
J
H
E
P
0
7
(
2
0
2
3
)
1
3
4

Published for SISSA by Springer

Received: February 16, 2023
Revised: May 11, 2023

Accepted: June 20, 2023
Published: July 17, 2023

Quark mass hierarchies and CP violation in
A4 ×A4 ×A4 modular symmetric flavor models

Shota Kikuchi, Tatsuo Kobayashi, Kaito Nasu, Shohei Takada and Hikaru Uchida
Department of Physics, Hokkaido University,
Sapporo 060-0810, Japan
E-mail: s-kikuchi@particle.sci.hokudai.ac.jp,
kobayashi@particle.sci.hokudai.ac.jp,
k-nasu@particle.sci.hokudai.ac.jp,
sho-takada@particle.sci.hokudai.ac.jp,
h-uchida@particle.sci.hokudai.ac.jp

Abstract: We study A4 × A4 × A4 modular symmetric flavor models to realize quark
mass hierarchies and mixing angles without fine-tuning. Mass matrices are written in terms
of modular forms. At modular fixed points τ = i∞ and ω, A4 is broken to Z3 residual
symmetry. When the modulus τ is deviated from the fixed points, modular forms show
hierarchies depending on their residual charges. Thus, we obtain hierarchical structures in
mass matrices. Since we begin with A4 ×A4 ×A4, the residual symmetry is Z3 × Z3 × Z3
which can generate sufficient hierarchies to realize quark mass ratios and absolute values
of the CKM matrix |VCKM| without fine-tuning. Furthermore, CP violation is studied.
We present necessary conditions for CP violation caused by the value of τ . We also show
possibilities to realize observed values of the Jarlskog invariant JCP, quark mass ratios
and CKM matrix |VCKM| simultaneously, if O(10) adjustments in coefficients of Yukawa
couplings are allowed or moduli values are non-universal.

Keywords: CKM Parameters, CP Violation, Discrete Symmetries, Flavour Symmetries

ArXiv ePrint: 2302.03326

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2023)134

mailto:s-kikuchi@particle.sci.hokudai.ac.jp
mailto:kobayashi@particle.sci.hokudai.ac.jp
mailto:k-nasu@particle.sci.hokudai.ac.jp
mailto:sho-takada@particle.sci.hokudai.ac.jp
mailto:h-uchida@particle.sci.hokudai.ac.jp
https://arxiv.org/abs/2302.03326
https://doi.org/10.1007/JHEP07(2023)134


J
H
E
P
0
7
(
2
0
2
3
)
1
3
4

Contents

1 Introduction 1

2 Quark mass hierarchy without fine-tuning 3

3 The models with A4 ×A4 ×A4 5
3.1 Types 7

3.1.1 Type 123 8
3.1.2 Type 122 8

3.2 Favorable models 8
3.3 Numerical examples 9

3.3.1 τ ∼ i∞ 9
3.3.2 τ ∼ ω 13

3.4 Comment on the models using A4 triplet 16

4 CP violation 17
4.1 Necessary conditions for CP violation 18
4.2 Numerical example of CP violation 22
4.3 Non-universal moduli 25

5 Conclusion 27

A Group theoretical aspects of A4 29

B Modular forms of A4 30

C Mass matrix structures in favorable models 31

1 Introduction

The origin of quark and lepton flavor structures such as hierarchical masses and mixing
angles are one of the biggest mysteries in current particle physics. Recently as one of
the approaches to the flavor structures, the modular invariant flavor models have been
widely studied. In these models three generations of quarks and leptons are regarded as
three-dimensional (reducible or irreducible) representations of the finite modular groups.
Their mass matrices are written in terms of the modular forms for the finite groups, which
are holomorphic functions of the modulus τ [1].1 Interestingly, the finite modular groups
ΓN for N = 2, 3, 4, 5 are isomorphic to the non-Abelian discrete groups S3, A4, S4 and
A5, respectively [18]. These non-Abelian groups have been used in the flavor models for
quarks and leptons [19–29]. Motivated by this, the modular symmetric lepton flavor models

1The modular flavor symmetry was also studied from the top-down approach such as stringtheory [2–17].
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have been proposed in Γ2 ' S3 [30], Γ3 ' A4 [1], Γ4 ' S4 [31] and Γ5 ' A5 [32, 33]. Also
modular symmetries including higher levels and covering groups were studied [8, 34–39].

Phenomenological studies using modular forms have been implemented in many
works [40–79]. Nevertheless it is a difficult issue to describe flavor structures by fewer
parameters. Especially it seems that some kind of fine-tuning is necessary to realize the large
hierarchies of fermions masses. Indeed many works need to fine-tune coefficients of modular
forms in Yukawa couplings for hierarchical masses, in particular quark mass hierarchies.

One way to describe hierarchical fermion masses without fine-tuning is use of the
residual symmetry of the modular symmetry. At three modular fixed points of the modulus,
τ = i, ω (= e2πi/3) and i∞, the modular symmetry breaks into residual Z2, Z3 and ZN
symmetries, respectively, where N is the level of the finite modular group [43]. Due to
these residual symmetries, values of the modular forms become hierarchical in the vicinity
of the modular fixed points depending on their residual charges. Thus, deviation of the
modulus τ from the modular fixed points can generate hierarchical structures of fermion
masses. Along in this way, the lepton flavor structure was successfully described without
fine-tuning in modular invariant models refs. [80, 81]. Also in ref. [82], the quark flavor
structure was described by Γ3 ' A4 modular symmetry in the vicinity of τ = ω. They
combined relaxation of quark masses by O(10) coefficient in Yukawa couplings to reproduce
large quark mass hierarchies. Realization of the quark flavor structure which originates
solely from the deviation of the modulus was studied in Γ6 ' A4 × S3 [83] and S′4 × S3 [84].

Higher dimensional theories such as superstring theory can be an origin of the modular
symmetry. For example, the torus compactification T 2

1 × T 2
2 × T 2

3 of extra six-dimensions in
the superstring theory has the modular symmetry as a geometrical symmetry. Actually
some modular forms are derived from the torus compactification of the low-energy effective
theory of the superstring theory with magnetic flux background [7–12, 85]. Therefore it
may be expected that the modular invariant models with ΓN1 × ΓN2 × ΓN3 originate from
T 2

1 × T 2
2 × T 2

3 . Indeed, quark flavors in Γ6 ' A4 × S3 [83] and S′4 × S3 [84] may be derived
from the torus compactification with the moduli stabilization τ1 = τ2 ≡ τ . Also multi
modular symmetries were studied in refs. [86–88]. Inspired by this point, we study the quark
flavor structure in the modular invariant models with the A4 × A4 × A4 symmetry. For
simplicity, we focus on the case that all of the moduli values are same, i.e. τ1 = τ2 = τ3 ≡ τ .
We discuss two modular fixed points τ = ω and i∞ where A4 × A4 × A4 breaks into
Z3 × Z3 × Z3. Hence, Yukawa couplings can possess Z3 × Z3 × Z3 charges 0 to 6 at τ = ω

and i∞. Thus, we can obtain hierarchical values of Yukawa couplings such as 1, ε, ε2, ε3,
ε4, ε5 and ε6 in the vicinity of τ = ω and i∞, where ε denotes the deviation of the modulus
from the modular fixed points.

This paper is organized as follows. In section 2, we study general aspects of A4×A4×A4
modular symmetric quark flavor models leading to the desirable hierarchical structures
without fine-tuning. In section 3, we perform more concrete analysis of A4×A4×A4 quark
flavor models with numerical examples. In section 4, CP violation is discussed. Section 5 is
our conclusion. We give brief reviews of the group theoretical aspects of A4 and modular
forms of A4 in appendix A and B. We classify the phase factors and hierarchical structures of
mass matrices in phenomenologically viable models obtained by our studies in appendix C.
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2 Quark mass hierarchy without fine-tuning

The two generators of the modular group are denoted by S and T , which are represented
by the 2× 2 matrices as,

T =
(

1 1
0 1

)
, S =

(
0 1
−1 0

)
. (2.1)

They act on the modulus τ as

T : τ
T−→ τ + 1, S : τ

S−→ −1/τ. (2.2)

There are three fixed points, τ = i, ω, and i∞. The Z3 symmetry remains at τ = ω and
i∞, while the Z2 symmetry remains at τ = i.

Here, we present general aspects of modular A4 ×A4 ×A4 quark flavor models without
fine-tuning. Firstly, we assign modular weights to supermultiplets. In general, a superfield
may have different modular weights among the first, second, and third A4’s. However, we
consider the simplest case that each superfield has the same weights of three A4’s. Thus,
assignments of weights corresponding to one of the A4 are shown below.

• quark doublets Q = (Q1, Q2, Q3) are three-dimensional representation (reducible or
irreducible) of A4 with modular weight −kQ.

• up sector quark singlets uR = (u1
R, u

2
R, u

3
R) are three-dimensional representation

(reducible or irreducible) of A4 with modular weight −ku.

• down sector quark singlets dR = (d1
R, d

2
R, d

3
R) are three-dimensional representation

(reducible or irreducible) of A4 with weight −kd.

