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The Schwinger effect in the presence of instantons is considered in this paper. Using AdS=CFT
correspondence in the near horizon limit of the D3þ Dð−1Þ-brane background, we calculate the total
potential of a quark-antiquark pair in an external electric field. It is shown that instantons tend to suppress
the pair creation effect and increase the critical electric field above which the pairs are produced freely
without any suppression. Interestingly, no other critical electric field, common for all confining field
theories, is observed here at finite temperature. However, as expected we find such a critical electric field at
zero temperature. The pair production rate evaluated by the calculation of the expectation value of the
circular Wilson loop also confirms this result.
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I. INTRODUCTION

The electron and positron pair production in the presence
of an external electric field in the vacuum of the quantum
electrodynamics (QED) is a nonperturbative phenomenon
known as the Schwinger effect [1]. This effect is not
restricted to QED, but it is also relevant to QFTs coupled to
a Uð1Þ gauge field. The original Schwinger’s work was
based on the weak-coupling and weak-field approximation.
He found an exponential suppression with a quantity ∝ m2

eE
in the exponent for the production rate, in the presence of
the external field E, wherem and e denote the rest mass and
electric charge of the electron. Until now, the Schwinger
effect has not been observed in real experiments, since a
strong electric field, greater than m2

e ≈ 1.3 × 1012 V=m, is
needed for this effect to become significant and observable.
Later, this effect was generalized to the arbitrary-

coupling but weak-field case [2], by taking into account
the Coulomb interaction. Modifying the potential in this
way leads to the existence of a critical electric field Ec
below which the pair production can be explained as a
tunneling process; that is, the particles are faced with a

potential barrier. As the electric field increases to Ec, the
potential barrier vanishes and above Ec the production rate
is not suppressed anymore and hence the vacuum becomes
completely unstable. However, in QED the value obtained
for the critical electric field does not satisfy the weak-field
condition. Therefore, to verify the existence of the critical
value, we need to work beyond this condition.
The existence of a critical value for the electric field and

consequently a phase transition is predicted by the string
theory [3,4]. The connection between the string theory and
gauge theories is established through AdS=CFT correspon-
dence [5–8]. This connection motivated people to study the
Schwinger effect in the context of AdS=CFT and more
generally gauge/gravity duality, in which the problem can
be considered beyond the weak-field approximation.
The N ¼ 4 super-Yang-Mills (the theory in the field

theory side of AdS=CFT) does not contain matter fields.
One way to introduce them to the theory is to employ the
Higgs mechanism in which the gauge group is broken from
SUðN þ 1Þ to SUðNÞ ×Uð1Þ. Using the scheme of [2] in
the large N limit, the production rate for this theory can be
obtained. However, this approach leads to a puzzle. The
critical electric field obtained in this way disagrees with the
one derived by the Dirac-Born-Infeld (DBI) action of
a D3-brane near the anti–de Sitter (AdS) boundary. This
problem was resolved by the holographic setup proposed
by Semenoff and Zarembo [9]. Considering a single probe
D3-brane in an intermediate position in the bulk and
separated from the stuck of N D3-branes, they built a
setup in which the mass of a single quark is finite. Then,
they evaluated the production rate by computing the
expectation value of a circular Wilson loop on the probe
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brane, using the holography dictionary, and found a value
for the critical electric field in agreement with the DBI
action result. Then, a consistent potential analysis was
invented [10] by using a modified Coulomb potential which
gives results in agreement with the previous ones. The
potential between a particle-antiparticle pair at rest comes
from the expectation value of the rectangular Wilson loop
which corresponds to the area of a string world sheet
attached to the Wilson loop on the boundary.
Since then, there has been a growing interest in inves-

