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1 Introduction

Quantum thermal effects in the gravitational field can be described by two approaches.
The first approach used e.g. by Gibbons and Hawking [1, 2] is the Euclidian path integral:

ZE =
∫
d[φ]e−S[φ], (1.1)

where the integral is expressed in terms of periodic fields in Euclidean time τ with the period
equal to the inverse temperature β. The advantage of this definition of the partition function
is that it is manifestly covariant [3].

The second approach is to define the partition function of the canonical ensemble
as follows:

ZC = Tr[e−β:Ĥ:], (1.2)

where : Ĥ : is the standard normal ordered Hamiltonian. The advantage of this definition
is that it is in accordance with the unitary evolution of the system, but it is not manifestly
covariant.

However, the problem is that the Euclidean path integral ZE is not always equal to the
thermal partition function of the canonical ensemble ZC . In [4] it is shown that in ulta-static
manifold (g00 = 1), Euclidean path integral is equal to the thermal partition function up to the
vacuum-energy contribution, which does not depend on temperature. The last term simply
shifts the free energy by a constant, therefore it does not affect thermodynamic quantities; for
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example, it leaves the entropy unchanged. Thus, we will assume that these two approaches
are equivalent if they are equal up to a temperature independent shift of the free energy:

logZE = logZC − βE0. (1.3)

But in [5], it is shown that the fundamental statistical-mechanical relation for the
Euclidean path integral

−∂β logZE = Tr

[
e−β:Ĥ:

ZC
: Ĥ :

]
, (1.4)

does not hold in the Rindler coordinates for non-minimally coupled scalar field. Since the
fundamental statistical-mechanical relation obviously holds for the thermal partition function,
it means that two approaches are not equivalent in the Rindler coordinates.

So the aim of this article is to discuss whether the Euclidean path integral ZE is equal
to the thermal partition function of the canonical ensemble ZC in various cases in curved
space-times?

Here we describe what physical situations we have considered in this article. We consider
massive non-minimaly coupled scalar field theory defined by the action:

S[φ] = −1
2

∫
d4x

√
g
[
∂µφ(x)∂µφ(x) +m2φ2(x) + ξRφ2(x)

]
, (1.5)

in a static background metric of the form:

ds2 = −g00dt
2 + gijdx

idxj . (1.6)

The metric depends only on the spatial coordinates, namely ∂0gµν = 0 and g0i = 0. So one
can perform the Wick rotation t → −iτ to obtain the Euclidean metric:

ds2
E = g00dτ

2 + gijdx
idxj . (1.7)

Moreover, if g00 = 1 the metric is called optical or ultrastatic.
There are three different physical situations, namely when the spatial sections are compact,

when spatial sections are non-compact and the manifold is asymptotically flat, and when
the spatial sections are non-compact and bordered by Killing horizons.

The paper is organized as follows. In section 2, we give general overview of methods for
calculating the Euclidean path integral. Then we discuss two different representation of the
partition function in term of the Euclidean path integral. At the end of section 2, we give
a simple proof of the equality between the Euclidean path integral and thermal partition
function approaches. In section 3, we give another proof of the equality for compact manifold
and for non-compact manifold without Killing horizon. At the end of section 3, we present a
new method that gives the correct equality for both compact and non-compact cases with
and without Killing horizon. In section 4, we discuss space-time with Killing horizon. We
show that there are three definition of the thermodynamic energy and that they differ by
a surface terms. Then we show that the standard method does not give equality between
Euclidean path integral and thermal partition function approaches, unlike the new method.
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2 Euclidean path integral and thermal partition function

In this section, we briefly discuss various methods of calculation of the Euclidean path integral.
Then we show that the thermal partition function can be represented in terms of the path
integral with the standard action, but with a non-covariant measure, or in terms of Euclidean
path integral with the covariant measure, but in terms of an optical metric that is conformaly
related to the original one. This allows us to give a simple proof, in the cases of compact and
non-compact manifolds without Killing horizon, the equivalence between the Euclidean path
integral and thermal partition function approaches holds. But the Euclidean path integral
approach does not provide the correct answer for the case of a non-compact manifold with
Killing horizon. We will discuss this later cases in the next section.

2.1 Euclidean path integral

The Euclidean path integral is defined as follows:

ZE =
∫
d[φ]e−S[φ]. (2.1)

The fields are assumed to be periodic in Euclidean time with the period β. The advantage
of this method is that it is manifestly covariant. The functional measure is formally given
by [3, 6, 7]:

d[φ] =
∏
x

dφ(x)√
2π

g
1
4 =

∏
i

µdci, (2.2)

where µ is the normalization scale and ci are the Fourier coefficients of the field in the
basis of functions, φ(x) =∑

i ciϕi(x), which are eigenfunction of the Klein-Gordon equation
following from (1.5): (

−□E +m2 + ξR
)
ϕi(x) = λiϕi(x), (2.3)

where the superscript E is standing for the Euclidean signature. They are orthonormal with
respect to the following inner product:

⟨ϕi|ϕj⟩ =
∫
d4x

√
gϕ∗i (x)ϕj(x) = δij . (2.4)

The action in terms of the inner product takes the form:

S[φ] = 1
2

∫
d4x

√
gφ(x)

(
−□E +m2 + ξR

)
φ(x) = 1

2⟨φ|
(
−□E +m2 + ξR

)
|φ⟩. (2.5)

Therefore, one can express the path integral in terms of the functional determinant:∫
d[φ]e−S[φ] = det−

1
2

[
−□E +m2 + ξR

µ2

]
. (2.6)

Note that the non-invariance of the measure of path integrals (2.2) under symmetries
of the action indicates the existence of anomalies [7]. The anomalies can be calculated
by evaluating the determinants of the jacobian. For these computations, regulators are
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essential and without specifying the regulator to be used, discussions concerning the measure
and anomalies are meaningless since no computations can be performed. It is known that
different types of regulators can lead to different types of anomalies, such as the Weyl,
Einstein, and Lorentz [8, 9].

In general the functional measure is determined by requiring that there is no Einstein
anomaly, i.e. it is invariant under general coordinate transformation [6]. But it leads to
the appearance of the Weyl anomaly. However, it is possible to introduce a non-covariant
regulator such that there is an Einstein anomaly, but there is no Weyl anomaly [9].

Anomaly does not depend on the quantum state in which is the system because it is
determined by the UV divergences and is sensible only to the space-time geometry. Therefore,
the presence of a regulator is not essential when discussing thermal effects. However, in the
space-time with Killing horizon anomaly depend on the temperature [10, 11]. And as we will
see in section 3.3, the presence of a generally non-covariant regulator of the form:

ZE = lim
M→0

∫
d[φ]e−

1
2

∫
d4x
√
−gg00M2φ2

e−S , (2.7)

leads to the fact that the Euclidean path integral always equal to the thermal partition
function. But it is not clear whether this regulator violates the Weyl, Einstein or Lorentz
symmetries at the limit M → 0.

Let us now consider the Hamiltonian formulation of the Feynman path integral:

Z =
∫ ∏

x

dφ(x)dπ(x)ei
∫

d4x[π(x)∂0φ(x)−H(φ,π)] (2.8)

where the canonical momenta defined by:

π(x) = √
gg00∂0φ(x). (2.9)

We can directly perform the functional integration over canonical momenta:

Z =
∫ ∏

x

dφ(x)g
1
4 (g00)

1
2 eiS[φ]. (2.10)

Therefore the functional measure explicitly depend on g00. In fact in [12] argued that the
noncovariance of the g00 factor in the measure is required in order to cancel the leading
one-loop divergence, this point was discussed in [8, 13]. In the next section we will explicitly
show that the partition function can be rewritten in terms of a functional integral with
the same measure as in (2.10).

The functional measure may be rewritten in the form:∏
x

dφ(x)g
1
4 (g00)

1
2 =

∏
x

dφ(x)g
1
4 e

1
2 T r[log(g00)], (2.11)

where Tr denotes the functional trace:

Tr
[
log

(
g00
)]

=
∫
d4x

√
g
∑

i

ϕ∗i (x)ϕi(x) log
(
g00
)
=
∫
d4x

√
g log

(
g00
)
δ(4)(0). (2.12)

The value of δ(4)(0) is ill defined, therefore it demands some regularization. For example
in dimensional regularization δ(4)(0) = 0, hence the measure in the functional integral is
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not sensitive to the factor g00 [14]. But in the case of space-times with Killing horizons
indefinite forms appear in the expression:

δ(4)(0) log
(
g00
)
∼ 0×∞, (2.13)

since g00 vanish on the horizon.
Further we will assume that the Euclidean functional integral is defined with a measure

without a factor g00, since in this case it is defined as the functional determinant (2.6), and
it is this approach that is widely discussed in the literature.