• both up and down sector Higgs fields Hu,d are one-dimensional representations of A4
with modular weight −kHu,d

.
Secondly, we write down the general form of A4 invariant superpotential for the up

sector as

Wu =
∑

r

Y (kYu )
r (Q1 Q2 Q3)

α
11
r α12

r α13
r

α21
r α22

r α23
r

α31
r α32

r α33
r


u

1
R

u2
R

u3
R

Hu


1

, (2.3)

where some of coupling constants αij can be related each other depending on the represen-
tations of Q and uR. In above Y (kYu )

r denote modular forms which transform as irreducible
representations r of A4 with modular weight kYu = kQ+ku+kHu . This ensures the cancella-
tion of modular weights with quark and Higgs fields. Thus, modular invariant superpotential
is obtained once the trivial singlet terms are picked up from above combinations, which is
represented by writing 1.

Extension to A4 × A4 × A4 is straightforward. The superpotential term for the up
sector can be written by

Wu =
∑

r1,r2,r3

Y (kYu )
r1 Y

(kYu )
r2 Y

(kYu )
r3 (Q1 Q2 Q3)

α
11
r1r2r3 α

12
r1r2r3 α

13
r1r2r3

α21
r1r2r3 α

22
r1r2r3 α

23
r1r2r3

α31
r1r2r3 α

32
r1r2r3 α

33
r1r2r3


u

1
R

u2
R

u3
R

Hu


1

,

(2.4)
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where Y k(Yu)
rn , (n = 1, 2, 3) denote the modular forms which transform as irreducible repre-

sentations of rn with respect to n-th A4. By taking products of them as in eq. (2.4) the
modular weights are cancelled for each A4.2

Similarly, superpotential for the down sector is written as

Wd =
∑

r1,r2,r3

Y (kYd
)

r1 Y
(kYd

)
r2 Y

(kYd
)

r3 (Q1 Q2 Q3)

β
11
r1r2r3 β

12
r1r2r3 β

13
r1r2r3

β21
r1r2r3 β

22
r1r2r3 β

23
r1r2r3

β31
r1r2r3 β

32
r1r2r3 β

33
r1r2r3


d

1
R

d2
R

d3
R

Hd


1

,

(2.5)
where kYd

= kQ + kd + kHd
. Mass terms are obtained when the Higgs fields acquire non-zero

vacuum expectation values as

(Q1 Q2 Q3)Mu

u
1
R

u2
R

u3
R



=
∑

r1,r2,r3

 3∏
n=1

Y
(kYu )

rn (Q1 Q2 Q3)

α
11
r1r2r3 α

12
r1r2r3 α

13
r1r2r3

α21
r1r2r3 α

22
r1r2r3 α

23
r1r2r3

α31
r1r2r3 α

32
r1r2r3 α

33
r1r2r3


u

1
R

u2
R

u3
R

 〈Hu〉


1

,

(2.6)

(Q1 Q2 Q3)Md

d
1
R

d2
R

d3
R



=
∑

r1,r2,r3

 3∏
n=1

Y
(kYd

)
rn (Q1 Q2 Q3)

β
11
r1r2r3 β

12
r1r2r3 β

13
r1r2r3

β21
r1r2r3 β

22
r1r2r3 β

23
r1r2r3

β31
r1r2r3 β

32
r1r2r3 β

33
r1r2r3


d

1
R

d2
R

d3
R

 〈Hd〉


1

.

(2.7)

We only use the complex structure modulus τ as a continuous free-parameter. In
order to realize quark masses and mixing angles, we do not consider fine-tuning of coupling
constants αij and βij , but we expect that they are typically O(1). In order to make our
point clear, we restrict them to either +1 or −1, i.e.α

11 α12 α13

α21 α22 α23

α31 α32 α33

 =

+1 +1 +1
+1 ±1 ±1
+1 ±1 ±1

 ,
β

11 β12 β13

β21 β22 β23

β31 β32 β33

 =

+1 +1 +1
±1 ±1 ±1
±1 ±1 ±1

 . (2.8)

By using these values of αij and βij , we try to realize the order of quark mass ratios
and mixing angles. Note that we may fix the signs of (1, 1), (1, 2), (1, 3), (2, 1) and (3, 1)
components of αij to +1 by redefinition of fields Q and uR. Similarly, the signs of (1, 1), (1, 2)
and (1, 3) components of βij are fixed to +1 by the redefinition of field dR.

Thirdly, to reproduce hierarchies in quark mass ratios without fine-tuning, modular
forms must be the source of hierarchical structures. This can be achieved when the complex

2Also in magnetized T 2 × T 2 × T 2 compactification, Yukawa couplings are given by the product of three
modular forms corresponding to the contribution of each torus [85].
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structure modulus τ takes its value in the vicinity of modular fixed points, τ = i, ω and
i∞. At the fixed points, ZN residual symmetries exist. For example, A4 is broken to Z3
when τ = i∞ and ω. In addition, we have Z2 residual symmetry at τ = i. Since Z3 residual
symmetry is more attractive to produce large hierarchies of quarks, we study τ = i∞ and
ω in this paper.

For illustration, we begin with considering a single A4 symmetry. Suppose that quark
doublets Q, up sector quark singlets uR and up-type Higgs field Hu with the following Z3
residual charges,

Q : (1, 1, 0), uR : (0, 1, 0), Hu : 0. (2.9)
Then the modular invariance of the superpotential Wu fixes the Z3 residual charges of up
sector mass matrix Mu as

M ij
u :

2 1 2
2 1 2
0 2 0

 . (2.10)

When τ is in the vicinity of the fixed point, modular form f(τ) with Z3 residual charge r
can be expanded by powers of the deviation from symmetric point as [81],

• τ ∼ i∞ : f(τ) ∼ εr, ε ∝ q = e2πiτ/3,

• τ ∼ ω : f(τ) ∼ εr, ε ∝ u = τ−ω
τ−ω2 .

Thus, the following hierarchical structure is generated in M ij
u ,

M ij
u ∼

ε
2 ε ε2

ε2 ε ε2

1 ε2 1

 . (2.11)

In this way, hierarchies in mass matrices can be generated by the values of modular forms.
However, to realize the quark mass ratios in both up and down sectors, ε up to the power

of 2 seems not enough. Hence, we consider the direct product A4 ×A4 ×A4 which would
yield ε up to the power of 6. This is possible because three modular forms corresponding to
each A4 are multiplied in the superpotential as in eqs. (2.4) and (2.5). Then, we expect to
obtain phenomenologically viable quark flavor models as we study in the next section.

3 The models with A4 ×A4 ×A4

In this section, we study concrete models with A4 ×A4 ×A4 modular symmetry when τ is
in the vicinity of i∞ and ω.

Here, we only use singlet modular forms of A4. There are three singlets, 1,1′ and 1′′

in A4 as reviewed in appendix A. They represent the generators S and T as

S(1′) = 1, S(1′′) = 1, T (1′) = ω, T (1′′) = ω2. (3.1)

We have modular forms corresponding to each singlet at modular weight 8. As shown in
appendix B, when the weight is less than 8, there is a lack of modular forms. Thus, our
assignments of modular weights are

kYu = kYd
= 8, kQ = ku = kd = 4, kHu = kHd

= 0. (3.2)

The Higgs fields are always assigned to the trivial singlet.

– 5 –
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singlet modular form Y
(8)

1 Y
(8)

1′ Y
(8)

1′′

T -charge 0 1 2

order 1 ε ε2

Table 1. T -charges of three A4 singlets and their orders in the vicinity of τ = i∞.

First, we look at the case when τ ∼ i∞. Under the T -transformation, τ = i∞ is
invariant. This means the residual charge is the T -charge. Therefore, three singlet modular
forms of A4 with weight 8 show corresponding dependence on ε as shown in table 1.

Next, consider the case when τ ∼ ω. Under the ST -transformation, τ = ω is invariant.
This means the residual charge is related to the ST -charge taking into account the effect of
automorphy factor. Let us briefly explain it based on the discussion in ref. [82]. Under the
ST -transformation, we have

Y
(8)

r (τ) ST−−→ Y
(8)

r (−1/(τ + 1)) = (−1− τ)8ρr(ST )Y (8)
r (τ), (3.3)

where r ∈ {1,1′,1′′}. From eq. (3.1), we have ρ1(ST ) = 1, ρ1′(ST ) = ω and ρ1′′(ST ) = ω2.
For convenience, let us define ρ̃r ≡ ω−8ρr. Then, we obtain

Y
(8)

r (−1/(τ + 1)) = [−ω(1 + τ)]8ρ̃r(ST )Y (8)
r (τ). (3.4)

A convenient parameter for the deviation of τ from ω is [81]

u ≡ τ − ω
τ − ω2 . (3.5)

By noting u ST−−→ ω2u, we find

Y
(8)

r (ω2u) =
(

1− ω2u

1− u

)8

ρ̃r(ST )Y (8)
r (u), (3.6)

where we regard Y (8)
r as functions of u. If we define Ỹ (8)

r (u) ≡ (1− u)−8Y
(8)

r (u), we get

Ỹ
(8)

r (ω2u) = ρ̃r(ST )Ỹ (8)
r (u). (3.7)

Expansion with respect to u, (|u| � 1) yields

(ω2l − ρ̃r(ST ))d
lỸ

(8)
r (0)
dul

= 0. (3.8)

This relation shows when l(= 0, 1, 2) satisfies ω2l− ρ̃r(ST ) = 0, the modular forms behave as
Ỹ

(8)
r ∼ Y (8)

r ∼ O(|u|l). We call such l as ST -charge, namely (ST -charge) ≡ 2− (T -charge)
(mod 3). Three singlet modular forms show the behaviors as in table 2.

