H + CVF, (0)
q,q ⊗ A(3)

qg,H

]
⊗ fg(Q

2)

+CVF, (2)
q,H ⊗ A(1)

Hg ⊗ fg(Q
2)

}
+ O(α4

s ) (3.12)

whereCVF, (0)
q,q = δ(1−x) up to charge weighting. Eq. (3.12)

defines the light quark structure function to N3LO including
heavy flavour corrections.7

7 We also note that α
n f +1
s �= α

n f
s and account for this, but omit in

expressions such as Eq. (3.12) for simplicity.
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F2,H

Moving to the heavy quark structure function in Eq. (3.9),
as above the second term in Eq. (3.10) can be expanded in
terms of the transition matrix elements to obtain,

F2,H (x, Q2) = C
VF, n f +1
H,H ⊗

[
AHq(Q

2/m2
h) ⊗ f

n f
q (Q2)

+ AHg(Q
2/m2

h) ⊗ f
n f
g (Q2)

]

+ C
VF, n f +1
H,q ⊗

[
Aqq,H (Q2/m2

h) ⊗ f
n f
q (Q2)

+ Aqg,H (Q2/m2
h) ⊗ f

n f
g (Q2)

]

+ C
VF, n f +1
H,g ⊗

[
Agq,H (Q2/m2

h) ⊗ f
n f
q (Q2)

+ Agg,H (Q2/m2
h) ⊗ f

n f
g (Q2)

]
, (3.13)

which is valid at all orders. Similar to Eq. (3.11), we have a
contribution from the heavy flavour quarks, the light quarks
and the gluon respectively. However in this case, due to the
required gluon intermediary, the coefficient functions asso-
ciated with the light quark flavours and gluon are forbidden
to exist below NNLO. Considering the CH,H function, we
are able to choose this to be identically the ZM-VFNS light
quark coefficient functionCq,q up to kinematical suppression
factors, since at Q2 → ∞ these functions must be equivalent
[40,44,56].

The full heavy flavour structure function then reads as,

F2,H (x, Q2) = αs

4π

[
CVF, (1)
H,g + CVF, (0)

H,H ⊗ A(1)
Hg

]
⊗ fg(Q

2)

+
(

αs

4π

)2{[
CVF, (2)
H,q + CVF, (0)

H,H ⊗ A(2)
Hq

]
⊗ fq (Q2)

+
[
CVF, (2)
H,g + CVF, (1)

H,g ⊗ A(1)
gg,H + CVF, (1)

H,H ⊗ A(1)
Hg

+CVF, (0)
H,H ⊗ A(2)

Hg

]
⊗ fg(Q

2)

}

+
(

αs

4π

)3{[
CVF, (3)
H,q + CVF, (1)

H,g ⊗ A(2)
gq,H

+CVF, (1)
H,H ⊗ A(2)

Hq + CVF, (0)
H,H ⊗ A(3)

Hq

]
⊗ fq (Q2)

+
[
CVF, (3)
H,g + CVF, (2)

H,g ⊗ A(1)
gg,H + CVF, (1)

H,g ⊗ A(2)
gg,H

+CVF, (2)
H,H ⊗ A(1)

Hg

+CVF, (1)
H,H ⊗ A(2)

Hg + CVF, (0)
H,H ⊗ A(3)

Hg

]
⊗ fg(Q

2)

}
(3.14)

where combining Eqs. (3.12) and (3.14), one can obtain the
full structure function F2(x, Q2). Equating the FFNS expan-
sion from Eq. (3.9) to the above expressions in the GM-VFNS

setting, one can find relationships between the two pictures.
In Sect. 6 we use this equivalence to enable the derivation of
the GM-VFNS functions at N3LO.

To summarise, we have identified the leading theoretical
ingredients entering the structure functions and detailed how
these affect the PDFs. As we will discuss further, when push-
ing these equations to N3LO, there is already some knowl-
edge available. For example, the N3LO ZM-VFNS coeffi-
cient functions are known precisely for n f = 3 from [57], as
are a handful of Mellin moments [21,35,36,50] and lead-
ing small and large-x terms [28–34,49,51–54] associated
with the splitting functions and transition matrix elements at
N3LO. Using this information, we approximate these func-
tions to N3LO and incorporate the results into the first approx-
imate N3LO global PDF fit.

4 N3LO splitting functions

Splitting functions at N3LO allow us to more accurately
describe the evolution of the PDFs. These functions are esti-
mated here and the resulting approximations are included
within the framework described in Sect. 2 and below in
Sect. 4.1. In all singlet cases we set n f = 4 before con-
structing our approximations and ignore any corrections to
this from any further change in the number of flavours.8 In
the non-singlet case, we calculate the approximate parts of
PNS (3)
qq with n f = 4 however, there is a relatively large

amount of information about the n f -dependence included
from [21]. Therefore in the final result we choose to allow
the full n f -dependence to remain for the non-singlet splitting
function.

4.1 Approximation framework: discrete moments

In order to estimate the missing N3LO uncertainty in the
splitting functions (also transition matrix elements consid-
ered in the following Sect. 5), and ultimately include these
into the framework described in Sect. 2.2, one must acquire
some approximation at N3LO. Here we discuss using avail-
able sets of discrete Mellin moments for each function, along
with any exact leading terms already calculated, to obtain
N3LO estimations. To perform the parameterisation of the
unknown N3LO quantities, we follow a similar estimation
procedure as in [58,59] following the form,

F(x) =
Nm∑
i=1

Ai fi (x) + fe(x). (4.1)

8 An exception to this are the cases of Pqg and PPS
qq where we have

already defined Pqg ≡ n f Pqg and PPS
qq ≡ n f PPS

qq . Therefore the leading
n f dependence is already taken into account.
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In Eq. (4.1), Nm is the number of available moments, Ai are
calculable coefficients, fi (x) are functions chosen based on
our intuition and theoretical understanding of the full func-
tion, and fe(x) encapsulates all the currently known leading
exact contributions at either large or small-x . To describe
this, consider a toy situation where we are given four data
points described by some unknown degree 9 polynomial.
Along with this information, we are told the dominant term
at small-x is described by 3x . In this case, one may wish to
attempt to approximate this function by means of a set of
4 simultaneous equations formed from Eq. (4.1) equated to
each of the four data points (or constraints). The result of
this is then a unique solution for each chosen set of func-
tions { fi (x)}. However, a byproduct of this is that for each
{ fi (x)}, one lacks any means to control the uncertainty in
these approximate solutions. In order to allow a controllable
level of uncertainty into this approximation, one must intro-
duce an extra degree of freedom. This degree of freedom will
be introduced through an unknown coefficient a ≡ ANm+1,
which for convenience, will be absorbed into the definition
of fe(x) → fe(x, a). In this toy example one is then able to
choose to define the functions fi (x) as,

f1(x) = x3 or x4,

f2(x) = x5, or x6

f3(x) = x7 or x8,

f4(x) = x9,

fe(x, a) = 3x + ax2, (4.2)

where we have prioritised approximating the small-x behaviour
more precisely than the large-x behaviour. This could easily
be adapted and even reversed depending on which region of
x we are most sensitive to, however in this paper we will be
more focused on small-x . There is also an inherent functional
uncertainty from the ambiguity in the choice of functions
for f1,2,3(x) in this toy example, in principle the number
of functions in the functional variation can be larger than
demonstrated here and indeed a larger choice of functions
will be used for all fi (x) when we apply this in practice in
subsequent sections. Using these functions, one is then able
to assemble a set of potential approximations to the overall
polynomial, each uniquely defined by a set of functions and
corresponding coefficients {Ai , fi } for each value of a.

As mentioned, for the N3LO additions considered in this
framework we use the available calculated moments as con-
straints for the corresponding simultaneous equations. A
summary of all the known and used ingredients for all N3LO
approximations is provided in Appendix A. The details of
these known quantities will be discussed in detail in Sects. 4.2
and 5.1. We also mention here that towards the small-x
regime, the leading terms present in the splitting functions

and transition matrix elements exhibit the relations,

Fgg(x → 0) �CA

CF
Fgq(x → 0), (4.3a)

Fqq(x → 0) �CF

CA
Fqg(x → 0), (4.3b)

where Fi j ∈ {Pi j , Ai j,H } and CA,CF are the usual QCD
constants. Although Eq. (4.3) are exact at leading order, it is
known that as we expand to higher orders, these will break
down due to the effect of large sub-leading logarithms. Due
to this, we do not demand this relation as a constraint in our
approximations. Instead we discuss the validity of Eq. (4.3)
in comparison with the aN3LO functions.

Following from [58,59], we must choose a set of candi-
date functions for each fi (x). Our convention is to assign
these functions such that at small-x , f1(x) is dominant,
while at large-x , fNm (x) is dominant. With fi (x) ∀i ∈
{2, . . . , Nm −1}, dominating in the region between. The sets
of functions assigned to each fi (x) are determined for each
N3LO function based on knowledge from lower orders and
our intuition about what to expect at N3LO.

Analogous to our toy polynomial example, we allow the
inclusion of an unknown next-to-leading small-x logarithm
(NLL) term (NNLL in the Pgg case) into the fe function of
our parameterisation. The coefficient of this NLL (NNLL)
term is then controlled by a variational parameter a. This
parameter uniquely defines the solution to the sets of simul-
taneous equations considered i.e. for each set of functions
fi (x) there exists a unique solution for every possible choice
of a. The final step to consider in this approximation is how
to choose the prior allowed variation of a in a sensible way
for each N3LO approximation. To do this, we consider the
criteria outlined below:

Criterion 1: At sufficiently small-x (x < 10−5), for a fixed
value of a, we require fe(x, a) to be contained
within the range of variation for F(x) pre-
dicted from the combinations of functions in
(4.2). For example, after fixing a, fe(x, a) it
should lie within the variation predicted for
F(x) from the entire set of potential approxi-
mations defined in (4.2). In practice this means
that we require the small-x behaviour to not be
in large tension with the large-x description.

Criterion 2: At large-x (x > 10−2) the N3LO contribu-
tion should have relatively little effect. More
specifically, we do not expect as large of a
divergence as we do at small-x . Due to this,
we require that the trend of the N3LO approx-
imation follow the general trend of the NNLO
function at large-x .
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The allowed variation in a gives us an uncertainty which,
at its foundations, is chosen via a conservative estimate based
on all the available prior knowledge about the function and
lower orders being considered. We note that given we are
including known information about the higher order, it is not
guaranteed that a value of a = 0 will satisfy either criterion
1 or 2. Indeed, typically the NLL coefficient in the splitting
functions is the opposite sign to and larger than the LL con-
tribution, for example in the NNLO splitting functions and
the known NLL term in the N3LO splitting function Pgg . To
determine a full predicted uncertainty for the function and
allow for a computationally efficient fixed functional form,
the variation ofa can absorb the uncertainty from the ambigu-
ity in the choice of functions fi (x) (essentially expanding the
allowed range of a – as will be shown in the following sec-
tions). Since the functions are approximations themselves,
increasing the allowed variation of a to encapsulate the total
uncertainty predicted by the initial treatment described above
is a valid simplification.

A worked example following this procedure is provided
for the P(3)

qg and A(3)
Hg functions in Sects. 4.2 and 5.1 respec-

tively.

4.2 4-Loop approximations

P(3)
qg

We begin by considering the four-loop quark-gluon splitting
function. Here we provide a more detailed explanation of the
method described in Sect. 4.1 which will then be applied to
the remaining splitting functions considered in this section.
Four even-integer moments are known for P(3)

qg (n f = 4)

from [35,36], along with the LL small-x term from [28].
The functions made available for the Pqg analysis are,

f1(x) = 1

x
or ln4 x or ln3 x or ln2 x,

f2(x) = ln x,

f3(x) = 1 or x or x2,

f4(x) = ln4(1 − x) or ln3(1 − x) or

ln2(1 − x) or ln(1 − x),

fe(x, ρqg) = C3
A

3π4

(
82

81
+ 2ζ3

)

× 1

2

ln2 1/x

x
+ ρqg

ln 1/x

x
, (4.4)

where ρqg is the variational parameter. This is then varied
between −2.5 < ρqg < −0.9, which has been chosen to
satisfy the criteria described in Sect. 4.1. The set of func-
tions in Eq. (4.4) is chosen from the analysis of lower orders.
Specifically, following the pattern of functions from lower

orders, it can be shown that at this order we expect the most
dominant large-x term to be ln4(1 − x) and ln4 x to be the
highest power of ln x at small-x .

Figure 1 displays an example of the variation found from
the different choices of functions that encapsulate the cho-
sen range of ρqg . We also show the upper (A) and lower
(B) bounds (at small-x) for the entire uncertainty (solid line)
combining the variation in the functions and in the variation
of ρqg . The upper (P(3),A

qg ) and lower (P(3),B
qg ) bounds are

given by,

P(3),A
qg = 1.6699

1

x
+ 2.4167 ln x

−2.2011 x2 + 0.0024228 ln4(1 − x)

+ C3
A

3π4

(
82

81
+ 2ζ3

)
1

2

ln2 1/x

x
− 0.9

ln 1/x

x
,

(4.5)

P(3),B
qg = 12.582 ln2 x + 5.3065 ln x

+1.7957 x2 − 0.0041296 ln4(1 − x)

+ C3
A

3π4

(
82

81
+ 2ζ3

)
1

2

ln2 1/x

x
− 2.5

ln 1/x

x
.

(4.6)

Using this information, a fixed functional form is chosen to
be,

P(3)
qg = A1 ln2 x + A2 ln x + A3 x2 + A4 ln4(1 − x)

+ C3
A

3π4

(
82

81
+ 2ζ3

)
1

2

ln2 1/x

x
+ ρqg

ln 1/x

x
(4.7)

and ρqg is allowed to vary as −2.5 < ρqg < −0.8. This fixed
functional form identically matches with the lower bound
P(3),B
qg and the expansion of the variation of ρqg enables (to

within ∼ 1%) the absorption of the small-x upper bound
uncertainty (predicted from P(3),A

qg ) into the variation.9 In
other areas of x there are larger deviations from the upper
bound (∼ 10%) when using this convenient fixed functional
form. However, in these regions the function is already rel-
atively small, therefore any larger percentage deviations are
negligible. Also since the heuristic choice of variation found
earlier is intended as a guide, we are not bound by any solid
constraints to precisely reconstruct it with our subsequent
choice of fixed functional form. Therefore it is entirely jus-
tified to be able to slightly adapt the shape of the variation in
less dominant regions.

9 Explicitly, the range is expanded from −2.5 < ρqg < −0.9 to−2.5 <

ρqg < −0.8, in order to absorb the functional variation lost by moving
to a fixed functional form (for implementation purposes).
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Fig. 1 Combinations of functions with an added variational
factor (ρqg) controlling the NLL term. Combinations of func-
tions at the upper (left) and lower (right) bounds of the
variation are shown. The solid lines indicate the upper and

lower bounds for this function chosen from the relevant
criteria

PNS, (3)
qq

As discussed in Sect. 3, the quark-quark splitting function
is comprised of a pure-singlet and non-singlet contribution.
We approximate each part independently, although the final
quark-quark singlet function will be almost completely dom-
inated by the pure-singlet, except at very high-x .

The four-loop non-singlet splitting function has been the
subject of relatively extensive research and is known exactly
for a number of regimes. For example in [21], some impor-
tant exact contributions to the four-loop non-singlet splitting
functions are presented, along with 8 even-integer moments
for each of the + and − distributions [21]. In this discus-
sion we are exclusively approximating the non-singlet +-
distribution, as this is the part that contributes to the full sin-
glet quark-quark splitting function. The other relevant non-
singlet distributions P(3), −

NS and P(3), sea
NS (described in [26]),

are set to the central values predicted from [21] since any vari-
ation in these functions are negligible. All presently known
information is used in this approximation, with results similar
to that seen in [21] but with our own choice of functions.

f1(x) = 1

(1 − x)+
, f2(x) = (1 − x) ln(1 − x),

f3(x) = (1 − x) ln2(1 − x),

f4(x) = (1 − x) ln3(1 − x), f5(x) = 1,

f6(x) = x, f7(x) = x2, f8(x) = ln2 x,

fe(x, ρ
NS
qq ) = CFn

3
c P

(3)
L,0(x) + CFn

2
cn f P

(3)
L,1(x)

+ P(3)+
Ln f

(x) + ρNS
qq ln3 x

− 55.876 ln4 x − 2.8313 ln5 x − 0.14883 ln6 x

− 2601.7 − 2118.9 ln(1 − x)

+ n f

(
4.6584 ln4 x + 0.2798 ln5 x

+312.16 + 337.93 ln(1 − x)) (4.8)

where the functions CFn3
c P

(3)
L,0(x) + CFn2

cn f P
(3)
L,1(x) and

P(3)+
Ln f

(x) can be found in Equation (4.11) and Equation (4.14)

respectively within [21], and ρNS
qq is our variational parame-

ter. Note that the ansatz from Eq. (4.1) has been extended to
include 8 pairs of functions and coefficients, to accommodate
8 known moments. Within the fe(x, ρNS

qq ) part of Eq. (4.8),
we have chosen to vary the coefficient of the most diver-
gent unknown small-x term (ln3 x) with the variation across
0 < ρNS

qq < 0.014. Due to the high level of information
and larger number of functions allowed to be included, we
ignore any functional uncertainty and explicitly define each
function. Therefore the only variation needed to be consid-
ered as an uncertainty stems from the variation of ρNS

qq .
The resulting approximation is then,

P(3), +
NS = A1

1

(1 − x)+
+ A2 (1 − x) ln(1 − x)

+A3 (1 − x) ln2(1 − x)

+A4 (1 − x) ln3(1 − x) + A5 + A6 x

+A7 x2 + A8 ln2 x + fe(x, ρ
NS
qq ), (4.9)

where no alterations are made to the allowed range of 0 <

ρNS
qq < 0.014.
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PPS, (3)
qq

We now restrict our analysis to focus on approximating the
pure-singlet part of P(3)

qq , thereby providing a more accu-
rate set of functions with a focus on the small-x regime. To
ensure the PPS (3)

qq function does not interfere with the large-
x regime (where the non-singlet description dominates) the
ansatz from Eq. (4.1) is adapted to be:

P(3)
i j (x) =

{
A1 f1(x) + A2 f2(x) + A3 f3(x)

+A4 f4(x)

}
(1 − x) + fe(x, ρ

PS
qq ). (4.10)

This modified parameterisation guarantees that any instabil-
ities in the pure singlet approximation will not wash out the
non-singlet behaviour at large-x .

Using four available even-integer moments for n f = 4
[35,36] and the exact small-x information [28], the chosen
set of functions for this approximation is,

f1(x) = 1

x
or ln4 x,

f2(x) = ln3 x or ln2 x or ln x,

f3(x) = 1 or x or x2,

f4(x) = ln4(1 − x) or ln3(1 − x) or ln2(1 − x)

or ln(1 − x),

fe(x, ρ
PS
qq ) = C2

ACF

3π4

(
82

81
+ 2ζ3

)
1

2

ln2 1/x

x

+ ρPS
qq

ln 1/x

x
, (4.11)

where ρPS
qq is varied as −0.7 < ρPS

qq < 0. For the varia-
tion produced from stable combinations of these functions,
we coincidentally end up with the same functional form for
both the upper P(3), A

PS and lower P(3), B
PS bounds. Therefore

trivially, the fixed functional form is defined as:

P(3)
PS =

{
A1

1

x
+ A2 ln2 x + A3 x2

+A4 ln2(1 − x)

}
(1 − x)

+C2
ACF

3π4

(
82

81
+ 2ζ3

)
1

2

ln2 1/x

x

+ ρPS
qq

ln 1/x

x
(1 − x) (4.12)

where the variation of ρPS
qq is unchanged and the entire pre-

dicted variation is encapsulated in this form.

P(3)
gq

As with the previous singlet splitting functions, four even-
integer moments for n f = 4 are known [35,36] along with

the LL small-x information [29–31]. The set of functions
made available for the combinations in our approximation
are stated as,

f1(x) = ln 1/x

x
or

1

x
,

f2(x) = ln3 x,

f3(x) = x or x2,

f4(x) = ln4(1 − x) or ln3(1 − x) or

ln2(1 − x) or ln(1 − x),

fe(x, ρgq) = C3
ACF

3π4 ζ3
ln3 1/x

x

+ ρgq
ln2 1/x

x
, (4.13)

where ρgq is set as ρgq = −1.8. In this case, the variation
from the choice of functions is large enough to satisfy the
criteria in Sect. 4.1 and encapsulate a sensible ±1σ variation
without including any further variation in ρgq . Similarly to
previous approximations, for stable variations we estimate
this variation with the fixed functional form,

P(3)
gq = A1

ln 1/x

x
+ A2 ln3 x + A3 x

+A4 ln(1 − x) + C3
ACF

3π4 ζ3
ln3 1/x

x

+ ρgq
ln2 1/x

x
(4.14)

where the allowed range of ρgq is expanded to −1.8 < ρgq <

−1.5 to approximate the variation from the choice of func-
tions. As with the P(3)

qg fixed functional form, this new range
recovers a variation which is within ∼ 1% of the original, in
the dominant areas of x .

P(3)
gg

Finally we move to the approximation of the gluon-gluon
splitting function, where four available even-integer moments
for P(3)

gg (n f = 4) are known from [35,36]. The list of func-
tions (including the known small-x LL and NLL terms from
[29–33]) used for the approximation is,

f1(x) = 1

x
or ln3 x or ln2 x,

f2(x) = ln x,

f3(x) = 1 or x or x2,

f4(x) = 1

(1 − x)+
or ln2(1 − x) or ln(1 − x),

fe(x, ρgg) = C4
A

3π4 ζ3
ln3 1/x

x
+ 1

π4

[
C4

A

(
− 1205

162
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+ 67

36
ζ2 + 1

4
ζ 2

2 − 11

2
ζ3

)

+ n f C
3
A

(
− 233

162
+ 13

36
ζ2 − 1

3
ζ3

)

+ n f C
2
ACF

(
617

243
− 13

18
ζ2 + 2

3
ζ3

)]
1

2

ln2 1/x

x

+ ρgg
ln 1/x

x
, (4.15)

where ρgg is varied as −5 < ρgg < 15 and n f = 4. The
fixed functional form is then chosen to be,

P(3)
gg = A1 ln2 x + A2 ln x + A3 x2

+A4 ln2(1 − x) + C4
A

3π4 ζ3
ln3 1/x

x

+ 1

π4

[
C4

A

(
− 1205

162
+ 67

36
ζ2 + 1

4
ζ 2

2 − 11

2
ζ3

)

+n f C
3
A

(
− 233

162
+ 13

36
ζ2 − 1

3
ζ3

)

+n f C
2
ACF

(
617

243
− 13

18
ζ2 + 2

3
ζ3

)]
1

2

ln2 1/x

x

+ ρgg
ln 1/x

x
, (n f = 4) (4.16)

where we maintain the variation of ρgg from above, as the
fixed functional form manages to encapsulate the variation
predicted, without any extra allowed ρgg variation.

4.3 Predicted aN3LO splitting functions

Figures 2, 3 and 4 show the perturbative expansions for each
splitting function up to approximate N3LO. Included with
these expansions are the predicted variations (±1σ ) from
Sect. 4.2 (shown in green) and the aN3LO best fits (shown in
blue – discussed further in Sect. 8). As a general feature, we
observe that the singlet N3LO approximations are much more
divergent than lower orders due to the presence of higher
order logarithms at small-x , further highlighting the need
for an understanding of MHOUs beyond the default NNLO
considered in current PDF sets in a way that is not reliant on
the NNLO central value.

Considering the non-singlet case shown in Fig. 2, we see
a very close agreement at large-x between PNS

qq expanded
to NNLO and aN3LO. This is a general feature of the
non-singlet distribution, since by design, this distribution is
largely unaffected by small-x contributions. The ratio plot
in Fig. 2 provides clearer evidence for this, since it is only
towards small-x (where the non-singlet distribution tends
towards 0) that any noticeable difference between NNLO
and aN3LO can be seen.

The contributions to PPS
qq , Pqg , Pgq and Pgg shown in

Figs. 3 and 4 respectively, display a much richer description at

aN3LO. In all cases, the divergent terms (with x → 0) present
in the approximations have a large effect from intermediate-
x (∼ 10−2) down to very small-x values. The asymptotic
relationships (red line) Eq. (4.3) defined using the best fit
values of the aN3LO expansions (i.e. comparable to the blue
dashed line) are also shown in Figs. 3 and 4. As discussed ear-
lier, these relations are violated by large sub-leading small-x
terms and are therefore provided here as a qualitative com-
parison. Furthermore, we also observe a close resemblance
to the N3LO asymptotic results in Fig. 4 of [34]. Specifically
for quark evolution, we show that the data prefers a simi-
lar form (PPS

qq and Pqg) to the resummed splitting function
results in [34] whereas for gluon evolution, this agreement is
less prominent.

Superimposed onto these variations in Figs. 3 and 4 are
the best fit values for the splitting functions, as predicted
from a global fit of the full MSHT approximate N3LO PDFs.
The full fit results will be discussed in more detail in Sect. 8,
however we note here that the fit produces relatively good
agreement with the prior allowed variations for each of the
splitting functions. For all functions except for Pgg , the best
fit results lie within their ±1σ variation range. This result
implies that constraints from the data included in the global
fit are in good agreement with the penalties describing quark
evolution (i.e. PPS and Pqg in Fig. 3). For the gluon evolu-
tion in Fig. 4 we observe a small level of tension with the
data pushing towards a slightly harder small-x gluon than
preferred by the penalty constraints for Pgg . An important
caveat to these best fit results is that the data included in the fit
is sensitive to all orders in αs . Therefore by proxy, the best fit
predictions are also sensitive to corrections at all orders. This
will certainly be a driving factor for any violations away from
the expected N3LO behaviour. However, since the ultimate
goal of this investigation is to provide a theoretical uncer-
tainty, the violation from higher orders is manifested into the
defined penalties and therefore accounted for in the fit as a
source of MHOU.

Finally, an important feature that can be seen across all
these splitting function plots are points of zero aN3LO uncer-
tainty in the high-x regions. The regions where these points
occur are where the moments are constraining the chosen
fixed functional forms very tightly. In particular, for Nm

moments (constraints) in Eq. (4.1), we are left with Nm − 1
points of zero uncertainty predicted from our approxima-
tions. As stated, these points are dependent on the choice of
our fixed functional form and are therefore regions where the
uncertainty has been underestimated when compared to the
functional uncertainty which the fixed form approximates.
To provide a more complete estimate of the uncertainty in
these areas, it would be necessary to smooth the uncertainty
band out across these regions (or take into account sev-
eral fixed functional forms). However, this shortcoming only
occurs towards large-x , where the uncertainty is naturally
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Fig. 2 Perturbative expansion up to aN3LO for the non-singlet splitting function PNS, +
qq including any corresponding allowed ±1σ variation

(shaded green region). The best fit value (blue dashed line) displays the prediction for this function determined from a global PDF fit

smaller across these functions. Therefore if the uncertainty
was smoothed, the effect would be negligible for the theoret-
ical uncertainty this work aims to include in a PDF global fit.
Further to this, these functions are ingredients in the DGLAP
convolution where any smaller details are washed out by
more dominant features inside convolutions with PDFs. For
these reasons, we opt for computational efficiency and leave
these points as shown.