tigating various aspects of the holographic Schwinger
effect in different situations (for example see [11–19]).
Here we are interested in studying the Schwinger effect in
confining gauge theories using holography, originated from
[14]. A review on this topic can be found in [20]. The study
of this effect in confining backgrounds may shed some light
on the confinement/deconfinement phase transition in
QCD. Especially, this effect is relevant to the heavy ion
collisions, done in, e.g., the RHIC and LHC experiments,
where strong electric and magnetic fields are present.
In the present paper we consider a quasiconfining gauge

theory at both zero and finite temperatures, and explore the
effect of instantons on the Schwinger effect in this back-
ground. To do so, we calculate both the potential and the
pair production rate, and discuss about the possible phases
of the system. It is known that Yang-Mills instantons are
identified with the D-instantons of type IIB string theory
(for example see [21–23]). We choose the D3þ Dð−1Þ-
brane background for our purposes. This background at
zero temperature was first suggested in [24]. They dis-
cussed the near horizon limit of the D-instanton charge
homogeneously distributed over the D3-brane world vol-
ume at zero temperature and proposed that it corresponds to
a N ¼ 4 super-Yang-Mills theory in a constant homog-
enous self-dual gauge field background, where the presence
of a self-dual gauge field in flat space is dual to the presence
of the D-instanton charge. Using the AdS=CFT correspon-
dence, they also showed that this background should be a
partially confining theory with confined quarks and decon-
fined gluons and this is the reason why we use the term
quasiconfining for this theory. Also, the holographic dual
of a uniformly distributed D-instanton over D3-brane at
finite temperature for D7-brane embedding was considered
in [25].
Although the holographic Schwinger effect in confining

gauge theories has been studied in different backgrounds
and universal behaviors have been obtained [11], the theory
chosen here is different in that it has confined quarks but
deconfined gluons at zero temperature and may help us
understand new things about the confinement. Also, this
theory does not have any compactified direction and
therefore shows no geometric transition as temperature
grows, unlike the other confined theories studied under an
external electric field.
In the next section, the background geometry of

D3þ Dð−1Þ-brane configuration at finite temperature is

introduced. Considering a string hanging from the boun-
dary of the above mentioned background, the total poten-
tial, including the static energy, the Coulomb potential
energy, and the potential energy due to the interaction with
the external electric field is computed in Sec. III. Moreover,
using the DBI action of the probe D3-brane, a critical field
for pair production is obtained, and used to confirm the
correctness of the potential method used here. To show the
effect of instantons on the process, we do the calculations
for different values of the instanton density parameter and
for both zero and finite temperatures. We devote Sec. IV to
investigate the confinement of the system using the notion
of the pair production rate. We finally summarize and draw
our conclusions in Sec. V.

II. BACKGROUND GEOMETRY
WITH D-INSTANTONS

This section is devoted to a short introduction of the
background with D-instantons in the gravity side. We are
interested in the near horizon limit of D3þ Dð−1Þ-brane
geometry at finite temperature with Euclidean signature.
The ten-dimensional supergravity action in the Einstein
frame is given by [25]

S ¼ 1

κ

Z
d10x

ffiffiffi
g

p �
R −

1

2
ð∂ΦÞ2 þ 1

2
e2Φð∂χÞ2 − 1

6
F2
ð5Þ

�
;

ð1Þ

whereΦ and χ are the dilaton and axion fields, respectively,
and Fð5Þ denotes a five-form field strength. If we set
χ ¼ −e−Φ þ χ0, the dilaton and axion terms cancel each
other in the above action. Then, the solution with the metric
and five-form field in the string frame is obtained in the
following form:

ds210¼eΦ=2

�
r2

R2
½fðrÞ2dt2þdx⃗ 2�þ 1

fðrÞ2
R2

r2
dr2þR2dΩ2

5

�
;

eΦ¼1þ q
r4T
log

1

fðrÞ2 ; χ¼−e−Φþχ0;

fðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
rT
r

�
4

s
: ð2Þ

Here,R and rT are the radius of the AdS space and the event
horizon, respectively. rT is related to the temperature of the
dual gauge theory. Moreover, q denotes the density of
D-instantons, which corresponds to the vacuum expectation
value of the gluon condensation according to the AdS=CFT
dictionary.
In the following section we consider the Schwinger

effect in this background and especially we focus on the
effects coming from q related to the presence of the
D-instantons.
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III. POTENTIAL ANALYSIS