The reference values of up and down quark mass ratios are shown in table 3. Values at
a high scale energy include renormalization group effects, which depend on the scenario. We
use the values of refs. [90, 91] at the GUT scale in the minimal supersymmetric standard

– 6 –
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singlet modular form Y
(8)

1 Y
(8)

1′ Y
(8)

1′′

ST -charge 2 1 0

order ε2 ε 1

Table 2. ST -charges of three A4 singlets and their orders in the vicinity of τ = ω.

mu
mt
× 106 mc

mt
× 103 md

mb
× 104 ms

mb
× 102

GUT scale values 5.39 2.80 9.21 1.82

1σ errors ±1.68 ±0.12 ±1.02 ±0.10

Table 3. Quark mass ratios at GUT scale 2× 1016 GeV with tan β = 5 [90, 91].

model with tan β = 5. To realize these hierarchical structures of quarks, let us consider the
mass matrices of the form,

Mu ∝

O(ε6) ∗ ∗
∗ O(ε3) ∗
∗ ∗ O(1)

 , Md ∝

O(ε4) ∗ ∗
∗ O(ε2) ∗
∗ ∗ O(1)

 , (3.9)

where we assume ε ∼ 0.15 and the order is unfixed for elements with ∗ at this stage.

3.1 Types

We concentrate on A4 ×A4 ×A4 models which lead to mass matrices of the form shown in
eq. (3.9). We find a number of possibilities in generating εn depending on how much each
of the A4 contributes to the power. Thus, let us distinguish contributions from each A4 in
producing εn, n ∈ {1, · · · , 6}. We denote the contribution of i-th A4 by εi where i = 1, 2, 3.

We have 2 possibilities in Mu,

Type 123 : Mu ∝

O(ε1
2ε2

2ε3
2)
O(ε1ε2ε3)

O(1)

 , (3.10)

Type 122 : Mu ∝

O(ε1
2ε2

2ε3
2)
O(ε1

2ε2)
O(1)

 . (3.11)

Type 123 has a symmetry under the permutation of three A4’s. On the other hand, we do
not have such symmetry in type 122. Instead we do not need to consider other types 123,
122, 223, 132 and 232 which are equivalent to eq. (3.11) up to the permutation of three A4’s.
For example, up quark mass matrix Mu of type 123,

Type 123 : Mu ∝

O(ε1
2ε2

2ε3
2)
O(ε1

2ε3)
O(1)

 , (3.12)

is equivalent to one of type 122 up to the permutation of ε2 and ε3, that is, the permutation
of the second and third A4. Similarly, it can be shown that other types are equivalent to
type 122 up to the permutation.

– 7 –
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3.1.1 Type 123

We have 8 patterns of down quark mass matrix Md when Mu is in type 123. The O(ε4)
element has 2 patterns,

1222 : Md ∝

O(ε1
2ε2

2)
O(ε2)

O(1)

 ,

1232 : Md ∝

O(ε1ε2ε3
2)
O(ε2)

O(1)

 .
(3.13)

In both cases, the permutation symmetry is partially broken. We still have a symmetry
under the exchange of first and second A4’s. Thus, we only need to treat 4 patterns of
O(ε2) element given by

12 : O(ε1ε2), 23 : O(ε2ε3), 12 : O(ε1
2), 32 : O(ε3

2). (3.14)

3.1.2 Type 122

We have 36 patterns of down quark mass matrix Md when Mu is in type 122. The O(ε4)
element of Md in eq. (3.9) is given by,

1222 : O(ε1
2ε2

2), 2232 : O(ε2
2ε3

2), 1232 : O(ε1
2ε3

2),
1223 : O(ε1

2ε2ε3), 1223 : O(ε1ε2
2ε3), 1232 : O(ε1ε2ε3

2).
(3.15)

The O(ε2) element of Md in eq. (3.9) is given by,

12 : O(ε1
2), 22 : O(ε2

2), 32 : O(ε3
2),

12 : O(ε1ε2), 23 : O(ε2ε3), 13 : O(ε1ε3).
(3.16)

3.2 Favorable models

Here we investigate phenomenologically viable models in types. In the vicinity of τ = i∞ and
ω, we choose two benchmark points τ = 2.1i and τ = ω+0.051i where Y (8)

1′ /Y
(8)

1′′ ∼ ε ∼ 0.15.
We enumerate the models for each choice of the signs in α and β for each type. Our purpose
is to find models to realize the order of quark mass ratios and mixing angles without
fine-tuning. Thus, we require the following conditions:

1/3 < (mu/mt)model
(mu/mt)GUT

< 3, 1/3 < (mc/mt)model
(mc/mt)GUT

< 3,

1/3 < (md/mb)model
(md/mb)GUT

< 3, 1/3 < (ms/mb)model
(ms/mb)GUT

< 3,

2/3 < |V
x

CKM|model
|V x

CKM|GUT
< 3/2, (x ∈ {us, cb, ub}).

(3.17)

Then, we find 1,584 number of models satisfying these conditions at both benchmark
points τ = 2.1i and τ = ω + 0.051i. Results at τ = 2.1i are shown in table 4 and ones at
τ = ω + 0.051i are in table 5.
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Type Number of models Type Number of models
123-1222-12 64 122-1232-32 64
123-1222-23 64 122-1232-12 32
123-1222-12 96 122-1232-23 32
123-1222-32 96 122-1232-13 64
123-1232-12 32 122-1223-12 16
123-1232-23 16 122-1223-22 48
123-1232-12 32 122-1223-32 48
123-1232-32 32 122-1223-12 32
122-1222-12 32 122-1223-23 16
122-1222-22 64 122-1223-13 48
122-1222-32 64 122-1223-12 16
122-1222-12 32 122-1223-22 32
122-1222-23 32 122-1223-32 32
122-1222-13 64 122-1223-12 16
122-2232-12 32 122-1223-23 16
122-2232-22 32 122-1223-13 32
122-2232-32 32 122-1232-12 0
122-2232-12 0 122-1232-22 16
122-2232-23 32 122-1232-32 16
122-2232-13 32 122-1232-12 16
122-1232-12 32 122-1232-23 0
122-1232-22 64 122-1232-13 16

Table 4. Number of models satisfying hierarchy conditions in eq. (3.17) at the benchmark point τ =
2.1i.

We comment on why the number of models is zero for certain types. As shown in
tables 4 and 5, we cannot find the models satisfying hierarchy conditions in eq. (3.17) for
types 122-2232-12, 122-1232-12 and 122-1232-23. We find that all models in these types
lead to not favorable structures of the CKM matrix or O(0.1) size of strange quark mass
compared to the GUT scale value. For later cases, it may be possible to obtain realistic
values when we vary the coefficients αij , βij = O(10).

3.3 Numerical examples

Here we show some numerical examples of the models satisfying hierarchy conditions
in eq. (3.17).

3.3.1 τ ∼ i∞

We choose τ = 2.1i as a benchmark point of the modulus. Then, modular forms become
hierarchical

Y
(8)

1 /Y
(8)

1 = 1→ 1, Y
(8)

1′ /Y
(8)

1 = −0.148→ ε, Y
(8)

1′′ /Y
(8)

1 = 0.0218→ ε2. (3.18)
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Type Number of models Type Number of models
123-1222-12 64 122-1232-32 64
123-1222-23 64 122-1232-12 32
123-1222-12 96 122-1232-23 32
123-1222-32 96 122-1232-13 64
123-1232-12 32 122-1223-12 16
123-1232-23 16 122-1223-22 48
123-1232-12 32 122-1223-32 48
123-1232-32 32 122-1223-12 32
122-1222-12 32 122-1223-23 16
122-1222-22 64 122-1223-13 48
122-1222-32 64 122-1223-12 16
122-1222-12 32 122-1223-22 32
122-1222-23 32 122-1223-32 32
122-1222-13 64 122-1223-12 16
122-2232-12 32 122-1223-23 16
122-2232-22 32 122-1223-13 32
122-2232-32 32 122-1232-12 0
122-2232-12 0 122-1232-22 16
122-2232-23 32 122-1232-32 16
122-2232-13 32 122-1232-12 16
122-1232-12 32 122-1232-23 0
122-1232-22 64 122-1232-13 16

Table 5. Number of models satisfying hierarchy conditions in eq. (3.17) at the benchmark point
τ = ω + 0.051i.