4.3.1 Moment analysis

Tracking back to the moments found for the splitting func-
tions [35,36] (shown in Table 1 and as a ratio in Fig. 5), we are
able to identify the expected convergence in the perturbative
expansions up to N3LO. Figure 5 illustrates the relative size
of the NNLO and N3LO contributions to the low even-integer
moments.

Until recently (at the time of writing), there were only
3 moments available for the functions Pgq and Pgg approxi-
mated here. However, in [36] an extra moment was published
for these two gluon splitting functions. This extra informa-
tion led to our predictions at small-x being more in line with
the resummation results in [34] mentioned earlier. This is an
example of how extra information can be added as and when
it is available to update any approximations and utilise our

full knowledge of the next highest order. By adopting this
procedure, we immediately benefit from a slightly increased
precision (with a relevant theoretical uncertainty) instead of
having to delay the inclusion of higher order theory (for
potentially decades) until a complete analytical calculation
of the next order in αs is known.

4.4 Numerical results

We now consider the DGLAP evolution equations for the
singlet and gluon shown in Eq. (3.3). We expand this equation
to α4

s and investigate the effects of the variation in the N3LO
contributions.

For the purposes of this analysis, the approximate func-
tions (4.17), taken from [27], are used as sample distributions
at an energy scale of μ2

f � 30 GeV2, a scale chosen due to
its relevance to DIS processes included in the MSHT global
fit.

x	(x, μ2
f = 30 GeV2) = 0.6 x−0.3(1 − x)3.5(1 + 5x0.8)

(4.17a)

xg(x, μ2
f = 30 GeV2) = 1.6 x−0.3(1 − x)4.5(1 − 0.6x0.3)

(4.17b)
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Fig. 3 Perturbative expansions up to aN3LO for the quark sin-
glet splitting functions PPS

qq (top) and Pqg (bottom) includ-
ing any corresponding allowed ±1σ variation (shaded green
region). The best fit values (blue dashed line) display the

predictions for each function determined from a global PDF
fit
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Fig. 4 Perturbative expansions for the gluon splitting functions Pgq (top) and Pgg (bottom) including any corresponding allowed ±1σ variation
(shaded green region). The best fit value (blue dashed line) displays the prediction for this function determined from a global PDF fit
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Table 1 Numerical moments of singlet and gluon splitting function moments up to N3LO for αs = 0.2 and n f = 4

Moment LO NLO NNLO N3LO

PPS
qq N = 2 −0.056588 −0.06362642 −0.06395712 −0.06412109

N = 4 −0.11104 −0.1261481 −0.12804822 −0.12835549

N = 6 −0.14329 −0.16188618 −0.16433013 −0.16470246

N = 8 −0.166448 −0.18751366 −0.19033329 −0.19074888

Pqg N = 2 0.042442 0.05008496 0.04991043 0.04983007

N = 4 0.023342 0.02203438 0.02110201 0.02112623

N = 6 0.016674 0.01387744 0.01311037 0.01316929

N = 8 0.013086 0.00979920 0.00919186 0.00927006

Pgq N = 2 0.056588 0.06362642 0.06395712 0.06412109

N = 4 0.015562 0.01903295 0.0195455 0.01965547

N = 6 0.008892 0.0112073 0.01158133 0.0116615

N = 8 0.006232 0.00801547 0.00831037 0.0083761

Pgg N = 2 −0.042442 −0.05008496 −0.04991043 −0.04983007

N = 4 −0.242978 −0.26161441 −0.26280015 −0.26326763

N = 6 −0.32551 −0.35114066 −0.35335022 −0.35384552

N = 8 −0.38091 −0.41151668 −0.41447721 −0.41495604

The expressions above are order independent and so provide
a robust means to isolate the effects arising from higher orders
in the splitting functions. For convenience we also assume

αs(μ
2
r = μ2

f = 30 GeV2) � 0.2. (4.18)

where μr and μ f are the renormalisation and factorisation
scales respectively.

Singlet evolution

Figure 6 demonstrates the result of including the respective
N3LO expansions from Sect. 4.2 in an analysis of the evolu-
tion equation. Towards small-x this variation increases due to
the larger uncertainty in the PPS

qq and Pqg splitting functions at
aN3LO. On the right of Fig. 6, the difference plot displays the
respective shifts from the previous order and demonstrates
how this shift changes up to N3LO. These results predict a
reduction in the evolution of the singlet towards small-x from
NNLO. Inspecting Fig. 3, we can see that this reduction is
stemming from the contribution of the gluon with the Pqg
function at 4-loops, which is the dominant contribution to the
evolution. Towards larger x values (10−2 < x < 10−1) we
see a fractional increase in the quark evolution, also following
the shape of the Pqg function. These results can therefore give
some indication as to how we expect our gluon PDF to behave
at N3LO; since the structure functions are directly related to
the quarks (through LO), the singlet evolution should remain
fairly constant. Therefore we can expect that the fit will prefer
a slightly harder gluon at small-x and a softer gluon between
10−2 < x < 10−1 relative to NNLO.

Figure 6 displays a good level of agreement between the
allowed N3LO shift and the evolution at NLO and NNLO
(within ±1σ variation bands from theoretical uncertainties).
Also shown in Fig. 6 is the evolution prediction using the
best fit results for P(3)

qq and P(3)
qg (red dashed). This predic-

tion tends to follow slightly below the center of the 1σ uncer-
tainty band, where the data has balanced the two variations
and is more in line with the NLO evolution than NNLO due to
a negative contribution below 10−2. Considering the magni-
tude of shifts from each order, the predicted shift from NNLO
to aN3LO is slightly larger than that from NLO to NNLO,
contradicting what may be expected from perturbation the-
ory. However, we remind the reader that these best fit results
are, to some degree, sensitive to all orders in perturbation
theory through the data constraint. Due to this, the resultant
best fit can be thought of as an approximate asymptote to all
orders. Interpreting the approximation in this way, restores
our faith in perturbation theory and becomes an entirely plau-
sible estimation of the missing higher orders.

Figure 6 also exhibits an example of how the points of zero
uncertainty (discussed in Sect. 4.2) can affect the evolution
predictions. We can see that at most the uncertainty is being
underestimated by < 1% and therefore, for the reasons dis-
cussed earlier, we do not consider these regions further here.

Gluon evolution

Figure 7 displays the result of including the aN3LO splitting
function contributions into the gluon evolution equation. As
with the singlet evolution case, this extra contribution is cur-
rently inducing a notable variation at N3LO. The general
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Fig. 5 The low-integer numerical Mellin moments of relevant singlet splitting functions (excluding PNS, +
qq ) as a ratio between orders. In all cases

the expected perturbative convergence is demonstrated

trend at small-x is a reduction in the value of the evolution
equation due to the N3LO prediction for Pgg . On the right
hand side of Fig. 7 we observe the respective shifts from
lower orders and how this shift changes up to N3LO.

In the gluon evolution, there is a large variation coming
from the uncertainty in the P(3)

gg function. Therefore when

P(3)
gg is convoluted with the gluon PDF at small-x , one could

expect a potentially large shift from NNLO. The best fit gluon
evolution prediction in Fig. 7 is produced by utilising the
best fit results for P(3)

gq and P(3)
gg functions (red dashed). In

this prediction we see that the fit prefers a reduction in the
evolution from NNLO, which is contained within the ±1σ

band until around x � 10−4. Since at low-Q2, the quark
and gluon are comparable at small-x , this reduction is likely
driven from the form of Pgq in Fig. 4. Combining this with
the smaller gluon PDF at low-Q2 therefore acts to slow the
gluon evolution despite Pgg increasing. Furthermore, the best

fit is seemingly more in line with the perturbative expecta-
tion of the evolution than the chosen variation.10 Since this
variation is chosen from the known information about the
perturbative expansions, this is a manifestation of how the
framework we present here can capture the relevant sources
of theoretical uncertainty (and account for these via a penalty
in a PDF fit). This is encouraging, as even with the large
amount of freedom for this gluon evolution, it seems that the
data is constraining and balancing the two contributions from
the splitting functions in a sensible fashion. As discussed in
the singlet evolution case, the relative shift from NNLO to
N3LO is slightly larger than one might hope for when dealing
with a perturbative expansion. However, since this best fit is
impacted to all orders from the experimental data (up to the

10 Due to the presence of more divergent higher order logarithms at
this level, it is not certain or by any means guaranteed that the shift at
N3LO will follow the same trend outlined from lower orders.
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Fig. 6 The flavour singlet quark distribution evolution equation Eq. (3.3) shown for orders up to the approximate N3LO (left). The relative shift
between subsequent orders of the flavour singlet evolution (right) where 	̇ = d ln 	/d ln μ2

f

Fig. 7 The gluon distribution evolution equation Eq. (3.3) shown for orders up to the approximate N3LO (left). The relative shift between subsequent
orders of the gluon evolution (right) where ġ = d ln g/d ln μ2

f
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leading logarithms at N3LO i.e. even higher orders involve
more divergent logarithms which are missed in this theoreti-
cal description), we can interpret this shift as an approximate
all order shift and once again restore its validity in perturba-
tion theory.

As with the singlet case above, negligible points of non-
zero uncertainty are displayed in Fig. 7. For the reasons dis-
cussed in the singlet case and in Sect. 4.2, these are not an
area of concern at the current level of desired uncertainty and
are therefore not considered further.

5 N3LO transition matrix elements

Heavy flavour transition matrix elements, Ai j , as described
in Sect. 3, are exact quantities that describe the transition of
all PDFs with n f active flavours into a scheme with n f + 1
active flavours. Due to discontinuous nature of Ai j at the
heavy flavour mass thresholds, they are also present in the
coefficient functions to ensure an exact cancellation of this
discontinuity in physical quantities. This combination then
preserves the smooth nature of the structure function, as
demanded by the renormalisation group flows.

The general expansion of the heavy-quark transition
matrix elements in powers of αs reads,

Ai j = δi j +
∞∑

�=1

α�
s A

(�)
i j = δi j +

∞∑
�=1

α�
s

�∑
k=0

Lk
μa

(�,k)
i j , (5.1)

where at each order the terms proportional to powers of Lμ =
ln(m2

h/μ
2) are determined by lower order transition matrix

elements and splitting functions. Therefore the focus only
needs to be on the a(�,0)

i j expressions, as the rest are not only
known [38,39], but are guaranteed not to contribute at mass
thresholds due to the presence of Lμ. These μ-independent
terms can be decomposed in powers of n f as

a(3,0)
i j = a(3,0), 0

i j + n f a
(3,0), 1
i j , (5.2)

where a number of the n f -dependent and independent terms
are known exactly. The n f parts are however sub-leading
and so as a first approximation, are set to zero in this work.
In keeping with the framework set out in Sect. 4.1 for the
N3LO splitting functions, we will make use of the available
known information (even-integer Mellin moments [50] and
leading small and large-x behaviour [49,51–55]) about the
heavy flavour transition matrix elements to approximate the
μ-independent contributions a(3,0)

i j . As discussed above, we
make the choice to completely ignore any terms that do not
contribute at mass threshold since not only are these sub-
leading but can also be ignored by explicitly settingμ2 = m2

h .

5.1 3-Loop approximations

AHg

The A(3)
Hg function is still under calculation at the time of

writing. Currently the first five even-integer moments are
known for the MS scheme A(3)

Hg [50], along with the leading
small-x terms [49].

The n f -dependent contribution to the 3-loop unrenor-
malised AHg transition matrix element has also been approx-

imated in [49], while all other contributions to A(3)
Hg(n f = 0)

were already known. For this approximation we work in the
MS scheme using the framework set out in Sect. 4.1. We then
approximate the function using the set of functions,

f1,2(x) = ln5(1 − x) or ln4(1 − x)

or ln3(1 − x)

or ln2(1 − x)

or ln(1 − x),

f3,4(x) = 2 − x or 1 or x or x2,

f5(x) = ln x or ln2 x,

fe(x, aHg) =
(

224 ζ3 − 41984

27
− 160

π2

6

)

× ln 1/x

x
+ aHg

1

x
(5.3)

where aHg is varied as 6000 < aHg < 13000. This varia-
tion is chosen from the criteria outlined in Sect. 4.1 and is
comparable to that chosen in [49].

Figure 8 displays the approximation of the MS A(3)
Hg with

the variation from different combinations of functions in
Eq. (5.3) at the chosen limits of aHg . Comparing with Fig. 3
in [49], we see a slightly larger range of allowed variation. A
small proportion of this difference can be accounted for by
the difference in renormalisation schemes, with the majority
of this change being from the differences in the criteria from
Sect. 4.1. The upper (A(3),A

Hg ) and lower (A(3),B
Hg ) bounds in

the small-x region (shown in Fig. 8) are given by,

A(3),A
Hg = 44.1703 ln5(1 − x) + 268.024 ln4(1 − x)

+45271.0 x − 68401.4 x2

+36029.8 ln x +
(

224 ζ3 − 41984

27

−160
π2

6

)
ln 1/x

x
+ 12000

1

x
(5.4)

A(3),B
Hg = −18.9493 ln5(1 − x) − 138.763 ln4(1 − x)

−31692.1 x + 33282.3 x2

−3088.75 ln2 x +
(

224 ζ3 − 41984

27
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Fig. 8 Combinations of functions with an added variational
factor (aHg) controlling the NLL term. Combinations of func-
tions at the upper (left) and lower (right) bounds of the
variation are shown. The solid lines indicate the upper and

lower bounds for this function chosen from the relevant
criteria

−160
π2

6

)
ln 1/x

x
+ 6000

1

x
. (5.5)

Using this information, we then choose the fixed functional
form,

A(3)
Hg = A1 ln5(1 − x) + A2 ln4(1 − x)

+A3 x + A4 x2 + A5 ln x

+
(

224 ζ3 − 41984

27
− 160

π2

6

)
ln 1/x

x
+ aHg

1

x
(5.6)

where the variation of aHg remains unchanged as it already
encapsulates the predicted variation to within the ∼ 1% level.

APS
Hq

The APS
Hq transition matrix element has been calculated

exactly in [53]. Here we attempt to qualitatively reproduce
this result via an efficient parameterisation to an appropriate
precision.

Using the expressions for the small and large-x limits [53]
and the known first six even-integer moments converted into
MS [50], we provide a user-friendly approximation as,

APS,(3)
Hq = (1 − x)2

{
− 152.523 ln3(1 − x)

−107.241 ln2(1 − x)

}
− 4986.09 x

+582.421 x2 − 1393.50 x ln2 x − 4609.79 x ln x

−688.396
ln 1/x

x
+ (1 − x) 3812.90

1

x
+1.6 ln5 x − 20.3457 ln4 x

+165.115 ln3 x − 604.636 ln2 x + 3525.00 ln x

+(1 − x)

{
0.246914 ln4(1 − x) − 4.44444 ln3(1 − x)

−2.28231 ln2(1 − x) − 357.427 ln(1 − x) + 116.478

}

(5.7)

where the first two lines have been approximated and the last
four lines are the exact leading small and large-x terms. We
note here that the approximated part of this parameterisation
is in a much less important region of x than the exact parts,
therefore any small differences in the approximated part from
the exact function are unimportant.

ANS
qq,H

Moving to the non-singlet ANS
qq,H function, we attempt to

parameterise the work from [51,52]. Specifically, we make
use of the known even integer moments up to N = 14 [50],
converted into the MS scheme, with the even moments cor-
responding to the (+) non-singlet distribution.

As for A(3)
Hg , the approximation is performed using the set

of functions,

f1(x) = ln x, f2(x) = ln2 x,

f3,4(x) = 1 or x or x2 or ln(1 − x),

f5(x) = 1/x, f6(x) = ln3(1 − x),

f7(x) = ln2(1 − x),

fe(x, a
NS
qq,H ) = aNS

qq,H ln3 x (5.8)
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where aNS
qq,H is varied as −90 < aNS

qq,H < −37. To contain
this variation in a fixed functional form we employ:

ANS, (3) +
qq,H = A1

1

(1 − x)+
+ A2 ln3(1 − x)

+A3 ln2(1 − x) + A4 ln(1 − x) + A5

+A6 x + A7 ln2 x + aNS
qq,H ln3 x (5.9)

where the variation of aNS
qq,H is unchanged.

Agq,H

The 3-loop Agq,H function has been calculated exactly in
[54]. As with the APS

Hq function above, we attempt to pro-
vide a simple and computationally efficient approximation
to this exact form. To do this, we use the known even-integer
moments (converted to the MS scheme) and small and large-
x information from [50,54]. Gathering a fixed set of func-
tions fi (x) and omitting any variational parameter agq,H , due
to the higher amount of information available, the resulting
approximation to the MS A(3)

gq,H is:

A(3)
gq,H = −237.172 ln3(1 − x) − 201.497 ln2(1 − x)

+7247.70 ln(1 − x) + 39967.3 x2

−22017.7 − 28459.1 ln x − 14511.5 ln2 x

+341.543
ln 1/x

x
+ 1814.73

1

x

−580

243
ln4(1 − x) − 17624

729
ln3(1 − x)

−135.699 ln2(1 − x) (5.10)

where the first two lines have been approximated and the last
two lines are the exact small and large-x limits.

Agg,H

Work is ongoing for the 3-loop contribution to Agg,H [60,61].

Due to this, the entire approximation of A(3)
gg,H presented here

is based on the first 5 even-integer Mellin moments [50]. To
reduce the wild behaviour of this approximation from only
using the Mellin moment information (converted into the
MS scheme), we introduce a second mild constraint in the
form of the relations in Eq. (4.3). These relations are closely
followed by the gluon-gluon functions up to NNLO, but there
is no guarantee that this behaviour will continue at N3LO.
This constraint is given as,

Agg,H (x → 0) � CA

CF
Agq,H (x → 0). (5.11)

It can be expected that even though this relation may not be
followed exactly, it should not stray too far from this general
‘rule of thumb’. Due to this a generous contingency of ±50%
is allowed when using this rule. Furthermore, to ensure this

relation is only used as a guide, we allow the variation to
move beyond this rule as long as the criteria in Sect. 4.1 are
still satisfied. As a result of this change in prescription and
because the allowed variation is now on a much larger scale
than that of any functional uncertainty, we choose a fixed
functional form from the start and use the criteria described
above to guide our choice of variation.

A(3)
gg,H = A1 ln2(1 − x) + A2 ln(1 − x)

+A3 x2 + A4 ln x + A5 x + agg,H
ln x

x
(5.12)

where −2000 < agg,H < −700.

5.2 Predicted aN3LO transition matrix elements

Figures 9, 10 and 11 show the perturbative expansions for
each of the n f -independent contributions to the transition
matrix elements at the mass threshold value of μ = mh .
Included with these expansions are the predicted variations
(±1σ ) from Sect. 5.1 (shown in green) and the approximate
N3LO best fits (shown in blue - discussed further in Sect. 8).

ANS
qq,H in Fig. 9 behaves as expected with little variation

from NNLO until the magnitude of this function is very small.
The approximations for the more dominant APS

Hq and AHg

functions in Fig. 10 exhibit some slight sporadic behaviour
towards large-x due to the increased logarithmic influence.
However, since this is in a region where the magnitude of
these functions become small, any instabilities will have a
minimal effect on the overall result. The major feature preva-
lent across both these functions is the large deviation away
from the NNLO behaviour, especially at small-x (and also
mid-x for AHg).

Similarly for Agq,H in Fig. 11 (upper), we see some irreg-
ular behaviour towards large-x . As with APS

Hq and AHg , this
behaviour is in a region where the magnitude of Agq,H is

small. As discussed in Sect. 5.1, A(3)
gq,H is approximated with-

out any variation due to the range of available information
being large.11 Due to this, and the fact that the region of poten-
tial instability (large-x) is highly suppressed, we can accept
this function with negligible effect on any results. As more
information becomes available about all these functions, it
will be interesting to observe how the behaviour across x
changes.

The Agg,H function shown in Fig. 11 (lower) displays the
±50% bounds of violation we allow for the relation Eq. (4.3).
It follows that the allowed variation is conservative enough
to include a generous violation of Eq. (4.3) at N3LO, with the
prediction that the function is positive at small-x . This is an

11 Although an exact expression has been calculated for A(3)
gq,H [54],

this function is not yet available in a computationally efficient format
i.e. numerical grids.
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Fig. 9 Perturbative expansions for the transition matrix element
ANS
qq, H including any corresponding allowed ±1σ variation (shaded

green region). This function is shown at the mass threshold value of

μ = mh . The best fit value (blue dashed line) displays the prediction
for this function determined from a global PDF fit

area where small-x information would clearly be very bene-
ficial. With this information currently in progress, it will be
very interesting to compare how well this variation captures
the true small-x Agg,H behaviour.

The final best fit values shown in Figs. 9, 10 and 11 are
determined from a global PDF fit with various datasets seen
to be constraining these functions within the ± 1σ varia-
tions. As observed, we are able to show good agreement
between the allowed variations and the best fit predictions.
The perturbative expansion predicted for Agg,H is the least
well constrained while also violating its expected relation
with Agq,H more than one may originally expect. Since the
small-x region in all cases changes dramatically at N3LO,
one potential explanation is that this function is compensat-
ing for an inaccuracy in another area of the theory. How-
ever, when comparing with the relationship between AHg

and APS
Hq , Eq. (4.3) also exhibits a significant violation at

this order. This could suggest that for the N3LO transition
matrix elements, this relation may not be the best indicator
of precision or consistency. Finally, we remember that the
best fit in this case may be feeling a larger effect from higher
orders, especially due to these functions only existing from
NNLO. For example, in Sect. 4.3 we observed a high level
of divergence introduced at 4-loops in the splitting functions.

The best fit results shown here may therefore be sensitive to a
similar level of divergence further along in their correspond-
ing perturbative expansions.

As previously discussed, this lack of knowledge is con-
tained within our choice of the predicted variations of these
functions. Therefore this treatment only seeks to add to the
predicted level of theoretical uncertainty from missing N3LO
contributions, as one expects.

5.3 Numerical results

For these results, the same toy PDFs presented in Sect. 4.4 are
employed which approximate the general order-independent
PDF features at Q2 � 30 GeV2. Note that due to the higher
Q2, these results are more representative of the b-quark.
The left plot in Fig. 12 shows the result of including the
N3LO transition matrix element approximations we have
determined into Eq. (3.7c), which is describing the heavy
quark distribution (H + H)(x, Q2 = m2

h). The right plot
in Fig. 12 is describing the heavy flavour contribution to
the gluon at (x, Q2 = m2

h) in Eq. (3.7b) where the delta
function describing the leading order contribution to Agg,H

has been subtracted out. The dominant contribution to the
heavy quark (left plot) is stemming from the AHg function.
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Fig. 10 Perturbative expansions for the transition matrix elements
APS
Hq and AHg including any corresponding allowed ±1σ variation

(shaded green region). These functions are shown at the mass threshold

value of μ = mh . The best fit values (blue dashed line) display the
predictions for these functions determined from a global PDF fit
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Fig. 11 Perturbative expansions for the transition matrix elements
Agq,H and Agg,H including any corresponding allowed ±1σ variation
(shaded green region). These functions are shown at the mass threshold

value of μ = mh . The best fit values (blue dashed line) display the
predictions for these functions determined from a global PDF fit
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Fig. 12 Heavy flavour evolution contributions to the heavy quark (H + H (left)) and gluon (right) PDFs provided at μ � 30 GeV2. These results
include the μ = mh contributions from APS

Hq , AHg , Agq,H and Agg,H transition matrix elements up to aN3LO

Whereas the dominant contribution to the gluon (right plot)
is from the Agg,H function. As one might expect, the predic-
tions at N3LO are more divergent at small-x , however it is
also true that the general trend from NNLO is being followed
across most values of x .

The best fit functions predicted from a global fit show
the preferred aN3LO contributions for both scenarios. The
predicted behaviour from the global fit follows the results
for the perturbative expansions in Sect. 5.2. For the (H +
H)(x, Q2 = m2

h) result (Fig. 12 left), the aN3LO result
is positive across a much wider range of x . Since this is a
perturbatively calculated PDF, this is an encouraging result
that could potentially eliminate some of the more unphysical
shortcomings at NNLO without demanding positivity of the
PDF a priori.

6 N3LO heavy coefficient functions

The final set of functions considered are the Neutral Current
(NC) DIS coefficient functions which, when combined with
the PDFs, form the structure functions discussed in Sect. 3.12

12 Charged current (CC) structure function data is limited to relatively
high-x values compared to NC data and is either comparatively low
statistics, high-Q2 proton target data from HERA or nuclear target data
(again often quite low statistics) on heavy nuclear targets. In both cases
the effect of N3LO corrections is small compared with uncertainties,
especially when considering those involved with nuclear corrections.
Also, heavy flavour contributions are less well known at high orders
for CC structure functions. Hence, we do not include N3LO for these
processes, except dimuon data, which is particularly important for the
poorly constrained strange quark, but which is a semi-inclusive DIS
process, and for which we parameterise N3LO corrections, as discussed
in Sect. 7. An improvement would be necessary for more precise proton
data, from the EIC for example.

We approximate the N3LO heavy quark coefficient functions
which accompany the heavy flavour transition matrix ele-
ments from Sect. 5 and also the N3LO light quark coeffi-
cient functions. We note that our standard definition of the
order of coefficient functions includes the longitudinal coef-
ficient functions at order αs at LO, at order α2

s at NLO etc.
This means we already include order α3

s coefficient functions
for the longitudinal coefficient functions at NNLO, whereas
many groups only consider order α2

s at NNLO. Since little
is know about longitudinal coefficient functions at order α4

s ,
and the data constraints from FL(x, Q2) are very much less
precise than from F2(x, Q2), we simply remain at the pre-
cisely known order α3

s in this study.

