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We revisit the calculation of nonfactorizable corrections induced by charm-quark loops in exclusive FCNC 
B-decays. For the sake of clarity, we make use of a field theory with scalar particles: this allows us to 
focus on the conceptual issues and to avoid technical complications related to particle spins in QCD. We 
perform a straightforward calculation of the appropriate correlation function and show that it requires 
the knowledge of the full generic three-particle distribution amplitude with non-aligned arguments, 
〈0|s̄(y)Gμν(x)b(0)|B(p)〉. Moreover, the dependence of this quantity on the variable (x − y)2 is essential 
for a proper account of the 

(
�QCDmb/m2

c

)n
terms in the amplitudes of FCNC B-decays.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The interest in the contribution of virtual charm loops in rare 
FCNC semileptonic and radiative leptonic decays of the B-mesons 
is two-fold: (i) although CKM-suppressed, the effect of the virtual 
charm-quark loops, including the narrow charmonia states which 
appear in the physical region of the B-decay, has a strong im-
pact on the B-decay observables [1] thus providing an unpleasant 
“noise” for the analysis of possible new physics effects; (ii) it is 
known that in the charmonia region, nonfactorizable gluon ex-
changes dominate the amplitudes posing a challenging QCD prob-
lem.

A number of theoretical analyses of nonfactorizable effects in-
duced by charm-quark contributions has been published in the 
literature. We will mention here only those that are directly related 
to the discussion of this letter: In [2], an effective gluon–photon lo-
cal operator describing the charm-quark loop has been calculated 
for the real photon as an expansion in inverse charm-quark mass 
mc and applied to inclusive B → Xsγ decays; Ref. [3] obtained 
a nonlocal effective gluon–photon operator for the virtual photon 
(i.e. without expanding in inverse powers of mc) and applied it 
to inclusive B → Xsl+l− decays. In [4] nonfactorizable corrections 
in exclusive FCNC B → K ∗γ decays using local OPE have been 
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studied; in [5,6], these corrections have been analyzed with light-
cone sum rules using local OPE for the photon–gluon operator and 
three-particle light-cone distribution amplitudes of K ∗-meson.

As emphasized in [2,3,7–9], local OPE for the charm-quark 
loop leads to a power series in �QCDmb/m2

c . This parameter is 
of order unity for the physical masses of c- and b-quarks and 
thus corrections of this type require resummation. The authors 
of [9] derived a different form of the nonlocal photon–gluon op-
erator compared to [3] and evaluated its effect at small values 
of q2 (q momentum of the lepton pair) making use of light-cone 
3-particle DA (3DA) of the B-meson with the aligned arguments, 
〈0|s̄(y)Gμν(uy)b(0)|Bs(p)〉.

The goal of this letter is to emphasize that the full
consistent resummation of 

(
�QCDmb/m2

c

)n
terms in the nonfactor-

izable amplitude requires a more complicated object,
〈0|s̄(y)Gμν(x)b(0)|Bs(p)〉, i.e., a generic 3DA with non-aligned co-
ordinates.

We perform the analysis using a field theory with scalar 
quarks/gluons which is technically very simple and allows one to 
focus on the conceptual issues; the generalization of our analysis 
for QCD is straightforward. We calculate nonfactorizable correc-
tions directly, keeping control over all approximations. We adopt 
the counting scheme in which the parameter �QCDmb/m2

c is kept 
of order unity, and show that the full 3DA is necessary in order 
to resum properly the (�QCDmb/m2

c )
n corrections: the dominant 

contribution to the B-decay amplitude are generated not only by 
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the light-cone terms y2 = 0 and x2 = 0, but also by terms of or-
der ∼ (xy)n . Therefore, the dominant contributions to the B-decay 
amplitude come from the configurations when both x and y lie on 
the light cone, but on the different axes: if x is aligned along the 
(+)-axis, then y is aligned along the (−)-axis.

Expressing the B-decay amplitude via the standard 3DA with 
the aligned arguments, one can resum only a part of the (�QCDmb/

m2
c )

n corrections, whereas another source of the corrections of the 
same order remains unaccounted.