Example 1. Type 122-1222-12. In type 122-1222-12, possible assignments of the T -
charges to quark fields are

{Q1, Q2, Q3} : {(a1, a2, a3), (b1, b2, b3), (0, 0, 0)}, (3.19)
{u1

R, u
2
R, u

3
R} : {(1− a1, 1− a2, 1− a3)mod 3, (1− b1, 2− b2,−b3)mod 3, (0, 0, 0)}, (3.20)

{d1
R, d

2
R, d

3
R} : {(1− a1, 1− a2,−a3)mod 3, (1− b1,−b2,−b3)mod 3, (0, 0, 0)}, (3.21)

where ai ∈ {0, 1, 2} and bi ∈ {0, 1, 2} are T -charges of the i-th A4 for Q1 and Q2 respectively.
The mass matrices of the best-fit model are given by

Mu =


Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1 Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′

Y
(8)

1′ Y
(8)

1′ Y
(8)

1 Y
(8)

1′′ Y
(8)

1′ Y
(8)

1 −Y (8)
1′ Y

(8)
1′ Y

(8)
1

Y
(8)

1 Y
(8)

1 Y
(8)

1 −Y (8)
1′ Y

(8)
1 Y

(8)
1 −Y (8)

1 Y
(8)

1 Y
(8)

1

 , (3.22)

Md =


Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1 Y

(8)
1 Y

(8)
1′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′

Y
(8)

1′ Y
(8)

1′ Y
(8)

1′ −Y (8)
1′′ Y

(8)
1 Y

(8)
1 −Y (8)

1′ Y
(8)

1′ Y
(8)

1
Y

(8)
1 Y

(8)
1 Y

(8)
1′ Y

(8)
1′ Y

(8)
1′′ Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1

 . (3.23)
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They correspond to the following assignments of representations of A4 × A4 × A4 to
quark fields,

(Q1, Q2, Q3) = (1′1 ⊗ 1′2 ⊗ 1′3,1′′1 ⊗ 1′′2 ⊗ 13,11 ⊗ 12 ⊗ 13), (3.24)
(u1
R, u

2
R, u

3
R) = (11 ⊗ 12 ⊗ 13,1′′1 ⊗ 12 ⊗ 13,11 ⊗ 12 ⊗ 13), (3.25)

(d1
R, d

2
R, d

3
R) = (11 ⊗ 12 ⊗ 1′′3 ,1′′1 ⊗ 1′2 ⊗ 13,11 ⊗ 12 ⊗ 13), (3.26)

where a1 = 1, a2 = 1, a3 = 1, b1 = 2, b2 = 2, and b3 = 0. The coupling coefficients αij and
βij are chosen asα

11 α12 α13

α21 α22 α23

α31 α32 α33

 =

1 1 1
1 1 −1
1 −1 −1

 ,
β

11 β12 β13

β21 β22 β23

β31 β32 β33

 =

1 1 1
1 −1 −1
1 1 1

 . (3.27)

The hierarchical structures of the mass matrices are numerically obtained as

|Mu/M
33
u | =

1.03× 10−5 4.74× 10−4 1.03× 10−5

2.18× 10−2 3.21× 10−3 2.18× 10−2

1.00 1.48× 10−1 1.00

 (3.28)

∼

O(ε6) O(ε4) O(ε6)
O(ε2) O(ε3) O(ε2)
O(1) O(ε) O(1)

 , (3.29)

|Md/M
33
d | =

4.74× 10−4 3.21× 10−3 1.03× 10−5

3.21× 10−3 2.18× 10−2 2.18× 10−2

1.48× 10−1 3.21× 10−3 1.00

 (3.30)

∼

O(ε4) O(ε3) O(ε6)
O(ε3) O(ε2) O(ε2)
O(ε) O(ε3) O(1)

 . (3.31)

Here, we show the orders in ε where ε = εi, (i = 1, 2, 3).
Results are summarized in table 6. Recall that our purpose is to realize the order

of quark mass rations and mixing angles without fine-tuning. For this purpose, we have
fixed the coefficients, αij , βij = ±1 to make our point clear. We could obtain more realistic
values when we vary αij , βij = O(1). Also other models in this type could be realistic
when we vary αij , βij = O(1). In addition, we have a remark on normalization of modular
forms. The normalization of modular forms has ambiguity, but we expect naturally that
such normalization would not lead to a large hierarchy. Our models may originate from
compactification of higher dimensional field theory or superstring theory. In that case,
values in our models appear in high energy scale such as the GUT scale. Renormalization
group effects change values by some factors, although those effects depend on the scenario.
For example, renormalization group effects in the minimal supersymmetric scenario were
studied in refs. [90, 91]. Table 3 shows those values at the GUT scale for tan β = 5 as
reference values.
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mu
mt
× 106 mc

mt
× 103 md

mb
× 104 ms

mb
× 102 |V us

CKM| |V cb
CKM| |V ub

CKM|

obtained values 10.22 4.50 13.22 2.27 0.202 0.0419 0.00318

GUT scale values 5.39 2.80 9.21 1.82 0.225 0.0400 0.00353

1σ errors ±1.68 ±0.12 ±1.02 ±0.10 ±0.0007 ±0.0008 ±0.00013

Table 6. The mass ratios of the quarks and the absolute values of the CKM matrix elements at the
benchmark point τ = 2.1i. GUT scale values at 2× 1016 GeV with tan β = 5 [90, 91] and 1σ errors
are shown.

mu
mt
× 106 mc

mt
× 103 md

mb
× 104 ms

mb
× 102 |V us

CKM| |V cb
CKM| |V ub

CKM|

obtained values 5.39 2.80 9.21 1.82 0.225 0.0400 0.00353

GUT scale values 5.39 2.80 9.21 1.82 0.225 0.0400 0.00353

1σ errors ±1.68 ±0.12 ±1.02 ±0.10 ±0.0007 ±0.0008 ±0.00013

Table 7. The mass ratios of the quarks and the absolute values of the CKM matrix elements at the
benchmark point τ = 2.1i. GUT scale values at 2× 1016 GeV with tan β = 5 [90, 91] and 1σ errors
are shown.

As mentioned above, when we vary αij , βij = O(1), we can obtain more realistic values.
For example, we setα

11 α12 α13

α21 α22 α23

α31 α32 α33

 =

2.71 1.94 2.67
2.53 1.99 −2.23
2.82 −1.39 −2.44

 ,
β

11 β12 β13

β21 β22 β23

β31 β32 β33

 =

1.24 1.96 3.00
2.45 −1.88 −2.26
1.00 1.20 2.35

 .
(3.32)

Then, we obtain the following quark mass ratios,

(mu,mc,mt)/mt = (5.39× 10−6, 2.80× 10−3, 1), (3.33)
(md,ms,mb)/mb = (9.21× 10−4, 1.82× 10−2, 1), (3.34)

and the absolute values of the CKM matrix elements,

|VCKM| =

 0.974 0.225 0.00353
0.225 0.974 0.0400

0.00556 0.0397 0.999

 . (3.35)

Results are shown in table 7.

Example 2. Type 123-1222-12. In type 123-1222-12, possible assignments of the
T -charges to quark fields are

{Q1,Q2,Q3} : {(a1,a2,a3),(b1, b2, b3),(0,0,0)}, (3.36)
{u1

R,u
2
R,u

3
R} : {(1−a1,1−a2,1−a3)mod 3,(2−b1,2−b2,2−b3)mod 3,(0,0,0)}, (3.37)

{d1
R,d

2
R,d

3
R} : {(1−a1,1−a2,−a3)mod 3,(2−b1,2−b2,−b3)mod 3,(0,0,0)}, (3.38)
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where ai ∈ {0, 1, 2} and bi ∈ {0, 1, 2} are T -charges of the i-th A4 for Q1 and Q2 respectively.
The mass matrices of the best-fit model are given by

Mu =


Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1 Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′

Y
(8)

1′ Y
(8)

1 Y
(8)

1′ Y
(8)

1′ Y
(8)

1′ Y
(8)

1′ −Y (8)
1′ Y

(8)
1 Y

(8)
1′

Y
(8)

1 Y
(8)

1 Y
(8)

1 −Y (8)
1 Y

(8)
1′ Y

(8)
1 −Y (8)

1 Y
(8)

1 Y
(8)

1

 , (3.39)

Md =


Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1 Y

(8)
1′′ Y

(8)
1 Y

(8)
1′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′

−Y (8)
1′ Y

(8)
1 Y

(8)
1′′ −Y (8)

1′ Y
(8)

1′ Y
(8)

1 Y
(8)

1′ Y
(8)

1 Y
(8)

1′

Y
(8)

1 Y
(8)

1 Y
(8)

1′ −Y (8)
1 Y

(8)
1′ Y

(8)
1′′ −Y (8)

1 Y
(8)

1 Y
(8)

1

 . (3.40)

They correspond to the following assignments of representations of A4 × A4 × A4 to
quark fields,

(Q1, Q2, Q3) = (1′1 ⊗ 1′2 ⊗ 1′3,1′′1 ⊗ 12 ⊗ 1′′3 ,11 ⊗ 12 ⊗ 13), (3.41)
(u1
R, u

2
R, u

3
R) = (11 ⊗ 12 ⊗ 13,11 ⊗ 1′′2 ⊗ 13,11 ⊗ 12 ⊗ 13), (3.42)

(d1
R, d

2
R, d

3
R) = (11 ⊗ 12 ⊗ 1′′3 ,11 ⊗ 1′′2 ⊗ 1′3,11 ⊗ 12 ⊗ 13), (3.43)

where a1 = 1, a2 = 1, a3 = 1, b1 = 2, b2 = 0, and b3 = 2. The coupling coefficients αij and
βij are chosen asα

11 α12 α13

α21 α22 α23

α31 α32 α33

 =

1 1 1
1 1 −1
1 −1 −1

 ,
β

11 β12 β13

β21 β22 β23

β31 β32 β33

 =

 1 1 1
−1 −1 1
1 −1 −1

 . (3.44)

The hierarchical structures of the mass matrices are numerically obtained as

|Mu/M
33
u | =

1.03× 10−5 4.74× 10−4 1.03× 10−5

2.18× 10−2 3.21× 10−3 2.18× 10−2

1.00 1.48× 10−1 1.00

 (3.45)

∼

O(ε6) O(ε4) O(ε6)
O(ε2) O(ε3) O(ε2)
O(1) O(ε) O(1)

 , (3.46)

|Md/M
33
d | =

4.74× 10−4 3.21× 10−3 1.03× 10−5

3.21× 10−3 2.18× 10−2 2.18× 10−2

1.48× 10−1 3.21× 10−3 1.00

 (3.47)

∼

O(ε4) O(ε3) O(ε6)
O(ε3) O(ε2) O(ε2)
O(ε) O(ε3) O(1)

 . (3.48)

Here, we show the orders in ε where ε = εi, (i = 1, 2, 3).
Results are summarized in table 8.