6.1 Approximation framework: continuous information

In Sect. 4.1 we described the approximation framework
employed for functions with discrete Mellin moment infor-
mation, combined with any available exact information.
For the N3LO coefficient function approximations, we have
access to a somewhat richer vein of information than the dis-
crete moments discussed for the framework used in approx-
imating the N3LO splitting functions and transition matrix
elements in Sects. 4 and 5. More specifically, approximations
of the FFNS coefficient functions at O(α3

s ) are known for
the heavy quark contributions to the heavy flavour structure
function F2,H (x, Q2) at Q2 < m2

c,b [47–49]. These approx-
imations include the exact LL and mass threshold contribu-
tions, with an approximated NLL term (the details of this are
described in Sect. 6.2). Furthermore, the N3LO ZM-VFNS
coefficient functions are known exactly [57]. Both of these
contributions can then be combined with the transition matrix
element approximations to define the GM-VFNS functions
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in the Q2 ≤ m2
c,m

2
b and Q2 → ∞ regimes. Due to this,

we base our approximations for the C (3)
H,{q,g} functions on

the known continuous information in the low and high-Q2

regimes.
To achieve a reliable approximation for C (3)

H,{q,g}, we first
fit a regression model with a large number of functions in
(x, Q2) space made available to the model (in order to reduce
the level of functional bias in the parameterisation). This pro-
duces an unstable result at the extremes of the parameteri-
sation (large-x and low-Q2). However, it provides a basis
for manually choosing a stable parameterisation to move
between the two known regimes (low-Q2 and high-Q2).

Using the regression model predictions as a qualita-
tive guide, we choose a stable and smooth interpolation
between the two Q2 regimes (low-Q2 and high-Q2) as given
in Eq. (6.1). This interpolation is observed to mirror the
expected behaviour observed from lower orders, the regres-
sion model qualitative prediction having been calculated
independently of lower orders and the best fit quality to data.
By definition, we also ensure an exact cancellation between
the coefficient functions and the transition matrix elements at
the mass threshold energies as demanded by the theoretical
description in Sect. 3.

For the contributions to the heavy flavour structure func-
tion F2,H the final interpolations in the FFNS regime are
defined as,

CFF, (3)
H, {q,g} =⎧⎪⎪⎨

⎪⎪⎩
CFF, (3)

H, {q,g}, low-Q2 (x, Q
2 = m2

h) e
0.3 (1−Q2/m2

h )

+ CFF, (3)
H, {q,g}(x, Q2 → ∞)

(
1 − e0.3 (1−Q2/m2

h )
)
, if Q2 ≥ m2

h,

CFF, (3)

H, {q,g}, low-Q2 (x, Q
2), if Q2 < m2

h .

(6.1)

where CFF, (3)

H, {q,g}, low-Q2 are the already calculated approxi-

mate heavy flavour FFNS coefficient functions at Q2 ≤ m2
h ,

and CFF, (3)
H, {q,g}(Q2 → ∞) is the limit at high-Q2 found from

the known ZM-VFNS coefficient functions and relevant sub-
traction terms, themselves found from Eq. (3.14). Both of
these limits will be discussed in detail on a case-by-case
basis in Sect. 6.

For the heavy flavour contributions to F2,q , we have no
information about the low-Q2 N3LO FFNS coefficient func-
tions. In this case, we use intuition from lower orders to pro-
vide a soft (lightly weighted) low-Q2 target for our regression
model in (x, Q2). However, since the overall contribution is
very small from these functions, the exact form of these func-
tions is not phenomenologically important at present. Further
to this, our understanding from lower orders is that these
functions have a weak dependence on Q2 and so the form of
the low-Q2 description is even less important. As with the
C (3)
H, {q,g} coefficient functions, the regression results provide

an initial qualitative guide which exhibits instabilities in the

extremes of (x, Q2). We therefore employ a similar tech-
nique as before to ensure a smooth extrapolation across all
(x, Q2) into the unknown behaviour at low-Q2. For these
functions, the ansatz used is given as,

CFF, (3)
q, {q,g}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CFF, NS, (3)
q, q (x, Q2 → ∞)(

1 + e−0.5 (Q2/m2
h )−3.5),

CFF, PS, (3)
q, q (x, Q2 → ∞)(

1 − e−0.25 (Q2/m2
h )−0.3),

CFF, (3)
q, g (x, Q2 → ∞)

(
1 − e−0.05 (Q2/m2

h )+0.35),

(6.2)

where CFF, (3)
q,{q,g}(x, Q2 → ∞) is the known limit at high-Q2.

6.2 Low-Q2 N3LO heavy flavour coefficient functions

As previously mentioned in Sect. 3, the standard MSHT the-
oretical description of NNLO structure functions includes
approximations to the low-Q2 FFNS coefficient functions
C (3),FF
H,{q,g} from [47–49]. Within these functions are the pre-

cisely known LL small-x terms and mass threshold informa-
tion, along with an approximate NLL small-x term added
into the MSHT fit. In the NNLO fit these approximate NLL
parameters play a very small role due to not only being sub-
leading, but also only affecting the FFNS scheme below the
mass thresholds. At NNLO they are therefore heuristically
set to a value that is theoretically justified and suits the NNLO
best fit. At N3LO these functions begin to directly affect the
form of the full GM-VFNS scheme across all (x, Q2). For
this reason, these NLL parameters need to be considered as an
independent source of theoretical uncertainty. In the aN3LO
fit, the NLL parameters are left free and included into the
framework set out in Sect. 2.1.

The standard NNLO MSHT fit contains terms of the form,

C (3), NLL
H,i (Q2 → 0) ∝ −4

1

x
+ cLL

i
ln 1/x

x
,(

cLL
g = CF

CA
cLL
q

)
, (6.3)

where i = q, g and cLL
i is the precisely known leading small-

x log coefficient. In the aN3LO fit, the NLL coefficient is
allowed to vary by ±50% (±1σ variation). This conserva-
tive range is chosen to enable the release of tension with the
variational parameters associated with the N3LO transition
matrix elements. Here we stress that this quantity is heuris-
tically set even at NNLO, therefore our treatment is com-
pletely justified with the added benefit of now accounting for
an uncertainty for this choice.
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6.3 3-Loop approximations

CH,q

In this section the CH,q coefficient function is investigated.
As discussed in Sect. 3,CH,q contributes to the heavy flavour
structure function F2,H . We begin by isolating this func-
tion from Eq. (3.14) and relating the FFNS and GM-VFNS
schemes at all orders from Eq. (3.9) and Eq. (3.13),

CFF
H,q =

[
CVF, NS
H,H + CVF, PS

H,H

]
⊗ APS

Hq

+ CVF
H,q ⊗

[
ANS
qq,H + APS

qq,H

]
+ CVF

H,g ⊗ Agq,H .

(6.4)

Expanding this function we obtain:

O(αs) : CFF, (1)
H,q = 0 (6.5)

O(α2
s ) : CFF, (2)

H,q = CVF, (0)
H,H ⊗ APS, (2)

Hq

+ CVF, (2)
H,q ⊗ ANS, (0)

qq,H (6.6)

O(α3
s ) : CFF, (3)

H,q = CVF, (1)
H,H ⊗ APS, (2)

Hq

+ CVF, (0)
H,H ⊗ APS, (3)

Hq

+ CVF, (3)
H,q ⊗ ANS, (0)

qq,H

+ CVF, (1)
H,g ⊗ A(2)

gq,H (6.7)

where we recall that ANS, (0)
qq,H = δ(1 − x).

NNLO

The first contribution from the heavy quarks appears at
the O(α2

s ) level. Fortunately there is a complete picture of
this order [43] which provides some experience with the
behaviour of these functions before moving into unknown
territory. Figure 13 shows the case for CVF, (2)

H,q converging

onto CZM, (2)
H,q at high-Q2, as required by the definition of the

GM-VFNS scheme outlined in Sect. 3.
From Fig. 13, immediately some intuition can be built up

surrounding the form of these functions. It can be observed
that the GM-VFNS function at low-Q2 is consistently more
positive than at high-Q2. However, the values at low and
high-Q2 are of the same order of magnitude which provides
evidence that the behaviour should not be substantially dif-
ferent across values of Q2 when estimating our N3LO quan-
tities. Further to this, as x → 0 the overall magnitude ofC (2)

H,q
becomes much larger, which is consistent with an inherently
pure singlet quantity.

N3LO

At O(α3
s ) the N3LO ZM-VFNS and low-Q2 FFNS functions

are known [47–49,57] and parameterisations/approximations
are available (up to the level of precision discussed in
Sect. 6.2). Nevertheless, there is no direct information on
how the full GM-VFNS function behaves at this order which
is required for a full treatment of the heavy flavour coeffi-
cients. Using Eq. (6.7) to estimate the N3LO contribution,
we have

CVF, (3)
H,q = CFF, (3)

H,q − CVF, (1)
H,H ⊗ APS, (2)

Hq

−CVF, (1)
H,g ⊗ A(2)

gq,H − APS, (3)
Hq , (6.8)

where APS, (3)
Hq is the N3LO transition matrix element approx-

imated in Sect. 5.1.
It must be the case that the discontinuities introduced into

the heavy flavour PDF from the transition matrix elements
(at the threshold value of Q2 = m2

h) are cancelled exactly in

the structure function. The cancellation of APS, (3)
Hq is there-

fore guaranteed by its inclusion into the GM-VFNS coeffi-
cient function in Eq. (6.8). Since in practice the transition
matrix elements are convoluted with the PDFs separately to
the coefficient functions, to ensure that this statement remains
the case, the parameterisation will be performed in the FFNS
number scheme. By doing this, we can explicitly switch to
the GM-VFNS number scheme by including the subtraction
term in Eq. (6.8). This procedure then ensures that APS, (3)

Hq
is subtracted off exactly with no unphysical discontinuity.

Following the methodology set out in Sect. 6.1, the two
regimes we wish to interpolate between are the approximate
CFF, (3)
H,q (Q2 → 0) limit and

CFF, (3)
H,q (Q2 → ∞) = CZM, (3)

H,q + CVF, (1)
H,H ⊗ APS, (2)

Hq

+CVF, (1)
H,g ⊗ A(2)

gq,H + APS, (3)
Hq , (6.9)

whereCVF, (3)
H,q is replaced withCZM, (3)

H,q in the high-Q2 limit.

Eq. (6.1) is then stable across all (x, Q2), exactly cancelling
any discontinuity that would violate the RG flow, whilst also
demanding that the known FFNS approximation (for Q2 <

m2
h) is followed.13

Figure 14 shows the result of estimatingCVF, (3)
H,q using the

above approximation forCFF, (3)
H,q and the relevant subtraction

13 Since in practice the discontinuities from the transition matrix ele-
ments are added to PDFs regardless of what order coefficient func-
tion they are convoluted with, discontinuities of even higher order (e.g.
α4
s and beyond) are also present in calculations. Because the order α3

s
matrix elements are large these even higher order discontinuities are not
insignificant. Therefore we add the same contributions to the unknown
FFNS contributions below m2

h to impose continuity on structure func-
tions. Such corrections are extremely small, except right at the transition
point where they eliminate minor unphysical discontinuities.
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Fig. 13 The NNLO GM-VFNS function CVF, (2)
H,q compared with the NNLO ZM-VFNS function CZM, (2)

H,q across a variety of x and Q2 values.

Mass threshold is set at the charm quark level (m2
h = m2

c = 1.4 GeV2)
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Fig. 14 N3LO GM-VFNS function CVF, (3)
H,q compared with the N3LO

ZM-VFNS function CZM, (3)
H,q across a variety of x and Q2 values

(shown without the variation from the low-Q2 NLL term discussed

in Sect. 6.2). CVF, (3)
H,q is parameterised via Eqs. (6.8), (6.9) and

(6.1). Mass threshold is set at the charm quark level (m2
h = m2

c =
1.4 GeV2)
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term from Eq. (6.8). Note that this plot ignores any variation
from the low-Q2 NLL term discussed in Sect. 6.2, where this
is fixed to its central value.

CH,g

As with CH,q , using Eq. (3.9) and Eq. (3.13) to isolate CH,g

and relate the FFNS and GM-VFNS schemes,

CFF
H,g = CVF

H,g ⊗ Agg,H + CVF, PS
H,q ⊗ Aqg,H

+
[
CVF, NS
H,H + CVF, PS

H,H

]
⊗ AHg (6.10)

O(αs) : CFF, (1)
H,g = CVF, (1)

H,g + CVF, (0)
H,H ⊗ A(1)

Hg (6.11)

O(α2
s ) : CFF, (2)

H,g = CVF, (2)
H,g + CVF, (1)

H,g ⊗ A(1)
gg,H

+ CVF, (0)
H,H ⊗ A(2)

Hg + CVF, (1)
H,H ⊗ A(1)

Hg

(6.12)

O(α3
s ) : CFF, (3)

H,g = CVF, (3)
H,g + CVF, (2)

H,g ⊗ A(1)
gg,H

+ CVF, (1)
H,g ⊗ A(2)

gg,H

+ CVF, NS+PS, (2)
H,H ⊗ A(1)

Hg

+ CVF, (1)
H,H ⊗ A(2)

Hg + CVF, (0)
H,H ⊗ A(3)

Hg

(6.13)

we uncover a NLO contribution to the heavy flavour struc-
ture function. This lower order contribution is a consequence
of the gluon being able to directly probe the heavy flavour
quarks, whereas a light quark must interact via a secondary
interaction (hence the CH,q coefficient function beginning at
NNLO).

NLO and NNLO

The NLO and NNLO contributions to CH,g are known
exactly [43]. To build some experience and check our under-
standing, we can observe how the lower order GM-VFNS
functions converge onto their ZM-VFNS counterparts in
Figs. 15 and 16.

At NLO and NNLO the magnitude of the functions is
generally higher in the low-Q2 limit than at high-Q2. In both
cases, the function remains at the same order of magnitude
across all Q2. However, the relative change across Q2 is
smaller at NLO, and similar to that seen for C (2)

H,q at NNLO.
Due to this, we can once again expect that although more of
a scaling contribution at N3LO may be present, it should not
be too substantial across the range of Q2.

N3LO

As with the C (3)
H,q function at O(α3

s ), the FFNS result at

low-Q2 is known (up to the level of precision discussed in

Sect. 6.2), as well as the exact ZM-VFNS function at high-
Q2 [47–49,57]. Considering the form of CVF, (3)

H,g , there is
an extra complication coming from the transition matrix ele-
ment A(3)

Hg . As discussed in Sect. 5.1, the A(3)
Hg function is not

as well known as the A(3)
Hq function considered earlier and is

accompanied by the variational parameter aHg . Since it is a

requirement forC (3)
H,g to exactly cancel the PDF discontinuity

introduced by A(3)
Hg , this variation must be compensated for

and included in the description,

CVF, (3)
H,g = CFF, (3)

H,g − CVF, (2)
H,g ⊗ A(1)

gg,H

−CVF, (1)
H,g ⊗ A(2)

gg,H − CVF, NS+PS, (2)
H,H ⊗ A(1)

Hg

−CVF, (1)
H,H ⊗ A(2)

Hg − A(3)
Hg. (6.14)

As in Sect. 6.3, transitioning to the FFNS number scheme
ensures an exact cancellation via the subtraction term in
Eq. (6.14). Using the exact information forCFF, (3)

H,g (Q2 → 0)

and the known high-Q2 limit,

CFF, (3)
H,g (Q2 → ∞) = CZM, (3)

H,g + CVF, (2)
H,g ⊗ A(1)

gg,H

+CVF, (1)
H,g ⊗ A(2)

gg,H

+CVF, NS+PS, (2)
H,H ⊗ A(1)

Hg

+CVF, (1)
H,H ⊗ A(2)

Hg + A(3)
Hg (6.15)

whereCVF, (3)
H,g is replaced withCZM, (3)

H,g in the high-Q2 limit.
Applying the framework set out in Eq. (6.1), the resulting
parameterisation is stable across all (x, Q2). As A(3)

Hg and its
variation is explicitly included in Eq. (6.14) this ensures the
continuity of the structure function with exact cancellations
of discontinuities at mass thresholds.

Figure 17 displays our approximation for the GM-VFNS
coefficient function across a range of (x, Q2) via a param-
eterisation for CFF, (3)

H,g and the relevant subtraction term in
Eq. (6.14). Figure 17 also contains the uncertainty in this
approximation stemming from A(3)

Hg (see Sect. 5.1). Note that

Fig. 17 ignores any variation from the low-Q2 NLL term dis-
cussed in Sect. 6.2, where this is fixed to its central value.
The uncertainty shown in Fig. 17 is suppressed as we move
to high-Q2 owing to the required convergence of the GM-
VFNS onto the corresponding ZM-VFNS gluon coefficient
function at N3LO.

Included in Fig. 17 is the best fit prediction for CVF, (3)
H,g

(corresponding to the best fit of A(3)
Hg approximated in

Sect. 5). Overall we see the resultant shape of C (3)
H,g is within

our predicted range and follows a sensible shape that matches
with the known high-Q2 FFNS behaviour. Contrasting this
with NNLO, the shape across the range of x values shown
is less consistent. There is no guarantee that this should be
the case, since we do not know how the perturbative nature
of QCD will behave. However, we do maintain the relatively
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Fig. 15 The NLO GM-VFNS function CVF, (1)
H,g compared with the NLO ZM-VFNS function CZM, (1)

H,g across a variety of x and Q2 values. Mass

threshold is set at the charm quark level (m2
h = m2

c = 1.4 GeV2)
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Fig. 16 The NNLO GM-VFNS function CVF, (2)
H,g compared with the NNLO ZM-VFNS function CZM, (2)

H,g across a variety of x and Q2 values.

Mass threshold is set at the charm quark level (m2
h = m2

c = 1.4 GeV2)
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Fig. 17 The N3LO GM-VFNS function CVF, (3)
H,g compared with the

N3LO ZM-VFNS function CZM, (3)
H,g across a variety of x and Q2 values

(shown without the variation from the low-Q2 NLL term discussed

in Sect. 6.2). CVF, (3)
H,g is parameterised via Eqs. (6.14), (6.15) and

(6.1). Mass threshold is set at the charm quark level (m2
h = m2

c =
1.4 GeV2)
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consistent order of magnitude across the evolution in Q2,
therefore the exact form of the shape across Q2 will be less
important in the resultant structure function picture.

CNS
q,q

The light quark coefficient functions involve small heavy
flavour contributions at higher orders from heavy quarks pro-
duced away from the photon vertex. As discussed in Sect. 6.1
the low-Q2 FFNS function in this case is unknown. How-
ever, since the heavy flavour contributions to the light quark
structure function F2,q(x, Q2) are very small, any choice of
sensible variation in Q2 has a near negligible effect on the
overall structure function. Further to this, as is apparent from
lower order examples, it can be expected that the light quark
coefficient functions remain relatively constant across Q2.

Using Eqs. (3.9) and (3.11), the non-singlet coefficient
function is stated as,

CFF, NS
q,q = ANS

qq,H ⊗ CVF NS
q,q , (6.16)

O(α0
s ) : CFF, (0)

q,q, NS = CVF, (0)
q,q, NS (6.17a)

O(α1
s ) : CFF, (1)

q,q, NS = CVF, (1)
q,q, NS (6.17b)

O(α2
s ) : CFF, (2)

q,q, NS = CVF, (2)
q,q, NS + ANS, (2)

qq,H (6.17c)

O(α3
s ) : CFF, (3)

q,q, NS = CVF, (3)
q,q, NS + ANS, (3)

qq,H

+ CVF, (1)
q,q, NS ⊗ ANS, (2)

qq,H . (6.17d)

From Eq. (6.17) the FFNS contribution at LO and NLO is
identical to the GM-VFNS and ZM-VFNS function at high-
Q2. Physically for heavy quarks to affect light quarks, a larger
number of vertices than are allowed at LO and NLO must be
present to enable interactions involving heavy quarks. We
therefore begin our discussion at NNLO.

NNLO

At NNLO the functions included in Eq. (6.17c) are known
exactly [39,58]. Assembling these together, we provide an
example of how the GM-VFNS function converges to the
familiar ZM-VFNS function for the light quark. By perform-
ing this exercise, expectations as to how CNS

q,q will behave at
N3LO can be constructed.

From Fig. 18 CVF, (2)
q,q, NS quickly converges onto the ZM-

VFNS function with the difference between the low and high-
Q2 being within 10% at large-x and within 0.01% at small-x .
This weak scaling with Q2 reinforces the statement that it is
possible to approximate the N3LO function relatively well
without extensive low-Q2 information.

N3LO

Equation (6.17d) involves a mixture of functions known
exactly (ZM-VFNS high-Q2 limit [57]) and functions that are
completely unknown (CFF, (3)

q,q, NS). This presents an issue as it

is no longer possible to rely on CFF, (3)
q,q, NS to constrain the low-

Q2 limit. Nevertheless, by utilising the experience gained
from NNLO, it is feasible to choose any sensible choice for
the low-Q2 limit. In practice, due to the observed weak scal-
ing in Q2, the exact form at low-Q2 will not present any
noticeable differences.

A naive choice for heuristically placing theCFF, (3)
q,q, NS(Q2 →

0) function would be a constant value i.e. no scaling in Q2.
We propose to use the intuition from NNLO and the overall
fit quality to give us potentially a more sensible and viable
choice for the GM-VFNS approximation.14 By inserting the
high-Q2 limit into the NS part of Eq. (6.2), the result is a
crude approximation to CFF, (3)

q,q, NS(Q2 → 0). Combining this
with Eq. (6.17d), we obtain a GM-VFNS parameterisation
which is relatively constant across Q2 (similar to the NNLO
behaviour) with any differences arising from the subtraction
terms which are known.

Figure 19 shows the result of this approximation for the
full CVF, (3)

q,q, NS function. We notice that the behaviour is sim-

ilar to that of NNLO across all (x, Q2) and appropriately
larger in magnitude to account for the extra contributions
obtained at N3LO compared to NNLO. By definition, the
parameterisation converges well to the ZM-VFNS scheme
with the magnitude at high-Q2 (ZM-VFNS regime) remain-
ing similar to that at low-Q2 for each specific value of x . This
final point gives assurances that even if this low-Q2 guess is
not entirely representative of the actual N3LO function, the
effects of including this approximation are virtually negli-
gible in a PDF fit. Also shown in Fig. 19 is the variation
in the CVF, (3)

q,q, NS function stemming solely from the ANS, (3)
qq,H

function.

CPS
q,q

To complete the light-quark GM-VFNS coefficient func-
tion picture the pure-singlet contribution from Eq. (3.9) and
Eq. (3.11) is described by,

CFF, PS
q,q = CVF, PS

q,q ⊗ APS
qq,H + CVF

q,g ⊗ Agq,H

+ CVF, PS
q,H ⊗ AHq (6.18)

O(α0
s ) : CFF, PS, (0)

q,q = 0 (6.19a)

14 The differences in fit quality for sensible choices are < 0.05% com-
pared to the overall χ2 for the light quark NS coefficient function.
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Fig. 18 The NNLO GM-VFNS function CVF, (2)
q,q, NS compared with the NNLO ZM-VFNS function CZM, (2)

q,q, NS across a variety of x and Q2 values.

Mass threshold is set at the charm quark level (m2
h = m2

c = 1.4 GeV2)
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Fig. 19 The N3LO GM-VFNS function CVF, (3)
q,q, NS compared with the N3LO ZM-VFNS function CZM, (3)

q,q, NS across a variety of x and Q2 values.

CVF, (3)
q,q, NS is parameterised via Eqs. (6.17d) and (6.2). Mass threshold is set at the charm quark level (m2

h = m2
c = 1.4 GeV2)
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O(α1
s ) : CFF, PS, (1)

q,q = 0 (6.19b)

O(α2
s ) : CFF, PS, (2)

q,q = CVF, (2)
q,q, PS (6.19c)

O(α3
s ) : CFF, PS, (3)

q,q = CVF, (3)
q,q, PS + CVF, (1)

q,g ⊗ A(2)
gq,H .

(6.19d)

As with the non-singlet analysis the heavy flavour contri-
butions to the pure-singlet appear at higher orders to allow
for the possibility of heavy quark contributions. In the pure-
singlet case, the heavy flavour contributions are pushed one
order higher than the non-singlet due to the requirement for
an extra intermediary gluon.

N3LO

In the pure-singlet case, the FFNS function is non-existent
up until N3LO. Because of this, we choose to parameterise
the pure-singlet with a weak constraint suppressing the FFNS
functionCFF, PS, (3)

q,q across all x for very low-Q2. The reason
for this is that the coefficient functions acquire more contri-
butions as they exist through higher orders. If CFF, PS, (3)

q,q

is beginning at this order, then one could expect the low-
Q2 form to be relatively small compared to the known ZM-
VFNS function [57]. This is somewhat justified by the low-
Q2 kinematic restrictions for the singlet distribution which
broadly manifest into a suppression at low-Q2. We reiterate
here that the low-Q2 form of this function is still essentially
around the same magnitude across all Q2. Therefore, as with
CFF, NS, (3)
q,q , it will be virtually negligible in the overall struc-

ture function.
After constructing the approximation for CFF, PS, (3)

q,q with
Eq. (6.2), Eq. (6.19d) is used to approximate the GM-VFNS
function. The exact form of Eq. (6.19d) is chosen based on
intuition and where the best fit quality can be achieved.15

It can be seen from Fig. 20 that the overall magnitude
of CVF, (3)

q,q, PS decreases substantially towards large-x as one
would expect from a pure-singlet function. Inspecting the
predicted values of CVF, (3)

q,q, PS, we can confirm that the non-
singlet function from Fig. 19 begins to dominate at large-x .
Conversely towards small-x , CVF, (3)

q,q, PS is much larger than

CVF, (3)
q,q, NS, thereby preserving the familiar interplay between

quark distributions. The suppression of the FFNS parameter-
isation towards low-Q2 is also seen to give sensible results
in terms of the expected percentage change in magnitude
through the range of Q2 values. Specifically we see < 10%
difference in magnitude between low and high-Q2. Since
scale violating terms become more dominant at higher orders
and we are essentially at leading order in terms of heavy
flavour contributions, a high level of scaling with Q2 is not
expected at this order.

15 The differences in fit quality for sensible choices are < 0.1% com-
pared to the overall χ2 for the light quark PS coefficient function.

Cq,g

Finally the gluon-light quark coefficient function is con-
structed from Eqs. (3.9) and (3.11) to be,

CFF
q,g = CVF

q,q ⊗ Aqg,H + CVF
q,g ⊗ Agg,H

+ CVF, PS
q,H ⊗ AHg (6.20)

O(α0
s ) : CFF, (0)

q,g = 0 (6.21a)

O(α1
s ) : CFF, (1)

q,g = CVF, (1)
q,g (6.21b)

O(α2
s ) : CFF, (2)

q,g = CVF, (2)
q,g + CVF, (1)

q,g ⊗ A(1)
gg,H + A(2)

qg,H

(6.21c)

O(α3
s ) : CFF, (3)

q,g = CVF, (3)
q,g + A(3)

qg,H + CVF, (1)
q,q ⊗ A(2)

qg,H

+ CVF, (2)
q,g ⊗ A(1)

gg,H + CVF, (1)
q,g ⊗ A(2)

gg,H

+ CVF, (2)
q,H, PS ⊗ A(1)

Hg. (6.21d)

For Cq,g , the FFNS function is non-existent up to NNLO,

similar to CFF,(3)
q,q, NS. However, the Aqg,H contribution at

NNLO is sub-leading in n f [39] and is therefore not con-
sidered here.