For the gaussian theory one-loop calculation is exact. There are several different methods
to calculate the functional determinant. For example:

1) In terms of the ζ-function (see e.g. [2, 15]):

logZE = 1
2
[
ζ ′(0, β) + ζ(0, β) log(µ2)

]
, where ζ(s, β) =

∑
i

λ−s
i .

2) In terms of the heat kernel:

logZE = 1
2

∫
d4x

√
g

∫ ∞
ϵ2

ds

s
e−sm2

K(s, x, x) = 1
2

∫ ∞
ϵ2

ds

s
e−sm2

Tr [K(s, x, x)] , (2.14)

where ϵ ∼ 1/µ and heat kernel K(s, x, y) solves the following equation:

∂sK(s, x, y) + (−□E + ξR)K(s, x, y) = 0, (2.15)

with the initial condition

K(0, x, y) = δ(x, y). (2.16)

The heat kernel expansion in static space-times was widely discussed in the literature, see
for example [16, 17].

Let us also stress that the heat kernel and zeta function methods are equivalent due
to following relation:

e−sm2
Tr [K(s, x, x)] =

∫
d4x

√
g⟨x|e−s(−□E+m2+ξR)|x⟩ = (2.17)

=
∑

i

∑
j

∫
d4x

√
g⟨x|ϕi⟩⟨ϕi|e−s(−□E+m2+ξR)|ϕj⟩⟨ϕj |x⟩ =

∑
i

e−sλi .

Therefore, the effective action can be expressed in terms of the zeta function:

logZE = 1
2
∑

i

∫ ∞
ϵ2

ds

s
e−sm2

e−sλi = −1
2
∑

i

log
(
λi

1/ϵ2
)
= (2.18)

= 1
2
[
ζ ′(0, β) + ζ(0, β) log(µ2)

]
.

3) In terms of the Feynman thermal propagator [18, 19]:

logZE = −1
2

∫
d4x

√
−g

∫ m2

µ2
dm̄2 G(x, x), (2.19)
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where:

G(x, y) =
∑

i

ϕ∗i (x)ϕi(y)
λi

. (2.20)

For more details on the Feynman thermal propagator in curved space-time, see appendix A.
This method is equivalent to the heat kernel and zeta function ones. It is easy to see due
to the following integral representation of the thermal Feynman propagator:

G(x, y) =
〈
x
∣∣ (−□E +m2 + ξR

)−1 ∣∣y〉 = ∫ ∞
0

dse−sm2⟨x|e−s(−□E+ξR)|y⟩ =

=
∫ ∞

0
dse−sm2

K(s, x, y). (2.21)

Hence, all standard calculation methods, such as the heat kernel, the zeta function and
the integration of the thermal Feynman propagator at coincident points, are equivalent. Let
us stress that all of these methods are used in the literature, and each of them is useful
in different situations. In the next section we will use the last method (2.19), to show
that the Euclidean path integral and thermal partition function are equivalent only for the
space-time without Killing horizon.

2.2 Thermal partition function

The thermal partition function of the canonical ensemble is defined as:

ZC = Tr(e−β:Ĥ:), (2.22)

where : Ĥ :=∑
i ωiâ

†
i âi is the usual normal ordered Hamiltonian defined with respect to the

Killing vector ∂t and ωk are the energies of the single-particle states. The trace is defined as
the sum over all distinct (many-particle) states of the system:

Tr(e−β:Ĥ:) =
∏

i

( ∞∑
n=0

e−βnωi

)
=
∏

i

(
1− e−βωi

)−1
. (2.23)

And the following relation is valid:

⟨: Ĥ :⟩ = −∂β logZC , (2.24)

where

ρ̂ = e−β:Ĥ:/ZC and ⟨Ô⟩ = Tr(ρ̂Ô). (2.25)

The energies of single-particle states can be found using Klein-Gordon equation (in
Lorentzian signature) for the modes ψk(x) = e−iωktfωk

(x):(
−□+m2 + ξR

)
ψk(x) = 0. (2.26)

This equation can be rewritten as:

g00(∂2
t +H2

s )e−iωktfωk
(x) = (−ω2

k +H2
s )fωk

(x) = 0, (2.27)
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where Hs is the quantum-mechanical single-particle Hamiltonian:

H2
s = g00

(
−△3 +m2 + ξR

)
, (2.28)

where △3 = g−
1
2∂i

(
gijg

1
2∂j

)
= ▽i▽i + 1

2(▽i log |g00|)▽i, and its eigen-values determine single
particle spectrum.

Now using the following factorizations:

sinh
(
βωn

2

)
= βωn

2

∞∏
k=1

(
1 + β2ω2

n

4π2k2

)
, (2.29)

one can obtain the following identity:

log
(
1− e−βωn

)
= −βωn

2 + log(βωn) +
∞∑

k=1
log

(
1 + β2ω2

n

4π2k2

)
. (2.30)

Then by using zeta function one can rewrite (2.23) in the form:

logZC = −1
2
∑
n,k

log

 4π2k2

β2 + ω2
n

µ2

+ β
1
2
∑

n

ωn, (2.31)

where we have added normalization scale µ to make the logarithm dimensionless. The second
term in the last equation is the zero point energy. This term is not very important, since zero
point energy term is linear in inverse temperature and it does not affect the thermodynamic
quantities. Hence, we can just remove this contribution.

After the subtraction of the second term in (2.31), the thermal partition function can
be expressed in terms of the functional determinant [20, 21]:

ZC = det−
1
2

(
−∂2

τ +H2
s

µ2

)
= det−1/2

[
g00

(
−□E +m2 + ξR

)
µ2

]
. (2.32)

For an optical manifold, g00 = 1, therefore the thermal partition function is equal to the
Euclidean path integral:

ZC = det−1/2
[(

−□E +m2 + ξR
)

µ2

]
= ZE , (2.33)

as was formulated in [4]. For more details of the formulation of statistical mechanics in
ultastatic manifold see [22–24].

To rewrite the partition function in terms of the Euclidean path integral we can use the
basis of eigen-functions that solve the following equation:

g00
(
−□E +m2 + ξR

)
χi(x) = ρiχi(x), (2.34)

which are orthonormal with respect to the inner product:

⟨χi|χj⟩ =
∫
d4x

√
gg00χ∗1(x)χ2(x) = δij . (2.35)
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Then the corresponding action in terms of the inner product coincides with the standard
covariant action:

S[χ] = 1
2⟨χ|g00

(
−□E +m2 + ξR

)
|χ⟩ =

∫
d4x

√
gχ(x)

(
−□E +m2 + ξR

)
χ(x). (2.36)

Since the inner product (2.35) does not coincide with the covariant one (2.4), there is a
difference in the path integral measure:

ZC =
∫
D[χ]e−S[χ] = det−1/2

[
g00

(
−□E +m2 + ξR

)
µ2

]
, (2.37)

where now:

D[χ] =
∏
x

dχ(x)g
1
4 (g00)

1
2 . (2.38)

This formal functional measure in general is non-covariant due to the explicit dependence
on g00. This point was discussed in [21, 25–27].