2. Nonfactorizable corrections in a field theory with scalar 
particles

In order to exemplify the details of the calculation, we consider 
nonfactorizable effects for the case of spinless particles. We shall 
use the standard QCD notations for spinor fields and assume that 
mb � mc � ms ∼ �QCD, but the parameter �QCDmb/m2

c is of order 
unity.

We study the amplitude

A(p,q) = i

∫
dzeiqz〈0|T {c†(z)c(z), s†(0)s(0)}|Bs(p〉, (2.1)

which involves weak interactions. We want to study nonfactoriz-
able corrections due to a soft-gluon exchange between the charm-
quark loop and the B-meson loop. To lowest order, the correspond-
ing amplitude is given by the diagram of Fig. 1:

A(p,q) = i

∫
dzeiqz〈0|T {c†(z)c(z), i

∫
dy′ Lweak(y′),

i

∫
dx LGcc(x), s†(0)s(0)}|Bs(p〉, (2.2)

where the effective Lagrangian that mimics weak four-quark inter-
action is taken in the form

Lweak = G F√
2

s†b c†c, (2.3)

and the scalar gluon field G(x) couples to the scalar c-quarks via 
the interaction

LGcc = G c†c, (2.4)

i.e., G involves the quark–gluon coupling.
First, we consider the charm-quark loop with the emission of 

a soft scalar gluon. We use the gluon field in momentum repre-
sentation, related to the gluon field in coordinate representation 
as

G(x) = 1

(2π)4

∫
dκ G̃(κ) eiκx, G̃(κ) =

∫
dx G(x) e−iκx. (2.5)

Then the effective operator describing the gluon emission from the 
charm quark loop may be written as

O(q) =
∫

dκ G̃(κ)�cc(κ,q), (2.6)

where �cc(κ, q) stands for the contribution of two triangle dia-
grams with the charm quark running in the loop. The momenta κ
and q are outgoing from the charm-quark loop, whereas the mo-
mentum q′ = q + κ is emitted from the b → s vertex. p′ is the 
momentum of the outgoing s†s current and p is the momentum of 
the B-meson, p = p′ + q.

In terms of the gluon field operator in coordinate space, we can 
rewrite (2.6) as

O(q) =
∫

dκ e−iκxdx G(x)�cc(κ,q). (2.7)
Fig. 1. One of the diagrams describing the nonfactorizable gluon exchange. Dashed 
line corresponds to gluon; q and κ = −ωp are the momenta outgoing from the 
charm-quark loop; the momentum q′ = q + κ = q − ωp is emitted from the b → s
vertex. Another diagram, equal to the one shown in the figure, corresponds to the 
Gluon attached to the right c-quark line in the upper loop.

By virtue of (2.7), the amplitude Eq. (2.2) takes the form

A(q, p) = 1

(2π)8

∫
dk

m2
s − k2

∫
dye−i(k−p′)y

×
∫

dxe−iκxdκ �cc(κ,q) 〈0|s̄(y)G(x)b(0)|Bs(p)〉. (2.8)

Here, we encounter the B-meson three-particle amplitude with 
three different (non-aligned) arguments, for which we may write 
down the following decomposition:

〈0|s†(y)G(x)b(0)|Bs(p)〉
=

∫
dλe−iλyp

∫
dωe−iωxp

[

(λ,ω)+ O

(
x2, y2, (x − y)2

)]
,

(2.9)

where λ and ω are dimensionless variables. Making use of the 
properties of Feynman diagrams, it may be shown that they should 
run from 0 to 1. However, if one of the constituents is heavy, it car-
ries the major fraction of the meson momentum and as the result 
the function 
(λ, ω) is strongly peaked in the region

λ,ω = O (�QCD/mb). (2.10)

So, effectively one can run the ω and λ integrals from 0 to ∞; the 
latter integration limits emerge in the DAs within heavy-quark ef-
fective theory [9,10]. We emphasize that for the results presented 
below only peaking of the DAs in the region (2.10) is essential. No-
tice also that the function 
(λ, ω) in (2.9) coincides with the same 
function that appears in the “standard” 3-particle distribution am-
plitude with the aligned arguments, x = uy, discussed in [10].