N3LO

At N3LO in Eq. (6.21d), no information is available for
the CFF, (3)

q,g at low-Q2. Whereas at high-Q2 the ZM-VFNS
function is known [57]. To construct the parameterisation, we
apply the same method described for CFF, (3)

q,q, PS. Specifically,
by applying a suppression to the FFNS parameterisation in
the low-Q2 limit. After constructing the parameterisation for
CFF, (3)
q,g with Eq. (6.2), Eq. (6.21d) is used to approximate

the GM-VFNS function. Since there is no information in
the low-Q2 limit, the parameterisation in Eq. (6.2) is chosen
roughly based on how the fit prefers the evolution in Q2 to
behave.

Figure 21 illustrates the GM-VFNS function in Eq. (6.21d)
with Eq. (6.2) asCFF, (3)

q,g across a range of x and Q2.CVF, (3)
q,g

increases in magnitude when moving to smaller x and by def-
inition converges onto the ZM-VFNS function. The conver-
gence in this case is chosen to be less steep than for the light
quark convergences due to some minor tensions in the fit.16

The magnitude of CVF, (3)
q,g across the entire range of Q2 is

still relatively constant, although less flat than the behaviour
predicted for CVF, (3)

q,q, PS/NS. However, considering Eq. (6.21d),
some justification for this behaviour can be offered. When

16 The differences in fit quality for sensible choices of Eq. (6.2) are
< 0.5% compared to the overall χ2 for the light quark gluon coefficient
function.
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Fig. 20 The N3LO GM-VFNS function CVF, (3)
q,q, PS compared with the N3LO ZM-VFNS function CZM, (3)

q,q, PS across a variety of x and Q2 values.

CVF, (3)
q,q, PS is parameterised via Eqs. (6.19d) and (6.2). Mass threshold is set at the charm quark level (m2

h = m2
c = 1.4 GeV2)
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Fig. 21 The N3LO GM-VFNS function CVF, (3)
q,g compared with the N3LO ZM-VFNS function CZM, (3)

q,g across a variety of x and Q2 values.

CVF, (3)
q,g is parameterised via Eqs. (6.21d) and (6.2). Mass threshold is set at the charm quark level (m2

h = m2
c = 1.4 GeV2)
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comparing the contributions to the FFNS functions in the NS,
PS and gluon cases (Eqs. (6.17d), (6.19d) and (6.21d) respec-
tively), the AHg and Agg,H contributions involved in CFF

q,g
are much larger than the contributions from Agq,H , AHq and
ANS
qq,H . Therefore we can expect a larger difference across

Q2 for the CVF, (3)
q,g function. With this being said, the spe-

cific form at low-Q2 is not very important in current PDF
fits, only that the form is continuous and valid.

7 N3LO K -factors

Thus far the primary concern has been the N3LO additions
to the theoretical form of the DIS cross section. However,
to complement these changes it is necessary to extend other
cross section data to the same order. With these ingredients it
is possible to maintain a consistent approximate N3LO treat-
ment across all datasets. At the time of writing, K -factors
which provide exact transformations for each dataset up to
NNLO are available.17 Although there has been progress in
N3LO calculations for various processes including Drell–
Yan (DY), top production and Higgs processes [63–76], there
is still missing information on how these K -factors behave
above NNLO. In this section we investigate the effects of
the K -factors for each dataset when extended to N3LO. Five
process categories are considered separately: Drell–Yan, Jets,
pT jets, t t̄ production and Dimuon data. Inside each of these
process categories we assume a perfect positive correlation
between the behaviour of datasets i.e. all Drell–Yan K -factor
shifts from NNLO are positively correlated. Clearly this treat-
ment is a simplification, based on the expectation of a high
degree of correlation between datasets concerned with the
same processes. In practice, the uncertainty introduced from
including these K -factors is already relatively small com-
pared to the other sources of MHOUs already discussed,
therefore any correction to this is guaranteed to be small
(this will be shown more clearly in Sect. 8).

7.1 Extension to aN3LO

The extension to aN3LO is parameterised with a mixture of
the NLO and NNLO K -factors. This allows control of the
magnitude and shape of the transformation from NNLO to
aN3LO, using the known shifts from lower orders.

The basic idea is presented as,

KN3LO/LO = aNNLO KNNLO/LO + aNLO KNLO/LO, (7.1)

where KN3LO/LO, KNNLO/LO and KNLO/LO are the relevant
K -factors with respect to the LO cross section, and aN(N)LO

17 An exception to this is the CMS 7 TeV W + c [62] dataset where
K -factors are available only up to NLO.

are variational parameters controlling the mixture of NNLO
and NLO K -factors included in the N3LO K -factor approx-
imation. Hence we have 2 parameters for each of the five
processes included in the fit, and now 20 theory nuisance
parameters in total – 10 controlling aN3LO K -factors, 5 con-
trolling aN3LO splitting functions and 5 controlling heavy
flavour aN3LO contributions.

To describe this formalism in terms of physical observ-
ables we consider the cross section,

σ = σ0 + σ1 + σ2 + · · · ≡ σNNLO + . . . , (7.2)

where there is an implicit order of α
p+i
s absorbed into the

definition of σi beginning at the relevant LO for each process,
i.e. p = 0 for DY.

KNLO/LO is then the relative shift from σLO to σNLO,

KNLO/LO = σ0 + σ1

σ0
= 1 + σ1

σ0
. (7.3)

Similarly for NNLO we have,

KNNLO/LO = σ0 + σ1 + σ2

σ0
= 1 + σ1

σ0
+ σ2

σ0
. (7.4)

Moving to N3LO, we write

σ = σ0 + σ1 + σ2 + σ3 + · · · ≡ σN3LO + . . . , (7.5)

where σ3 = a1σ1 + a2σ2 is approximated as some superpo-
sition of the two lower orders, with (a1, a2) = (0, 0) repro-
ducing the NNLO case.

Pushing forward with this approximation and using the
definitions for σ1,2 in terms of K -factors (Eqs. (7.3) and (7.4))
we have,

σN3LO = σNNLO + a1σ1 + a2σ2 (7.6)

= σNNLO + a1σ0(K
NLO/LO − 1)

+ a2σ0(K
NNLO/LO − KNLO/LO) (7.7)

since,

σ1 = σ0

(
KNLO/LO − 1

)
(7.8)

σ2 = σ0

(
KNNLO/LO − σ1 − σ0

)

= σ0

(
KNNLO/LO − KNLO/LO

)
. (7.9)

From here one can obtain,

KNNLO/LO − KNLO/LO = σ2

σ0
= σ2 + σ0

σ0
− 1

≈ σ2 + σ1 + σ0

σ1 + σ0
− 1

= KNNLO/NLO − 1, (7.10)

123



Eur. Phys. J. C (2023) 83 :185 Page 43 of 108 185

Fig. 22 K -factor expansion up to aN3LO shown for the LHCb 2015 W, Z dataset [77,78]. The K -factors shown here are absolute i.e. all with
respect to LO (KNmLO/LO ∀ m ∈ {1, 2, 3})

assuming σ1 � σ0, which is in general true for a valid per-
turbative expansion. Using (7.10) σN3LO can be expressed
by,

σN3LO � σNNLO

(
1 + a1(K

NLO/LO − 1)

+a2(K
NNLO/NLO − 1)

)
, (7.11)

where σ2 � σ1 � σ0.
This defines the proposed approximated N3LO cross sec-

tion. It is given in terms of extra contributions from lower
order shifts, which are controlled by variational parameters
a1 and a2. It is also true that the contributions to N3LO are
expected to be suppressed by αs/π in the NNLO case and
(αs/π)2 in the NLO case to account for the strengths of each
contribution. Currently this is taken into account within the
variational parameters a1, a2. However for the purpose of
this description, it is more appropriate to explicitly redefine
a1, a2 = a2

s â1, asâ2 where as = Nαs and N is some nor-
malisation factor. This then results in,

KN3LO/LO = KNNLO/LO
(

1 + â1N 2α2
s (K

NLO/LO − 1)

+â2Nαs(K
NNLO/NLO − 1)

)
, (7.12)

where the LO cross section σ0 is cancelled and Eq. (7.12) is
written in terms of the K -factor shifts only. Equation (7.12)
also implicitly includes the correct orderO(α3

s ) in the param-
eterisation through (7.3) and (7.4). We can then choose N
in order to set the approximate magnitude of our variational
parameters â1, â2. Given αs ∼ 0.1 for the processes consid-
ered, if we neglect N (i.e. choose N ∼ 1), then our order by
order reduction in the magnitude of the K -factors would be
∼ 10% for O(1) for variational parameters, however from
previous orders we see that typically K -factors tend to be

30−40% of the previous order, therefore we instead choose
N = 3. This then ensures the natural scale of variation
allowed is also of this order with O(1) variational parame-
ters describing the admixture of NLO and NNLO K -factors,
with conservative penalties applied accordingly.

Reflecting on this, it is worth noting that these fitted K -
factors will be sensitive to all orders, not just N3LO. Consid-
ering these K -factors as approximating asymptotic behaviour
to all orders in perturbation theory when assessing the stabil-
ity of predictions, we can be less concerned with any some-
what large shifts from NNLO to aN3LO, as we will specifi-
cally see in the case of Figs. 25 and 26. Finally, we remind the
reader that at higher orders, new terms with more divergent
leading logarithms appear which are missed by the current
theoretical description. Due to this, the all-orders asymptotic
description will still remain approximate up to the inclusion
of more divergent leading logarithms in (x, Q2) limits at even
higher orders.

7.2 Numerical results

Using this formalism for the aN3LO K -factors, we present
the global fit results for each of the five process categories
considered.

Drell–Yan processes

For the Drell–Yan processes (all calculated at μr, f = mll/2),
a reduction of ∼ 1−2% in the K -factor shift is predicted
across most of the corresponding datasets at aN3LO. This
is in agreement with recent work [64]. An example of this
reduction is shown in Fig. 22.
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Fig. 23 K -factor expansion up to aN3LO shown for the ATLAS 7 TeV high precision W, Z dataset [79]. The K -factors shown here are absolute
i.e. all with respect to LO (KNmLO/LO ∀ m ∈ {1, 2, 3})
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Table 2 Table showing the relevant DY datasets and how the individual χ2 changes from NNLO by including the N3LO treatment of K -factors,
and theoretical N3LO additions discussed earlier. The result with purely NNLO K -factors included for all data in the fit is also given

DY Dataset χ2 χ2 from NNLO χ2 from NNLO (NNLO K -factors)

E866/NuSea pp DY [80] 223.3 / 184 −1.8 +2.7

E866/NuSea pd/pp DY [81] 8.4/15 −2.0 −1.1

DØ II Z rap. [82] 17.3 / 28 +0.9 +0.7

CDF II Z rap. [83] 40.5 / 28 +3.3 +1.4

DØ II W → νμ asym. [84] 16.5/10 −0.8 −1.1

CDF II W asym. [85] 18.2/13 −0.8 −0.8

DØ II W → νe asym. [86] 30.7/12 −3.2 −3.2

ATLAS W+, W−, Z [87] 30.0/30 +0.1 +0.3

CMS W asym. pT > 35 GeV [88] 6.7/11 −1.1 −1.1

CMS W asym. pT > 25, 30 GeV [89] 7.7 / 24 +0.3 +0.3

LHCb Z → e+e− [90] 24.1 / 9 +1.4 +0.7

LHCb W asym. pT > 20 GeV [91] 12.6/10 +0.1 +0.3

CMS Z → e+e− [92] 17.5 / 35 −0.5 −0.3

ATLAS High-mass Drell–Yan [93] 18.1 / 13 −0.8 −0.9

CMS double diff. Drell–Yan [94] 129.5 / 132 −15.1 +9.7

LHCb 2015 W, Z [77,78] 103.9 / 67 +4.5 −0.1

LHCb 8 TeV Z → ee [95] 28.8 / 17 +2.6 +1.7

CMS 8 TeV W [96] 11.8 / 22 −0.9 −0.2

ATLAS 7 TeV high prec. W, Z [79] 94.5 / 61 +2.6 −8.3

DØ W asym. [97] 12.2/14 +0.1 +1.3

ATLAS 8 TeV High-mass DY [98] 63.0 / 48 +5.9 +1.5

ATLAS 8 TeV W [99] 58.0 / 22 +0.4 −0.1

ATLAS 8 TeV double diff. Z [100] 91.6 / 59 +15.7 +6.7

Total 1065.4 / 864 −12.8 +10.4

Conversely, Fig. 23 displays an example where the K -
factor shift has much less of a contribution at N3LO. This
is a feature of the ATLAS datasets included in the fit due to
the impact of chosen pT cuts which reduce the sensitivity to
higher orders.

Table 2 demonstrates that in most cases, the new fitted
DY aN3LO K -factors are producing a slightly better fit with
a moderate cumulative effect. We remind the reader that we
have included a total of 20 extra parameters into the fit. These
extra 20 parameters are fit across all datasets and multi-
ple processes, whereas the decrease here is for a subset of
datasets corresponding to the DY processes included in a
global fit.

Across these datasets, the K -factors act to extend the
description of these processes to approximate N3LO. The
result of including this procedure is a better fit in the DY
regime while also relaxing tensions with other processes
included in the fit. Comparing the χ2 results with and
without aN3LO K -factors, we can see the extent to which
the K -factors and all other N3LO additions are reducing the
overall χ2.

In some individual cases, the dataset χ2 becomes some-
what worse relative to NNLO most notably the ATLAS 8
TeV double differential Z [100], whilst in a few others the χ2

improvement upon addition of the aN3LO splitting functions,
transition matrix elements and coefficient function pieces is
seen to deteriorate upon addition of the aN3LO K -factors,
e.g. the LHCb 2015 W, Z [77,78], which exhibits a mild
preference for the N3LO theory with NNLO K -factors. The
addition of the aN3LO K -factors do nonetheless result in a
net reduction in χ2 and for a large number of cases the aN3LO
K -factors allow for a slight reduction in the individual χ2.
Of particular note is the 7TeV high precision W, Z [79] data,
which improves by over 20 points. This may indicate that
the challenge in achieving a statistically good fit to this high
precision data that is observed across all NNLO PDF fits
is in part related to the lack of higher order corrections in
the theory. On the other hand, for arguably the other most
precise (and multi-differential) data, namely the ATLAS 8
TeV double differential Z [100], the fit quality deteriorates.
This may be due to the differing mass binning and/or cuts,
but in general it is difficult to draw firm conclusions here, at
least with the current K-factor treatment. The CMS double
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Fig. 24 K -factor expansion up to aN3LO shown for the CMS 7 TeV jets dataset (R = 0.7) [101]. The K -factors shown here are absolute i.e. all
with respect to LO (KNmLO/LO ∀ m ∈ {1, 2, 3})

diff. Drell–Yan [94] also shows a particularly large reduc-
tion when these are added on top of the aN3LO theory, this
is a dataset which shows some tension with the DIS N3LO
additions which is then eased by the addition of the aN3LO
K -factors.

Jet production processes

The jets processes (all calculated for μr, f = p jet
T ) show a

general increase in the K -factor shifts from NNLO as seen in
Fig. 24, which displays the K -factor expansion up to aN3LO
for the CMS 7 TeV jets dataset [101]. It is apparent that

123



Eur. Phys. J. C (2023) 83 :185 Page 47 of 108 185

Table 3 Table showing the
relevant jet datasets and how the
individual χ2 changes from
NNLO by including the N3LO
treatment of K -factors. The
result with purely NNLO
K -factors included for all data
in the fit is also given

Jets dataset χ2 χ2 from NNLO χ2 from NNLO (NNLO K -factors)

CDF II p p̄ incl. jets [102] 66.5/76 +6.1 +1.7

DØ II p p̄ incl. jets [103] 113.3/110 −6.9 −3.0

ATLAS 7 TeV jets [104] 215.9/140 −5.6 +3.7

CMS 7 TeV jets [101] 186.8/158 +11.0 +9.3

CMS 8 TeV jets [105] 271.3/174 +10.0 +21.5

CMS 2.76 TeV jet [106] 109.8/81 +6.9 +9.0

Total 963.6/739 +21.5 +42.2

there is a mild shift to N3LO from the NNLO K -factor.
This behaviour follows what one might expect for a per-
turbative expansion considering the forms of the NLO and
NNLO functions.

A χ2 summary of the Jets datasets is provided in Table 3.
By combining the N3LO structure function and DGLAP
additions (Sects. 4–6) with NNLO K -factors, the fit exhibits
a substantial increase in the χ2 from Jets data. Including
aN3LO K -factors acts to reduce some of this tension with
around half the initial overall χ2 increase still remaining. We
note that in the case of the ATLAS 7 TeV jets [104], it is well
known that there are issues in achieving a good fit quality
across all rapidity bins (see [107] for a detailed study as well
as [108] where the 8 TeV data are presented and the same
issues observed). In [107,108] the possibility of decorrelat-
ing some of the systematic error sources where the degree
of correlation is less well established, was considered and
indeed in our study we follow such a procedure, as described
in [3]. Alternatively, however, it might be that the issues in fit
quality could at least part be due to deficiencies in theoretical
predictions, such as MHOs. To assess this, we revert to the
default ATLAS correlation scenario and repeat the global fit.
We find that the χ2 deteriorates by +40.7 points to 256.6,
which is very close to the result found in a pure NNLO fit
[3]. In other words, in our framework the impact of MHOUs
does not resolve this issue.

The χ2 results for datasets in Table 3 show evidence for
some tensions with the N3LO form of the high-x gluon.
It is also apparent that the CMS data is in more tension
than ATLAS datasets with N3LO structure function and
DGLAP theory. Therefore it will be interesting to see how
this behaviour changes when considering this data as dijets
in the global fit [109]. We do not consider the dijet data here,
though this will be addressed in a future publication.

Z pT and vector boson + jets processes

In the case of Z pT & vector boson + jet processes (all

calculated at μr, f =
√
p2
T,ll + m2

ll ), the K -factor shift is

almost completely dominated by the ATLAS 8 TeV Z pT
dataset [110] (due to the larger number of data points included

in this dataset) shown in Fig. 25. The gluon is less directly
constrained than the quarks in a global fit. Therefore it can
be expected that the significant modifications at small-x will
indirectly affect the high-x gluon, where these processes are
most sensitive. Considering the jet production processes in
Table 3, when performing separate PDF fits not including
ATLAS 8 TeV Z pT data [110], we find a reduction of χ2 =
−7.0 in CMS 8 TeV jets data [105] eliminating most of the
tension for this dataset (similar to MSHT20 NNLO results in
Table 16 of [3]). Further to this, when not including HERA
and ATLAS 8 TeV Z pT data we find a reduction of χ2 =
−26.4 in CMS 8 TeV jet data [105] and χ2 = −12.7 in
CMS 2.76 TeV jet data [106].

Although the overall magnitude of the K -factor in Fig. 25
may seem large, this new shift is contained within a 15%
increase from NNLO (due to the NLO and NNLO K -factors
also being significant). Moreover, not only does the size of
this shift have some dependence on the central scale, but this
shift may be more correctly interpreted as the preferred all-
orders cross section rather than simply the pure N3LO result.

The extent of the χ2 reduction in the Z pT datasets is
shown in Table 4. Note that around ∼ 68% of the improve-
ment to the ATLAS 8 TeV Z pT [110] χ2 is due to the
extra N3LO theory included in the DGLAP and DIS descrip-
tions. It is also known the ATLAS 8 TeV Z pT data [110]
previously exhibited a significant level of tension with many
datasets (including HERA data) at NNLO [3]. This was inves-
tigated by performing a global PDF fit with and without
HERA data and comparing the individual χ2’s from each
dataset. At NNLO it was found that the ATLAS 8 TeV Z pT
dataset [110] reduced by χ2 = −39.2 when fitting to all
non-HERA data (see Table 19). At aN3LO we observe that
the ATLAS 8 TeV Z pT dataset [110] actually increased
by χ2 = +12.8 when fitting to all non-HERA data (see
Table 20). The aN3LO additions therefore eliminate this ten-
sion previously observed at NNLO, suggesting that this issue
at NNLO in fitting the ATLAS 8TeVZ pT dataset [110] was a
sign of MHOs. This is in contrast with the result observed for
ATLAS 7 TeV jets [104] where the issues with fit quality were
not alleviated by the inclusion of known higher order N3LO
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information and approximations for the remaining missing
pieces.

Finally we remind the reader that the CMS 7 TeV W + c
dataset [62] does not include a K -factor at NNLO. To over-
come this, we tie the overall N3LO K -factor shift to the NLO
value (KNNLO/NLO = 1 in Eq. (7.12)), therefore contributing
as an overall normalisation effect.

Top quark processes

Moving to top quark processes, for the single differential
datasets the scale choice for μr, f is HT /4 with the exception
of data differential in the average transverse momentum of
the top or anti-top, ptT , pt̄T , for which mT /2 is used. For
the double diff. dataset the scale choice is HT /4 and for the
inclusive top σt t̄ a scale of mt is chosen. Figure 26 displays
the K -factor shifts up to N3LO for the CMS 8 TeV single
diff. t t̄ dataset [112], which shows the greatest reduction in
its χ2. A familiar perturbative pattern can be seen for this
process’s K -factors, with the shift at aN3LO increasing by
around 3–4% from NNLO. This is in agreement with a recent
∼ 3.5% predicted increase in the N3LO t t̄ production K -
factor at 8 TeV in [66], whereby an approximate N3LO cross
section for t t̄ production in proton-proton collisions has been
calculated employing a resummation formalism [113–116].

The χ2 results in Table 5 display a mildly better fit for
top processes, with most datasets not feeling a large overall
effect from the N3LO additions. Comparing with and without
aN3LO K -factors, we see a slightly better fit overall, with
most of the reduction in overall χ2 stemming from CMS
8 TeV double diff. t t̄ data [132].

Semi-inclusive DIS dimuon processes

The final set of results to consider in this section are
the aN3LO K -factors associated with semi-inclusive DIS
dimuon cross sections (with μ2

r, f = Q2). Although the
dimuon cross section is associated with the DIS process
described from our approximate N3LO structure function
picture, it is a semi-inclusive DIS process. Therefore it is
sensible to treat this process as entirely separate from DIS.
The NNLO cross-sections used in this case are a general-
mass variable flavour number scheme extension of the results
in [134], as described in more detail in [3]. The K -factors
shown in Fig. 27 (for the NuTeV νN → μμX data [133])
are somewhat similar to NNLO. The reason for this is
mostly due to these datasets also including a branching ratio
(BR(D → μ)) which absorbs any overall normalisation
shifts. This behaviour is not a concern since in practice these
two work in tandem and when combined together it makes no
difference where the normalisation factors are absorbed into.

Investigating the change in the BR’s with the addition of
N3LO contributions in Table 6, the BR at N3LO decreases

substantially from NNLO, with little difference from the
addition of aN3LO K -factors. The predicted dimuon BR at
aN3LO is inside the allowed ±1σ range of 0.092 ± 0.010.
When performing a fit with the BR fixed at its central value
(BR = 0.092), one is able to observe the effect of manually
forcing the normalisation into the K -factor variation alone.
The result of this is a worse global fit quality χ2 = +11.2,
where +3.9 units arise from an increased penalty for the
Dimuon K -factor description and +2.3 units from a slightly
worse fit to the Dimuon datasets listed in Table 7. The rest
of the observed increase in χ2

global is dominated by a +4.1
increase in the ATLAS 7 TeV high prec.W, Z [79] data due to
a smaller strange quark PDF (compensating the higher BR
in dimuon datasets). Returning to consider the case of the
K -factors and BR together, the predicted effect on dimuon
datasets is very similar. However due to the errors accounting
for a larger allowed shift in the BR relative to the K -factors,
the fit favours moving the BR by a larger amount to reduce
the penalty χ2 contribution from K -factors which explains
the results shown in Table 6.

Table 7 further confirms the expectation that the Dimuon
datasets are not too sensitive to N3LO additions. The results
with and without a full treatment of aN3LO K -factors are
also similar in magnitude. It is therefore clear that the dimuon
BR’s are compensating for any indirect normalisation effects
from the form of the PDFs in the full aN3LO fit, as opposed
to the aN3LO K -factors.

8 MSHT20 approximate N3LO global analysis

With the inclusion of all N3LO approximations discussed in
earlier sections resulting in 20 extra free parameters from the
NNLO MSHT20 fit, we now present the results for the first
approximate N3LO global PDF fit with theoretical uncertain-
ties from missing N3LO contributions and implicitly some
MHOs beyond this. This includes the results for the best fit
for the nuisance parameters describing the theoretical uncer-
tainty. We remind the reader that these are parameterised
specifically to represent the missing uncertainty at N3LO,
which is currently the dominant source of uncertainty due
to missing higher orders. However, the fit will also be influ-
enced, to a limited extent, by effects at even higher orders.
Later in the section we discuss this in more detail.

8.1 χ2 breakdown

Table 8 shows the global χ2 results for an aN3LO best fit,
inclusive of penalties associated with the new theory vari-
ational parameters (from Eq. (2.17)). The theory parame-
ters are labelled as: AHg(aHg), Agg,H (agg,H ), ANS

qq,H (aNS
qq,H )

for the transition matrix elements; PNS
qq (ρNS

qq ), PPS
qq (ρPS

qq ),
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Fig. 25 K -factor expansion up to aN3LO shown for the ATLAS 8 TeV Z pT dataset [110]. The K -factors shown here are absolute i.e. all with
respect to LO (KNmLO/LO ∀ m ∈ {1, 2, 3})
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Table 4 Table showing the relevant Z pT and Vector Boson jet datasets
and how the individual χ2 changes from NNLO by including the N3LO
treatment of K -factors, and theoretical N3LO additions discussed ear-

lier. The result with purely NNLO K -factors included for all data in the
fit is also given

pT Jets dataset χ2 χ2 from NNLO χ2 from NNLO (NNLO K -factors)

CMS 7 TeV W + c [62] 10.8/10 +2.2 +0.2

ATLAS 8 TeV Z pT [110] 108.4/104 −80.0 −54.5

ATLAS 8 TeV W + jets [111] 18.8/30 +0.7 −0.3

Total 138.0/144 −77.2 −54.7

Fig. 26 K -factor expansion up
to aN3LO shown for the CMS
8 TeV single diff. t t̄ dataset
[112]. The K -factors shown
here are absolute i.e. all with
respect to LO
(KNmLO/LO ∀ m ∈ {1, 2, 3})

Table 5 Table showing the relevant Top Quark datasets and how the individual χ2 changes from NNLO by including the N3LO treatment of
K -factors, and theoretical N3LO additions discussed earlier. The result with purely NNLO K -factors included for all data in the fit is also given

Top dataset χ2 χ2 from NNLO χ2 from NNLO (NNLO K -factors)

Tevatron, ATLAS, CMS σt t̄ [117–129] 14.3/17 −0.2 −1.0

ATLAS 8 TeV single diff. t t̄ [130] 24.2/25 −1.4 −0.8

ATLAS 8 TeV single diff. t t̄ dilep. [131] 2.7/5 −0.7 −0.7

CMS 8 TeV double diff. t t̄ [132] 23.6/15 +1.0 +4.0

CMS 8 TeV single diff. t t̄ [112] 10.3/9 −2.9 −4.0

Total 75.1/71 −4.2 −2.5

Pqg(ρqg), Pgq(ρgq) and Pgg(ρgg) for the splitting functions;
and cNLL

q and cNLL
g correspond to the NLL parameters dis-

cussed in Sect. 6.2. These are supplemented by the 10 addi-
tional nuisance parameters for the NLO and NNLO K -factors
for the five process categories. These 20 additional parame-
ters and their associated penalties are also shown in Table 8.