In this section, we want to perform the potential analysis
in the aforementioned background. To do so, we should
calculate the total potential for a quark-antiquark pair,
including the potential energy (VPE), the static energy
(VSE), and the energy of interaction with the external
electric field E. However, before that we need to find
the critical value of the electric field obtained from the DBI
action of the probe D3-brane. This calculation helps to
ensure that our potential analysis is correct and agrees with
the DBI result.
The DBI action of a probe D3-brane in the D3þ Dð−1Þ

background, located at r ¼ r0 and including a constant
world-volume electric field, is of the form

SDBI ¼ −TD3

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμν þ F μνÞ

q

¼ −TD3

r40
R4

eΦðr0Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r4T
r40

s

×
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ð2πα0Þ2R4

r40e
Φðr0Þð1 − r4T=r

4
0Þ
E2

s
; ð3Þ

where TD3 ¼ 1=ðgsð2πÞ3α02Þ is the D3-brane tension. It can
easily be seen from this equation that the classical solution
does not exist for E > Ec, where the critical electric field
Ec is

Ec ¼
1

2πα0
r20
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eΦðr0Þ

�
1 −

r4T
r40

�s
; ð4Þ

which obviously depends on the temperature through rT
and on the instanton density through Φðr0Þ.
Now, we proceed to the calculation of the total energy.

To that purpose, we consider a quark and an antiquark
placed at fixed positions on the boundary, separated by a
distance x in one of the three spatial directions of the field
theory, e.g., x1. In order to use the symmetry we choose
x1 ¼ 0 to be halfway between the quark and antiquark.
In order to obtain the potential energy between the

quark-antiquark pair, one needs to compute the expectation

value of the rectangular Wilson loop. It is well known
that when the time duration, τ, is much larger than the
separation x, the Wilson loop expectation value takes
the form

hWi ¼ e−ið2mþVðxÞÞτ; ð5Þ

where m denotes the quark and antiquark rest mass and
VðxÞ is the potential energy between them. In fact the
exponent is the static energy plus the potential energy,
VPEþSE. In order to have finite-mass quarks, following [9],
we put a probe D3-brane at an intermediate position r0 in
the bulk and attach the endpoints of the string to this brane.
In the holographic setup, the exponent in Eq. (5) corre-
sponds to the world-sheet area or equivalently the on-shell
Nambu-Goto (NG) action of the hanged string. The use of
the parametrization of the string coordinates as x0 ¼ τ and
x1 ¼ σ (the static gauge), and supposing r ¼ rðσÞ, give rise
to the following form for the string action:

SNG ¼ Tf

Z
dτdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eΦðrÞ

��
dr
dσ

�
2

þ r4

R4

�
1 −

r4T
r4

��s
; ð6Þ

where Tf ¼ 1
2πα0 is the string tension. The independence of

this action from the coordinate σ introduces a conserved
quantity (Hamiltonian) which is written as follows:

eΦðrÞr4=R4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eΦðrÞ½ðdrdσÞ2 þ r4

R4 ð1 − r4T
r4Þ�

q
�
1 −

r4T
r4

�
¼ const: ð7Þ

One can determine the constant in this relation using the
conditions at σ ¼ 0, i.e., r0ð0Þ ¼ 0 and rð0Þ ¼ rc, which
results in the following differential equation:

dr
dσ

¼ r2

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

r4T
r4

��
eΦðrÞðr4 − r4TÞ
eΦðrcÞðr4c − r4TÞ

− 1

�s
: ð8Þ

Integrating this equation, we obtain the separation length of
the quark-antiquark pair on the probe brane as follows:

x ¼ 2R2

r0a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eΦð1Þð1 − b4=a4Þ

q Z
1=a

1

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy4 − b4=a4Þ½eΦðyÞðy4 − b4=a4Þ − eΦð1Þð1 − b4=a4Þ�

q ; ð9Þ

in which the following dimensionless quantities have been introduced:

y≡ r
rc
; a≡ rc

r0
; b≡ rT

r0
; ð10Þ
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and

eΦðyÞ ¼ 1þ q
r40b

4
log

�
y4

y4 − b4=a4

�
: ð11Þ

Then, by substituting Eq. (8) into Eq. (6), the sum of potential and static energy, VPEþSE, can be obtained. Then, we obtain
the total energy by adding the potential energy due to the interaction of the quark-antiquark pair with an external electric
field E to this energy, which can be written as follows:

V totðxÞ ¼ VPEþSE − Ex

¼ 2Tf

Z
1=a

1

dy
r0aeΦðyÞðy4 − b4=a4Þ − α

a r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eΦð1ÞeΦð1=aÞð1 − b4Þð1 − b4=a4Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy4 − b4=a4Þ½eΦðyÞðy4 − b4=a4Þ − eΦð1Þð1 − b4=a4Þ�

q ; ð12Þ

where the dimensionless parameter α is defined as α ¼
E

EcðT;qÞ using the critical electric field obtained from the DBI

result [Eq. (4)].
Now, we report the results. In all the following cases we

set Tfr0 ¼ 1.

A. Potential analysis at finite temperature

Figure 1 shows the total potential versus the separation x
for a fixed value of b (fixed temperature) and different
values of α (namely, α ¼ 0.7, 0.8, 0.9, 1, 1.1). The
instanton density has been chosen to be different in the

three panels of this figure, for comparison. These graphs
show that the potential barrier vanishes for α > 1, con-
firming that the critical electric field obtained from the
potential analysis agrees with the one of the DBI result, as
expected [11]. By comparing the results we can conclude
that instantons increase the potential barrier and suppress
the pair creation. However, the critical field (Ec) and
consequently the parameter α depend on the instanton
density q. Therefore, in order to explore the instanton effect
more clearly, we introduce another dimensionless param-
eter as α̃ ¼ E

EcðT;q¼0Þ. In Fig. 2 the electric field is chosen to

be equal to the critical electric field for zero instanton

FIG. 1. The total potential versus x for various instanton densities and electric fields (determined by α). In all graphs b ¼ 0.5.

FIG. 2. The total potential versus x at the critical electric field
and for various instanton densities. In all graphs b ¼ 0.5 and
α̃ ¼ 1.

FIG. 3. The total potential versus x at the critical electric field
and for various instanton densities. In all graphs b ¼ 0 and α̃ ¼ 1.
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density, EcðT; q ¼ 0Þ which corresponds to α̃ ¼ 1. This
figure shows that at zero instanton density there is no
potential barrier in the presence of this electric field; that is,
the pair creation happens without any limitation. However,
the presence of the instantons develops a potential barrier.
Therefore, for nonzero q the Schwinger effect occurs only
through a tunneling process and a larger instanton density
leads to a larger potential barrier. This means that the
critical electric field is increased by rising q from zero.
Notice that this result is obvious from the relation (4).

B. Potential analysis at zero temperature

All the previously found results for a general b can be
reduced to the zero temperature case by setting b ¼ 0.
Notice that in this case eΦðyÞ ¼ 1þ q

r4cy4
. The total potential

as a function of x is shown in Fig. 3 for various values of the
instanton density at zero temperature. In this figure the
electric field is equal to its critical value with q ¼ 0. Again
we see that increasing the instanton density increases the
potential barrier as in the case of finite temperature and
therefore the value of Ec increases by increasing q.
An interesting result is that in the finite temperature case