2.1. Light-cone contribution

First, let us calculate the contribution to A(q, p) from the term 
given by 
(λ, ω) in the 3DA (2.9), i.e. corresponding to x2 = y2 =
(x − y)2 = 0. After inserting (2.9) into (2.8) we can perform the x-
and y-integrals
∫

dx → δ(κ + ωp),

∫
dy → δ(k + λp − p′). (2.11)

The next step is easy: the δ-functions above allow us to take inte-
grals over k and κ , and we find
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A(q, p) =
∞∫

0

dλ

∞∫

0

dω
(λ,ω)�cc (−ωp,q)
1

m2
s − (λp − p′)2

.

(2.12)

For the sum of two triangle diagrams with the charm quark run-
ning in the loop we may use the representation

�cc(κ,q)

= 1

8π2

1∫

0

du

1−u∫

0

dv
1

m2
c − 2uvκq − u(1 − u)κ2 − v(1 − v)q2

.

(2.13)

Now, we must take into account that the ω-integral is peaked 
at ω ∼ �QCD/mb so the gluon is soft: κ = −ωp and κ2 ∼
O (�2

QCD) � m2
c . The momentum transferred in the weak-vertex 

is q′ = q + κ = q − ωp, such that

q′ 2 = (q − ωp)2 = q2 − ω(1 − ω)M2
B − q2ω + p′ 2ω

= q2 − ω(1 − ω)M2
B . (2.14)

By virtue of the y-integration in (2.11), the s-quark propagator 
takes the form

m2
s − (λp − p′)2 = m2

s − λq2 + (1 − λ)(λM2
B − p′2). (2.15)

Therefore, in the bulk of the λ-integration the virtuality of 
the s-quark propagator is large, O (MB). Let us notice that the 
q2-dependence of the s-quark propagator is very mild and can 
be neglected; the main q2-dependence of the amplitude A(q, p)

comes from the charm-quark loop.

2.2. Deviations from the light-cone

We now turn to the calculation of the contributions to A(q, p)

generated by terms ∼ x2, y2, (x − y)2 in the 3DA (2.9). The terms 
containing powers of 4-vectors y and x in the integral (2.8) can be 
calculated by parts integration leading to additional factors under 
the integrals:

yα → kα

�QCDmb
, xα → {qα,κα}

m2
c

. (2.16)

Taking into account the results (2.11), we find the following rela-
tive contributions of the terms containing different powers of the 
coordinate variables:

y2 → k2

�2
QCDm2

b

∼ 1

�QCDmb
,

x2 → qκ

m4
c

∼ �QCDmb

m4
c

,

xy → (p′ − λp)(q − ωp)

�QCDmbm2
c

∼ mb

�QCDm2
c
. (2.17)

Clearly, all terms containing powers of x2 and/or y2 in the 3DA 
lead to the suppressed contributions to A(q, p) and may be ne-
glected within the considered accuracy. However, the terms con-
taining powers of xy lead to the contributions containing powers 
of �QCDmb/m2

c , i.e., of order unity within the adopted counting 
rules. The kinematics of the process is thus rather simple: the vec-
tors x and y are directed along the light-cone [e.g., x along the 
(+) axis, and y along the (−) axis], but the 4-vector x − y is 
obviously not directed along the light cone. Therefore, the full de-
pendence of 3DA on the variable (x − y)2 is needed in order to 
properly resum corrections of order 

(
�QCDmb/m2

c

)n
.