The extra N3LO theory and level of freedom introduced
has allowed the fit to achieve a total χ2 = −150.4 com-
pared to MSHT20 NNLO total χ2 (Table 7 from [3]). Com-
paring with lower order PDF fits, we find a smooth conver-

gence in the fit quality which follows what one may expect
from an increase in the accuracy of a perturbative expansion
(χ2/Npts = LO: 2.57, NLO: 1.33, NNLO: 1.17, N3LO: 1.14).
In part, this is due to the extra freedom in the K -factors,
which will almost always act to reduce this χ2 due to the
minimisation procedure. However, even with this freedom,
in most cases the N3LO theory (non K -factor) contributions
include large divergences from NNLO. With this in mind, we
must conclude that the fit is preferring a description different
from the current NNLO standard.
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Fig. 27 K -factor expansion up to aN3LO shown for the NuTeV νN → μμX dataset [133]. The K -factors shown here are absolute i.e. all with
respect to LO (KNmLO/LO ∀ m ∈ {1, 2, 3})
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Table 6 Table displaying dimuon branching ratios (BRs) at NLO,
NNLO, aN3LO and aN3LO with NNLO K -factors

NLO NNLO aN3LO aN3LO (NNLO K -factors)

BR(D → μ) 0.095 0.088 0.082 0.081

At NNLO (Table 19), the tension between HERA and
non-HERA datasets accounted for χ2 = −61.6 reduc-
tion in the overall fit quality when the former was removed,
with the majority of this tension between HERA and ATLAS
8 TeV Z pT [110] data. Whereas comparing fit results with
and without HERA data at N3LO, we find χ2 = −49.0.
Although the overall difference is not too substantial we do
report a substantial shift in the leading tensions, where most
of the tension with HERA data is now residing with NMC F2

[136] and CMS 8 TeV jets [105] data. Tensions with NMC
F2 [136] data are also seen to some extent at NNLO where
we show a χ2 = −20.6 in a fit omitting HERA data (com-
bining the NMC F2 datasets shown in Table 19). However at
N3LO, Table 20 shows a χ2 = −23.4 reduction from NMC
F2 data in a fit omitting HERA data. Therefore whilst the
N3LO additions remove tensions with Z pT data, it remains
that the HERA data is preferring the high-x quarks to be lower
than favoured by NMC data. This is suggestive of higher twist
effects for NMC data at low-Q2 (as we observe a worse fit
to low-Q2 data). We also emphasise that when conducting
a fit at NNLO with Z pT data removed, an improvement of
χ2 = −41.3 is observed in the rest of the data, whereas
at N3LO an improvement of χ2 = −65.2 is observed in
all other datasets without removing Z pT , therefore these
results are not purely an effect of removing any Z pT ten-
sion. Considering tensions with CMS 8 TeV jets [105] data,
as discussed in Sect. 7, in general the jets datasets show ten-
sions with the N3LO description (especially for CMS 8 TeV
jets [105]), therefore it will be interesting to observe how
this picture evolves when considering this data in the form
of dijets.

Since a naturally richer description of the small-x regime
is being included at N3LO, which has a direct effect on the
HERA datasets, the reduction of important tensions from
NNLO is even further justification for the inclusion of the
N3LO theory. The extra N3LO additions are allowing the
large-x behaviour of the PDFs to be less dominated by data
at small-x , while also producing a better fit quality at small-x
(i.e. for HERA data). Some of the above observations are also
made in [16,17] where studies of including small-x resum-
mation results into a PDF fit have been reported.

Reflecting on the chosen prior distributions for each of the
sources of missing N3LO uncertainty, Table 8 confirms that
no especially large penalties are being incurred in this new
description. These results therefore demonstrate that the fit
is succeeding in leveraging contributions (such as P(3)

qq and

P(3)
qg in the quark evolution part of Eq. (3.3)) to produce a

better overall fit.

DIS processes

To complement the discussions in Sect. 7, we isolate the
χ2 results from DIS data in Table 9. This data is directly
affected by the N3LO structure functions constructed approx-
imately in Sects. 3–6. A substantial decrease in the total χ2

from NNLO is observed across DIS datasets. Considering
the results in Table 9 in the context of Tables 2, 3, 4, 5, 6
and 7, a better fit quality is observed for all DIS and non-DIS
datasets than at NNLO with the inclusion of N3LO contri-
butions. As the DIS data makes up over half of the total data
included in a global fit, it is the dominant force in deciding
the overall form of the PDFs, especially at small-x (discussed
further in Sect. 8.4). Table 9 further reinforces the point that
the N3LO description is flexible enough to fit to HERA and
non-HERA data, without being largely constrained by ten-
sions between the small-x (HERA dominated) and large-x
(non-HERA dominated) regions.

8.2 Correlation results

The correlation matrix shown in Fig. 28 illustrates the corre-
lations between extra N3LO theory parameters and the subset
of the MSHT20 parameters which are included in the con-
struction of Hessian eigenvectors (see Sect. 8.3 and [3] for
details). It is apparent that the correlations between K -factor
parameters for each process (shown in green) and other PDF
and theory parameters are usually small, with some excep-
tions e.g. for the TopNLO parameter. Due to this there is an
argument that each process’ K -factor parameters could be
treated separately from all other parameters in the Hessian
prescription (see Sect. 4.1) which allows for a more flexible
PDF set that can be decorrelated from a process. By using
the uncorrelated Hessian results for a process NNLO hard
cross sections can be transformed to aN3LO and therefore
provide more reliable predictions (more details in Sect. 10).
This is a fairly intuitive result, since most correlations are
showing a natural separation between the process dependent
and process independent physics in the DIS picture.18 Mathe-
matically, the K -factors are directly associated with the hard
cross section, whereas other N3LO theory parameters (ρi j
and ai j ) are having a direct effect on the PDFs. Figure 28
therefore begins to motivate the inclusion of the ‘pure’ theory
(splitting functions and transition matrix elements) parame-
ters within the standard MSHT eigenvector analysis [3], with
the decorrelation of the K -factor parameters, as discussed in
Sect. 2.3. We investigate and compare both treatments (com-

18 The same pattern can be seen for cNLL{q,g} parameters which are involved
in the DIS hard cross section.
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Table 7 Table showing the
relevant Dimuon datasets and
how the individual χ2 changes
from NNLO by including the
N3LO treatment of K -factors,
and theoretical N3LO additions
discussed earlier. The result
with purely NNLO K -factors
included for all data in the fit is
also given

Dimuon dataset χ2 χ2 from NNLO χ2 from NNLO (NNLO K -factors)

CCFR
νN → μμX
[133]

68.3/86 +0.6 +1.1

NuTeV
νN → μμX
[133]

56.7/84 −1.8 −0.6

Total 125.0/170 −1.2 +0.5

Table 8 Full breakdown of χ2 results for the aN3LO PDF fit. The global fit includes the N3LO treatment for transition matrix elements, coefficient
functions, splitting functions and K -factor additions with their variational parameters determined by the fit

Dataset Npts χ2 χ2 from NNLO

BCDMS μp F2 [135] 163 174.4 −5.8

BCDMS μd F2 [135] 151 144.3 −1.7

NMC μp F2 [136] 123 121.5 −2.6

NMC μd F2 [136] 123 104.2 −8.4

SLAC ep F2 [137,138] 37 31.6 −0.4

SLAC ed F2 [137,138] 38 22.8 −0.2

E665 μd F2 [139] 53 63.9 +4.2

E665 μp F2 [139] 53 67.5 +2.9

NuTeV νN F2 [140] 53 35.7 −2.6

NuTeV νN xF3 [140] 42 34.8 +4.1

NMC μn/μp [141] 148 131.6 +0.8

E866/NuSea pp DY [80] 184 223.3 −1.8

E866/NuSea pd/pp DY [81] 15 8.4 −2.0

HERA ep Fcharm
2 [142] 79 143.7 +11.4

NMC/BCDMS/SLAC/HERA FL [135,136,138,143–145] 57 45.6 −22.9

CCFR νN → μμX [133] 86 68.3 +0.6

NuTeV νN → μμX [133] 84 56.7 −1.8

CHORUS νN F2 [146] 42 29.2 −1.0

CHORUS νN xF3 [146] 28 18.1 −0.3

HERA e+ p CC [147] 39 49.7 −2.3

HERA e− p CC [147] 42 64.9 −5.3

HERA e+ p NC 820 GeV [147] 75 84.3 −5.6

HERA e− p NC 460 GeV [147] 209 247.7 −0.6

HERA e+ p NC 920 GeV [147] 402 474.0 −38.7

HERA e− p NC 575 GeV [147] 259 248.5 −14.5

HERA e− p NC 920 GeV [147] 159 243.0 −1.4

CDF II p p̄ incl. jets [102] 76 66.5 +6.1

DØ II Z rap. [82] 28 17.3 +0.9

CDF II Z rap. [83] 28 40.6 +3.3

DØ II W → νμ asym. [84] 10 16.5 −0.8

CDF II W asym. [85] 13 18.2 −0.8

DØ II W → νe asym. [86] 12 30.7 −3.2

DØ II p p̄ incl. jets [103] 110 113.3 −6.9
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Table 8 continued

Dataset Npts χ2 χ2 from NNLO

ATLAS W+, W−, Z [87] 30 30.0 +0.1

CMS W asym. pT > 35 GeV [88] 11 6.7 −1.1

CMS W asym. pT > 25, 30 GeV [89] 24 7.7 +0.3

LHCb Z → e+e− [90] 9 24.1 +1.4

LHCb W asym. pT > 20 GeV [91] 10 12.6 +0.1

CMS Z → e+e− [92] 35 17.5 −0.5

ATLAS high-mass Drell–Yan [93] 13 18.1 −0.8

Tevatron, ATLAS, CMS σt t̄ [117–129] 17 14.3 −0.2

CMS double diff. Drell–Yan [94] 132 129.5 −15.1

LHCb 2015 W, Z [77,78] 67 103.9 +4.5

LHCb 8 TeV Z → ee [95] 17 28.8 +2.6

CMS 8 TeV W [96] 22 11.8 −0.9

ATLAS 7 TeV jets [104] 140 215.9 −5.6

CMS 7 TeV W + c [62] 10 10.8 +2.2

ATLAS 7 TeV high prec. W, Z [79] 61 94.5 −22.1

CMS 7 TeV jets [101] 158 186.8 +11.0

DØ W asym. [97] 14 12.2 +0.1

ATLAS 8 TeV Z pT [110] 104 108.4 −80.0

CMS 8 TeV jets [105] 174 271.3 +10.0

ATLAS 8 TeV sing. diff. t t̄ [130] 25 24.2 −1.4

ATLAS 8 TeV sing. diff. t t̄ dilep. [131] 5 2.7 −0.7

ATLAS 8 TeV high-mass DY [98] 48 63.0 +5.9

ATLAS 8 TeV W + jets [111] 30 18.8 +0.7

CMS 8 TeV double diff. t t̄ [132] 15 23.6 +1.0

ATLAS 8 TeV W [99] 22 53.0 −4.4

CMS 2.76 TeV jet [106] 81 109.8 +6.9

CMS 8 TeV sing. diff. t t̄ [112] 9 10.3 −2.9

ATLAS 8 TeV double diff. Z [100] 59 91.6 +15.7

Low-Q2 coefficient

cNLL
q = −3.868 0.004 cNLL

g = −5.837 0.844

Transition matrix elements

aHg = 12214.000 0.601 aNS
qq,H = −64.411 0.001

agg,H = −1951.600 0.857

Splitting functions

ρNS
qq = 0.007 0.000 ρgq = −1.784 0.802

ρPS
qq = −0.501 0.186 ρgg = 19.245 3.419

ρqg = −1.754 0.015

K-factors

DYNLO = −0.282 0.080 DYNNLO = 0.079 0.006

TopNLO = 0.041 0.002 TopNNLO = 0.651 0.424

JetNLO = −0.300 0.090 JetNNLO = −0.691 0.478

pT JetsNLO = 0.583 0.339 pT JetsNNLO = −0.080 0.006

DimuonNLO = −0.444 0.197 DimuonNNLO = 0.922 0.850

N3LO penalty total 9.262/20 Average penalty 0.463

Total 4957.2 / 4363

χ2 from NNLO −154.4
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Table 9 Table showing the relevant DIS datasets and how the individual χ2 changes from NNLO by including the N3LO contributions to the
structure function F2(x, Q2). The result within purely NNLO K -factors included for all data in the fit is also given

DIS dataset χ2 χ2 from NNLO χ2 from NNLO (NNLO K -factors)

BCDMS μp F2 [135] 174.4/163 −5.8 −5.6

BCDMS μd F2 [135] 144.3/151 −1.7 +0.6

NMC μp F2 [136] 121.5/123 −2.6 −3.8

NMC μd F2 [136] 104.2/123 −8.4 −11.5

SLAC ep F2 [137,138] 31.6/37 −0.4 −0.0

SLAC ed F2 [137,138] 22.8/38 −0.2 −0.8

E665 μp F2 [139] 63.9/53 +4.2 +4.5

E665 μd F2 [139] 67.5/53 +2.9 +2.5

NuTeV νN F2 [140] 35.7/53 −2.6 −1.3

NuTeV νN xF3 [140] 34.8/42 +4.1 +2.1

NMC μn/μp [141] 131.6/148 +0.8 +2.2

HERA ep Fcharm
2 [142] 143.7/79 +11.4 +13.8

NMC/BCDMS/SLAC/HERA FL [135,136,138,143–145] 45.6/57 −22.9 −23.2

CHORUS νN F2 [146] 29.2/42 −1.0 −0.8

CHORUS νN xF3 [146] 18.1/28 −0.3 −0.5

HERA e+ p CC [147] 49.7/39 −2.3 −1.0

HERA e− p CC [147] 64.9/42 −5.3 −4.9

HERA e+ p NC 820 GeV [147] 84.3/75 −5.6 −5.1

HERA e− p NC 460 GeV [147] 247.7/209 −0.6 −0.7

HERA e+ p NC 920 GeV [147] 474.0/402 −38.7 −36.4

HERA e− p NC 575 GeV [147] 248.5/259 −14.5 −14.1

HERA e− p NC 920 GeV [147] 243.0/159 −1.4 −2.1

Total 2580.9/2375 −90.8 −86.2

plete correlation and K -factor decorrelation) throughout the
rest of this section. We show in Sect. 8.4 that while the decor-
relation of K -factors is not complete, both treatments result
in similar uncertainty bands, therefore confirming that the
effect of making the assumption of full decorrelation is min-
imal in practice. Note that although the cNLL

i parameters also
show minimal correlation with other parameters, we include
these within the ‘pure’ theory group of parameters (i.e. cor-
related with ρi j and ai j ) as they are essential ingredients in
the underlying DIS theory.

8.3 Eigenvector results

In the MSHT fitting procedure (described in [3]) the eigen-
vectors of a Hessian matrix are found, which encapsulate
the sources of uncertainties and corresponding correlations.
Combining these with the central PDFs, forms the entire PDF
set with uncertainties. In this eigenvector analysis a dynami-
cal rescaling of each eigenvector ei is performed via a toler-
ance factor t to encapsulate the 68% confidence limit (C.L.).

ai = a0
i ± tei , (8.1)

where a0
i is the best fit parameter. t is then adjusted to

give the desired tolerance T for the required confidence

interval defined as T =
√

χ2
global (for 68% C.L.). In a

quadratic approximation, for suitably well-behaved eigen-
vectors, t = T is true. Although for eigenvectors with larger
eigenvalues, it is possible to observe significant deviations
from t = T . The standard MSHT fitting procedure involves
allowing all relevant parameters from [3] to vary when find-
ing the best fit, now including all N3LO theory parameters
(ρi j , ai j , cNLL

i , KNLO/NNLO) discussed in this work. After
accounting for high degrees of correlation between parame-
ters (described in [42]), the result is a Hessian matrix which
in general, depends on a subset of the parameters that were
allowed to vary in a best fit and provides a set of suitably
well-behaved eigenvectors. The standard MSHT NNLO PDF
eigenvectors are based on a set of 32 parameters, reduced
from the 52 parameters allowed to vary in the full fit. In the
following analysis we are therefore concerned with a smaller
number of parameters, specifically the 32 parameters from
the standard MSHT fitting procedure plus an extra 20 N3LO
parameters (shown in Fig. 28).
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Fig. 28 Correlation matrix for all N3LO theory parameters included in
the fit against the subset of the MSHT20 parameters (shown in black)
used in constructing the Hessian eigenvectors. This is shown for the
case where the K -factors correlations with the first 42 parameters are

included. N3LO theory parameters associated with the splitting func-
tions are coloured blue, the parameters affecting the transition matrix
elements and coefficient functions are in red and the K -factor parame-
ters are in green
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A standard choice of tolerance T is T =
√

χ2
global = 1

for a 68% C.L. limit. However, this assumes all datasets are
consistent with Gaussian errors. In practice, due to incom-
plete theory, tensions between datasets and parameterisation
inflexibility, this is known not to be the case in a global PDF
fit. To overcome this, a 68% C.L. region for each dataset

is defined. Then for each eigenvector, the value of
√

χ2
global

for each chosen t is recorded (ideally showing a quadratic
behaviour). Finally, a value of T is chosen to ensure that all
datasets are described within their 68% CL in each eigen-
vector direction. For a fuller mathematical description of the
dynamical tolerance procedure used in MSHT PDF fits, the
reader is referred to [42]. In this section we present a demon-
stration of how well the resultant eigenvectors follow the
quadratic assumption based on t = T , including the specific
choices of dynamical tolerances and which dataset/penalty
constrains this tolerance in each eigenvector direction.

PDF + N3LO DIS theory + N3LO K-factor (decorrelated)
parameters

As discussed in Sect. 8.2, when determining the eigenvec-
tors and therefore PDF uncertainties, we can choose to either
include the correlations between the 10 K -factor parameters
added with the other 42 parameters (encompassing the stan-
dard 32 MSHT eigenvector parameters and the 10 new the-
ory parameters from the splitting functions, transition matrix
elements and coefficient functions) or to decorrelate the 10
K -factor parameters.

In this section we address the scenario where we decorre-
late the K -factors as

H−1
i j +

Np∑
p=1

K−1
i j,p (8.2)

and consider each term individually.
Figure 29 shows the map of eigenvectors produced from

Hi j in Eq. (8.2), where we have included the new N3LO DIS
theory parameters (splitting functions in blue and coefficient
functions/transition matrix elements in red) correlated with
the PDF parameters. Eigenvectors 35 and 36 are prime exam-
ples of where the eigenvectors have specifically encompassed
the correlation/anti-correlation between the two NLL FFNS
coefficient function parameters cNLL

i (i ∈ {q, g}). Whereas
the splitting functions naturally give rise to a much more com-
plicated mixing with other PDF parameters as these directly
affect the evolution of the PDFs. Due to the direct impact of
ρi j ’s on the PDFs (via DGLAP evolution), combined with
the large contributions to the evolution shown at N3LO, this
result is as expected.

Another somewhat pleasing aspect is the recovery of a
natural separation between eigenvectors associated with the

N3LO coefficient function/transition matrix elements and our
original PDF parameters (incl. N3LO splitting functions).
This separation is reminiscent of our DIS picture, whereby
the splitting functions are much more intertwined with the
raw PDFs and the transition matrix elements have a sym-
biotic relationship with the coefficient functions (see GM-
VFNS description in Sect. 3). Due to this, the form of these
eigenvectors has not only some level of physical interpreta-
tion inherited from our underlying theory, but also offers a
useful way to access the different sources of N3LO additions
within the PDF set.

In Fig. 30 the eigenvectors resulting from the
∑Np

p=1 K
−1
i j,p

terms in Eq. (8.2) are shown. These eigenvectors are
constructed in pairs, describing the correlation and anti-
correlation of the two K -factor parameters (controlling the
NLO and NNLO contributions to N3LO) for each process p
contained within the corresponding Ki j,p correlation matrix.

Table 10 shows further information regarding the K -factor
parameter limits from each eigenvector. In most cases the
parameter limits are well within the allowed variation (−1 <

a < 1), which is an indication that the data included in the
fit is constraining these parameters rather than the individual
penalties for each parameter.19

To assess whether the eigenvectors are violating the
quadratic treatment, four examples displaying this behaviour
are shown in Fig. 31, with a full analysis provided in
Appendix 1. Additionally, Table 11 provides a summary of
all tolerances found within the eigenvector scans.

There is relatively consistent agreement between t and T
across all eigenvectors with later eigenvectors (i.e. higher #)
generally becoming less quadratic (a feature which is built
into the fit). Eigenvectors 31, 41 and 42 displayed in Fig. 31
are shown in Table 11 to be either dominated or limited by at
least one new N3LO parameter. Conversely, eigenvector 26 is
much more dominated by the original PDF parameters from
MSHT20 NNLO. Comparing these cases, the eigenvectors
associated more strongly with the N3LO parameters exhibit
a similar level of agreement (and occasionally better) with
the desired quadratic behaviour as eigenvectors more closely
associated with the original PDF parameters.

The last 5 sets of eigenvectors (i.e. the last 10 where a set
contains 2 eigenvectors for a particular process) we see in
Table 11 are the decorrelated K -factor eigenvectors, where
there are correlated/anti-correlated eigenvectors for each pro-
cess. For all K -factor cases, Table 11 provides sensible results
with either the dominant datasets or parameter penalties con-
straining each eigenvector direction. One interesting feature
one can observe here is a sign of tension between the ATLAS
8 TeV Z pT [110] and ATLAS 8 TeV W + jets [111] datasets

19 We remind the reader that the Dimuon datasets also include a branch-
ing ratio factor which is providing some compensation with these K -
factor parameters (as discussed in Sect. 7).
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Fig. 29 Correlation matrix of the first 42 (total 52) eigenvectors found
with the N3LO parameters added into the analysis in the case where the
K -factors are decorrelated from these first 42 parameters. Parameters

associated with the splitting functions are coloured blue, those affecting
the transition matrix elements and coefficient functions are in red

where the limiting factors in Table 11 for eigenvectors 49 and
50 show that these datasets are preferring a slightly different
K -factor.

To provide some extra level of comparison between the
eigenvectors shown here and the eigenvectors found in the
NNLO case, the average tolerance T for aN3LO (decorre-
lated K -factors) set is 3.34, compared to the NNLO average
T of 3.37.