3.3.2 τ ∼ ω

We choose τ = ω + 0.051i as a benchmark point of the modulus. Then, modular forms
become hierarchical

|Y (8)
1′′ /Y

(8)
1′′ |= 1→ 1, |Y (8)

1′ /Y
(8)

1′′ |= 0.148→ ε, |Y (8)
1 /Y

(8)
1′′ |= 0.0218→ ε2. (3.49)
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mu
mt
× 106 mc

mt
× 103 md

mb
× 104 ms

mb
× 102 |V us

CKM| |V cb
CKM| |V ub

CKM|

obtained values 10.22 4.50 4.57 2.17 0.219 0.0430 0.00330

GUT scale values 5.39 2.80 9.21 1.82 0.225 0.0400 0.00353

1σ errors ±1.68 ±0.12 ±1.02 ±0.10 ±0.0007 ±0.0008 ±0.00013

Table 8. The mass ratios of the quarks and the absolute values of the CKM matrix elements at the
benchmark point τ = 2.1i. GUT scale values at 2× 1016 GeV with tan β = 5 [90, 91] and 1σ errors
are shown.

Example 1. 123-1222-12. In type 123-1222-12, possible assignments of the ST -charges
to quark fields are

{Q1,Q2,Q3} : {(a1,a2,a3),(b1, b2, b3),(0,0,0)}, (3.50)
{u1

R,u
2
R,u

3
R} : {(1−a1,1−a2,1−a3)mod 3,(2−b1,2−b2,2−b3)mod 3,(0,0,0)}, (3.51)

{d1
R,d

2
R,d

3
R} : {(1−a1,1−a2,−a3)mod 3,(2−b1,2−b2,−b3)mod 3,(0,0,0)}, (3.52)

where ai ∈ {0, 1, 2} and bi ∈ {0, 1, 2} are ST -charges of the i-th A4 forQ1 andQ2 respectively.
The mass matrices of the best-fit model are given by

Mu =


Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1′′ Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1

Y
(8)

1′ Y
(8)

1′′ Y
(8)

1′ Y
(8)

1′ Y
(8)

1′ Y
(8)

1′ −Y (8)
1′ Y

(8)
1′′ Y

(8)
1′

Y
(8)

1′′ Y
(8)

1′′ Y
(8)

1′′ −Y (8)
1′′ Y

(8)
1′ Y

(8)
1′′ −Y (8)

1′′ Y
(8)

1′′ Y
(8)

1′′

 , (3.53)

Md =


Y

(8)
1 Y

(8)
1 Y

(8)
1′′ Y

(8)
1 Y

(8)
1′′ Y

(8)
1′ Y

(8)
1 Y

(8)
1 Y

(8)
1

Y
(8)

1′ Y
(8)

1′′ Y
(8)

1 −Y (8)
1′ Y

(8)
1′ Y

(8)
1′′ Y

(8)
1′ Y

(8)
1′′ Y

(8)
1′

Y
(8)

1′′ Y
(8)

1′′ Y
(8)

1′ −Y (8)
1′′ Y

(8)
1′ Y

(8)
1 −Y (8)

1′′ Y
(8)

1′′ Y
(8)

1′′

 . (3.54)

They correspond to the following assignments of representations of A4 × A4 × A4 to
quark fields,

(Q1, Q2, Q3) = (1′1 ⊗ 1′2 ⊗ 1′3,11 ⊗ 1′′2 ⊗ 13,1′′1 ⊗ 1′′2 ⊗ 1′′3 ), (3.55)
(u1
R, u

2
R, u

3
R) = (1′′1 ⊗ 1′′2 ⊗ 1′′3 ,1′′1 ⊗ 12 ⊗ 1′′3 ,1′′1 ⊗ 1′′2 ⊗ 1′′3 ), (3.56)

(d1
R, d

2
R, d

3
R) = (1′′1 ⊗ 1′′2 ⊗ 13,1′′1 ⊗ 12 ⊗ 1′3,1′′1 ⊗ 1′′2 ⊗ 1′′3 ), (3.57)

where a1 = 1, a2 = 1, a3 = 1, b1 = 2, b2 = 0, and b3 = 2. The coupling coefficients αij and
βij are chosen as

α
11 α12 α13

α21 α22 α23

α31 α32 α33

 =

1 1 1
1 1 −1
1 −1 −1

 ,
β

11 β12 β13

β21 β22 β23

β31 β32 β33

 =

1 1 1
1 −1 1
1 −1 −1

 . (3.58)
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mt
× 103 md

mb
× 104 ms
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× 102 |V us

CKM| |V cb
CKM| |V ub

CKM|

obtained values 10.3 4.52 13.29 2.27 0.202 0.0420 0.00319

GUT scale values 5.39 2.80 9.21 1.82 0.225 0.0400 0.00353

1σ errors ±1.68 ±0.12 ±1.02 ±0.10 ±0.0007 ±0.0008 ±0.00013

Table 9. The mass ratios of the quarks and the absolute values of the CKM matrix elements at the
benchmark point τ = ω + 0.051i. GUT scale values at 2× 1016 GeV with tan β = 5 [90, 91] and 1σ
errors are shown.

The hierarchical structures of the mass matrices are numerically obtained as

|Mu/M
33
u | =

1.04× 10−5 4.76× 10−4 1.04× 10−5

2.18× 10−2 3.22× 10−3 2.18× 10−2

1.00 1.48× 10−1 1.00

 (3.59)

∼

O(ε6) O(ε4) O(ε6)
O(ε2) O(ε3) O(ε2)
O(1) O(ε) O(1)

 , (3.60)

|Md/M
33
d | =

4.76× 10−4 3.22× 10−3 1.04× 10−5

3.22× 10−3 2.18× 10−2 2.18× 10−2

1.48× 10−1 3.22× 10−3 1.00

 (3.61)

∼

O(ε4) O(ε3) O(ε6)
O(ε3) O(ε2) O(ε2)
O(ε) O(ε3) O(1)

 . (3.62)

Here, we show the orders in ε where ε = εi, (i = 1, 2, 3).
Results are summarized in table 9.

Example 2. Type 122-1222-12. In type 122-1222-12, possible assignments of the ST -
charges to quark fields are

{Q1,Q2,Q3} : {(a1,a2,a3),(b1, b2, b3),(0,0,0)}, (3.63)
{u1

R,u
2
R,u

3
R} : {(1−a1,1−a2,1−a3)mod 3,(1−b1,2−b2,−b3)mod 3,(0,0,0)}, (3.64)

{d1
R,d

2
R,d

3
R} : {(1−a1,1−a2,−a3)mod 3,(1−b1,−b2,−b3)mod 3,(0,0,0)}, (3.65)

where ai ∈ {0, 1, 2} and bi ∈ {0, 1, 2} are ST -charges of the i-th A4 forQ1 andQ2 respectively.
The mass matrices of the best-fit model are given by

Mu =


Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1′′ Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1

Y
(8)

1′ Y
(8)

1′ Y
(8)

1′′ Y
(8)

1 Y
(8)

1′ Y
(8)

1′′ −Y (8)
1′ Y

(8)
1′ Y

(8)
1′′

Y
(8)

1′′ Y
(8)

1′′ Y
(8)

1′′ −Y (8)
1′ Y

(8)
1′′ Y

(8)
1′′ −Y (8)

1′′ Y
(8)

1′′ Y
(8)

1′′

 , (3.66)

Md =


Y

(8)
1 Y

(8)
1 Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′ Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1

−Y (8)
1′ Y

(8)
1′ Y

(8)
1′ −Y (8)

1 Y
(8)

1′′ Y
(8)

1′′ Y
(8)

1′ Y
(8)

1′ Y
(8)

1′′

Y
(8)

1′′ Y
(8)

1′′ Y
(8)

1′ Y
(8)

1′ Y
(8)

1 Y
(8)

1′′ −Y (8)
1′′ Y

(8)
1′′ Y

(8)
1′′

 . (3.67)
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mu
mt
× 106 mc

mt
× 103 md

mb
× 104 ms

mb
× 102 |V us

CKM| |V cb
CKM| |V ub

CKM|

obtained values 10.3 4.52 4.62 2.17 0.219 0.0431 0.00329

GUT scale values 5.39 2.80 9.21 1.82 0.225 0.0400 0.00353

1σ errors ±1.68 ±0.12 ±1.02 ±0.10 ±0.0007 ±0.0008 ±0.00013

Table 10. The mass ratios of the quarks and the absolute values of the CKM matrix elements at
the benchmark point τ = ω + 0.051i. GUT scale values at 2× 1016 GeV with tan β = 5 [90, 91] and
1σ errors are shown.