Another representation of the thermal partition function (2.32) can be described in the
optical approach [27]. By performing a conformal transformation from the static metric
gµν to the related optical metric:

ḡµν = Ω2(x)gµν , (2.39)

so that the interval and the field transform as:

ds̄2 = Ω2(x)ds2 and φ̄(x) = Ω−1φ(x), (2.40)

where for the optical metric Ω−2 = g00. Under such a transformation the action changes to [16]:

S̄opt[φ̄] =
1
2

∫
d4x

√
ḡφ̄(x)

[
−□̄E + 1

6R̄+Ω−2m2 +Ω−2
(
ξ − 1

6

)
R

]
φ̄(x) (2.41)

where the conformal transformation of the Ricci scalar is defined as follows:

Ω2R̄ = R− 6Ω−1▽µ▽
µΩ. (2.42)

Hence the operator in the action (2.41) has the following form:[
−□̄E + 1

6R̄+Ω−2m2 +Ω−2
(
ξ − 1

6

)
R

]
= −∂2

τ + H̄2
s , (2.43)

where:

H̄2
s = −Ω−3▽µ▽

µΩ− 2Ω−3▽iΩ▽i − Ω−2▽i▽
i +Ω−2m2 +Ω−2ξR. (2.44)

Now it is straightforward to check what the single-particle Hamiltonian for the theory in
the optical metric (2.44) can be expressed in terms of the single-particle Hamiltonian (2.28)
of the original theory as follows [28]:

H̄2
s = Ω−1H2

sΩ. (2.45)
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From this relation it follows that the operators Hs and H̄s are equivalent and their eigen-
values coincide. As a result, the Euclidean path integral in the related optical manifold
is equal to the partition function:

ZE
opt =

∫
d[φ̄]e−S̄opt[φ̄] = (2.46)

= det−1/2
[
−∂2

t + H̄2
s

]
= det−1/2

[
−∂2

t +H2
s

]
=

= Tr(e−β:Ĥ:) = ZC . (2.47)

In the case of compact manifolds, one can go further and prove that the Euclidean path
integral in the original static metric is equal to the Euclidean path integral in the related
optical manifold and therefore is equal to the partition function. Using the conformal
transformation one can obtain:

ZE =
∫
d[φ]e−S[φ] =

∫
d[φ̄]J(g, ḡ, β)e−S̄opt[φ̄]. (2.48)

The functional integration measure in the path integral is not invariant, and the transformation
leads to the appearance of a functional Jacobian that does not depend on the value of the
field. Therefore:

ZE = J(g, ḡ, β)ZE
opt = J(g, ḡ, β)ZC . (2.49)

For a compact and non-compact manifold without Killing horizon, the logarithm of the
functional Jacobian is a linear function in inverse temperature, for more detail see [29, 30],
and therefore they can be neglected in the renormalization of the free energy. But in the
case of space-times with Killing horizons, the Jacobian is ill defined, since g00 → 0. Therefore
the Euclidean path integral is equal to the thermal partition function for compact and
non-compact manifolds without Killing horizon:

ZE = ZC . (2.50)

Where under this equality we assume that they are equal to each other up to the exponent of
a linear function of the inverse temperature. The main problem with this proof is that it is
not obvious how to generalize it to space-times with Killing horizons.

Below we will independently prove this statement and show why there is a difference
between the Euclidean path integral and the thermal partition function for space-times
with Killing horizons.

Let us also stress that since the thermal partition function is equal to the Euclidean
path integral which is generally covariant, then the thermal partition function is also gen-
erally covariant despite its explicitly non-covariant definition. But, it is not clear for us,
whether the thermal partition function is generally covariant for non-compact manifolds
with Killing horizons.

3 Standard and new methods

In this section we discuss a method of computation of the Euclidean path integral in terms of
the Feynman thermal propagator. We show that if the spectrum of the theory is discrete,
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i.e. for compact spaces with suitable boundary conditions, then the Euclidean path integral
approach is equivalent to the thermal partition function one. The advantage of this method
is that it uses the corresponding thermal Feynman propagator, and can be straightforwardly
generalized to the case of non-compact spaces. However, the proof in the latter case is more
complicated than in the case of compact spaces. Moreover, as we will see in the case of
non-compact spaces with killing horizons the Euclidean path integral approach and thermal
partition function one are not equivalent.

3.1 Standard method: compact spaces

As we explain in the section 2 one of the standard methods to calculate the Euclidean
path integral is based on the integration of the thermal Feynman propagator (A.17) at
coincident points:

G(x, x) =
∑

i

1
2ωi

ϕi(x)ϕ∗i (x)
[
1 + 2n(βωi)

]
, (3.1)

over the mass and volume as in (2.19). Then, the Euclidean path integral can be expressed as:

logZE = −1
2β
∫ m2

∞
dm2

∫
d3x

√
g
∑

i

1
2ωi

ϕi(x)ϕ∗i (x)
[
1 + 2n(βωi)

]
. (3.2)

The first term in the integral on the right-hand side leads to the standard UV divergence due
to zero-point fluctuations. It can either be subtracted or absorbed into the renormalization of
the ground state energy after the regularization, since it is linear in the inverse temperature
β. Hence, we define:

logZE = −β
∫ m2

∞
dm2

∫
d3x

√
g
∑

i

1
2ωi

ϕi(x)ϕ∗i (x)n(βωi). (3.3)

For the compact optical manifolds, g00 = 1, the volume integral of the spatial part
of the modes is equal to: ∫

d3x
√
gϕi(x)ϕ∗i (x) = 1, (3.4)

since it coincides with the orthogonality condition (A.12). Then from the equations of
motion (A.8) it follows that the energy spectrum is defined as follows: ω2

i = m2 + . . .,
therefore one can take the integral over the mass to obtain that:

logZE = −β
∫ m2

∞
dm2∑

i

1
2ωi

n(βωi) = −
∑

i

log
(
1− e−βωi

)
= logZC . (3.5)

For general compact static (but not optical) spaces let us use the following trick:

I =
∫
d3x

√
gϕi(x)ϕ∗i (x) = lim

m1→m2

m2
1 −m2

2
m2

1 −m2
2

∫
d3x

√
gϕi(x,m1)ϕ∗i (x,m2), (3.6)

where ϕi(x,m1,2) solve the equations of motions with the corresponding masses:

(−g00ω2
i (m1,2)−△3 +m2

1,2 + ξR)ϕi(x,m1,2) = 0. (3.7)
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Here we indicate that each field ϕi(x,m1,2) and the spectrum ωi(m1,2) depend on the mass.
Now one can rewrite the expression on the right hand side of (3.6) as follows:

I = lim
m1→m2

ω2
i (m1)− ω2

i (m2)
m2

1 −m2
2

∫
d3x

√
gg00ϕi(x,m1)ϕ∗i (x,m2)+ (3.8)

+ lim
m1→m2

1
m2

1 −m2
2

∫
d3x

√
g

[
△3ϕi(x,m1)ϕ∗i (x,m2)− ϕi(x,m1)△3ϕ

∗
i (x,m2)

]
.

As a result the Euclidean path integral takes the following form:

logZE = − β

∫
d3x

√
gg00

∫ m2

∞
dm2∑

i

ϕi(x)ϕ∗i (x)
(
∂m2ωi

)
n(βωi)+ (3.9)

− β

∫
d3x

√
g

∫ m2

∞
dm2∑

i

1
2ωi

[
△3∂m2ϕi(x)ϕ∗i (x)− ∂m2ϕi(x)△3ϕ

∗
i (x)

]
n(βωi).

After taking the integral over the mass in the first term by parts, one gets:

logZE = −
∫
d3x

√
gg00∑

i

ϕi(x)ϕ∗i (x) log
(
1− e−βωi

)
+ (3.10)

+
∫
d3x

√
gg00∑

i

∫ m2

∞
dm2∂m2 [ϕi(x)ϕ∗i (x)] log

(
1− e−βωi

)
−

− β

∫
d3x

√
g

∫ m2

∞
dm2∑

i

1
2ωi

[
△3∂m2ϕi(x)ϕ∗i (x)− ∂m2ϕi(x)△3ϕ

∗
i (x)

]
n(βωi).

Let us label each term in the last expression as logZE
i where i = 1, 2, 3 — is the number of the

line in (3.10). In the first term, one can take the volume integral by using the orthogonality
relation (A.12). The second term vanishes if one uses again orthogonality relation:

∂m2

∫
d3x

√
gg00ϕi(x)ϕ∗i (x) = ∂m21 = 0. (3.11)

The third term vanishes since its integrand is a total derivative and the field obeys suitable
boundary conditions. Therefore, the Euclidean path integral is equal to the partition function
for compact manifolds, because the spectrum of the theory is discrete:

logZE = logZE
1 =−β

∫ m2

∞
dm2∑

i

∂ωi

∂m2n(βωi)=−
∑

i

log
(
1−e−βωi

)
= logZC . (3.12)

Therefore, the fundamental statistical-mechanical relation (1.4) holds for compact manifolds.
This statement has also been proven using the zeta function in [5]. But it is not clear how
to generalize the zeta function method to non-compact spaces, that is the reason why we
consider other approaches.

Now let us stress that for non-compact static spaces the spatial part of the mode has
an incoming and a scattered wave, due to which the second and third terms in (3.8) do
not vanish. But only the first term in (3.8) leads to the equality between the Euclidean
path integral and the thermal partition function. Below we will see that if the effective
scattering potential for the spatial part of the mode has a finite range then the second and
third terms in (3.8) cancel each other.
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Furthermore, if the space-time has Killing horizons where the metric is degenerate, then
the spectrum of the theory does not depend on the mass, therefore there will be only the
third term. We will discuss this case in the section 4.