PDF + N3LO DIS theory + N3LO K-factor (correlated)
parameters

In this section we address the scenario,

H ′
i j =

⎛
⎝H−1

i j +
Np∑
p=1

K−1
i j,p

⎞
⎠

−1

. (8.3)

Moving to an analysis including aN3LO K -factors as corre-
lated parameters with PDF and other N3LO theory param-
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Fig. 30 Map of the 10 K -factor
eigenvectors found with the
N3LO parameters added into the
analysis in the case where the
K -factors are decorrelated from
these first 42 parameters..
Combined with the 42
eigenvectors shown in Fig. 29,
these form the total 52
eigenvectors in the decorrelated
case. Parameters associated with
the K -factor parameters are in
green

Table 10 Limiting values for specific K -factor parameters for each of
the processes considered in the decorrelated case. Parameter values are
shown in the positive and negative limits for each eigenvector. The scale
choices for top quark processes are described in Sect. 7.2 to be HT /4

for the single differential datasets with the exception of data differential
in the average transverse momentum of the top or antitop, ptT , pt̄T , for
which mT /2 is used. For the double diff. dataset the scale choice is
HT /4 and for the inclusive top σt t̄ a scale of mt is chosen

Matrix Central values Eigenvector + Limit − Limit Scale
aNLO aNNLO aNLO aNNLO aNLO aNNLO

KDY
i j −0.307 −0.230 43 −0.449 −0.155 −0.213 −0.280 m/2

44 −0.253 0.126 −0.377 −0.691

KTop
i j 0.041 0.651 45 −0.564 0.455 0.692 0.862 Section 7.2

46 0.026 1.210 0.070 −0.456

K Jets
i j −0.300 −0.691 47 −0.515 −0.957 0.105 −0.189 pjet

T

48 −0.725 −0.033 0.036 −1.212

K pT Jets
i j 0.583 −0.080 49 0.388 −0.406 0.812 0.301 pT

50 0.480 0.624 0.680 −0.742

KDimuon
i j −0.444 0.922 51 −1.109 −0.208 −0.103 1.502 Q2

52 −1.091 1.359 0.981 −0.039
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Fig. 31 Dynamic tolerance behaviour for 4 selected eigenvectors in
the case of decorrelated K -factor parameters. The black dots show the
fixed tolerance relations found for integer values of t , whereas the red

triangles show the final chosen dynamical tolerances for each eigenvec-
tor direction. For an exhaustive analysis of all eigenvectors see Fig. 50
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Table 11 Tolerances resulting from eigenvector scans with decorrelated K -factors for each process. The average tolerance for this set of eigenvectors
is T = 3.34

# t+ T+ Limiting factor (+) t− T− Limiting factor (−) Primary parameter

1 3.88 3.86 ATLAS 7 TeV high prec. W, Z [79] 2.94 3.13 ATLAS 8 TeV double diff. Z [100] aS,3

2 5.35 5.56 HERA e+ p NC 920 GeV [147] 3.10 2.98 NMC μd F2 [136] aS,6

3 4.20 4.47 NuTeV νN → μμX [133] 2.30 2.17 NMC μd F2 [136] aS,2

4 4.87 4.85 ATLAS 8 TeV double diff. Z [100] 1.81 1.80 NuTeV νN → μμX [133] as+,5

5 3.30 3.63 ATLAS 7 TeV high prec. W, Z [79] 2.95 2.77 NuTeV νN → μμX [133] as+,3

6 4.89 5.38 ATLAS 7 TeV high prec. W, Z [79] 5.47 5.27 NMC μd F2 [136] δg′

7 5.30 5.47 DØ II W → νe asym. [86] 3.44 3.41 DØ W asym. [97] δS

8 4.12 4.05 DØ II W → νe asym. [86] 2.19 2.64 DØ W asym. [97] δS

9 3.88 3.93 BCDMS μp F2 [135] 6.78 7.11 CMS W asym. pT > 25, 30 GeV [89] δd

10 3.24 3.44 BCDMS μp F2 [135] 5.64 5.83 DØ II W → νμ asym. [84] au,6

11 2.22 4.41 E866/NuSea pp DY [80] 5.31 4.79 ATLAS 7 TeV high prec. W, Z [79] as+,2

12 2.62 2.81 DØ W asym. [97] 5.49 5.71 ATLAS 8 TeV W [99] δd

13 1.12 3.37 E866/NuSea pp DY [80] 3.87 3.19 DØ W asym. [97] aρ,3

14 2.01 2.34 NuTeV νN → μμX [133] 3.54 3.60 NuTeV νN xF3 [140] As−
15 3.69 3.75 ATLAS 8 TeV Z pT [110] 3.65 4.05 NMC μd F2 [136] ag,3

16 4.42 5.08 ATLAS 8 TeV W [99] 4.96 4.84 ATLAS 8 TeV Z pT [110] ag,3

17 1.23 1.02 ρNS
qq 1.24 1.05 ρNS

qq ρNS
qq

18 3.09 3.50 DØ W asym. [97] 2.93 3.06 DØ W asym. [97] ad,6

19 4.69 4.57 BCDMS μp F2 [135] 3.85 5.06 CMS 7 TeV jets [101] ηu

20 5.40 5.37 NuTeV νN → μμX [133] 5.04 5.60 HERA e+ p NC 920 GeV [147] δg′

21 2.10 2.36 E866/NuSea pd/pp DY [81] 1.26 1.69 E866/NuSea pd/pp DY [81] aρ,6

22 3.04 3.27 NuTeV νN → μμX [133] 1.90 2.27 DØ W asym. [97] ad,3

23 5.61 6.20 HERA e+ p NC 920 GeV [147] 5.43 6.13 HERA e+ p NC 920 GeV [147] ρPS
qq

24 3.53 3.70 E866/NuSea pd/pp DY [81] 1.47 1.82 DØ W asym. [97] ad,2

25 1.60 2.03 E866/NuSea pd/pp DY [81] 4.37 4.88 CMS W asym. pT > 35 GeV [88] Aρ

26 1.00 1.46 E866/NuSea pd/pp DY [81] 3.02 3.00 DØ W asym. [97] aρ,1

27 1.60 2.09 ρgq 4.16 5.53 ATLAS 7 TeV high prec. W, Z [79] ρgq

28 1.51 2.16 ρgq 3.20 4.07 ATLAS 8 TeV sing. diff. t t̄ dilep. [131] ηg

29 2.99 3.21 CMS 8 TeV W [96] 2.04 2.52 NuTeV νN xF3 [140] ηS

30 0.97 1.30 DØ W asym. [97] 3.56 4.90 ATLAS 8 TeV W [99] ηd − ηu

31 4.78 6.64 HERA e+ p NC 920 GeV [147] 1.77 1.81 ρgq ρqg

32 2.51 7.32 BCDMS μp F2 [135] 1.80 3.96 DØ W asym. [97] ηd − ηu

33 2.71 3.35 CMS 7 TeV W + c [62] 2.92 3.37 NuTeV νN → μμX [133] ηs+
34 3.53 3.91 HERA ep Fcharm

2 [142] 3.87 4.82 CMS 7 TeV W + c [62] ηs+
35 3.67 3.50 NuTeV νN → μμX [133] 2.72 3.62 NuTeV νN → μμX [133] ηs−
36 1.25 1.26 cNLL

q 1.41 1.57 cNLL
q cNLL

q

37 0.71 0.77 ρgg 4.25 5.33 NuTeV νN → μμX [133] ρgg

38 2.72 2.71 CMS 8 TeV W [96] 3.60 4.21 ρgq As+
39 1.56 5.03 ATLAS 7 TeV high prec. W, Z [79] 1.60 5.82 ATLAS 7 TeV high prec. W, Z [79] AS

40 0.97 1.00 aNS
qq,H 1.04 1.01 aNS

qq,H aNS
qq,H

41 1.56 2.87 HERA ep Fcharm
2 [142] 1.93 2.34 ρgg aHg

42 0.63 0.53 agg,H 2.46 2.72 agg,H agg,H
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Table 11 continued

# t+ T+ Limiting factor (+) t− T− Limiting factor (−) Primary parameter

43 2.28 2.83 ATLAS 7 TeV high prec. W, Z [79] 1.51 1.14 CMS double diff. Drell–Yan [94] DYNLO

44 3.06 3.09 E866/NuSea pp DY [80] 3.96 4.52 ATLAS 7 TeV high prec. W, Z [79] DYNNLO

45 5.05 1.46 ATLAS 8 TeV sing. diff. t t̄ dilep. [131] 5.44 1.46 Tevatron, ATLAS, CMS σt t̄ [117–129] TopNLO

46 1.34 1.31 TopNLO 2.65 2.68 ATLAS 8 TeV sing. diff. t t̄ [130] TopNNLO

47 1.47 1.57 CDF II p p̄ incl. jets [102] 2.78 2.96 agg,H JetNLO

48 3.26 3.38 CMS 2.76 TeV jet [106] 2.58 3.01 CMS 7 TeV jets [101] JetNNLO

49 2.20 2.39 ATLAS 8 TeV Z pT [110] 2.58 2.56 ATLAS 8 TeV W + jets [111] pT JetsNLO

50 2.36 2.43 ATLAS 8 TeV Z pT [110] 2.22 2.23 ATLAS 8 TeV W + jets [111] pT JetsNNLO

51 1.38 1.55 DimuonNLO 0.71 0.81 DimuonNNLO DimuonNNLO

52 0.85 0.85 DimuonNLO 1.86 1.87 DimuonNLO DimuonNLO

eters. This provides a comparison to the case of decorre-
lated K -factors and justification for treating the cross section
behaviour separately to the PDF theory behaviour.

Figure 32 shows a map of eigenvectors with the extra 10
N3LO K -factor parameters (shown in green) included into
the correlations considered. As expected, the result of includ-
ing the correlations between PDF parameters and aN3LO K -
factors results in a slightly more intertwined set of eigenvec-
tors (although a high level of decorrelation remains). Specifi-
cally, due to the much higher number of DY datasets included
in the global fit, these N3LO K -factor parameters tend to
be included across more of a spread of eigenvectors. On the
other hand, the Dimuon K -factors are almost entirely isolated
within two eigenvectors, similar to the decorrelated case.

Once again, to investigate deviations from the quadratic
behaviour, Fig. 33 illustrates examples of the tolerance
behaviours of selected eigenvectors, with a full analysis pro-
vided in Appendix 1. Further to this, Table 12 displays the
tolerances and limiting datasets/parameters for the 52 corre-
lated eigenvectors. It is difficult to compare and contrast these
results with the decorrelated case, since the eigenvectors are
inherently different. However in both cases, the eigenvec-
tors are similarly well behaved, exhibit relatively good con-
sistency between t and T and are therefore providing valid
descriptions for a PDF fit.

For most of the 12 eigenvectors with N3LO K -factors as
primary parameters, there is expected behaviour, with the
eigenvectors constrained either by their own penalties or by
dominant datasets for the associated process. However, due to
the extra correlations considered, there are a small number of
eigenvector directions which are not as trivial to explain (e.g.
eigenvector 31). We therefore recover the lack of correlation
between K -factor parameters seen within Fig. 28 in the set of
correlated PDF eigenvectors presented here. Further to this,
comparing the t and T values found for eigenvectors asso-
ciated with N3LO K -factors in Tables 11 and 12, one can
observe clear similarities between eigenvectors. This sug-

gests that even when correlating the K -factor parameters,
the fit succeeds in decorrelating the individual processes,
thereby motivating our original assumption that the corre-
lations with K -factors can be ignored. Another similarity
one can observe between Tables 11 and 12 is the suggestion
of some tension between ATLAS 8 TeV Z pT [110] and
ATLAS 8 TeV W + jets [111] datasets seen in the limiting
factors of eigenvector 39 in the correlated case.

Eigenvectors 27, 29 and 52 displayed in Fig. 33 can be
seen from Table 12 to be associated with the new N3LO the-
ory parameters. Whereas eigenvector 37 is primarily focused
on an original PDF parameter. One can observe a similar
level of quadratic behaviour across all four of these eigen-
vector tolerances. Comparing all eigenvectors in the decor-
related/correlated cases, the behaviours are similarly well
behaved. The average tolerance T for the aN3LO (with cor-
related K -factors) case is 3.57, slightly higher than the NNLO
average of 3.37 and the aN3LO (with decorrelated K -factors)
average of 3.34.

8.4 PDF results

Figure 34 displays the overall shape of the PDFs including
the N3LO additions compared to the standard NNLO set. We
provide this comparison to accompany the results described
in earlier sections. At small-x and low-Q2 the gluon exhibits
a marked enhancement due to the large small-x logarithms
inserted at N3LO. The changes induced from specific N3LO
contributions are investigated in Sect. 8.8.

Shown in Figs. 35 and 36 are the ratios for each flavour of
aN3LO PDF compared to the NNLO set with their 68% con-
fidence intervals at low and high-Q2 respectively. The shaded
aN3LO regions indicate the PDF uncertainty produced with

the decorrelated ((H−1
i j +∑Np

p=1 K
−1
i j, p)

−1) aN3LO K -factors
for each process. As a comparison to these shaded regions,
the bounds of uncertainty for the fully correlated (H ′

i j ) N3LO
K -factor parameters are also provided (red dashed line).
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Fig. 32 Map of eigenvectors found with the N3LO theory
and K -factor parameters added into the analysis. Parame-
ters associated with the splitting functions are coloured blue,
those affecting the transition matrix elements and coeffi-

cient functions are in red and the K -factor parameters are in
green

Considering Fig. 35 we present the aN3LO PDF set at
Q2 = 10 GeV2 with the bottom quark PDF at Q2 =
25 GeV2. These PDF ratios better display the substantial
increase in the gluon at small-x , reminiscent of the gluon PDF
presented in [16,17]. The predicted harder small-x gluon is
then accommodated for by reductions in the PDFs at large and
small-x (particularly the gluon near x = 10−2) from NNLO.
Another prominent feature is the enhanced charm and bottom
quark at N3LO. Since the heavy flavour quarks are perturba-

tively calculated in the MSHT framework, this amplification
is a feature of the transition matrix element A(3)

Hg at high-x ,
combined with the increase in the gluon PDF at small-x (as
these two ingredients are convoluted together). Comparing
with Fig. 95 in [3], we observe that the approximate N3LO
charm quark now follows a much closer trend to the CT18
PDF and is therefore even more significantly different from
the NNPDF NNLO fitted charm at large-x than MSHT20 at
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Fig. 33 Dynamic tolerance behaviour for 4 selected eigenvectors in the
case of correlated K -factor parameters. The black dots show the fixed
tolerance relations found for integer values of t , whereas the red trian-

gles show the final chosen dynamical tolerances for each eigenvector
direction. For an exhaustive analysis of all eigenvectors see Fig. 51
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Table 12 Tolerances resulting from eigenvector scans with correlated K -factors for each process. The average tolerance for this set of eigenvectors
is T = 3.57

# t+ T+ Limiting factor (+) t− T− Limiting factor (−) Primary parameter

1 3.76 3.67 ATLAS 7 TeV high prec. W, Z [79] 2.95 3.06 ATLAS 8 TeV double diff. Z [100] aS,3

2 3.67 3.52 NMC μd F2 [136] 5.37 5.54 HERA e+ p NC 920 GeV [147] aS,6

3 4.15 4.33 NuTeV νN → μμX [133] 2.58 2.39 NMC μd F2 [136] aS,2

4 4.90 4.82 ATLAS 8 TeV double diff. Z [100] 2.21 2.16 NuTeV νN → μμX [133] as+,5

5 2.89 2.61 NuTeV νN → μμX [133] 3.34 3.55 CCFR νN → μμX [133] as+,3

6 5.58 5.23 NMC μd F2 [136] 5.49 5.84 ATLAS 7 TeV high prec. W, Z [79] δg′

7 5.34 5.44 DØ II W → νe asym. [86] 3.46 3.37 DØ W asym. [97] δS

8 4.11 3.82 DØ II W → νe asym. [86] 2.18 2.48 DØ W asym. [97] δS

9 6.39 6.59 CMS W asym. pT > 25, 30 GeV [89] 4.20 4.07 BCDMS μp F2 [135] δd

10 3.14 3.11 BCDMS μp F2 [135] 5.66 5.66 DØ II W → νμ asym. [84] au,6

11 2.07 3.99 E866/NuSea pp DY [80] 5.88 5.00 ATLAS 7 TeV high prec. W, Z [79] ag,2

12 2.76 2.76 DØ W asym. [97] 5.60 5.67 CMS 8 TeV W [96] δd

13 3.73 3.01 DØ W asym. [97] 1.26 3.96 E866/NuSea pp DY [80] aρ,3

14 3.85 3.55 NuTeV νN xF3 [140] 2.24 2.30 NuTeV νN → μμX [133] As−
15 3.71 3.51 ATLAS 8 TeV Z pT [110] 3.44 3.72 NuTeV νN → μμX [133] ag,3

16 1.78 1.18 ρNS
qq 1.78 1.24 ρNS

qq ρNS
qq

17 4.76 4.49 DØ W asym. [97] 4.37 4.81 ATLAS 8 TeV W [99] ag,3

18 3.44 3.81 DØ W asym. [97] 3.18 2.94 DØ W asym. [97] ad,6

19 5.33 5.02 DØ W asym. [97] 3.77 4.42 CMS 7 TeV jets [101] ηu

20 6.04 5.82 HERA e+ p NC 920 GeV [147] 5.08 5.63 HERA e+ p NC 920 GeV [147] δg′

21 2.14 2.02 E866/NuSea pd/pp DY [81] 1.29 1.39 E866/NuSea pd/pp DY [81] aρ,6

22 1.95 2.03 DØ W asym. [97] 2.88 2.83 NuTeV νN → μμX [133] ad,3

23 5.33 5.87 HERA e+ p NC 920 GeV [147] 5.66 6.18 HERA e+ p NC 920 GeV [147] ρPS
qq

24 1.47 1.52 DØ W asym. [97] 3.51 3.48 E866/NuSea pd/pp DY [81] ad,2

25 4.34 4.71 CMS W asym. pT > 35 GeV [88] 1.64 1.59 E866/NuSea pd/pp DY [81] Aρ

26 1.00 1.24 E866/NuSea pd/pp DY [81] 3.12 2.84 DØ W asym. [97] aρ,1

27 4.86 6.43 CMS double diff. Drell–Yan [94] 1.68 2.01 ρgq ρgq

28 2.36 2.66 ATLAS 7 TeV high prec. W, Z [79] 1.64 1.36 CMS double diff. Drell–Yan [94] DYNLO

29 1.95 1.41 ρNS
qq 1.94 1.47 ρNS

qq TopNLO

30 1.84 2.22 ρgq 2.70 2.56 ATLAS 8 TeV sing. diff. t t̄ dilep. [131] ηg

31 3.53 3.52 ATLAS 8 TeV Z pT [110] 2.60 2.73 NuTeV νN xF3 [140] pT JetsNLO

32 2.85 3.15 NuTeV νN xF3 [140] 3.84 3.57 ATLAS 8 TeV W + jets [111] pT JetsNLO

33 5.40 6.16 ATLAS 7 TeV high prec. W, Z [79] 1.63 1.68 DØ W asym. [97] DYNNLO

34 3.94 4.19 ATLAS 8 TeV W [99] 1.56 1.86 DØ W asym. [97] DYNNLO

35 5.06 6.73 HERA e+ p NC 920 GeV [147] 2.00 1.84 ρgq ρqg

36 2.31 2.48 CDF II p p̄ incl. jets [102] 4.73 4.88 ATLAS 7 TeV jets [104] JetNLO

37 2.72 7.05 BCDMS μp F2 [135] 1.67 3.04 DØ W asym. [97] ηd − ηu

38 2.63 2.90 JetNLO 3.24 3.35 CMS 2.76 TeV jet [106] JetNNLO

39 2.41 2.34 ATLAS 8 TeV W + jets [111] 2.88 2.99 ATLAS 8 TeV Z pT [110] pT JetsNNLO

40 2.98 3.44 CMS 7 TeV W + c [62] 2.43 2.36 NuTeV νN → μμX [133] ηs+
41 4.59 5.42 HERA ep Fcharm

2 [142] 2.93 3.20 HERA ep Fcharm
2 [142] cNLL

g

42 2.74 2.83 CMS 8 TeV double diff. t t̄ [132] 1.36 1.28 TopNLO TopNNLO
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Table 12 continued

# t+ T+ Limiting factor (+) t− T− Limiting factor (−) Primary parameter

43 0.83 0.71 DimuonNLO 1.36 1.46 pT JetsNNLO DimuonNNLO

44 0.81 0.80 DimuonNLO 2.07 2.05 pT JetsNNLO DimuonNLO

45 1.45 1.46 DimuonNLO 2.09 2.38 pT JetsNNLO ηs−
46 1.41 1.57 cNLL

q 1.25 1.26 cNLL
q cNLL

q

47 0.71 0.77 ρgg 4.27 5.21 NuTeV νN → μμX [133] ρgg

48 3.62 4.07 ρgq 2.72 2.63 CMS 8 TeV W [96] As+
49 1.53 4.81 ATLAS 7 TeV high prec. W, Z [79] 1.56 5.54 ATLAS 7 TeV high prec. W, Z [79] AS

50 0.97 1.00 aNS
qq,H 1.04 1.00 aNS

qq,H aNS
qq,H

51 1.56 2.69 HERA ep Fcharm
2 [142] 1.93 1.98 ρgg aHg

52 0.63 0.54 agg,H 2.46 2.68 agg,H agg,H

NNLO. In the high-Q2 setting shown in Fig. 36 we observe
similar albeit less drastic effects to those described above.

Also contained in Figs. 35 and 36 are the relative forms of
NNLO PDFs when fit to all non-HERA data (full χ2 results
are provided in Appendix B). Comparing the non-HERA
NNLO PDFs with aN3LO PDFs, there are some similari-
ties in the shapes and magnitudes of a handful of PDFs in
the intermediate to large-x regime, most noticeably the light
quarks. At small-x the HERA data heavily constrains the PDF
fit and therefore these similarities rapidly break down. How-
ever, this analysis displays further evidence that including
N3LO contributions, even though approximate, reduces ten-
sions between the HERA and non-HERA data (when consid-
ering the reduction in tension seen in Table 19). The aN3LO
PDFs are seemingly able to fit to HERA and non-HERA
datasets with superior flexibility than at NNLO.

While in principle the negativity of quarks is possible in
the MS scheme, it is unlikely to be correct at very high scales
and the behaviour can lead to issues concerning negative
cross section predictions [148,149]. In the case of the d , the
form of this PDF has a negative central value above x ∼ 0.5
with a minimum of ∼ −0.001 at x ∼ 0.6. It is also noted that
although the d central value becomes negative in this region,
it is still positive within PDF uncertainties. These features are
not uncommon in PDF analyses and are discussed in detail in
[8]. The proposed smoothing of parameterisations employed
in [8] ensures the definite positive nature of PDFs in the
high-x region. Comparing the negativity of the approximate
N3LO d PDF with that in [8], the d PDF presented here is
much less negative and positive within PDF uncertainties.
Due to this and the fact that this effect is only apparent in
the d, we present these PDFs as they are. We also note that
in the current MSHT20 fit, recent results surrounding the
d/u from the SeaQuest collaboration [150] are not included
at the time of writing. It is therefore only the E866 / NuSea
pd/ppDY dataset [81] that is constraining this ratio, which is
not as precise as the more recent results. However, SeaQuest

results suggest a preference for a higherd at large-x , therefore
including this data may in fact help constrain the high-x d
behaviour seen here.

Figures 37 and 38 express the aN3LO PDFs with decorre-
lated (green shaded region) and correlated (red dashed lines)
aN3LO K -factors at low and high-Q2 respectively (again
with the bottom quark provided at Q2 = 25 GeV2 at low-
Q2) as a ratio to the N3LO central value. For comparison we
also include the level of uncertainty predicted with all N3LO
theory fixed (blue shaded region) i.e. only considering the
variation without N3LO theoretical uncertainty.

Comparing the two different aN3LO sets in Figs. 37
and 38, in general there is good agreement between the total
uncertainties considering the cases with correlated (red dash)
and decorrelated (green shaded) aN3LO K -factors. The dif-
ferences that are apparent between the two aN3LO cases, are
relatively small across all PDFs, with slightly larger effects
only where the PDF itself tends towards zero i.e. valence
quarks at small-x .

A larger distinction is observed when comparing the sets
with andwithout theoretical uncertainty (where N3LO theory
is fixed at the best fit value). In general there is an expected
substantial increase in the PDF uncertainties when taking
into account the missing N3LO uncertainty for the gluon
(and therefore the heavy quarks). In particular, the form of
the N3LO bottom quark uncertainty is reminiscent of the
(H + H) prediction from Fig. 12. One can therefore directly
observe the effect of the AHg theoretical uncertainty on the
bottom quark directly above its mass threshold. In other areas,
the without theoretical uncertainty PDF set exhibits a com-
parable uncertainty to aN3LO and is even shown to increase
the overall 68% confidence intervals in certain regions of
(x, Q2) due to N3LO parameters being fixed (i.e. uv and dv

PDFs in Figs. 37 and 38). As the fit now resides in a differ-
ent χ2 landscape where a best fit has been achieved through
fitting the N3LO theory, fixing the aN3LO theory parameters
is likely to have a substantial effect across all PDFs.

123



Eur. Phys. J. C (2023) 83 :185 Page 67 of 108 185

Fig. 34 General forms of NNLO (top) and aN3LO (bottom)
PDFs at low (left) and high (right) Q2. Several main fea-
tures can be compared and contrasted such as the marked
increase in the gluon and charm at small-x (note the dif-

ference in y-axis scale between NNLO (top) and aN3LO
(bottom))
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Fig. 35 Low-Q2 ratio plots showing the aN3LO 68% confidence inter-
vals with decorrelated (Hi j +Ki j ) and correlated (H ′

i j ) K -factor param-
eters, compared to NNLO 68% confidence intervals. Also shown are the
central values at NNLO when fit to all non-HERA datasets which show

similarities with N3LO in the large-x region of selected PDF flavours.
All plots are shown for Q2 = 10 GeV2 with the exception of the bottom
quark shown for Q2 = 25 GeV2
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Fig. 35 continued

An important point made by Figs. 37 and 38 is that the
difference between the decorrelated and correlated cases is
much smaller than the difference of not including theoret-
ical uncertainties at all (blue shaded region). This analysis
therefore provides evidence to support the original assump-
tion of being able to decorrelate the cross section (aN3LO
K -factors) and PDF theory (including other N3LO theory).

Along with the separate cases of uncertainty illustrated
in Figs. 37 and 38, we also display the central values of
an aN3LO fit to all non-HERA data and an aN3LO fit with
NNLO K -factors. Examining the form of the no HERA
aN3LO PDFs for x > 10−2, we show some agreement with
the standard N3LO central value across most PDFs (more so
at high-Q2 than low-Q2). Whereas the form at small-x gives
some insight into the importance of HERA data in constrain-
ing PDFs in this region. In slightly better agreement across all
x are the aN3LO PDFs with NNLO K -factors, which com-
pliment the χ2 results in Sect. 7 and Sect. 8.1 arguing that the
form (and fit results) of aN3LO PDFs is mostly determined
from the extra PDF + DIS coefficient function N3LO addi-
tions i.e. not aN3LO K -factors which prefer a softer high-x

gluon (similar to the N3LO no HERA case – also shown in
Figs. 37 and 38).

8.5 MSHT20aN3LO PDFs at Q2 = 2 GeV2

Figure 39 compares the MSHT NNLO and aN3LO PDF sets
at Q2 = 2 GeV2. In this very low-Q2 regime, some major
differences are evident between NNLO and aN3LO sets at
Q2 = 2 GeV2, especially towards small-x . For example, the
gluon PDF is predicted to be much harder across this region,
such that it is now positive across all x values considered
here. The effect of this can be immediately seen in the sea
and heavy quarks.

Since the charm quark is directly coupled to the gluon PDF
(through a convolution with AHg), the charm PDF receives
a notable enhancement at small-x and also remains positive
across all x values considered.20 Another interesting feature

20 Since this is a convolution, it is the higher small-x gluon, combined
with the high-x enhancement of AHg at N3LO which gives rise to this
increase in the charm PDF.
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Fig. 36 High-Q2 ratio plots showing the aN3LO 68% confidence inter-
vals with decorrelated (Hi j +Ki j ) and correlated (H ′

i j ) K -factor param-
eters, compared to NNLO 68% confidence intervals. Also shown are the

central values at NNLO when fit to all non-HERA datasets which show
similarities with N3LO in the large-x region of selected PDF flavours.
All plots are shown for Q2 = 104 GeV2

123



Eur. Phys. J. C (2023) 83 :185 Page 71 of 108 185

Fig. 36 continued

is the reduction in uncertainty of the strange quark at small-x .
It may seem counter intuitive to have an uncertainty reduc-
tion by adding sources of theoretical uncertainty, however
we should recall that the underlying theory has also been
altered. Although one can expect an uncertainty increase in
PDFs across (x, Q2), there are exceptions to this e.g. where
tensions are relieved by introducing the N3LO theory. The
shift in the χ2 landscape then has the potential to result in
more precise regions of (x, Q2) (in this case manifesting in
an uncertainty reduction for the strange quark towards small-
x).

Figure 40 displays the ratios of the aN3LO MSHT PDFs to
their NNLO counterparts at Q2 = 2 GeV2. Here the specific
shifts of each PDF are displayed more clearly. We note that
there are many similar features shown here to those discussed
for Figs. 35 and 36. Even in this very low-Q2 regime, the
uncertainty difference between correlated and decorrelated
aN3LO K -factor PDF sets is minimal in all relevant regions
of x .