the theory behaves like a deconfined theory as viewed by an
external electric field, since there is no critical electric field
below which the Schwinger effect is completely restricted.
The situation is different for the zero temperature case. This
is obvious from the left graph of Fig. 4, where we have
plotted the distance between quark and antiquark versus a,
the rescaled position of the tip of the hanging string from
the boundary. Even for a very small electric field there is
a finite potential barrier at finite temperature, since for a
smaller electric field the potential barrier becomes zero at a
larger but always finite x. We have also depicted the same
thing for the zero temperature case in the right graph of this
figure, which shows a behavior similar to the one for
confining theories. This result is consistent with the
previous results found for this theory. It has been shown
[26] that the D3þ Dð−1Þ theory has a linear rising

quark-antiquark potential for zero temperature, a sign for
the confinement of quarks. However, at finite temperature
the potential rises linearly but disappears at a finite value of
the separation x, showing the deconfinement of quarks.
As a consequence of the above argument there must exist

a critical electric field below which the Schwinger effect
cannot occur. The existence of such a critical electric field,
usually denoted by Es, is intrinsic to the confining phase. It
can be analytically shown that for the theory of our interest
at zero temperature Es ¼ Tf

ffiffiffi
q

p
=R2, i.e., the potential

barrier becomes flat at x → ∞ when E ¼ Tf
ffiffiffi
q

p
=R2. It

can be easily observed by writing down the total potential at
b ¼ 0 in the following way:

V totðxÞ ¼ 2Tfr0a
Z

1=a

1

y2dyffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 − 1

p

þ
�
Tf

q

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0aÞ4 þ q

p − E

�
x: ð13Þ

When x → ∞ or equivalently a → 0
1 (see the right graph of

Fig. 4) the first term in the above equation approaches
2Tfr0 which is constant, i.e., its derivative goes to zero at
x → ∞ and the derivative of the second term becomes

Tf

ffiffi
q

p
R2 − E, confirming that the electric field should exceed

the confining string tension (Tf

ffiffi
q

p
R2 ) in order for the pairs to

be produced.
An important issue should be noticed here. For every

confining theory there is a mass gap which corresponds to a
lower bound on the minimum value of the radial direction r
in the gravity side. A simple analysis shows that the
integrand in Eq. (9) at b ¼ 0 becomes divergent only at
r ¼ 0, indicating that the lower bound of our theory is at
r ¼ 0, meaning that there is no compactified direction and

FIG. 4. The separation length of the quark-antiquark pair versus the rescaled position of the turning point of the corresponding string in
the bulk.

1From Eq. (9) at zero temperature (b ¼ 0) we simply have
lima→0x ¼ lima→0

2R2

r0a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

ðr0aÞ4
q R 1=a

1
dy

y2
ffiffiffiffiffiffiffiffi
y4−1

p ¼ ∞.
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therefore no scale at zero temperature. Hence, no geometric
transition can be seen here. This behavior can also be
detected using the notion of the entanglement entropy,
described below.

C. Entanglement entropy

In order to calculate the entanglement entropy for the
D3þ Dð−1Þ background, we follow the method proposed
by Klebanov, Kutasov, and Murugan [27], which is a
generalization of the Ryu-Takayanagi conjecture [28] to
nonconformal geometries. According to their conjecture,
the quantum entanglement entropy between a striplike
region of length x and its complementary in a (dþ 1)-
dimensional quantum field theory corresponds to the
classical minimal area of a d-dimensional surface γ in
AdSdþ2 such that its boundary coincides with the boundary
of the striplike region. For nonconformal geometries in ten
dimensions this area can be written as

S ¼ 1

4Gð10Þ
N

Z
d8σe−2Φ

ffiffiffiffiffiffiffi
gð8Þind

q
; ð14Þ

where Gð10Þ
N is the ten-dimensional Newton constant, gð8Þind is

the determinant of the induced metric on the surface γ, and
Φ is the dilaton field. By minimizing this action, the
entanglement entropy can be obtained. Using a similar
notation as [27], for a background metric in the form

ds210 ¼ δðrÞ½βðrÞdr2 þ dxμdxμ� þ gijdθidθj; ð15Þ

the action (14) reads

S ¼ V2

4Gð10Þ
N

Z
x=2

−x=2
dσ

ffiffiffiffiffiffiffiffiffiffi
HðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βðrÞð∂σrÞ2

q
; ð16Þ

where HðrÞ ¼ e−4ΦV2
intδðrÞ3. V2 is the volume of the

coordinates transverse to the x direction and V int is the
volume of the internal manifold.