3.2 Standard method: non-compact spaces

Let us start with the definition of the partition function for non-compact spaces. The trace
in the definition of the thermal partition function is taken over all distinct (many-particle)
states of the system (2.23), but it can be rewritten in terms of the trace over all single-particle
excitation as follows:

log Tr(e−β:Ĥ:) = −
∑

i

log
(
1− e−βωi

)
= −Trs log

(
1− e−βĤs

)
, (3.13)

where we denote single-particle trace by the Trs( ) and Hs is the quantum-mechanical
single-particle Hamiltonian (2.28). Then, using eigen-functions of the single-particle Hamil-
tonian (A.12), one can rewrite the trace as the volume integral:

log Tr(e−β:Ĥ:) = −
∫
d3x

√
gg00 ⨋

i
ϕi(x)ϕ∗i (x) log

(
1− e−βωi

)
. (3.14)

Here we assume that the spectrum of eigenvalues of the single-particle Hamiltonian can be
discrete and continuous. For compact spaces, one can take the volume integral to obtain
exactly (2.23). But for non-compact spaces, one cannot take the volume integral in (3.14),
since it will be proportional to δ(0). Therefore, one has to first take all the momentum
integrals in order to express the thermal partition function through the volume integral
of the free energy density:

logZC = −
∫
d4x

√
gF (β, x). (3.15)

Although, as we discussed in the section 2, the partition function is not generally covariant
due to the explicit dependence on g00 in the corresponding functional determinant (2.37),
it turned out to be covariant for compact spaces, since we showed that it is equivalent to
the Euclidean path integral, which is generally covariant. Therefore, we assume that in
non-compact spaces the free energy density F (β, x) must be a generally covariantly function.
But it does not have to be a local function. However it should depend on the geometric
quantities (gµν , R,Rµν , . . .), covariant derivatives and a four-temperature βµ?.1

In non-compact spaces in general the partition function may diverge due to the infinite
space-time volume or, as we will see in the next section, due to the presence of Killing horizon,
even if the volume of the space-time is finite.

1In curved space-times or curve-linear coordinates the temperature measured by a co-moving thermometer
is equal to [31, 32]:

Tlocal = T
√

g00
.

And the most natural way to describe thermodynamic quantities is in term of the so called four-temperature:

βµ = βξµ

where ξµ is the time-like Killing vector. Therefore the combination βµβµ = g00β2 is a generally covariant object.
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As we have shown in the previous subsection in the case of non-compact manifolds the
Euclidean path integral contains three terms:

logZE = −
∫
d3x

√
gg00 ⨋

i
ϕi(x)ϕ∗i (x) log

(
1− e−βωi

)
+ (3.16)

+
∫
d3x

√
gg00 ⨋

i

∫ m2

∞
dm2∂m2 [ϕi(x)ϕ∗i (x)] log

(
1− e−βωi

)
−

− β

∫
d3x

√
g

∫ m2

∞
dm2 ⨋

i

1
2ωi

[△3∂m2ϕi(x)ϕ∗i (x)− ∂m2ϕi(x)△3ϕ
∗
i (x)]n(βωi).

The first term logZE
1 is equal to the standard definition of the partition function (3.14).

The second term may seem to be zero, since if one takes the integral over the spatial
coordinates, one obtains ∂m2δi(0), but the derivative of the delta function at the origin
is ill-defined. Furthermore, if the energy spectrum of the theory does not depend on the
mass ∂m2ωi = 0, then the sum of the first and second terms vanishes, as follows from (3.9).
Therefore the second term demands a careful attention. In the case when the spatial part of
the mode is a solution of the Schrodinger equation with a scattering potential, the spatial
part of the mode depends on the mass. Because of that the third term also does not vanish.

For non-compact optical manifold, g00 = 1, the equality between the Euclidean path
integral and the thermal partition function is obvious, since the spatial part of the mode
does not depend on the mass, and the second and third terms in (3.16) vanish.

To illustrate contributions of different terms in (3.16) let us consider a model metric
of the following form:

ds2 = (1 + f(x))(−dt2 + dx2) + dz⃗2, (3.17)

where limx→±∞ f(x) = 0. This metric is not optical, but as we will see, the second and
third terms cancel each other if the effective potential for the spatial parts for the modes
has a finite range.

The equation of motion for the free massive scalar field is:

(g00∂2
t −△3 +m2 + ξR)φ = 0. (3.18)

Then the corresponding quantum field operator has the following form:

φ̂ =
∫ ∞

0

dp√
2π

∫
d2k

(
√
2π)2

e−iωt

√
2ω

eik⃗·z⃗
[→
ϕp(x)âp,⃗k

+
←
ϕp(x)b̂p,⃗k

]
+ h.c., (3.19)

where ω =
√
m2 + p2 + k⃗2 and

→
ϕp(x),

←
ϕp(x) are the scattering eigen-functions of the effective

Schrodinger equation:
[
−∂2

x + V
]←→
ϕp(x) = p2

←
→
ϕp(x), (3.20)

with the effective potential V = f(x)(k2+m2)+(1+f(x))ξR, which vanishes at spatial infinity.
As it is known, solutions for such a potential contain the usual asymptotic plane waves

with reflected and transmitted components. The asymptotics of the right moving waves are:
→
ϕp(x) ≈ θ(−x)

(
eipx +

→
Rpe

−ipx
)
+ θ(x)

→
T pe

ipx, (3.21)
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while of the left moving waves are:
←
ϕp(x) ≈ θ(−x)

←
T pe

−ipx + θ(x)
(
e−ipx +

←
Rpe

ipx
)
, (3.22)

where the reflection and transmission amplitudes obey the following relations:

→
T p =

←
T p,

→
Rp

→
T ∗p = −

←
R∗p

←
T p and

∣∣←→Rp

∣∣2 + ∣∣←→T p

∣∣2 = 1. (3.23)

The reflection and transition amplitudes must somehow depend on the energy of the
scattering waves and the geometric properties (for example the volume) of the space. If the
potential substantially changes in an interval [−a, a] and decreases to a constant, then for
|x| > a the spatial parts of the mode take the asymptotic form (3.21) and (3.22). Let us
now show that the second and third terms in (3.16) depend only on the region where the
potential is not zero, i.e., both of them vanish in the region where the modes have such
asymptotic forms as (3.21) and (3.22).

For the second term one can show that for the interval (a,+∞):∫ ∞
a

dx

∫ ∞
−∞

dp∂m2

[→
ϕp(x)

→
ϕ
∗
p(x) +

←
ϕp(x)

←
ϕ
∗
p(x)

]
≈ (3.24)

≈
∫ ∞

a
dx

∫ ∞
−∞

dp∂m2

[
1 +Rpe

−2ipx
]
=
∫ ∞

a
dx

∫ ∞
−∞

dp∂m2Rpe
−2ipx.

The last term is finite, therefore one can safely change the integration over the momentum
and spatial coordinate. Hence:∫ ∞

a
dx

∫ ∞
−∞

dp∂m2Rpe
−2ipx ∼

∫ ∞
−∞

dp∂m2Rpδ(p) = ∂m2Rp=0 = 0,

where in the last step we have used that the reflection amplitude obeys Rp=0 = −1. The
same is true for the interval (−∞,−a).

For the third term in (3.16), it is straightforward to see that in the region where the spatial
part of the mode takes asymptotic form (3.21) and (3.22), the integrand of logZE

3 vanishes:[(
△3∂m2

→
ϕp(x)

)→
ϕ
∗
p(x)−

(
∂m2

→
ϕp(x)

)
△3
→
ϕ
∗
p(x)

]
= 0. (3.25)

Therefore, the second and third terms receive contributions only from the region in which the
potential is not zero, and they are finite. This means that these terms cannot be proportional
to the volume of the whole space-time, as it is the case for the thermal partition function.
Hence, one can safely change the integration over momentum and spatial coordinates in both
terms. Therefore, using (3.23), one can show that the third term can be written in the form:

logZE
3 = −β

∫ m2

∞
dm2

∫
d3x

√
g

∫ ∞
−∞

d2k

(2π)2

∫ ∞
0

dp

2π
1
2ωn(βω)× (3.26)

×
([(

△3∂m2
→
ϕp(x)

)→
ϕ
∗
p(x)−

(
∂m2

→
ϕp(x)

)
△3
→
ϕ
∗
p(x)

]
+
[→
ϕ →

←
ϕ

])
=

= βA

∫ m2

∞
dm2

∫ ∞
−∞

d2k

(2π)2

∫ ∞
0

dp

2π
2p
2ωn(βω)∂m2

[
θ→

Rp

+ θ←
Rp

]
,

– 14 –



J
H
E
P
0
4
(
2
0
2
4
)
0
7
7

where A is the volume of the transverse directions in (3.17) and θ→
Rp

, θ←
Rp

are the phases
of the reflection amplitudes at spatial infinities. Therefore the third term depends only
on the scattering phase.