8.6 Effect of a x < 10−3 cut at aN3LO

In this section we include results from a global PDF fit with
small-x (x < 10−3) data omitted. This analysis is provided
to shed some light on the tensions between regions of x at
aN3LO while also providing some context with regards to
the form of the PDFs in different regions of x .

Immediately, in Fig. 41, one can observe that omitting
all small-x data results in a set of less constrained PDFs
for x < 10−3 (most notably in the gluon sector). However,
also in Fig. 41 it can be observed that overall, the large-x
behaviour of these PDFs is very similar across both fits, indi-
cating that the full fit is able to sufficiently fit both large and
small x regions simultaneously. We provide this analysis as
a cross-check to further support the reliability of our proce-
dure, showing that the small-x behaviour is not overwhelm-
ingly attempting to fit to any all order, or specifically small-x
resummation, result at the expense of the large-x description.
We also note that while there is some definite change in the
central values of the PDFs at small x , in most cases this is
very well within uncertainties, and at most at the level of
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Fig. 37 Low-Q2 ratio plots showing the aN3LO 68% confidence inter-
vals with decorrelated and correlated K -factor parameters, compared to
the aN3LO central value. Also shown are the central values at aN3LO

when fit to all non-HERA datasets and the central values with all K -
factors set at NNLO. All plots are shown for Q2 = 10 GeV2 with the
exception of the bottom quark shown for Q2 = 25 GeV2
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Fig. 37 continued

about one standard deviation, particularly for the gluon for
x just below 10−3. This distinct, but limited shift in the best
fit PDFs suggests that effects beyond N3LO are certainly not
insignificant at very low x , they are also not dominating the
pull on the fit.

8.7 Posterior N3LO theory parameters

Following from the previous section, it is also interesting
to examine where the aN3LO theory contributions and their
uncertainties reside after a global PDF fit.

Displayed in Table 13 are the predicted posterior limits on
each (non K -factor) aN3LO theory parameter. Here one can
directly compare these variations with the prior variations
decided in earlier sections. Also provided is a comparison
of these posterior limits across a fit with and without small-
x (x < 10−3) data included. This comparison compliments

the previous section by showing a similar trend in the cen-
tral values predicted in both cases (i.e. with an overlap of
uncertainties). As with the PDFs, there is some significant
evidence of tensions, but these are not severe, and the central
values of many parameters are extremely stable. Furthermore
this is evidence that the small-x behaviour is influencing, but
not likely to be dominating the behaviour of aN3LO param-
eters in a manner which is significantly adversarial to the
preference of data at x > 10−3.

Figure 42 displays a comparison of the prior and posterior
variations predicted for the perturbative expansions of the rel-
evant splitting functions and transition matrix elements dis-
cussed in Sects. 4 and 5. We exclude the non-singlet quanti-
ties from this comparison as the variations predicted for these
quantities are very similar to their priors (as can be seen in
Table 13) and have a small overall effect on the PDFs. It is
true that once a fit is performed, the variation of the aN3LO
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Fig. 38 High-Q2 ratio plots showing the aN3LO 68% confidence inter-
vals with decorrelated and correlated K -factor parameters, compared to
the aN3LO central value. Also shown are the central values at aN3LO

when fit to all non-HERA datasets and the central values with all K -
factors set at NNLO. All plots are shown for Q2 = 104 GeV2
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Fig. 38 continued

Fig. 39 General forms of NNLO (left) and aN3LO (right) PDFs at Q2 = 2 GeV2. Axis are set to the same scale to highlight the main differences
between NNLO and aN3LO. Specifically in the gluon and heavy flavour sectors
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Fig. 40 Very low-Q2 ratio plots showing the aN3LO 68% confidence intervals with decorrelated and correlated K -factor parameters, compared
to NNLO 68% confidence intervals. All plots are shown for Q2 = 2 GeV2
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Fig. 40 continued

Fig. 41 Low-Q2 PDF ratios showing aN3LO PDFs fitted with and without small-x (< 10−3) data included in a global fit. All plots are shown for
Q2 = 10 GeV2 with the exception of the bottom quark shown for Q2 = 25 GeV2
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Table 13 Posterior predicted ±1σ limits on aN3LO theoretical nuisance parameters for splitting functions, transition matrix elements and coefficient
functions

Parameter Default fit Small-x cut fit
Central + Limit − Limit Central + Limit − Limit

Low-Q2 coefficient

cNLL
q −3.868 −1.891 −6.132 −5.822 −4.333 −10.373

cNLL
g −5.837 −4.444 −7.429 −6.995 −3.701 −7.991

Transition matrix elements

aNS
qq,H −64.411 −38.778 −91.850 −65.103 −40.073 −93.225

aHg 12214.000 12966.856 11279.376 12524.000 13831.976 11286.843

agg,H −1951.600 −1577.155 −3418.568 −1392.600 −512.817 −2190.354

Splitting functions

ρNS
qq 0.007 0.015 −0.002 0.006 0.020 −0.005

ρPS
qq −0.501 −0.254 −0.644 −0.505 −0.285 −0.692

ρqg −1.754 −1.157 −1.897 −1.309 −0.620 −1.881

ρgq −1.784 −1.548 −2.212 −1.622 −1.367 −1.877

ρgg 19.245 21.505 9.025 12.997 16.142 6.611

theoretical nuisance parameters becomes less sensitive to the
prior variation, suggesting that the initial uncertainty estimate
was conservative. Nevertheless in Fig. 42, one can observe
that all posterior variations overlap with their correspond-
ing priors, in most cases quite considerably. We also note
that the most drastic differences between prior and posterior
variations are as expected relating to the gluon PDF.

Figure 43 contains a comparison between the aN3LO
functions posterior variations with and without small-x (x <

10−3) data included in a global fit. These results accompany
those presented in Table 13 and further display the reasonable
agreement between the two fits, but there is some degree of
tension occurring mainly in the cases of Pgg , AHg and Agg,H .
In all cases the predicted variations overlap, with most central
values being stable (i.e. contained well within the uncertainty
predictions). However, for Pgg , AHg and Agg,H the fit with
the small x cut does result in posterior functions which are
more consistent with the prior functions, again suggesting
that for these functions the posterior values are influenced,
to a significant, but not overwhelming extent by terms beyond
N3LO, most likely those associated with small-x resumma-
tion. Hence, as with the PDFs this provides evidence that
the aN3LO predictions are reasonably consistent across all
values of x but are influenced to a limited extent by the small-
x region. This supports our view that while we are explic-
itly determining the missing N3LO corrections, which are
indeed overall the dominant part of the missing higher order
corrections, the fit is also probing some even higher order
corrections, particularly at small x .

8.8 N3LO contributions

In this section all but one N3LO contribution will be switched
off, in particular only splitting functions, or only heavy or
light flavour coefficient functions with their relevant transi-
tion matrix elements. In all cases the aN3LO K -factors are
left free to allow the fit some freedom in manipulating the
cross sections of other datasets. In practice however, fixing
these K -factors at the NNLO values has a minimal effect
on the shape of the PDFs in all cases (as demonstrated in
Figs. 37 and 38).

The deconstructed aN3LO PDFs as a ratio to the NNLO
MSHT PDFs for various flavours at Q2 = 10 GeV2 (with the
bottom quark given at Q2 = 25 GeV2) are shown in Fig. 44.
Across the more tightly constrained light quark PDFs, all
contributions lie very close to the aN3LO ±1σ uncertainty
bands (blue shaded region and solid line). The additive and
compensating nature of these contributions is also clear in
a handful of the ratios from Fig. 44. In other areas the full
description is biased towards a single contribution, for exam-
ple the charm and bottom quarks follow the contribution from
heavy flavours as one may expect. Conversely, to some extent
the gluon follows the splitting functions much more closely
as these contributions indirectly couple the gluon to the more
constraining data.21

21 An exception to this can be seen around x ∼ 10−2 where the con-
tributions act cumulatively. We make this point as this region of x is of
interest for Higgs calculations such as those discussed in Sect. 9.
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Fig. 42 Posterior variations of the aN3LO splitting functions and transition matrix elements predicted from a full global fit (blue shaded band)
compared to the prior variations in each case (green shaded band)

8.9 αs variation

As in the standard MSHT20 NNLO PDF fit, we present
the best fit aN3LO PDFs with αs(mZ ) = 0.118, the com-
mon value chosen in the PDF4LHC combination [8]. How-
ever, investigating the true minima in αs(mZ ), the χ2 pro-
files in Fig. 45 prefer a value of around αs(mZ ) = 0.1170.
This result follows the trend from lower orders whereby the

best fit values are αs(mZ ) = 0.1174 ± 0.0013 at NNLO
and αs(mZ ) = 0.1203 ± 0.0015 at NLO [151]. Following
from NNLO, the aN3LO αs(mZ ) prediction is also slightly
lower than the NNLO world average central value at around
αs(mZ ) = 0.1179 ± 0.0010 [152]. In any case, the preferred
aN3LO αs(mZ ) value stated here is in agreement with the
MSHT20 NNLO result and the world average within uncer-
tainties. A full analysis is left for a future publication.

123



185 Page 80 of 108 Eur. Phys. J. C (2023) 83 :185

Fig. 43 Posterior variations of the aN3LO splitting functions and transition matrix elements predicted from a full global fit (blue shaded band)
compared to a fit with small-x (x < 10−3) data removed from a fit (red shaded band)

8.10 Charm mass dependence

In a standard MSHT fit [3], aN3LO PDFs are produced with
the charm pole mass mc = 1.40 GeV. Figure 46 displays
the χ2 results when varying this charm mass. The predicted
minimum at NNLO (for MSHT20 PDFs) is in the range
mc = 1.35−1.40 GeV [151], whereas at aN3LO we show
a minimum in the region of mc = 1.42 − 1.47 GeV. This

aN3LO result therefore shows a slightly better agreement
with the world average [152]22 of mc = 1.5 ± 0.2 GeV.

Considering Fig. 47, one is then able to analyse the effect
of this slightly higher charm mass on the form of the PDFs.

22 There is some ambiguity in this value since the transformation from
MS to the pole mass definition is not well-defined (see [151] for more
details).
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Fig. 44 Low-Q2 PDF ratios showing aN3LO (with decorrelated K -
factors) 68% confidence intervals compared to NNLO 68% confidence
intervals with varying theory contributions. All plots are shown for
Q2 = 10 GeV2 with the exception of the bottom quark shown for
Q2 = 25 GeV2. The PDFs included are: NNLO (green shaded),

All N3LO contributions (blue shaded), only splitting functions (green
dashed), only heavy flavour coefficient functions and transition matrix
elements (dark grey dash-dot) and only light flavour coefficient func-
tions and transition matrix elements (red dotted)

123



185 Page 82 of 108 Eur. Phys. J. C (2023) 83 :185

Fig. 44 continued

As one can expect, the charm PDF is subject to the largest
difference and is suppressed by a higher mc. The extra sup-
pression from a higher charm mass allows the fit to suppress
the c + c̄ sea contribution. This is then compensated by an
increase in the ū and d̄ distributions which stabilises the over-
all sea contribution.

9 N3LO predictions

With the increasing number of hard cross section calcula-
tions at N3LO, there is a growing demand for N3LO accu-
racy in PDFs. In this section we investigate the effect of the
MSHT approximate N3LO PDFs on Higgs production via
gluon fusion and vector boson fusion (VBF). The hard cross
sections for these processes have been calculated to N3LO

accuracy [67–76,153,154]. We present a full N3LO compu-
tation for each prediction with our approximate N3LO PDFs,
including theoretical uncertainties. In future work, the inten-
tion will be to expand this analysis to include results for
N3LO DY [63] and approximate N3LO top production [66]
cross sections.

Note that in this section we follow the notation used
previously and denote the aN3LO results with decorrelated
K -factors as (Hi j + Ki j )

−1 and those with correlated K -
factors with H ′ −1

i j . In all cases, scale variations are found via
the 9-point prescription [11] for results with NNLO PDFs.
Whereas for aN3LO PDFs, although the extra information
introduced is at N3LO, the data (and therefore all relevant
theory nuisance parameters) which are included in the global
fit are sensitive to all orders. In particular, we include theo-
retical uncertainties into our aN3LO fit which incorporate
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Fig. 45 Quadratic fit to the
total χ2 results from various
αs(mZ ) starting scales. The
minimum of the quadratic fit
provides a rough estimate of
αs(mZ ) = 0.1170 at aN3LO

Fig. 46 Quadratic fit to the
total χ2 results from various
charm masses (mc). The
minimum of the quadratic fit
provides a rough estimate of
mc = 1.45 GeV at aN3LO

MHO effects on the PDFs. Therefore we argue (and in these
cases demonstrate) that the factorisation scale variation is
contained within the PDF uncertainties. Due to this, it is
only the renormalisation scale which requires variation in
predictions involving aN3LO PDFs.23

23 This is to quantify the theoretical MHOU in the hard cross section,
whereas the aN3LO PDFs now come with an estimated MHOU.

9.1 Higgs production – gluon fusion: gg → H

Table 14 and Fig. 48 (left) show predictions at a central scale
of μ = μ f = μr = mH/2 for the Higgs production cross
section via gluon fusion24 at the LHC for

√
s = 13 TeV,

where mH = 125 GeV is the Higgs mass and no fiducial

24 Results are obtained with the code ggHiggs [67–76,155].
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Fig. 47 Low-Q2 PDF ratios showing aN3LO (with decorrelated K -
factors) 68% confidence intervals compared to NNLO 68% confidence
intervals with varying fixed values for the charm mass. All plots are
shown for Q2 = 10 GeV2 with the exception of the bottom quark shown

for Q2 = 25 GeV2. The PDFs included are: mc = 1.40 GeV (stan-
dard MSHT20 choice) (blue solid), mc = 1.30 GeV (green dashed),
mc = 1.45 GeV (grey dotted dashed) mc = 1.50 GeV (red dotted)
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Fig. 47 continued

Table 14 Higgs production cross section results via gluon fusion (with√
s = 13 TeV) using N3LO and NNLO hard cross sections combined

with NNLO and aN3LO PDFs. All PDFs are at the standard choice

αs(mZ ) = 0.118. These results are found with μ = mH /2 unless
stated otherwise, with the values for μ = mH supplied in Table 21

σ order PDF order σ + σ+ − σ− (pb) σ (pb) + σ+ − σ− (%)

PDF uncertainties

N3LO aN3LO (no theory unc.) 45.296 + 0.723 − 0.545 45.296 + 1.60% − 1.22%

aN3LO (Hi j + Ki j ) 45.296 + 0.832 − 0.755 45.296 + 1.84% − 1.67%

aN3LO (H ′
i j ) 45.296 + 0.821 − 0.761 45.296 + 1.81% − 1.68%

NNLO 47.817 + 0.558 − 0.581 47.817 + 1.17% − 1.22%

NNLO NNLO 46.206 + 0.541 − 0.564 46.206 + 1.17% − 1.22%

PDF + Scale uncertainties

N3LO aN3LO (no theory unc.) 45.296 + 0.723 − 1.851 45.296 + 1.60% − 4.09%

aN3LO (Hi j + Ki j ) 45.296 + 0.832 − 1.923 45.296 + 1.84% − 4.25%

aN3LO (H ′
i j ) 45.296 + 0.821 − 1.926 45.296 + 1.81% − 4.25%

NNLO 47.817 + 0.577 − 2.210 47.817 + 1.21% − 4.62%

NNLO NNLO 46.206 + 4.284 − 5.414 46.206 + 9.27% − 11.72%
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Fig. 48 Higgs production cross section results via gluon fusion (with√
s = 13 TeV) at two central scales: μ = mH /2 (left) and μ = mH

(right). Displayed are the results for aN3LO PDFs with decorrelated K -
factors ((Hi j +Ki j )

−1), correlated K -factors (H ′ −1
i j = (Hi j +Ki j )

−1)

each with a scale variation band from varying μr by a factor of 2. In
the NNLO and NLO PDF cases, both scales μ f and μr are varied by a
factor of 2 following the 9-point convention [11]

Fig. 49 Higgs production cross section results via vector boson fusion
(with

√
s = 13 TeV) at a central scale set to the vector boson momen-

tum. Displayed are the results for aN3LO PDFs with decorrelated K -
factors ((Hi j +Ki j )

−1), correlated K -factors (H ′ −1
i j = (Hi j +Ki j )

−1)
each with a scale variation band from varying μr by a factor of 2. In
the NNLO and NLO PDF cases, both scales μ f and μr are varied by a
factor of 2 following the 9-point convention [11]

cuts are applied. Figure 48 (right) displays the same analysis
for the gluon fusion cross section with μ = μ f = μr = mH

(numerical results provided in Table 21).
Considering the μ = mH/2 and μ = mH central value

results displayed in Table 14 and Fig. 48, it can be observed
that aN3LO PDFs predict a lower central value than NNLO
PDFs across all hard cross section orders. One can also notice

an overlap in all cases between predictions from NNLO and
aN3LO PDFs. However for μ = mH/2, whilst the error
bands for predictions with N3LO hard cross section and
NNLO and N3LO PDFs overlap, their central values are out-
side each other’s respective error bands. Since estimating
MHOUs via scale variations is a somewhat ambiguous proce-
dure (and is therefore estimated conservatively to reflect this),
these results highlight the benefit of being able to exploit a
higher level of control over MHOUs i.e. via nuisance param-
eters. By predicting a different central value we include a
more accurate estimation for higher order predictions which
may not be contained within scale variations, especially at
unmatched orders in perturbation theory.

Examining the predicted central values further, Fig. 48
suggests that the increase in the cross section theory at N3LO
is compensated by the PDF theory at N3LO, suggesting a can-
cellation between terms in the PDF and cross section theory
at N3LO. This point is important to consider when combining
unmatched orders in physical calculations, since we must be
open to the possibility that unmatched cancellations in phys-
ical calculations can lead to inaccurate predictions, as our
results suggest here.

Further to this, the change in the gluon PDF is largely
driven by the predicted form of Pqg at aN3LO and DIS data.
Therefore the relevant changes in the gluon at aN3LO are
most likely due to indirect effects i.e. not directly related to
gluon fusion predictions. Due to this, there is no reason to
believe that the observed level of convergence should hap-
pen at aN3LO for both choices of μ. However, owing to the
inclusion of known information at higher orders, one can be
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Table 15 Higgs production cross section results via the vector boson
fusion process (with

√
s = 13 TeV) using N3LO and NNLO hard cross

sections combined with NNLO and aN3LO PDFs. All PDFs are at the

standard choice αs(mZ ) = 0.118. These results are found with μ = Q2

where Q2 is the vector boson momentum

σ order PDF order σ + σ+ − σ− (pb) σ (pb) + σ+ − σ− (%)

PDF uncertainties

N3LO aN3LO (no theory unc.) 4.1150 + 0.0638 − 0.0724 4.1150 + 1.55% − 1.76%

aN3LO (Hi j + Ki j ) 4.1150 + 0.0682 − 0.0755 4.1150 + 1.66% − 1.83%

aN3LO (H ′
i j ) 4.1150 + 0.0678 − 0.0742 4.1150 + 1.65% − 1.80%

NNLO 3.9941 + 0.0558 − 0.0631 3.9941 + 1.40% − 1.58%

NNLO NNLO 3.9974 + 0.0557 − 0.0633 3.9974 + 1.39% − 1.58%

PDF + Scale uncertainties

N3LO aN3LO (no theory unc.) 4.1150 + 0.0638 − 0.0724 4.1150 + 1.55% − 1.76%

aN3LO (Hi j + Ki j ) 4.1150 + 0.0683 − 0.0755 4.1150 + 1.66% − 1.83%

aN3LO (H ′
i j ) 4.1150 + 0.0678 − 0.0742 4.1150 + 1.65% − 1.80%

NNLO 3.9941 + 0.0560 − 0.0631 3.9941 + 1.40% − 1.58%

NNLO NNLO 3.9974 + 0.0576 − 0.0642 3.9974 + 1.44% − 1.61%

confident that the prediction is more accurate than NNLO,
whichever way it moves.

Comparing PDF uncertainty values calculated using
NNLO and aN3LO PDFs, another prominent feature one can
notice in Table 14 is an increase in PDF uncertainties. We find
that the PDF uncertainty without N3LO theory uncertainties
included (i.e. using only the eigenvector description from
the first 32 eigenvectors and with N3LO parameters fixed at
the best fit) also includes a marginal increase in the positive
direction compared to NNLO. Mathematically, the reason for
this comes back to the fact that the best fit is inherently dif-
ferent from the NNLO theory, residing in a completely novel
χ2 landscape. In turn, this means it is not guaranteed that the
PDF uncertainty will remain consistent across the distinct
PDF sets.25 In the case of gluon fusion, the leading contri-
bution to the positive uncertainty direction is an eigenvector
primarily dominated by PDF parameters, while in the nega-
tive direction a N3LO splitting function parameter dominates
(eigenvector 9 and 31 in the (Hi j + Ki j )

−1 N3LO case – see
Table 11). As discussed in Sect. 8.8, the gluon predominantly
follows the splitting function contributions, therefore it is not
surprising that this eigenvector is having a noticeable effect.
Phenomenologically, the increase in predicted uncertainties
from the inclusion of the theoretical uncertainties is a reflec-
tion of the estimated PDF MHOUs in this particular cross
section, and acts to replace factorisation scale variation. As
a consistency check, we find that when performing a 9-point
scale variation procedure with aN3LO PDFs, the values cal-
culated (for both choices of μ) are within the predicted PDF
uncertainties. This is therefore a further verification of our

25 As we can see from Sect. 8.4, the theory uncertainty is also not
guaranteed to add to the total uncertainty (and in fact acts to reduce the
uncertainty in some areas of (x, Q2)).

MHOUs and that the μ f variation is intrinsic in the PDF
uncertainties.

Finally Fig. 48 also demonstrates the increased stability
of predictions when considering the two different central
scales μ at N3LO. As predicted from perturbation theory,
the scale dependence is reduced and central values become
more in agreement when increasing the order of either the
PDFs or hard cross section. Furthermore, the aN3LO σ cen-
tral predictions for both choices of μ are contained within the
uncertainty bands of each other. This is true by definition for
the NNLO PDFs since the factorisation scale μ f variation
includes both choices of μ, whereas for aN3LO PDFs this
result is not guaranteed and is therefore intrinsic in the PDF
(and renormalisation scale μr variation) uncertainty.

9.2 Higgs production – vector boson fusion: qq → H

Table 15 and Fig. 49 show the predictions at various orders
in αs for Higgs production cross sections via vector boson
fusion26 at the LHC for

√
s = 13 TeV up to N3LO [153,

154], again no fiducial cuts are applied in this comparison.
The predictions shown are calculated with μ2

f = μ2
r = Q2

as the central scale where Q2 is the vector boson squared
momentum.

For this process one can follow the increase in the cross
section as higher order PDFs are used. Contrasting with
the case of gluon fusion, Fig. 49 displays little cancellation
between the terms added in the aN3LO PDF description and
the N3LO cross section. However, the cross section for VBF
produces around a ∼ 3 − 4% change order by order and

26 Results are obtained with the inclusive part of the code proVBFH
[153,154,156].
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Table 16 Higgs production cross section results via the vector boson
fusion process (with

√
s = 13 TeV) using N3LO and NNLO hard cross

sections combined with NNLO and decorrelated aN3LO PDFs whilst

varying the number of active flavours n f . All PDFs are at the standard
choice αs(mZ ) = 0.118. These results are found with μ = Q2 where
Q2 is the vector boson momentum

σ order PDF order σ + σ+ − σ− (pb) σ (pb) + σ+ − σ− (%)

N3LO aN3LO n f = 5 4.1150 + 0.0683 − 0.0755 4.1150 + 1.66% − 1.83%

aN3LO n f = 4 4.0270 + 0.0685 − 0.0765 4.0270 + 1.70% − 1.90%

aN3LO n f = 3 2.7248 + 0.0653 − 0.0673 2.7248 + 2.40% − 2.47%

NNLO NNLO n f = 5 3.9974 + 0.0557 − 0.0633 3.9974 + 1.39% − 1.58%

NNLO n f = 4 3.9118 + 0.0561 − 0.0634 3.9118 + 1.44% − 1.62%

NNLO n f = 3 2.6845 + 0.0539 − 0.0641 2.6845 + 2.01% − 2.39%

is therefore fairly constant. Considering this relatively small
difference between orders, this lack of cancellation is not a
major concern. Further to this, the vector boson fusion pro-
cess is much more reliant on the quark sector which, com-
pared to the gluon, is relatively constant order by order (see
Sect. 8.4). The reason for this stems from the more direct
data constraints on the shape of quark PDFs.

Comparing the aN3LO VBF cross section (with MHO the-
oretical uncertainties) with the NNLO cross section result
(with NNLO PDFs) including MHOUs via scale variations,
we see that the scale variation MHOUs are negligible against
the PDF uncertainties at aN3LO. This result is in part due
to the fact that the scale variation for aN3LO is only being
included for the renormalisation scale. However at NNLO,
the extra MHOU predicted was still only a small contribu-
tion. Therefore considering these results further, the effects
of higher orders in both cases are expected to be small, which
provides some agreement with the argument that there is lit-
tle scope for cancellation between orders for VBF. As for
the gluon fusion prediction in Sect. 9.1, we confirm that any
further factorisation scale variation (i.e. using the 9-point
prescription) is contained within the predicted PDF uncer-
tainties; hence further motivating our previous argument that
factorisation scale variation is not necessary with aN3LO
PDFs.

Another feature of the VBF results is that the level of
uncertainty at full aN3LO is only increased slightly from
the calculation involving NNLO PDFs. Comparing this to
the gluon fusion results, where the uncertainty was more
noticeably increased in both directions, it is evident that these
approximate N3LO additions are having a smaller effect on
the VBF calculation. Once again, the origin of this is due
to the nature of the process. VBF involves mostly the quark
sector and is therefore much less affected by the extra N3LO
theory we have introduced (due to direct constraints from
data). As we have presented in previous sections, most of the
uncertainty in the N3LO theory resides in the small-x regime
which is more directly probed by the gluon sector than in the
quark sector.

Lastly we briefly discuss the n f dependence of the VBF
cross section. In VBF the scaling of contributions follows
as n2

f due to the presence of two input quark flavours in
the process. In Table 16 we observe that the VBF cross sec-
tion receives a large contribution when including the charm
quark (n f = 3 → 4) due to this scaling. We also show that
at aN3LO, this is where most of the difference in the central
value and uncertainty from NNLO is accounted for. This is a
consequence of the predicted enhancement of the charm PDF
at aN3LO, discussed in Sect. 8.4. Beyond n f = 4 the bottom
contribution to VBF in the W± channel (the dominant chan-
nel) is heavily suppressed, since due to the CKM elements
b must transition to t most of the time. Therefore the VBF
cross section only receives a small contribution moving from
n f = 4 to n f = 5.