3. Conclusions

We have revisited the calculation of nonfactorizable charm-loop 
effects in rare FCNC B-decays. To put emphasis on the conceptual 
aspects and to make the discussion clearer, we have considered 
the case of all scalar particles, avoiding in this way conceptually 
unimportant technical details. Our conclusions are as follows:

(i) The relevant object that arises in the calculation of the nonfac-
torizable corrections is the three-particle DA with non-aligned 
coordinates:

〈0|s†(y)G(x)b(0)|Bs(p)〉
=

∫
dλe−iλyp

×
∫

dωe−iωxp
[

(ω,λ)+ O

(
x2, y2, (x − y)2

)]
. (3.18)

The function 
(ω, λ) here is precisely the same function 
that parameterizes the standard 3DA with the aligned argu-
ments, x = uy, discussed in [10]. At small q2 ≤ m2

c , terms 
of order ∼ x2, y2 yield the suppressed contributions to the 
nonfactorizable amplitude of B-decay compared to the con-
tribution of the light-cone term in the three-particle DA: for 
terms O (x2) the suppression parameter is �2

QCD/m2
c , and for 

terms O (y2) the suppression parameter is �QCD/mb . How-
ever, terms ∼ (xy)n in the 3DA yield the contributions of order (
�QCDmb/m2

c

)n
in the B-meson amplitude, i.e., to the un-

suppressed contributions. These contributions have the same 
order as the difference between the local OPE [2] and the 
light-cone OPE [9] and should be properly resummed. The 
kinematics of the process looks simple: the 4-vectors x and 
y are directed along the light-cone [e.g., x along the (+)-axis, 
and y along the (−)-axis], but the 4-vector x − y is obviously 
not directed along the light cone; therefore, the full depen-
dence of the 3DA (3.18) on the variable (x − y)2 is needed in 
order to properly resum corrections of order 

(
�QCDmb/m2

c

)n
.

(ii) Evidently, a consistent treatment of nonfactorizable charm-
loop effects in FCNC B-decays in QCD also requires the con-
sideration of generic B-meson three-particle distribution am-
plitudes with non-aligned coordinates,

〈0|s̄(y)Gμν(x)b(0)|Bs(p)〉. (3.19)

The Wilson lines between the field operators, making this 
quantity gauge-invariant, are implied. Notice that in QCD the 
complications of the generic 3DA (3.19) compared to the 3DA 
with the aligned arguments are two-fold: (i) first, similar 
to the case of scalar constituents considered above, in each 
Lorentz structure that parametrizes (3.19) one has to take 
into account terms ∼ (xy)n that yield the unsuppressed con-
tributions to the B-decay amplitude; (ii) second, (3.19) con-
tains additional Lorentz structures ∼ (x − y)α and ∼ (x + y)α
compared to the 3DA with the aligned arguments (see, e.g., 
Eq. (4.7) of [9]), and, respectively, new distribution amplitudes.

(iii) It seems plausible to infer that when considering non-
factorizable gluon corrections in meson-to-vacuum transition 
amplitudes of the type 〈0|T { j1(z) j2(0)}|B〉 (or vacuum-to-
meson amplitudes with light meson in the final state), one 
encounters two distinct kinds of processes:
I. The amplitude of the process involves only one quark 
loop, i.e., the external boson is emitted from the same quark 
loop that contains valence quarks of the initial and the final 
mesons. In this case, non-factorizable corrections are light-
cone dominated, i.e. may be expressed via light-cone three-
particle distribution amplitude of the initial or of the final 
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meson. For instance, weak form factors of B-meson decays 
treated within the method of light-cone sum rules (see e.g. 
[11,12]) belong to this kind of processes.
II. The amplitude of the process involves two separate quark 
loops (one quark-loop involving valence quarks of the initial 
and the final mesons and another quark loop that emits the 
external boson). In this case, the soft gluon from the initial or 
the final meson vertex is absorbed by a quark in a different 
loop. Then, the description of non-factorizable soft-gluon cor-
rections requires the full three-particle DA with non-aligned 
coordinates of the type of (3.18). Non-factorizable corrections 
to FCNC decays due to c- or u-quark loops belong to this kind 
of processes.
A more detailed investigation of the general properties of non-
factorizable corrections seems worthwhile.
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