Now we can use the Friedel formula that connects the integrated density of states and
the energy derivative of scattering phaseshifts (see e.g. [33]) to obtain that:∫ ∞

−∞
dx

([→
ϕp(x)

→
ϕ
∗
p(x) +

←
ϕp(x)

←
ϕ
∗
p(x)

]
−
[→
ϕ0p(x)

→
ϕ0
∗
p(x) +

←
ϕ0p(x)

←
ϕ0
∗
p(x)

])
= (3.27)

= d

dp

[
θ→

Rp

+ θ←
Rp

]
,

where
→
ϕ0p(x) = eipx and

←
ϕ0p(x) = e−ipx are the modes for the case of the absence of the

scattering potential, i.e. for the flat space-time.
Taking the integral over p by part in (3.26) and using the Friedel formula one can show

that the second and third terms in (3.16) cancel each other:

logZE
2 + logZE

3 = 0. (3.28)

Therefore, the Euclidean path integral is equal to the partition function for non-compact
manifolds without Killing horizons.

Let us note that our reasoning in this section works because we can change the integrals
over momenta and coordinates, since these contributions are finite. But in the case of
space-times with Killing horizons the Euclidean path integral is fully determined by the third
term in (3.16), and in that case these contribution diverge, which generally speaking, means
that we cannot change the order of integrations. We will discuss that in the next section.

3.3 New method

In this section, we propose a new method of computation of the Euclidean path integral
that gives the correct answer for compact and non-compact spaces. This method gives the
correct equality between the Euclidean path integral and the thermal partition function
even for non-compact manifolds with Killing horizons. Therefore, this method seems to
be suitable for computation of thermodynamic quantities in terms of the Euclidean path
integral for a generic case.

Let us define the path integral measure with the not covariant regulator of the form:

ZE
M = lim

M→0

∫
d[φ]e−

1
2

∫
d4x
√
−gg00M2φ2

e−S . (3.29)

Hence we can define new action:

SM [φ] = −1
2

∫
d4x

√
−g
[
(∂µφ)2 + g00M2φ2 +m2φ2 + ξRφ2

]
, (3.30)

where new mass term in the action depends on g00. This action is, generally speaking, not
covariant, although it is seems that in the limit M → 0 the general covariance is restored
and the following relation is valid:

lim
M→0

ZE
M = ZE . (3.31)
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This allows us to express the new Euclidean path integral via the integral with respect to
M2 rather than m2, of the Feynman thermal propagator in the coincidence limit:

logZM
β = −β2

∫
d3x

√
gg00

∫ M2

∞
dM2 GM (x, x), (3.32)

where:

GM (x, x) =⨋
i

1
2
√
ω2

i +M2
ϕi(x)ϕ∗i (x)

[
1 + 2n

(
β
√
ω2

i +M2
)]

. (3.33)

Compare this expression to (2.19). The spatial part of the mode ϕi(x) does not depend
on M , since the new mass term g00M2φ2 in the action simply shifts the energy spectrum,
because it is the same as the temporal contribution g00(∂tφ)2. (Let us also stress, that modes
obey the standard orthogonality and completeness relations.) Therefore the Euclidean path
integral can be expressed as follows:

logZE
M = −β

∫
d3x

√
gg00 1

2

∫ M2

∞
dM2 ⨋

i

1
2
√
ω2

i +M2
ϕi(x)ϕ∗i (x)

[
1 + 2n

(
β
√
ω2

i +M2
)]
.

(3.34)

The first term under the integral on the right-hand side of the last equation leads to the
standard UV divergence due to the zero-point fluctuations. This term is linear in inverse
temperature. Hence, it can be absorbed into the renormalization of the ground state energy.
As a result:

logZE = lim
M→0

logZE
M =−β

∫
d3x

√
gg00

∫ 0

∞
dM2 ⨋

i

1
2
√
ω2

i +M2
ϕi(x)ϕ∗i (x) n

(
β
√
ω2

i +M2
)
.

(3.35)

Now one can take the integral over M since the spatial part of the mode ϕi(x) does not
depend on M : ∫ 0

∞
dM2 1√

ω2
i +M2

n

(
β
√
ω2

i +M2
)
= 2
β
log

(
1− e−βωi

)
. (3.36)

Therefore:

logZE = −
∫
d3x

√
gg00 ⨋

i
ϕi(x)ϕ∗i (x) log

(
1− e−βωi

)
= logZC . (3.37)

Thus, the new method does indeed work. But it is not clear whether this regulator violates
the Weyl, Einstein or Lorentz symmetries at the M → 0.

4 Space-times with horizons

Due to Hawking type of radiation [6] space-times with horizons are usually endowed with a
natural (canonical) temperature, which depends on the geometry of the space-time. Moreover,
there is a Bekenstein-Hawking entropy [6, 34–36], which is proportional to the area of the
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horizon and depends on the geometric properties of the whole space-time. In space-times
with Killing horizons, one can also consider a thermal gas with the planckian density matrix
with an arbitrary temperature, different from the canonical one. But if the temperature
is different from the canonical one, then correlation functions do not posses Hadamard
properties on Killing horizons and the back-reaction on the background geometry is strong
(see, for example: [37–45]). Furthermore, the thermalization process in curved space-times,
in general, is far from being well understood [46]. Let us also stress that if the temperature
is less than the Hawking one, then the theory becomes unstable due to the presence of a
tachyon excitation [47].

In any cases, in order to understand the general thermal properties in curved space-
times thermal states with generic temperatures should be considered. For example, to find
thermodynamic quantities, one needs to know derivatives of the thermal partition function
with respect to the temperature. Therefore it is necessary to know the value of the free
energy not only for the canonical temperature.

The other difference between non-compact space-times with Killing horizons and without
them is that the spectrum of the theory in the former case does not depend on the mass.
Therefore, the Euclidean path integral is defined only by the third term in (3.16), which
does not give the equivalence between the Euclidean path integral and thermal partition
function approaches. Nevertheless here we show that the new method proposed in the
previous section gives the correct equality.

But before we begin to discuss the relation between the Euclidean path integral and
thermal partition function approaches let us start with the definition of the energy. As shown
in [28], it is necessary to distinguish different definitions of energy in space-times with Killing
horizons. We will show that the difference between the energy defined by the stress-energy
tensor (E) and the canonical Hamiltonian (Hc) is a boundary term (Qξ), which depends on
the coupling constant ξ in (1.5), for the related discussion see also [48, 49]. Furthermore, we
will show that the operator of the canonical Hamiltonian is different from the standard one
Ĥ = ∑

i ωiâ
†
i âi by another boundary term (QH). All these observations are important to

establish the proper relation between the Euclidean path integral and the thermal partition
function in space-times with Killing horizons.

The variation of the action of the massive non-minimally coupled scalar field theory (1.5)
with respect to the field and metric gives equation of motion:

(−□+m2 + ξR)φ(x) = 0, (4.1)

and the stress energy tensor is defined as:

Tµν = ∂µφ(x)∂νφ(x)−
1
2gµν

(
∂ρφ(x)∂ρφ(x) +m2φ2(x)

)
+

+ ξ

[(
Rµν − 1

2gµνR

)
φ2(x) + gµν□φ

2(x)− ▽µ▽νφ
2(x)

]
. (4.2)

Then the energy operator of the system can be defined in terms of the stress-energy tensor:

E = −
∫
d3x

√
gT 0

0 . (4.3)
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At the same time the canonical Hamiltonian is defined as follows:

Hc =
∫
d3x (∂0φ(x)π(x)− L) =

∫
d3x

√
gH, (4.4)

where L is the Lagrangian and the canonical Hamiltonian density is:

H = 1
2
[
−g00∂0φ(x)∂0φ(x) + gij∂iφ(x)∂jφ(x) + (m2 + ξR)φ2(x)

]
. (4.5)

As one can see, even on the classical level there is a difference between these two definition
of the energy density for non zero ξ:

−T 0
0 = H − ξ

(
R0

0φ
2(x) + ▽i▽

iφ(x)
)
. (4.6)

For a static space-time one can show that the second term is the total derivative:

−T 0
0 = H − ξ

1
√
g
∂i

[√
ggij

(
∂jϕ

2(x)− ϕ2(x)wi

)]
, (4.7)

where we use that for static space-times R0
0 = −▽iwi and wi = 1

2∂i log |g00|. Hence, the
difference between the energy and the Hamiltonian is:

E = Hc − ξ

∫
dAi

√
|g00|

(
∂i(ϕ2(x))− ϕ2(x)wi

)
. (4.8)

If the field obeys suitable boundary conditions then the energy is equal to the Hamiltonian. But
if the boundary is a Killing horizon then the last term in (4.8) does not vanish as we will see.