10 Availability and recommended usage of MSHT20
aN3LO PDFs

We provide the MSHT20 aN3LO PDFs in LHAPDF format
[157]:
http://lhapdf.hepforge.org/
as well as on the repository:
http://www.hep.ucl.ac.uk/msht/
The approximate N3LO functions (for Pi j (x) and Ai j (x))
are provided as lightweight FORTRAN functions or as part
of a Python framework in the repository:
https://github.com/MSHTPDF/N3LO_additions
We present the aN3LO eigenvector sets with and without
correlated K -factors as discussed in Sect. 8, with the default
set being provided with decorrelated K -factors.27

MSHT20an3lo_as118
MSHT20an3lo_as118_Kcorr
Both these PDF sets contain a central PDF accompanied by
104 eigenvector directions (describing 52 eigenvectors) and

27 These grids are updated from a previous version of the MSHT20
aN3LO PDFs and should be used in favour of any sets downloaded
before the latest upload date of this submission.
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can be used in exactly the same way as previous MSHT PDF
sets i.e. the MSHT20 NNLO PDFs with 64 eigenvector direc-
tions.

As presented in this work, the aN3LO PDFs include an
estimation for missing N3LO contributions (the leading the-
oretical uncertainty) and implicitly some MHOU beyond
this within their PDF uncertainties. Due to this, we argue
and motivate in Sect. 9 that factorisation scale variations are
no longer necessary in calculations involving aN3LO PDFs.
However the renormalisation scale should continue to be var-
ied to provide estimates of MHOUs in the hard cross section
piece of physical calculations.

In the case that the hard cross section for a process is avail-
able up to N3LO the recommendation is to use the aN3LO
PDFs, since unmatched ingredients in cross section calcula-
tions can ignore important cancellations (between the PDFs
and hard cross section).

If a process is included within the global fit and the hard
cross section is known only up to NNLO (i.e. those discussed
in Sect. 7), we recommend the use of the decorrelated ver-
sion of the aN3LO PDF set. Using these PDFs and the details
provided in Table 10, the hard cross section can be trans-
formed from NNLO to approximate N3LO. From here the
two approximate N3LO ingredients can be used together to
give a full approximate N3LO result.

If a process is not included in the global PDF fit and the
hard cross section is known only up to NNLO, the stan-
dard NNLO PDF set remains the default choice. However,
we recommend the use of these aN3LO PDFs as an esti-
mate of potential MHOUs. In this case the aN3LO PDF set
+ NNLO hard cross section prediction should be reflected
in any MHOU estimates for the full NNLO prediction.
For example, when the hard cross section is known only
up to NNLO Equation (3.13) from [75] can be adapted
to be,

δ(PDF − TH) = 1

2

∣∣∣∣∣∣
σ

(2)

aN3LO
− σ

(2)
NNLO

σ
(2)

aN3LO

∣∣∣∣∣∣ (10.1)

where δ(PDF −TH) is the predicted PDF theory uncertainty
on the σ prediction, σ

(2)

aN3LO
is the NNLO hard cross sec-

tion with aN3LO PDFs and σ
(2)
NNLO is the full NNLO result.

A caveat to this treatment is that the theory uncertainty is
sensitive to unmatched cancellations and should therefore be
used with care (and caution), therefore the NNLO set remains
the default in evaluating PDF uncertainties.

11 Conclusions

In this paper we have presented the first approximate N3LO
global PDF fit. This follows the MSHT20 framework [3],
where the aN3LO PDF set also incorporates estimates for

theoretical uncertainties from missing N3LO contributions
and implicitly some MHOU beyond this. In addition, the
framework presented for obtaining these PDFs provides a
means of utilising higher order information as and when it is
available. In contrast, previously, complete information of the
next order was required for theoretical calculations in PDF
fits. This provides a significant advantage moving forward
in precision phenomenology, since as we move to higher
orders, this information takes increasingly longer to calcu-
late. We have analysed the resulting set of PDFs, denoted
MSHT20aN3LO, and made two sets available as described
in Sect. 10. The aN3LO PDF fits have been performed to the
same set of global hard scattering data and PDF parameteri-
sations included for the MSHT20 NNLO PDF fits.

The NNLO theoretical framework for MSHT20 PDFs has
been extended in Sect. 2 to include the addition of general
N3LO theory parameters into the fit. Subsequently, we have
outlined how these N3LO theory parameters can be included
into the Hessian procedure as controllable nuisance parame-
ters where they are not yet known. Two methods of handling
subsets of the N3LO theory parameters in the Hessian matrix
have then been discussed; i.e. including or ignoring correla-
tions with aN3LO K -factors across distinct processes.

In Sects. 4–7 we have presented the N3LO additions to
the relevant splitting functions, transition matrix elements,
heavy coefficient functions and K -factors. We present usable
and computationally efficient approximations to N3LO based
on known information in the small and large-x regimes and
the available Mellin moments (and make these available as
described in Sect. 10). In all cases the best fit prediction
for each N3LO function is in good agreement with the prior
expected behaviour. Also in Sect. 7, we find good agree-
ment with recent progress towards N3LO DY and top pro-
duction K -factors [64,66]. As more information becomes
available surrounding each of these functions, the framework
we present here can be easily adapted, aiding in the reduction
in sources of MHOUs from N3LO. As we have stressed, we
interpret our theoretical uncertainty as being mainly due to
the remaining uncertainty at N3LO, but with some small, but
significant contribution from even higher orders, particularly
at small-x . Our results seem consistent with this interpreta-
tion. However, in the future we expect the N3LO description
to become more exact. Hence, at some point the remaining
N3LO uncertainty will become comparable to, or smaller
than effects beyond N3LO. We would then have to modify
our procedure. However, we expect that once the N3LO the-
ory becomes very largely known, there will at this point also
be more information known about even higher orders (i.e.
N4LO), which could then be incorporated in a similar man-
ner to maintain an estimate for MHOUs. Alternatively, in the
event that the available information is not suitable to provide
approximations (or indeed to complement these approxima-
tions), a treatment similar in principle, but more sophisticated
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in practice, to that of the K -factors may be adopted for DIS
quantities. On this note, we acknowledge that the method of
constructing aN3LO K -factors for non-(inclusive) DIS pro-
cesses presented here is a first step towards a more robust and
flexible procedure, which is left for future work.

Combining together all N3LO information, in Sect. 8 the
results of an approximate N3LO global PDF fit are presented.
The new MSHT20 approximate N3LO PDFs show a signifi-
cant reduction in χ2 from the MSHT20 NNLO PDF set, with
the leading NNLO tensions between HERA and non-HERA
datasets heavily reduced at aN3LO (most notably with the
ATLAS 8 TeV Z pT dataset [110]). With this being said, the
aN3LO set does fit selected Jets datasets worse in an aN3LO
global fit than at NNLO, although these are an exception to
the behaviour seen for the other datasets. In performing a
fit not including ATLAS 8 TeV Z pT data we provide evi-
dence that similar tensions seen at NNLO (see [3]) remain
between this dataset and jet production data at aN3LO. Fur-
ther to this, we show that since HERA and ATLAS 8 TeV
Z pT data are more in agreement in the form of the high-x
gluon at aN3LO, one can observe that the tension with the jet
production data is shared between HERA and ATLAS 8 TeV
Z pT data. Finally, as discussed, we highlight that in future
work it will be interesting to observe if this increased tension
may be alleviated when considering these jet datasets instead
as dijet cross sections.

Investigating the correlations present within an aN3LO
PDF fit, a natural separation between process independent
and process dependent parameters can be observed. With
this motivation, a PDF set with decorrelated aN3LO K -
factor eigenvectors is constructed. The validity of this is then
also verified by comparison with a second PDF set which
includes correlations between all parameters. Each of these
sets exhibits similarly well behaved eigenvectors and levels
of dynamical tolerance.

Considering the form of the individual PDFs, the aN3LO
PDFs include a much harder gluon at small-x due to contri-
butions from the splitting functions as discussed in Sect. 8.8.
This enhancement then translates into an increase in the
charm and bottom PDFs due to the gluon input into the heavy
flavour sector via the transition matrix elements. At very low-
Q2 the result of the N3LO additions is a non-negative charm
and gluon PDF at small-x . As a consistency check, the fit
dependence on αs and mc has been investigated. In both of
these cases we show a preference for values which suppress
the heavy flavour contributions (slightly lower αs and slightly
higher mc than NNLO). Considering the predicted aN3LO
αs , we observe a slightly lower than 1σ effect when com-
paring with the NNLO world average. While an extensive
analysis of the aN3LO αs value is left for further study, since
the world average is determined by NNLO results, one could
expect a small systematic effect from moving to N3LO.

Taking this analysis further and using the approximate
N3LO PDFs as input to N3LO cross section calculations, we
consider the cases of gluon and vector boson fusion in Higgs
production. We present the first aN3LO calculation for these
cross sections and show how the aN3LO prediction differs
from the case with NNLO PDFs including scale variations,
highlighting the importance of matching orders in calcula-
tions. In VBF we provide an example where cancellation is
not realised between orders. However in this case the quark
sector is much more constrained and due to the smaller vari-
ation between orders, there is naturally less scope for can-
cellation.

In summary, we have presented a set of approximate N3LO
PDFs that are able to more accurately predict physical quan-
tities involving PDFs (given that all ingredients in these cal-
culations are included at N3LO or aN3LO). In producing
these PDFs, we have provided a more controllable method for
estimating theoretical uncertainties from MHOs in a PDF fit
than scale variations. While some ambiguity remains in this
method in how the prior variations are chosen, we argue that
the current knowledge and intuition surrounding each source
of uncertainty can be utilised as and when available. This is
therefore much more in line with what one can expect a the-
oretical uncertainty to encompass. Another potential short-
coming is the possibility of fitting to sources of uncertainty
other than higher orders (or higher order corrections else-
where in theory calculations included in a PDF fit). Although
this is a possibility, the position of the considered sources of
uncertainty in the underlying theory combined with the prior
variations and penalties should act to minimise this effect. In
any case, if a separate source of uncertainty is significantly
affecting the fit, this will present itself as a source of tension
with the N3LO penalties and the χ2 (and PDF uncertainty)
will be adapted accordingly.

In future work it will be interesting to investigate the
effects in the high-x gluon, which is a region of phenomeno-
logical importance and where the interpretation of LHC con-
straints is not always straightforward. We also note that there
are N3LO results available from di-lepton rapidity in DY pro-
cesses [64]. Considering the results in Sect. 7 which display
an agreement with these recent results, we hope that these
approximate N3LO PDFs may be of interest in this analy-
sis. Similarly for recent results considering top production
[66]. Furthermore, any approximate information from these
results could be included in the N3LO K -factor priors, which
was not done for this iteration of the aN3LO PDFs. Finally,
in order to continually improve the description of aN3LO
PDFs, the inclusion of more sub-leading sources of MHOUs
could be addressed. With the upcoming wealth of experi-
mental data from future colliders such as the HL-LHC and
the EIC, it will be of interest to gain a better understanding
of the transition matrix elements and also describe better the
charged current and longitudinal structure functions, where
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currently theoretical uncertainties are much smaller than the
experimental uncertainties.
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Appendix A: List of N3LO ingredients

Table 17 List of all the N3LO ingredients used to construct the approx-
imate N3LO splitting functions and transition matrix elements. Where
only a citation is provided, extensive knowledge i.e. beyond NLL is
used. This table is a non-exhaustive list of the current knowledge about
these functions, however information beyond that which is provided
here is not currently in a usable format for phenomological studies

N3LO No. of Moments Small-x Large-x
function moments (even only)

PNS
qq 8 N = 2−16 [21] [21] [21]

PPS
qq 4 N = 2−8 [35,36] LL [28] N/A

Pqg 4 N = 2−8 [35,36] LL [28] N/A

Pgq 4 N = 2−8 [35,36] LL [29–31] N/A

Pgg 4 N = 2−8 [35,36] LL and NLL [29–33] N/A

ANS
qq,H 7 N = 2−14 [50] N/A N/A

APS
Hq 6 N = 2−12 [50] [53] [53]

AHg 5 N = 2−10 [50] LL [49] N/A

Agq,H 7 N = 2−14 [50] [54] [54]

Agg,H 5 N = 2−10 [50] N/A N/A

Table 18 List of all N3LO ingredients used to construct the approx-
imate N3LO GM-VFNS coefficient functions. Note that lower order
components that contribute to these functions are also known and are
cited in the text. This table only considers contributing 3-loop functions

GM-VFNS N3LO function Known N3LO components

CH,q C (3), FF
H,q

(
Q2 ≤ m2

h

)
LL

[47–49], CVF, (3)
H,q [57]

CH,g C (3), FF
H,g

(
Q2 ≤ m2

h

)
LL

[47–49], CZM, (3)
H,q [57]

CNS
q,q CZM, (3)

q,q, NS [57]

CPS
q,q CZM, (3)

q,q, PS [57]

Cq,g CZM, (3)
q,g [57]

Tables 17 and 18 summarise the available (at the time of
writing) and used information regarding the N3LO splitting
functions and coefficient functions respectively. The formal-
ism presented in Sect. 2 currently makes use of all this infor-
mation and is able to be adapted as and when more informa-
tion becomes available.

Appendix B: χ2 results without HERA

B.1 NNLO

Table 19 shows the differences in χ2 found when omitting
HERA data from a PDF fit using the MSHT NNLO PDFs.
This table is copied here from [3] for the ease of the reader. We
see similarities between these results and the χ2’s seen in
the case of N3LO PDFs. Specifically the ATLAS 8 TeV Z pT
displaying a substantial reduction from the global NNLO fit.
This therefore provides evidence that the inclusion of the
N3LO contributions is aiding in reducing tensions between
the HERA and non-HERA datasets.

Table 19 The change in χ2 for a NNLO fit(with negative indicating
an improvement in the fit quality) when the combined HERA data sets
including FL and heavy flavour data are removed, illustrating the ten-
sions of these data sets with several of the other data sets in the global
fit. χ2 represents the change from a full global fit at the same order
in αs

Dataset Npts χ2 χ2

BCDMS μp F2 [135] 163 174.7 −5.5

BCDMS μd F2 [135] 151 143.9 −2.1

NMC μp F2 [136] 123 119.6 −4.5

NMC μd F2 [136] 123 96.6 −16.1

SLAC ep F2 [137,138] 37 33.0 +0.9

SLAC ed F2 [137,138] 38 24.1 +1.1
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Table 19 continued

Dataset Npts χ2 χ2

E665 μd F2 [139] 53 63.5 +3.9

E665 μp F2 [139] 53 68.9 +4.3

NuTeV νN F2 [140] 53 38.0 −0.3

NuTeV νN xF3 [140] 42 27.5 −3.2

NMC μn/μp [141] 148 132.7 +1.9

E866/NuSea pp DY [80] 184 228.0 +2.9

E866/NuSea pd/pp DY [81] 15 9.1 −1.3

CCFR νN → μμX [133] 86 66.2 −1.5

NuTeV νN → μμX [133] 84 49.0 −9.5

CHORUS νN F2 [146] 42 29.6 −0.6

CHORUS νN xF3 [146] 28 18.2 −0.3

CDF II p p̄ incl. jets [102] 76 60.9 +0.5

DØ II Z rap. [82] 28 16.6 +0.3

CDF II Z rap. [83] 28 38.7 +1.5

DØ II W → νμ asym. [84] 10 17.4 +0.1

CDF II W asym. [85] 13 19.0 +0.0

DØ II W → νe asym. [86] 12 30.0 −3.9

DØ II p p̄ incl. jets [103] 110 119.3 −0.9

ATLAS W+, W−, Z [87] 30 29.5 −0.4

CMS W asym. pT > 35 GeV [88] 11 6.6 −1.2

CMS W asym. pT > 25, 30 GeV [89] 24 7.5 +0.1

LHCb Z → e+e− [90] 9 24.2 +1.5

LHCb W asym. pT > 20 GeV [91] 10 12.1 −0.3

CMS Z → e+e− [92] 35 17.3 −0.6

ATLAS High-mass Drell–Yan [93] 13 16.9 −2.0

Tevatron, ATLAS, CMS σt t̄ [117–129] 17 14.2 −0.4

CMS double diff. Drell–Yan [94] 132 134.2 −10.3

LHCb 2015 W, Z [77,78] 67 97.4 −1.9

LHCb 8 TeV Z → ee [95] 17 24.4 −1.8

CMS 8 TeV W [96] 22 13.7 +0.9

ATLAS 7 TeV jets [104] 140 228.0 +6.5

CMS 7 TeV W + c [62] 10 9.2 +0.6

ATLAS 7 TeV high prec. W, Z [79] 61 116.8 +0.2

CMS 7 TeV jets [101] 158 179.5 +3.8

DØ W asym. [97] 14 11.3 −0.8

ATLAS 8 TeV Z pT [110] 104 149.3 −39.2

CMS 8 TeV jets [105] 174 259.5 −1.8

ATLAS 8 TeV sing. diff. t t̄ [130] 25 24.5 −1.1

ATLAS 8 TeV sing. diff. t t̄ dilep. [131] 5 2.3 −1.1

ATLAS 8 TeV High-mass DY [98] 48 60.9 +3.7

ATLAS 8 TeV W + jets [111] 30 16.4 −1.7

CMS 8 TeV double diff. t t̄ [132] 15 23.3 +0.8

ATLAS 8 TeV W [99] 22 54.4 −3.0

Table 19 continued

Dataset Npts χ2 χ2

CMS 2.76 TeV jet [106] 81 102.9 +0.0

CMS 8 TeV sing. diff. t t̄ [112] 9 10.6 −2.6

ATLAS 8 TeV double diff. Z [100] 59 108.3 +22.7

Total 3042 3379.6 −61.6

Table 20 The change in χ2 for an N3LO fit (with negative indicating
an improvement in the fit quality) when the combined HERA data sets
including FL and heavy flavour data are removed, illustrating the ten-
sions of these data sets with several of the other data sets in the global
fit. χ2 represents the change from a full global fit at the same order
in αs

Dataset Npts χ2 χ2

BCDMS μp F2 [135] 163 175.8 +1.4

BCDMS μd F2 [135] 151 144.2 −0.0

NMC μp F2 [136] 123 113.6 −7.8

NMC μd F2 [136] 123 87.6 −16.6

SLAC ep F2 [137,138] 37 30.7 −0.9

SLAC ed F2 [137,138] 38 23.2 +0.4

E665 μd F2 [139] 53 65.2 +1.3

E665 μp F2 [139] 53 69.0 +1.5

NuTeV νN F2 [140] 53 35.4 −0.4

NuTeV νN xF3 [140] 42 29.2 −5.6

NMC μn/μp [141] 148 131.1 −0.5

E866/NuSea pp DY [80] 184 217.6 +2.3

E866/NuSea pd/pp DY
[81]

15 8.2 −0.2

CCFR νN → μμX
[133]

86 67.0 −1.3

NuTeV νN → μμX
[133]

84 47.6 −9.1

CHORUS νN F2 [146] 42 29.0 −0.2

CHORUS νN xF3 [146] 28 18.5 +0.4

CDF II p p̄ incl. jets
[102]

76 65.9 −0.6

DØ II Z rap. [82] 28 17.7 +0.3

CDF II Z rap. [83] 28 42.1 +1.5

DØ II W → νμ asym.
[84]

10 18.9 +2.4

B.2 aN3LO

Table 20 shows the differences in χ2 found when omitting
HERA data from a PDF fit using the MSHT aN3LO PDFs.
These results show that at aN3LO the fit no longer experi-
ences large tensions between HERA and ATLAS 8 TeV Z pT
[110] datasets. The main tensions at N3LO are now con-
cerning the Jets data with HERA (and most likely some
non-HERA datasets). This result is not unexpected due to
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Table 20 continued

Dataset Npts χ2 χ2

CDF II W asym. [85] 13 19.2 +0.9

DØ II W → νe asym.
[86]

12 31.0 +0.2

DØ II p p̄ incl. jets [103] 110 114.2 +0.9

ATLAS W+, W−, Z
[87]

30 29.5 −0.5

CMS W asym. pT >

35 GeV [88]
11 7.0 +0.2

CMS W asym. pT >

25, 30 GeV [89]
24 7.8 −0.2

LHCb Z → e+e− [90] 9 22.5 −0.7

LHCb W asym. pT >

20 GeV [91]
10 12.6 +0.0

CMS Z → e+e− [92] 35 17.1 −0.5

ATLAS High-mass
Drell–Yan [93]

13 17.5 −0.9

Tevatron, ATLAS, CMS
σt t̄ [117–129]

17 14.4 +0.1

CMS double diff. Drell–
Yan [94]

132 129.5 −3.7

LHCb 2015 W, Z [77,
78]

67 96.7 −6.5

LHCb 8 TeV Z → ee
[95]

17 27.9 −2.4

CMS 8 TeV W [96] 22 11.6 +0.1

ATLAS 7 TeV jets [104] 140 217.7 +1.8

CMS 7 TeV W + c [62] 10 10.8 +0.0

ATLAS 7 TeV high prec.
W, Z [79]

61 118.0 −1.3

CMS 7 TeV jets [101] 158 187.8 +1.0

DØ W asym. [97] 14 10.1 −2.0

ATLAS 8 TeV Z pT
[110]

104 121.2 +12.8

CMS 8 TeV jets [105] 174 259.8 −11.5

ATLAS 8 TeV sing. diff.
t t̄ [130]

25 24.1 −0.2

ATLAS 8 TeV sing. diff.
t t̄ dilep. [131]

5 3.0 +0.3

ATLAS 8 TeV High-
mass DY [98]

48 65.2 +2.4

ATLAS 8 TeV W + jets
[111]

30 18.0 −0.8

CMS 8 TeV double diff.
t t̄ [132]

15 22.8 −0.8

ATLAS 8 TeV W [99] 22 48.0 −5.0

CMS 2.76 TeV jet [106] 81 103.0 −6.8

CMS 8 TeV sing. diff. t t̄
[112]

9 12.3 +2.0

ATLAS 8 TeV double
diff. Z [100]

59 86.1 +5.7

Table 20 continued

Dataset Npts χ2 χ2

Low-Q2 coefficient

cNLL
q = −3.844 0.006 cNLL

g = −3.875 0.004

Transition matrix ele-
ments

aHg = 17788.000 5.607 aNS
qq,H = −63.950 0.000

agg,H = −1334.500 0.001

Splitting functions

ρNS
qq = 0.007 0.000 ρgq = −1.647 0.001

ρPS
qq = −0.579 0.429 ρgg = 9.237 0.023

ρqg = −1.343 0.131

K-factors

DYNLO = −0.291 0.085 DYNNLO = −0.228 0.052

TopNLO = −0.204 0.042 TopNNLO = 0.412 0.170

JetNLO = −0.254 0.065 JetNNLO = −0.861 0.741

pT JetsNLO = 0.461 0.213 pT JetsNNLO = 0.016 0.000

DimuonNLO = −0.329 0.109 DimuonNNLO = 0.587 0.345

Total 3311.8/3042

χ2 from N3LO −48.0

the known issues surrounding jets especially as we move to
higher precision [109].

Appendix C: Dynamic tolerances

In this section we provide an exhaustive breakdown of the
χ2

global behaviour for all eigenvectors found where N3LO
K -factor parameters are considered completely decorrelated
(Hi j + Ki j ) or correlated (H ′

i j ) with all other parameters.

C.1 Case 1: Decorrelated K -factor parameters

Figure 50 displays the tolerance landscape for each eigenvec-
tor found from the decorrelated (Hi j+Ki j ) Hessian described
in Sect. 2. Across all 52 eigenvectors (42 PDF + N3LO DIS
theory and 10 N3LO K -factor) we show an overall gen-
eral agreement with the quadratic assumption similar to that
found at NNLO.

C.2 Case 2: Correlated K -factor parameters

Figure 51 displays the tolerance landscape for each eigen-
vector found from the correlated (H ′

i j ) Hessian described in
Sect. 2. Across all 52 eigenvectors we show an overall gen-
eral agreement with the quadratic assumption similar to that
found at NNLO.
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Fig. 50 Dynamic tolerances for each eigenvector direction in the case of complete decorrelation between the theory and PDF parameters, and the
K -factor parameters included in the PDF fit
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Fig. 50 continued
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Fig. 50 continued
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Fig. 50 continued
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Fig. 50 continued
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Fig. 50 continued
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Fig. 51 Dynamic tolerances for each eigenvector direction in the case of complete correlation between all theory, PDF and K -factor parameters
included in the PDF fit

123



Eur. Phys. J. C (2023) 83 :185 Page 101 of 108 185

Fig. 51 continued
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Fig. 51 continued
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Fig. 51 continued
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Fig. 51 continued
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Table 21 Higgs production cross section results via gluon fusion using
N3LO and NNLO hard cross sections combined with NNLO and aN3LO
PDFs. All PDFs are at the standard choice αs = 0.118. These results

are found with μ = mH unless stated otherwise, with the values for
μ = mH /2 supplied in Table 14

σ order PDF order σ + σ+ − σ− (pb) σ (pb) + σ+ − σ− (%)

PDF uncertainties

N3LO aN3LO (no theory unc.) 43.803 + 0.685 − 0.526 42.709 + 2.81% − 3.14%

aN3LO (Hi j + Ki j ) 43.803 + 0.795 − 0.732 42.709 + 3.30% − 3.17%

aN3LO (H ′
i j ) 43.803 + 0.785 − 0.737 42.709 + 3.39% − 3.08%

NNLO 46.243 + 0.524 − 0.563 46.243 + 1.13% − 1.22%

NNLO NNLO 42.129 + 0.472 − 0.510 42.129 + 1.12% − 1.21%

PDF + Scale uncertainties

N3LO aN3LO (no theory unc.) 43.803 + 1.723 − 2.519 42.709 + 4.68% − 6.44%

aN3LO (Hi j + Ki j ) 43.803 + 1.770 − 2.570 42.709 + 4.89% − 6.45%

aN3LO (H ′
i j ) 43.803 + 1.766 − 2.571 42.709 + 4.95% − 6.41%

NNLO 46.243 + 1.845 − 3.078 46.243 + 3.99% − 6.66%

NNLO NNLO 42.129 + 4.989 − 5.106 42.129 + 11.84% − 12.12%

Appendix D: Higgs gluon fusion μ = mH results

Provided in Table 21 are the results analogous to those in
Table 14 but with the central scale set to μ = μ f = μr =
mH . These results show a higher level of stability for aN3LO
PDFs with the chosen central scale. By the renormalisation
group arguments, this scale dependence should disappear at
all orders in perturbation theory. Therefore the results here
suggest that the aN3LO PDFs are following this trend.
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