In the following we do all the calculations for our theory
at zero temperature (b ¼ 0). Substituting the functions
HðrÞ, δðrÞ, and βðrÞ for the geometry of our interest,
and calculating the Hamiltonian which is a constant of
motion, we find the length of the subsystem, x, in terms of
the parameters defined in Eq. (10) as follows:

xðaÞ ¼ 2R2

r0a

Z
1=a

1

dy

y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y6 − 1

p ; ð17Þ

where a denotes the radial position of the tip of the
minimized surface in the gravity side that ends on the
boundary of the strip with width x. Using this relation and
the action (16) we can also find the entanglement entropy in
the following form:

SC ¼ V2VΩ5

Gð10Þ
N

R4ðr0aÞ2
Z

1=a

1

dy
y4ffiffiffiffiffiffiffiffiffiffiffiffiffi
y6 − 1

p ; ð18Þ

where VΩ5
¼ V int

R5e5Φ=2 and the subscript C refers to “con-
nected.” Notice that in general another solution is possible,
which corresponds to two disconnected surfaces ending at
−x=2 and x=2 in the bulk. For our metric this solution is
found as

SD ¼ V2VΩ5

Gð10Þ
N

R4ðr0aÞ2
Z

1=a

0

dyy: ð19Þ

We subtract this solution, which is constant for any value of
the width x, from the solution in Eq. (18) and denote this

difference divided by the constant factor
V2VΩ5

Gð10Þ
N

R4 by ΔSðxÞ
in what follows.
The rescaled entanglement entropy for the field theory

of our interest has been drawn numerically in the right
panel of Fig. 5. In the left panel of this figure we show the
length of the entangling region as a function of the locus of
the tip of the hypersurface in the bulk, which ends on the
boundary of the striplike region. Through these figures, it is

FIG. 5. Left graph: The length of the striplike region versus the locus of the tip of the corresponding surface in the gravity side. Right
graph: The rescaled entanglement entropy versus the size of the entangling region.
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evident that no confinement/deconfinement phase transi-
tion happens in the D3þ Dð−1Þ-brane configuration. The
behavior of the entanglement entropy for our system is
exactly like the one for the deconfined field theories (for
example see [18,29]). This result is also obvious from the
relations (18) and (19) where the dilaton field Φ and
consequently the instanton density q have been removed
completely. Notice that although our theory has no geo-
metric transition and behaves like a deconfined theory as
viewed by the entanglement theory, it introduces a critical
electric field Es below which no pairs are produced, which
is a property of confined theories.

IV. PAIR PRODUCTION RATE

An alternative way to explore the response of a system to
an external electric field is to calculate the pair production
rate. This quantity is equivalent to the expectation value of a
circular Wilson loop in the t − xi plane, where xi refers to
each of the spatial coordinates in the field theory. This
quantity can be evaluated holographically using the calcu-
lation of the extremal surface in the bulk which shares the
same boundary with the circular Wilson loop. We devote
this section to the calculation of this quantity only for the
zero temperature case where we expect the pair production
not to occur below the critical electric field Es found in the
previous section. As stated before when the temperature is
nonzero, the pair production rate vanishes at zero electric
field and therefore in this case there is no interesting
information in this quantity. Furthermore, the calculation of
the pair production rate at finite temperature is more
complicated. In this case we are dealing with a partial
differential equation due to lack of circular symmetry in the
t − xi plane [13].
In the following we present the calculation of the

production rate briefly. More details of calculation can
be found in [15]. We work in the Euclidean signature and
choose the following ansatz for the bulk coordinates

t ¼ ρðσÞ cos θ; x1 ¼ ρðσÞ sin θ; z ¼ zðσÞ; ð20Þ

and all other coordinates are constant. Here z ¼ 1
r which is

zero at the boundary. ðθ; σÞ are the string world-sheet
coordinates. Using this ansatz and choosing rðσÞ ¼ σ, the
string action reads