Furthermore using the standard canonical quantization procedure, one can represent
the field operator in static space-times as:

φ(x) =⨋
i
e−iωitϕi(x)âi + h.c., (4.9)

where e−iωitϕi(x) solves Klein-Gordon equation (4.1). Then the Hamiltonian operator is
defined as follows:

Ĥ =⨋
i
ωiâ
†
i âi, (4.10)

and the following Heisenberg equation are valid:

i∂t
ˆφ(x) = [φ̂(x), Ĥ] , i∂tπ̂(x) = [π̂(x), Ĥ] and [φ̂(x), π̂(y)] = δ(3)(x− y). (4.11)

Now let us look at the standard definition of the canonical Hamiltonian (for more details
see the discussion around eq. (A.14)):

Ĥc =⨋
i
ωi â

†
ω,kâω,k + 1

4

∫
d3x∂i[gij√g∂jφ̂

2(x)]. (4.12)

For space-times without Killing horizons the last term vanishes, therefore the canonical
Hamiltonian operator has the correct form. But if the space-time has a Killing horizon,
then the canonical Hamiltonian has a boundary term, whose expectation value is not zero.
One should define the Hamiltonian operator as (4.10), rather than (4.12) to establish the
proper equations of motion following from (4.11).
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Therefore, we have the following relations:

Ĥc = Ĥ + B̂H and Ê = Ĥc + Q̂ξ, (4.13)

where:

B̂H = 1
4

∫
dAi

√
|g00|∂iϕ̂

2(x) and Q̂ξ =−ξ
∫
dAi

√
|g00|

[
∂iϕ̂

2(x)−ϕ̂2(x)wi

]
. (4.14)

Let us stress that Qξ is the Noether charge, since there is a conserved current [28, 48, 49]:

Jµ = −ξ
(
Rµνφ

2(x) + gµν□φ
2(x)− ▽µ▽νφ

2(x)
)
ζν , (4.15)

where ζν is the Killing vector. At the same time BH is not a charge of some conserved current.

4.1 Rindler coordinates

Now let us find explicitly the expectation values of the three energy operators Ĥc, Ĥ, Ê, which
we have introduced in (4.13), and the expectation value of both boundary terms B̂H , Q̂ξ in
space-times with Killing horizons. For simplicity, let us consider only the Rindler coordinates,
which approximate the region near the horizon of any space-time:

ds2 = r2dt2 − dr2 − dz⃗2, (4.16)

where we set the acceleration to one.
The field operator is defined as follows:

φ̂(x) =
∫

d2k

(2π)

∫
dω√
π

√
ω sinh(πω)

π
e−iωt+ik⃗x⃗Kiω

(√
m2 + k2r

)
âω + h.c., (4.17)

and obeys the standard canonical commutation relations.
Then for the massless case, the expectation value of the Hamiltonian can be expressed as:

⟨Ĥ⟩ = 1
2

∫
d3x

√
gg00 lim

x0→y0
(∂2

y0 − ∂x0∂y0)G(x, y), (4.18)

where the thermal Feynman propagator with inverse temperature β is (for more details
see appendix A):

G(x1,x2)= (4.19)

= 1
β

∑
ωn

∫
d2k⃗

(2π)2

∫ ∞
0

dω

π2
2ω sinhπω
w2

n+ω2 e−iwn(τ2−τ1)eik⃗(z⃗2−z⃗1)Kiω
(√

m2+k2r1
)
Kiω

(√
m2+k2r2

)
,

where wn = 2πn
β are Matsubara frequencies. It should be kept in mind that there is a certain

temperature — so called canonical (Unruh) temperature T−1
c = βc = 2π, for which the

poragator and loop corrections respect Poincaré symmetry [50, 51].
Hence, one obtains that the regularized energy is:

⟨Ĥ⟩ =
∫
d3x

√
g
π2

30

[ 1
(βµβµ)2 − 1

((βc)µ(βc)µ)2

]
, (4.20)
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where βµ
c = βcξ

µ is the four-vector of inverse canonical temperature, ξµ = (1, 0, 0, 0) is the
time-like Killing vector and βµ = βξµ is the four-vector of inverse temperature of the state
under consideration. Then, for the canonical temperature the expectation value of the energy
vanishes. This is consistent with the fact that for the Poincaré invariant state (Minkowski
vacuum), the expectation value of the energy should be zero.

If we introduce a cutoff r = ϵ for the integration over the proper distance from the
horizon in (4.20), then:

⟨Ĥ⟩ = A
1
2ϵ2

π2

30

[ 1
β4 − 1

β4
c

]
, (4.21)

where A is the area of the horizon. This value is divergent in the limit ϵ→ 0. This divergence
has a physical meaning. For example, in the entire Minkowski space the expectation value of
the Hamiltonian is ⟨Ĥ⟩ = V π2

30
1

β4 , and is also divergent due to an infinite volume of space.
But the energy density is finite. Hence we prefer to understand the value on the energy as an
integral over the volume of the density in (4.20) rather than divergent value of the whole
energy (4.21). It should be kept in mind that the energy density in space-times with Killing
horizons diverges due to the fact that the observer who is fixed near the horizon will see
that the local temperature is Tlocal = T√

g00
, which diverges with the decreases of the distance

to the horizon, due to the infinite blue shift. Thus, the presence of the divergence under
consideration is quite natural to space-times with Killing horizons.

For the non-minimally coupled massless scalar field the expectation value of the stress
energy tensor is:

⟨T̂µ
ν ⟩ = (4.22)

= π2

90
1
r4

([ 1
β4 − 1

β4
c

]
diag(−3, 1, 1, 1) + 20(6ξ − 1) 1

β2
c

[ 1
β2 − 1

β2
c

]
diag(3/2,−1/2, 1, 1)

)
.

This result can be obtained directly by using ζ-function approach [5] or point splitting [52].
Then the energy of the system following from this expectation value is:

⟨Ê⟩=−
∫
d3x

√
g⟨T 0

0 ⟩=

=
∫
d3X

√
g

(
π2

30

[
1

(βµβµ)2 −
1

((βc)µ(βc)µ)2

]
−(6ξ−1)π2

3
1

((βc)µ(βc)µ)

[
1

βµβµ −
1

(βc)µ(βc)µ

])
=

=A
1

2ϵ2
π2

30

[
1

β4 −
1

β4
c

]
−(6ξ−1)A 1

2ϵ2
π2

3
1

β2
c

[
1

β2 −
1

β2
c

]
. (4.23)

Then using the relation:

⟨Ê⟩ = ⟨Ĥ⟩+ ⟨Q̂ξ⟩+ ⟨B̂H⟩, (4.24)

one can obtain the expectation values of the charge and boundary terms:

⟨Q̂ξ⟩ = (4.25)

= −ξ
∫
d3X

√
g2π2 1

((βc)µ(βc)µ)

[ 1
βµβµ

− 1
(βc)µ(βc)µ

]
= −ξA 1

2ϵ2 2π
2 1
β2

c

[ 1
β2 − 1

β2
c

]
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and

⟨B̂H⟩ = (4.26)

=
∫
d3X

√
g
π2

3
1

((βc)µ(βc)µ)

[ 1
βµβµ

− 1
(βc)µ(βc)µ

]
= A

1
2ϵ2

1
β2

c

[ 1
β2 − 1

β2
c

]
.

This result can be obtained directly from the definition (4.14) of these operators and from the
expectation value of the regularized Feynman thermal propagator at coincident points [47]:

⟨ϕ̂2(x)⟩ = 1
12r2

( 1
β2 − 1

β2
c

)
. (4.27)

As one can see, the last term in (4.23) vanishes for the conformal field, ξ = 1
6 , since the

charge ⟨Q̂ξ⟩ and boundary terms ⟨B̂H⟩ look similar in the Rindler coordinates, but this is
not the case for other static space-times due to their definition (4.14).