They correspond to the following assignments of representations of A4 × A4 × A4 to
quark fields,

(Q1,Q2,Q3) = (1′1⊗1′2⊗1′3,11⊗12⊗1′′3 ,1′′1⊗1′′2⊗1′′3 ), (3.68)
(u1
R,u

2
R,u

3
R) = (1′′1⊗1′′2⊗1′′3 ,11⊗1′′2⊗1′′3 ,1′′1⊗1′′2⊗1′′3 ), (3.69)

(d1
R,d

2
R,d

3
R) = (1′′1⊗1′′2⊗13,11⊗1′2⊗1′′3 ,1′′1⊗1′′2⊗1′′3 ), (3.70)

where a1 = 1, a2 = 1, a3 = 1, b1 = 2, b2 = 2, and b3 = 0. The coupling coefficients αij and
βij are chosen asα

11 α12 α13

α21 α22 α23

α31 α32 α33

 =

1 1 1
1 1 −1
1 −1 −1

 ,
β

11 β12 β13

β21 β22 β23

β31 β32 β33

 =

 1 1 1
−1 −1 1
1 1 −1

 . (3.71)

The hierarchical structures of the mass matrices are numerically obtained as

|Mu/M
33
u | =

1.04× 10−5 4.76× 10−4 1.04× 10−5

2.18× 10−2 3.22× 10−3 2.18× 10−2

1.00 1.48× 10−1 1.00

 (3.72)

∼

O(ε6) O(ε4) O(ε6)
O(ε2) O(ε3) O(ε2)
O(1) O(ε) O(1)

 , (3.73)

|Md/M
33
d | =

4.76× 10−4 3.22× 10−3 1.04× 10−5

3.22× 10−3 2.18× 10−2 2.18× 10−2

1.48× 10−1 3.22× 10−3 1.00

 (3.74)

∼

O(ε4) O(ε3) O(ε6)
O(ε3) O(ε2) O(ε2)
O(ε) O(ε3) O(1)

 . (3.75)

Here, we show the orders in ε where ε = εi, (i = 1, 2, 3).
Results are summarized in table 10.

3.4 Comment on the models using A4 triplet

We comment on the models using A4 triplet. When we assign A4 triplet to either up or
down quarks, some of coefficients α (β) are related each other. Under such a restriction, we
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Figure 1. Fundamental region D of the modulus τ . White corresponds to fundamental region and
gray is out of the region. The region squared by red shows the region focused in figure 2. One
squared by blue shows the region focused in figure 3.

can find some models leading to realistic quark mass hierarchies, but they cannot realize
mixing angles, which are small compared with experimental values. It is challenging to
derive both quark mass hierarchies and mixing angles in models with A4 triplet. We would
study it elsewhere.

4 CP violation

Here we study CP violation on quark flavor models in A4 × A4 × A4 modular symmetry.
We consider CP violation induced by the vacuum expectation value (VEV) of the modulus
τ . Figure 1 shows the fundamental region D of the modulus τ . The modulus τ transforms

τ → −τ∗, (4.1)

under the CP transformation [14, 92, 93]. Obviously, the CP symmetry is not violated at
Reτ = 0. On the other hand, the line Reτ = −1/2 transforms as

τ = −1
2 + iImτ → −τ∗ = 1

2 + iImτ, (4.2)

under the above CP transformation. However, these transform each other by the T -
transformation. Thus, the CP symmetry is not violated along Reτ = ±1/2 because of the
modular symmetry. Similarly, CP violation does not occur at the arc of the fundamental
region. Actually, our numerical examples in section 3.3 are results at such modulus and
therefore CP phase of those vanishes. In this section, we find necessary conditions for CP
violation and give numerical studies in A4 ×A4 ×A4 modular symmetry.
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4.1 Necessary conditions for CP violation

As we will see soon, there are two types of mass matrices; CP violation does not occur in
one type while it occurs in another type. First of all, let us consider the vicinity of the
cusp, τ = i∞ and A4 modular symmetry instead of A4 ×A4 ×A4. As we have mentioned
in section 2, the mass matrix elements in the vicinity of τ = i∞ can be written in terms of
ε ∝ q1/3 = e2πiτ/3 (q-expansion). Then powers of ε in mass matrix elements are determined
by its T -charge.3 For example, suppose that the up quark mass matrix elements have the
following T -charges under A4 modular symmetry:

Mu :

2 2 1
1 1 0
1 1 0

 . (4.3)

Then, the mass matrix can be estimated as

Mu ∼

q
2/3 q2/3 q1/3

q1/3 q1/3 1
q1/3 q1/3 1

 , (4.4)

by the first order approximation in q-expansion. Since we focus on the region ε ∼ 0.15 to
generate large quark mass hierarchies, we can ignore the second order of O(10−3) compared
with the first order. We note that this charge pattern can be obtained by charge assignments
of fields,

Q : (2, 0, 0), uR : (2, 2, 0), Hu : 0. (4.5)

To understand the origin of CP violation, let us see phase factors in this mass matrix,

Mu ∼

|q|
2/3e4πiReτ/3 |q|2/3e4πiReτ/3 |q|1/3e2πiReτ/3

|q|1/3e2πiReτ/3 |q|1/3e2πiReτ/3 1
|q|1/3e2πiReτ/3 |q|1/3e2πiReτ/3 1

 (4.6)

=

|q|
2/3e2iα |q|2/3e2iα |q|1/3eiα

|q|1/3eiα |q|1/3eiα 1
|q|1/3eiα |q|1/3eiα 1

 , (4.7)

where α = 2πReτ/3. All of these phase factors can be canceled by the following basis
transformations for fields,

Mu → u†LMuuR

∼ u†L

|q|
2/3e2iα |q|2/3e2iα |q|1/3eiα

|q|1/3eiα |q|1/3eiα 1
|q|1/3eiα |q|1/3eiα 1

uR (4.8)

3ε = q1/3 has T -charge 1; therefore mass matrix elements with T -charge 0, 1 and 2 can be expanded by
qn, q1/3+n and q2/3+n for n ∈ {0, 1, 2, . . .}, respectively.
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=

e
−iα

1
1


|q|

2/3e2iα |q|2/3e2iα |q|1/3eiα

|q|1/3eiα |q|1/3eiα 1
|q|1/3eiα |q|1/3eiα 1


e
−iα

e−iα

1

 (4.9)

=

|q|
2/3 |q|2/3 |q|1/3

|q|1/3 |q|1/3 1
|q|1/3 |q|1/3 1

 . (4.10)

Here basis transformations u†L and uR are given by

u†L =

e
−iφ1α

e−iφ
2α

e−iφ
3α

 , φi = [−(T -charge of Qi)]mod 3, (4.11)

uR =

e
−iψ1α

e−iψ
2α

e−iψ
3α

 , ψi = [−(T -charge of uiR)]mod 3. (4.12)

Here we use the notation [q]mod 3 = r when q = 3n+ r with the maximum integer n such
that r = 0, 1, 2. Consequently, all phase factors in the first order approximation of the mass
matrix with T -charge eq. (4.3) vanish.4

On the other hand, there are charge patterns whose phase factors in mass matrices
survive after the basis transformations u†L and uR in eqs. (4.11) and (4.12). Let us consider
the case that the up quark mass matrix elements have the following T -charges under A4
modular symmetry,

Mu :

0 2 1
2 1 0
2 1 0

 , (4.13)

which is obtained by charge assignments of fields,

Q : (2, 0, 0), uR : (1, 2, 0), Hu : 0. (4.14)

Then, the mass matrix is estimated as

Mu ∼

 1 q2/3 q1/3

q2/3 q1/3 1
q2/3 q1/3 1

 (4.15)

=

 1 |q|2/3e4πiReτ/3 |q|1/3e2πiReτ/3

|q|2/3e4πiReτ/3 |q|1/3e2πiReτ/3 1
|q|2/3e4πiReτ/3 |q|1/3e2πiReτ/3 1

 (4.16)

=

 1 |q|2/3e2iα |q|1/3eiα

|q|2/3e2iα |q|1/3eiα 1
|q|2/3e2iα |q|1/3eiα 1

 , (4.17)

4Similar behaviors at fixed points were studied in refs. [94, 95].
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by the first order approximation in q-expansion, where α = 2πReτ/3. Using the basis
transformations in eqs. (4.11) and (4.12), the phase factors in this matrix are partially
canceled as follows,

Mu → u†LMuuR

∼ u†L

 1 |q|2/3e2iα |q|1/3eiα

|q|2/3e2iα |q|1/3eiα 1
|q|2/3e2iα |q|1/3eiα 1

uR (4.18)

=

e
−iα

1
1


 1 |q|2/3e2iα |q|1/3eiα

|q|2/3e2iα |q|1/3eiα 1
|q|2/3e2iα |q|1/3eiα 1


e
−2iα

e−iα

1

 (4.19)

=

e
−3iα |q|2/3 |q|1/3

|q|2/3 |q|1/3 1
|q|2/3 |q|1/3 1

 . (4.20)

Why does the phase factor of (1,1) matrix element remain after the basis transformations?
Its reason is as follows. The T -charge of the M ij

u element is given by

T -charge of M ij
u = [−(T -charge of Qi)− (T -charge of ujR)]mod 3. (4.21)

Then, the M ij
u element has the phase factor,

exp
[
iα(T -charge of M ij

u )
]

= exp
[
iα[−(T -charge of Qi)− (T -charge of ujR)]mod 3

]
,

(4.22)

while the phase cancellation by the basis transformations is given by

exp
[
−iα([−(T -charge of Qi)]mod 3 + [−(T -charge of ujR)]mod 3)

]
. (4.23)

Thus when

[−(T -charge of Qi)]mod 3 + [−(T -charge of ujR)]mod 3 ≥ 3, (4.24)

M ij
u gets the phase factor e−3iα after the basis transformations in eqs. (4.11) and (4.12).