SNG ¼ 2πR2Tf

Z
x

0

dρ
ρeΦðzÞ=2

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p
; ð21Þ

SB2
¼ −2πTfB01

Z
x

0

dρρ; ð22Þ

where eΦðzÞ ¼ 1þ qz4 and x denotes the radius of the
circular Wilson loop on the D3-brane positioned at z0 ¼ 1

r0
.

B2 ¼ B01dt ∧ dx1 is an electric 2-form coupled to the NG
action. Then, the pair production rate can be evaluated as
e−S ¼ e−SNG−SB2 , where SNG is the minimized NG action.
The following equation obtained by variation of the action
(21) should be satisfied by the function zðρÞ

2ρð1þ z02Þ þ zð1þ qz4Þðz0 þ z03 þ ρz00Þ ¼ 0: ð23Þ

We solve this equation numerically with the boundary
conditions zð0Þ ¼ zc and z0ð0Þ ¼ 0, and the constraint

z0ðxÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eΦðz0Þ
α2

− 1

q
. zc is the value of z at the tip of

the cuplike surface in the bulk.
The exponential factor and the classical action obtained

from the above calculations are shown in Fig. 6. As can
be seen, the exponential factor approaches zero or equiv-
alently the classical action diverges at a certain value of the
electric field around Es obtained by the potential analysis.
For zero instanton density this electric field is zero, i.e., the
Schwinger effect occurs for any nonzero, although small,
value of the electric field, which is the characteristic of a
deconfined system. This result is in good agreement with
the results of the previous section and confirms our
numerical calculation.

FIG. 6. Left and right graphs, respectively, show the exponential factor e−S and the classical action S versus α.
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V. SUMMARY AND CONCLUSION

In this paper we have investigated the Schwinger effect
in the presence of the gluon condensation. To that purpose
we employ the D3þ Dð−1Þ-brane configuration which is a
quasiconfining theory with constant gluon condensation.
By quasiconfining we mean that it is deconfined in the
viewpoint of gluons but its quark-antiquark potential
behaves Coulomb-like for short separations and linearly
for medium separations and finally becomes zero for large
enough separations depending on the temperature and the
gluon condensation.
Using the DBI action for this theory, we have found the

critical electric field Ec above which the vacuum decays
catastrophically. For our theory Ec depends on both the
gluon condensation and the temperature. Then, we have
calculated the total potential for a pair of quark-antiquark in
the presence of an electric field and find the critical electric
field in agreement with the DBI result, as expected. By
comparing the plots of this potential for different values of
the D-instanton density we observe that the presence of
instantons tends to suppress the pair production and
increases the Ec both at finite and zero temperature.
Also, increasing the temperature of this theory decreases
the Ec for a fixed gluon condensation. Interestingly in the

case of finite temperature we have not found any critical
electric field below which the Schwinger effect cannot
occur at all. That is, at finite temperature pairs are created
even in the presence of a very small electric field. Such a
critical electric field is a common feature of all confining
field theories and this shows that D3þ Dð−1Þ-brane
configuration at finite temperature is deconfined as viewed
by an electric field. This result is expected from the
previous investigations such as the behavior of the
quark-antiquark potential [26]. However, we have found
such a critical electric field when the temperature is zero,
which is consistent with the previous results for the quark-
antiquark potential showing the confinement of this theory
at zero temperature. As a final check we have calculated the
pair production rate using holography and found consistent
results with the ones obtained by the potential analysis.
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