For completeness, let us stress that the expectation value of the canonical Hamiltonian
has the following form:

⟨Ĥc⟩ = ⟨Ĥ⟩+ ⟨B̂H⟩ =

=
∫
d3X

√
g

(
π2

30

[ 1
(βµβµ)2 − 1

((βc)µ(βc)µ)2

]
+ π2

3
1

((βc)µ(βc)µ)

[ 1
βµβµ

− 1
(βc)µ(βc)µ

])
=

= A
1
2ϵ2

π2

30

[ 1
β4 − 1

β4
c

]
+A

1
2ϵ2

π2

3
1
β2

c

[ 1
β2 − 1

β2
c

]
. (4.28)

As one can see, the three definitions of energy are not equivalent to each other in space-times
with Killing horizons.

4.2 Euclidian path integral in Rindler coordinates

As we have shown in the previous section, the Euclidian path integral for space-times with
Killing horizons is defined as:

logZE = logZE
3 = (4.29)

= −β
∫
d3x

√
g

∫ m2

∞
dm2 ⨋

i

1
2ωi

[
△3∂m2ϕi(x)ϕ∗i (x)− ∂m2ϕi(x)△3ϕ

∗
i (x)

]
n(βωi),

since the sum of the first and second terms in (3.9) vanishes: logZC
1 + logZC

2 = 0, if the
energy spectrum ωi does not depend on the mass.

At the same time the thermal partition function is defined as:

logZC = log Tr(e−β:Ĥ:) = −
∫
d3x

√
gg00 ⨋

i
ϕi(x)ϕ∗i (x) log

(
1− e−βωi

)
. (4.30)

In the absence of horizons logZE
3 is finite. Hence one can exchange the integrals over the

momenta and coordinates to express this term in terms of scattering phase as in (3.26). But
for space-times with Killing horizon logZE

3 is divergent. Thus, in the latter case the answer
will depend on which integral is taken first, over coordinates or over momenta.

– 21 –



J
H
E
P
0
4
(
2
0
2
4
)
0
7
7

To understand why the order of integration is important, let us consider the spatial
part of the mode near the horizon (4.17):√

ω sinh(πω)
π

Kiω

(√
m2 + k2r

)
≈ − sin

(
ω log(

√
m2 + k2r/2) + γω

)
, (4.31)

where γω is a phase of Γ(1 + iω). As one can see this limit works for a finite transverse
momentum k, and the limits k → ∞ and r → 0 do not commute. Therefore, in such a case
one can not use the definition of the Euclidean path integral in terms of phase shift (3.26),
since it assumes that moving far away from the potential the phase shift should no longer
depend on the distance for any momentum k. Hence, one should first take all momentum
integrals and then take the volume integral. The resulting expression takes a clear physical
meaning as the volume integral of free energy density.

Therefore, the Euclidian path integral for a massless scalar field in the Rindler space-time
has the following form:

logZE = logZE
3 = (4.32)

=
∫
d4X

√
g

(
π2

90

[ 1
(βµβµ)2 −

1
((βc)µ(βc)µ)2

]
+π2

9
1

((βc)µ(βc)µ)

[ 1
βµβµ

− 1
(βc)µ(βc)µ

])
.

Or if we introduce a volume cut-off near the horizon:

log(ZE) = βA
1
2ϵ2

π2

90

[ 1
β4 − 1

β4
c

]
+ βA

1
2ϵ2

π2

9
1
β2

c

[ 1
β2 − 1

β2
c

]
. (4.33)

If one first takes the volume integral and then the momentum integral the result will be
as follows [43, 53, 54]:

logZE = logZE
3 =

= −A
∫ m2

∞
dm2

∫ ∞
−∞

d2k

(2π)2

∫ ∞
0

dω

2π log
(
1− e−βω

)
∂m2∂ωθω,=

= βA
π2

3

[ 1
β2 − 1

β2
c

] ∫ ∞
δ2

ds

(4πs) d
2
, (4.34)

where δ is an ultraviolet cutoff and θω is scattering phases of (4.31). Therefore, if one first
takes the volume integral in (4.29), the Euclidian path integral for space-times with Killing
horizons depends only on the scattering phase. This connection was pointed out recently
in [55, 56]. In this form the value of the free energy does not have a standard form, namely
F ∼ 1/βd. Due to this, in the literature, one can find different answers for the Euclidean
path integral in the Rindler coordinates. For more details, see e.g. [43, 54]. Therefore, we
consider the definition of the free energy as the volume integral of the energy as more natural.

At the same time thermal partition function logZC for a massless scalar field in the
Rindler space-time has the following form:

logZC = −
∫
d3x

√
gg00 ⨋

i
ϕi(x)ϕ∗i (x) log

(
1− e−βωi

)
= (4.35)

=
∫
d4x

√
g
π2

90

[ 1
(βµβµ)2 − 1

((βc)µ(βc)µ)2

]
.
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density of: d = 6 d = 8

−∂β log(ZE) π3

r6

(
2

189β6 + 1
15β4β2

c
+ 8

45β2β4
c
− 241

945β6
c

)
π4

r8

(
1

225β8 + 8
189β6β2

c
+ 14

75β4β4
c
+ 16

35β2β6
c
− 3263

4725β8
c

)
⟨: Ĥ :⟩ π3

r6

(
2

189β6 + 1
45β4β2

c
− 52

945β6
c

)
π4

r8

(
1

225β8 + 4
189β6β2

c
+ 8

225β4β4
c
− 289

4725β6
c

)
−∂β log(ZE)− ⟨H⟩ π3

r6

(
2

45β4β2
c
+ 8

45β2β4
c
− 2

9β6
c

)
π4

r8

(
4

189β6β2
c
+ 34

225β4β4
c
+ 16

35β2β6
c
− 2975

4725β8
c

)
⟨B̂H⟩ π3

r6

(
4

45β4β2
c
+ 8

9β2β4
c
− 44

45β6
c

)
π4

r8

(
4

105β6β2
c
+ 2

5β4β4
c
+ 16

5β2β6
c
− 382

105β8
c

)
⟨Q̂ξ⟩ −5ξ⟨B̂H⟩ −14

3 ξ⟨B̂H⟩

Table 1. Expectation value of the derivatives with respect to the inverse temperature of the Euclidean
path integral, Hamiltonian, boundary terms, and charge for 6- and 8-dimensional space-times.

As one can see the first term in the Euclidian path integral (4.32) coincides with the
thermal partition function logZC . However, the Euclidian path integral (4.32) contains an
additional contributions, the physical meaning of which is not clear for us yet.

Now let us look at the derivatives with respect to the inverse temperature of the
Euclidean path integral:

−∂β log(ZE) = A
1
2ϵ2

π2

30

[ 1
β4 − 1

β4
c

]
+A

1
2ϵ2

π2

9
1
β2

c

[ 1
β2 − 1

β2
c

]
+ const., (4.36)

here only the first term coincides with the expectation value of the Hamiltonian. In [5],
the author concludes that the derivative of the Euclidean path integral is equal to the
energy (4.23) for ξ = 1/9:

−∂β log(ZE) = ⟨Êξ= 1
9
⟩+ const. = ⟨Ĥ⟩+ ⟨Q̂ξ= 1

9
⟩+ ⟨B̂H⟩+ const. (4.37)

Or since the two boundary terms (4.25) and (4.26) are linearly releted in the Rindler
coordinates, ⟨B̂H⟩ = − 1

6ξ ⟨Q̂ξ⟩, one can rewrite it as follows:

−∂β log(ZE)− ⟨Ĥ⟩ = 1
3⟨B̂H⟩+ const. (4.38)

But it is just a coincidence, since there is no such a dependence for higher dimensional
cases, i.e.:

−∂β log(ZE)− ⟨Ĥ⟩ ≁ ⟨B̂H⟩+ const. (4.39)

For more detail see the table 1.
In any case, if one uses the standard method then the fundamental statistical-mechanical

relation does not hold.
At the same time the new method of computation of the Euclidean path integral

proposed in the section 3 gives:

logZE = lim
M→0

logZE
M = − lim

M→0

β

2

∫
d3x

√
−gg00

∫ M2

∞
dM2 GM (x, x), (4.40)
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where the Feynman thermal propagator at the coincident points with the new mass term
has the following form:

GM (x, x) = 1
β

∑
ωn

∫
d2k⃗

(2π)2

∫ ∞
0

dω

π2
2ω sinh πω

ω2
n + ω2 +M2Kiω

(
kr
)
Kiω

(
kr
)
. (4.41)

As a result one obtains:

logZE = π2

90

∫
d4x

√
g

[ 1
(βµβµ)2 − 1

((βc)µ(βc)µ)2

]
. (4.42)

Therefore, the Euclidian path integral has the correct form, since its derivative with
respect to the inverse temperature coincides with the expectation value of the Hamiltonian. Let
us also stress that this result is in agreement with the WKB result from [57]. Furthermore,
this results is generally covariant and it looks like the coordinate transformation of the
standard Minkowskian thermal partition function. At the same time the second term in (4.32)
does not fit into this reasoning.