The same condition for down quark mass matrix is given by

[−(T -charge of Qi)]mod 3 + [−(T -charge of djR)]mod 3 ≥ 3. (4.25)

These conditions suggest that residual charge assignments into fields decide phase factors
in mass matrices as well as hierarchical structures. In other words, CP violation is strongly
related to hierarchical quark masses through the residual charges. This is also true in other
models since above analysis only depends on the residual charges.

Now we are ready to discuss CP violation induced by the VEV of the modulus τ .
When either the up sector or the down sector does not satisfy the conditions in eqs. (4.24)
and (4.25), mass matrices become completely real. Hence CP violation obviously does not
occur in this type of mass matrices even if we freely choose the value of the modulus τ .
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In contrast, if at least one element of either up or down quark mass matrices satisfies the
conditions in eqs. (4.24) or (4.25), mass matrices become complex and CP violation can
occur depending on the value of the modulus τ . As a result, eqs. (4.24) and (4.25) are
regarded as necessary conditions for CP violation. We again note that this is the results of
the first order approximation in q-expansion but the second order is estimated as O(10−3)
compared with the first order and sufficiently negligible.

Next let us consider the vicinity of τ = ω. At τ = ω, the mass matrix elements
can be written in terms of ε ∝ u ≡ τ−ω

τ−ω2 (u-expansion). At τ ∼ ω (|u| � 1), it is still
good approximation. In this way, powers of ε = u in mass matrix elements at τ ∼ ω are
determined by its ST -charge at τ = ω since u has ST -charge 1. Thus, the same results
for CP violation at τ ∼ i∞ can be obtained at τ ∼ ω by reading q as u and T -charge as
ST -charge. That is, when at least one element of either up or down quark mass matrices
satisfies the following conditions,

[−(ST -charge of Qi)]mod 3 + [−(ST -charge of ujR)]mod 3 ≥ 3, (4.26)
[−(ST -charge of Qi)]mod 3 + [−(ST -charge of djR)]mod 3 ≥ 3, (4.27)

CP violation can occur depending on the value of the modulus τ .
We can extend these results to the models in A4 ×A4 ×A4 modular symmetry. Then

we need the conditions eqs. (4.24) and (4.25) or eqs. (4.26) and (4.27) for each A4 modular
symmetry. In appendix C, we classify the phase factors after the basis transformations in
eqs. (4.11) and (4.12), and hierarchical structures of the mass matrices of favorable models
summarized in tables 4 and 5. As a result, we find that all favorable models satisfy these
necessary conditions. Nevertheless from the numerical analysis it is also found that all of
those models cannot induce sufficiently large CP violation when the modulus τ lies on the
region satisfying hierarchy conditions in eq. (3.17). This can be checked by the argument at
the first order approximation in ε expansion. From the mass matrix structures summarized
in table 15, we find that all favorable models have the following structures of the CKM
matrix at the first order approximation.

VCKM =

 1 1.5|ε|p∗ −|ε|3p∗
−1.5|ε|p 1 −2|ε|2
−2|ε|3p 2|ε|2 1

 ,
 1 −1.5|ε|p∗ |ε|3p∗

1.5|ε|p 1 −2|ε|2
2|ε|3p 2|ε|2 1

 , (4.28)

where p is given by u/|u| for τ ∼ ω and (q/|q|)1/3 for τ ∼ i∞. This directly leads to that
Jarlskog invariant JCP vanishes at the first order approximation as

JCP = |Im(V us
CKMV

cb
CKM(V ub

CKMV
cs

CKM)∗)| = Im(3p∗p|ε|6) = 0. (4.29)

We have checked that the second order contribution to VCKM is O(ε2) compared to the first
order. Therefore we can expect

JCP . 3× |ε|8, (4.30)

at the second order approximation. On the other hand, we need ε ∼ 0.15 to realize large
quark mass hierarchies and Jarlskog invariant is given by JCP . 7.7 × 10−7 which are
extremely small compared with the observed value JCP = 2.8 × 10−5. In the following
subsection, we will confirm this point by a concrete model.
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4.2 Numerical example of CP violation

To illustrate CP violation in A4 ×A4 ×A4 modular symmetric models, let us consider the
model in type 122-1232-32. In type 122-1232-32, quarks have the following Z3 × Z3 × Z3
charges:

{Q1,Q2,Q3} : {(a1,a2,a3),(b1, b2, b3),(0,0,0)}, (4.31)
{u1

R,u
2
R,u

3
R} : {(2−a1,2−a2,2−a3)mod 3,(2−b1,1−b2,−b3)mod 3,(0,0,0)}, (4.32)

{d1
R,d

2
R,d

3
R} : {(2−a1,−a2,2−a3)mod 3,(−b1,−b2,2−b3)mod 3,(0,0,0)}, (4.33)

where ai ∈ {0, 1, 2} and bi ∈ {0, 1, 2} are Z3-charges of the i-th A4 for Q1 and Q2 respectively.
First we focus on the vicinity of τ = ω and study the following model,

a1 = 1, a2 = 1, a3 = 1, b1 = 1, b2 = 0, b3 = 0, (4.34)α
11 α12 α13

α21 α22 α23

α31 α32 α33

 =

1 1 1
1 −1 −1
1 1 −1

 ,
β

11 β12 β13

β21 β22 β23

β31 β32 β33

 =

 1 1 1
−1 1 −1
−1 −1 1

 . (4.35)

The mass matrices are given by

Mu = 〈Hu〉


Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1′′ Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1

Y
(8)

1 Y
(8)

1′′ Y
(8)

1′′ −Y (8)
1 Y

(8)
1′ Y

(8)
1′′ −Y (8)

1 Y
(8)

1′′ Y
(8)

1′′

Y
(8)

1′′ Y
(8)

1′′ Y
(8)

1′′ Y
(8)

1′′ Y
(8)

1′ Y
(8)

1′′ −Y (8)
1′′ Y

(8)
1′′ Y

(8)
1′′

 , (4.36)

Md = 〈Hd〉


Y

(8)
1 Y

(8)
1′′ Y

(8)
1 Y

(8)
1′′ Y

(8)
1 Y

(8)
1′ Y

(8)
1 Y

(8)
1 Y

(8)
1

−Y (8)
1 Y

(8)
1′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1 −Y (8)

1 Y
(8)

1′′ Y
(8)

1′′

−Y (8)
1′′ Y

(8)
1′ Y

(8)
1′′ −Y (8)

1′ Y
(8)

1′′ Y
(8)

1 Y
(8)

1′′ Y
(8)

1′′ Y
(8)

1′′

 . (4.37)

This is a model counted in table 5 and can satisfy hierarchy conditions in eq. (3.17)
at the benchmark point τ = ω + 0.051i although CP violation does not occur at this
value of τ . To obtain non-vanishing CP phase, we calculate Jarlskog invariant JCP =
Im(V us

CKMV
cb

CKM(V ub
CKMV

cs
CKM)∗) in the τ plane around τ = ω. The results are shown in

figure 2. Clearly, there are no regions satisfying eq. (3.17) and JCP > 10−5. Eq. (3.17) can
be satisfied at |τ −ω| ∼ 0.05 (ε ∼ 0.15) while JCP > 10−5 can be realized at |τ −ω| > 0.080
(ε > 0.23).5 Since ε ∼ 0.15 is required to generate large quark mass hierarchies, particularly
the up quark mass ratio, it is difficult to obtain both realistic quark mass ratios and Jarlskog
invariant simultaneously. As a numerical example realizing JCP > 10−5, we show the results
at τ = ω + (0.0326 + 0.0753i) in table 11. In this example, the CKM matrix elements are
roughly realized but especially the up quark mass ratio is deviated by O(10) compared to
observed value. In other words, it may be possible to describe realistic quark mass ratios as
well as the Jarlskog invariant by use of O(10) coefficients in Yukawa couplings.

5This result is consistent with the estimation in eq. (4.30). At ε ∼ 0.23, it gives JCP . 2.3×10−5 ∼ 10−5.
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Figure 2. Allowed regions and Jarlskog invariant in the τ plane around τ = ω for the model
in type 122-1232-32. Green is the region satisfying hierarchy conditions in eq. (3.17), and black,
red and yellow colors correspond to log10JCP. White is the region with log10JCP < −5. Note
that Jarlskog invariant JCP has been observed as 2.80 × 10−5. Blue square denotes the point
τ = ω + (0.0326 + 0.0753i) on numerical example in table 11. Gray is out of fundamental region.

mu

mt
×106 mc

mt
×103 md

mb
×104 ms

mb
×102 |V usCKM| |V cbCKM| |V ubCKM| JCP×105

obtained values 162 17.8 76.9 5.93 0.287 0.100 0.0128 1.01
GUT scale values 5.39 2.80 9.21 1.82 0.225 0.0400 0.00353 2.80

1σ errors ±1.68 ±0.12 ±1.02 ±0.10 ±0.0007 ±0.0008 ±0.00013 +0.14
−0.12

Table 11. The mass ratios of the quarks and the absolute values of the CKM matrix elements at the
benchmark point τ = ω+(0.0326+0.0753i). GUT scale values at 2×1016 GeV with tan β = 5 [90, 91]
and 1σ errors are shown.