5 Conclusion, discussion and questions

In this paper we check whether the Euclidean path integral equals the thermal partition
function for the non-minimally coupled scalar quantum field theory or not. We make the
following observations:

• For spaces with compact spatial section the main result is that the Euclidean path
integral ZE is equal to the thermal partition function of the canonical ensemble ZC .
This case is widely discussed in the literature.

• If spatial sections are non-compact and there is no Killing horizon, then the standard
method implies that the equality between the Euclidean path integral and thermal
partition function approaches holds, since two additional terms in (3.16), which are
sensitive to the scattering phase for the spatial part of the mode, cancel each others.

• If spatial sections are bordered by Killing horizons, then the situation is quite different
from the last one. First, space-times with Killing horizons are endowed with their own
temperature due to the Hawking type radiation. Second, the single particle energy
spectrum of the theory does not depend on the mass, which leads to the fact that
the standard method of computation of the Euclidean path integral is defined only by
the third term in (3.16). This fact, generally speaking, does not lead to the equality
between the Euclidean path integral and thermal partition function approaches. Third,
there are three different definitions of the energy, and as we have shown, the derivative
with respect to the inverse temperature does not give the value of any of these three
types of energy.

• We propose a new method of computation the Euclidean path integral. This method
gives a self-consistent answer for compact cases and gives the correct equality between
the Euclidean path integral and thermal partition function approaches for non-compact
cases with and without Killing horizons.
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Let us also provide a list of questions that we would like to address in the future work:

• In the section 2, we have shown that the thermal partition function is not generally
covariant, since it can be represented as the Euclidean path integral with a non-covariant
measure, but with a standard action. Or it can be represented as the Euclidean path
integral with a covariant measure, but with an action with an optical metric (obtained
by a conformal transformation from the original one). But, as we have seen, for compact
spaces and non-compact spaces without Killing horizons the thermal partition function
is equal to the Euclidean path integral, which is generally covariant. Thus the questions
is that is the thermal partition function is generally covariant for non-compact manifolds
with Killing horizons?

• In this article we show that in space-times with Killing horizons in general the fun-
damental statistical-mechanical relation does not hold. However, in [11] the related
is used to obtain conformal anomaly for the de Sitter space-time. The key point is
that the same result is obtained as in [10], where the author uses the zeta function
method to compute the Euclidean path integral. So the question is as follows. Does
the fundamental statistical-mechanical relation hold in the presence for the logarithmic
term in general?

• Recently, Zubarev’s approach to the description of thermodynamics has been discussed
in the literature (for more detail see: [58–62]). This method appears to be generally
covariant and the partition function is built with the use of the stress energy tensor:
ZC

T = Tr
[
exp

(∫
dΣµT̂µνβ

ν
)]

. Since, the Energy defined by the stress-energy tensor
(E) is different from the energy determined by the Hamiltonian (which stands in the
definition of the thermal partition function) in space-time with Killing horizons. It is
important to understand, which of the definitions of the partition function is correct?
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A Thermal Feynman propagator

Here we will show that in the static space-time there are two different representations of
the thermal Feynman propagator.

The first method is based on the eigen-functions of the Klein-Gordon operator:(
−□E +m2 + ξR

)
ψi(x) = λiψi(x), (A.1)
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which are orthonormal and complete:∫
d4x

√
gψ∗i (x)ψj(x) = δij and ⨋

i
ψ∗i (x)ψi(y) =

δ(x− y)
√
g

. (A.2)

Hence the Green function for the Klein-Gordon equation:
(
−□E +m2 + ξR

)
G(x, y) = δ(x− y)

√
g

(A.3)

can be represented as:

G(x, y) =
∑

i

ψ∗i (x)ψi(y)
λi

. (A.4)

The second method is based on the eigen-functions of the following operator:

(−∂2
τ +H2

s )χi(x) = g00
(
−□E +m2 + ξR

)
χi(x) = ρiχi(x), (A.5)

which are orthonormal and complete:∫
d4x

√
gg00χ∗i (x)χj(x) = δij and ⨋

i
χ∗i (x)χi(y) =

δ(x− y)
√
gg00 . (A.6)

Hence, the corresponding Green function:

G(x, y) =⨋
i

χ∗i (x)χi(y)
ρi

, (A.7)

solves the same Klein-Gordon equation (A.3). Therefore, two methods lead to the same
Green function, since they solve the same equation. Note that we are working in Euclidean
signature rather than Lorentzian one.

The third method is based on the canonical quantization. The Klein-Gordon equation
in Lorentzian signature is:

(g00∂2
t −△3 +m2 + ξR)φ = 0, (A.8)

where △3 = g−
1
2∂i

(
gijg

1
2∂j

)
. The solution of this equation of motion has the following form:

φ̂ =⨋
i

[
e−iωit

√
2ωi

ϕi(x)âi + h.c.

]
, (A.9)

where ϕi(x) is the spatial part of the mode, that solves:

(−g00ω2
i −△3 +m2 + ξR)ϕi(x) = 0. (A.10)

Using the canonical commutation relations:
[
φ̂(x), ˙̂φ(y)

]
= i

δ(x− y)
√
gg00 , (A.11)
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one can obtain the completeness and orthogonality relations for the spatial part of the modes:∫
d3x

√
gg00ϕi(x)ϕ∗j (x) = δi,j and ⨋

i
ϕi(x)ϕ∗i (y) =

δ3(x− y)
√
gg00 . (A.12)

The Hamiltonian of the theory is defined as follows:

: Ĥ := (A.13)

=− :
∫
d3x

√
gg00

(
∂tφ̂(x)∂tφ̂(x)−

g00

2
[
g00∂tφ̂(x)∂tφ̂(x)+▽iφ̂(x)▽iφ̂(x)+m2φ̂(x)2+ξRφ̂(x)2]) :=

=:
∫
d3x

√
gg00 1

2
(
−∂tφ̂(x)∂tφ̂(x)+φ̂(x)∂2

t φ̂(x)
)
: +1

4

∫
d3x∂i[gij√g∂jφ̂

2(x)] =

=
∑

i

ωi â
†
i âi,

where we use the equation of motion (A.10) and completeness relation (A.12). The key point
here is that the following boundary contribution vanishes:

1
4

∫
d3x∂i[gij√g∂jφ̂

2(x)] = 0. (A.14)

But this is not the case for space-times with Killing horizons.
Using the Bose-Einstein or Planckian distribution:

⟨â†i âj⟩β = δijn(βωi), where n(βωi) =
1

eβωi − 1 , (A.15)

one can obtain the thermal Wightman function:

W (t, x1, x2) = (A.16)

=⨋
i

e−iωit

2ωi
ϕi(x1)ϕ∗i (x2)(1 + n(βωi))+ ⨋

i

eiωit

2ωi
ϕ∗i (x1)ϕi(x2)n(βωi).

Using this Wightman function, one can construct the thermal Feynman propagator as follows:

G(t, x1, x2) = θ(t)W (t, x1, x2) + θ(−t)W (−t, x2, x1), (A.17)

which after the analytical continuation to the Euclidean signature acquires the following form:

G(x, y) =⨋
n,i

β−1/2e−iwnt1ϕi(x1)
[
β−1/2e−iwnt2ϕi(x2)

]∗
w2

n + ω2
i

, (A.18)

where wn = 2πn
β are the Matsubara frequencies. Such a representation is in full agreement

with (A.7). Therefore, if one uses the canonical commutation relations to quantize the field,
and then constructs the thermal Feynman propagator, one will obtain the same expression
as in the second method.

Let us also stress that if one uses the optical metric, then the all method give the same
representation for the propagator, since g00 = 1.
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