Second, let us consider the vicinity of τ = i∞. We use the model given by eqs. (4.34)
and (4.35) as same as the analysis of τ ∼ ω. The mass matrices are given by

Mu = 〈Hu〉


Y

(8)
1 Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1 Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′

Y
(8)

1′′ Y
(8)

1 Y
(8)

1 −Y (8)
1′′ Y

(8)
1′ Y

(8)
1 −Y (8)

1′′ Y
(8)

1 Y
(8)

1
Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1′ Y

(8)
1 −Y (8)

1 Y
(8)

1 Y
(8)

1

 , (4.38)

Md = 〈Hd〉


Y

(8)
1′′ Y

(8)
1 Y

(8)
1′′ Y

(8)
1 Y

(8)
1′′ Y

(8)
1′ Y

(8)
1′′ Y

(8)
1′′ Y

(8)
1′′

−Y (8)
1′′ Y

(8)
1′ Y

(8)
1 Y

(8)
1 Y

(8)
1 Y

(8)
1′′ −Y (8)

1′′ Y
(8)

1 Y
(8)

1
−Y (8)

1 Y
(8)

1′ Y
(8)

1 −Y (8)
1′ Y

(8)
1 Y

(8)
1′′ Y

(8)
1 Y

(8)
1 Y

(8)
1

 . (4.39)

This is also a model counted in table 4 and can satisfy hierarchy conditions in eq. (3.17)
at the benchmark point τ = 2.1i although CP violation does not occur at this value of
τ . To obtain non-vanishing CP phase, we calculate the Jarlskog invariant JCP in the τ
plane around τ = 2.1i (∼ i∞). The results are shown in figure 3. Clearly, there are no
regions satisfying eq. (3.17) and JCP > 10−5. Eq. (3.17) can be satisfied at Imτ ∼ 2.1
(ε ∼ 0.15) while JCP > 10−5 can be realized at Imτ < 1.88 (ε > 0.23). Hence it is difficult
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Figure 3. Allowed regions and Jarlskog invariant in the τ plane around τ = i∞ for the model in
type 122-1232-32. Green is the region satisfying hierarchy conditions in eq. (3.17), and black, red and
yellow colors correspond to log10JCP. White is the region with log10JCP < −5. Note that Jarlskog
invariant JCP has been observed as 2.80× 10−5. Blue square denotes the point τ = −0.198 + 1.88i
on numerical example in table 12.

mu

mt
×106 mc

mt
×103 md

mb
×104 ms

mb
×102 |V usCKM| |V cbCKM| |V ubCKM| JCP×105

obtained values 160 17.7 75.9 5.94 0.287 0.0997 0.0127 1.00
GUT scale values 5.39 2.80 9.21 1.82 0.225 0.0400 0.00353 2.80

1σ errors ±1.68 ±0.12 ±1.02 ±0.10 ±0.0007 ±0.0008 ±0.00013 +0.14
−0.12

Table 12. The mass ratios of the quarks and the absolute values of the CKM matrix elements at
the benchmark point τ = −0.198 + 1.88i. GUT scale values at 2× 1016 GeV with tan β = 5 [90, 91]
and 1σ errors are shown.

to obtain both realistic quark mass ratios and the Jarlskog invariant simultaneously. As
a numerical example realizing JCP > 10−5, we show the results at τ = −0.198 + 1.88i
in table 12. Consequently Imτ ∼ i∞ leads almost same results as τ ∼ ω. We note that
these results are given in the model of eqs. (4.34) and (4.35) but similar results can be
obtained in all other models shown in tables 4 and 5. No models can satisfy eq. (3.17) and
JCP > 10−5 simultaneously although it may be possible when we use O(10) coefficients in
Yukawa couplings.

Before ending this subsection, we also comment on further possibilities realizing quark
mass hierarchies, CKM matrix elements and the Jarlskog invariant simultaneously. As
mentioned above, the Jarlskog invariant JCP ∼ 10−5 is obtained at ε ∼ 0.23 in our models.
This fact may be available for other modular flavor symmetry. In A4 ×A4 ×A4 modular
symmetry, we need ε ∼ 0.15 to produce ε6 = (0.15)6 = 1.14 × 10−5 ∼ mu/mt. On the
other hand, in Zl × Zm × Zn symmetry for (l − 1) + (m− 1) + (n− 1) ≥ 8, the modular
forms of ε8 exist and at ε = 0.23 we can produce ε8 = (0.23)8 = 7.83 × 10−6 ∼ mu/mt.
In addition, ε = 0.23 is nearly equal to the Cabibbo angle. It is easy to check that the
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following mass matrix,

Mu =

O(ε8) O(ε5) O(ε3)
O(ε7) O(ε4) O(ε2)
O(ε5) O(ε2) O(1)

 , (4.40)

is approximately triangularizable as

U †LMu ∼

O(ε8) 0 0
O(ε7) O(ε4) 0
O(ε5) O(ε2) O(1)

 , (4.41)

where

U †L =

 1 O(ε) 0
O(ε) 1 0

0 0 1


 1 0 O(ε3)

0 1 0
O(ε3) 0 1


1 0 0

0 1 O(ε2)
0 O(ε2) 1

 (4.42)

∼

 1 O(ε) O(ε3)
O(ε) 1 O(ε2)
O(ε3) O(ε2) 1

 . (4.43)

Since eigenvalues of a matrix are equal to diagonal elements of its triangular matrix, mass
ratios of above mass matrix are given by (ε8, ε4, 1). Then, choosing |ε| = 0.230 (∼Cabibbo
angle), we can obtain

(mu,mc,mt)/mt ∼ (|ε|8, |ε|4, 1) = (7.83× 10−6, 2.80× 10−3, 1), (4.44)

|U †L| ∼

 1 |ε| |ε|3

|ε| 1 |ε|2

|ε|3 |ε|2 1

 ∼
 1 0.230 0.0122

0.230 1 0.0529
0.0122 0.0529 1

 . (4.45)

When down quark mass matrix is in diagonalized base as

|(M11
d ,M

22
d ,M

33
d )/M33

d | = (md,ms,mb)/mb = (|ε|5, |ε|3, 1) = (6.44× 10−4, 1.22× 10−2, 1).
(4.46)

The CKM matrix is given by VCKM = U †L and these results are good realization of quark
flavors. Thus the modular symmetry which breaks into Zl × Zm × Zn symmetry with
(l − 1) + (m− 1) + (n− 1) ≥ 8 at the modular fixed point has the possibility realizing the
quark flavor structure including the Jarlskog invariant.

4.3 Non-universal moduli

So far, we have studied the moduli values satisfying τ1 = τ2 = τ3 = τ . Here we study
the models with non-universal moduli as a possibility realizing quark flavors including CP
violation. As we have mentioned in section 4.1, the first order approximation in ε expansion
suggests that sufficient CP violation does not occur in our favorable models when ε ∼ 0.15.
This is because the phase factor p in mass matrices cannot contribute to Jarlskog invariant
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JCP at the first order approximation as shown in eq. (4.29). That is, JCP becomes extremely
small when mass matrices possess only one kind of phase factor since it is canceled at the
first order approximation. In other words, when several kind of phase factors appear in
mass matrices, they may not be canceled and JCP would have non-vanishing contribution
at the first order approximation. Such phase factors can be obtained when three moduli τ1,
τ2 and τ3 take different VEVs. In this subsection, we consider non-universal moduli and
study CP violation by a concrete model.

For simplicity, let us consider following moduli:

τ1 = τ2 ≡ τ 6= τ3, |τ1 − ω| = |τ2 − ω| = |τ3 − ω|. (4.47)

Then we consider the model in type 123-1222-12. In type 123-1222-12, quarks have the
following Z3 × Z3 × Z3 charges:

{Q1, Q2, Q3} : {(a1, a2, a3), (b1, b2, b3), (0, 0, 0)}, (4.48)
{u1

R, u
2
R, u

3
R} : {(1− a1, 1− a2, 1− a3)mod 3, (2− b1, 2− b2, 2− b3)mod 3, (0, 0, 0)}, (4.49)

{d1
R, d

2
R, d

3
R} : {(1− a1, 1− a2,−a3)mod 3, (1− b1,−b2,−b3)mod 3, (0, 0, 0)}, (4.50)

where ai ∈ {0, 1, 2} and bi ∈ {0, 1, 2} are Z3-charges of the i-th A4 for Q1 and Q2 respectively.
We focus on the vicinity of τ = ω and study the following model,

a1 = 1, a2 = 1, a3 = 1, b1 = 2, b2 = 2, b3 = 0, (4.51)α
11 α12 α13

α21 α22 α23

α31 α32 α33

 =

1 1 1
1 1 −1
1 −1 −1

 ,
β

11 β12 β13

β21 β22 β23

β31 β32 β33

 =

 1 1 1
−1 −1 1
1 1 −1

 . (4.52)

The mass matrices are given by

Mu

〈Hu〉
=


Y

(8)
1′′ (τ)Y (8)

1′′ (τ)Y (8)
1′′ (τ3) Y

(8)
1′′ (τ)Y (8)

1′′ (τ)Y (8)
1 (τ3) Y

(8)
1′′ (τ)Y (8)

1′′ (τ)Y (8)
1′′ (τ3)

Y
(8)

1′ (τ)Y (8)
1′ (τ)Y (8)

1 (τ3) Y
(8)

1′ (τ)Y (8)
1′ (τ)Y (8)

1′ (τ3) −Y (8)
1′ (τ)Y (8)

1′ (τ)Y (8)
1 (τ3)

Y
(8)

1 (τ)Y (8)
1 (τ)Y (8)

1 (τ3) −Y (8)
1 (τ)Y (8)

1 (τ)Y (8)
1′ (τ3) −Y (8)

1 (τ)Y (8)
1 (τ)Y (8)

1 (τ3)

 ,
(4.53)

Md

〈Hd〉
=


Y

(8)
1′′ (τ)Y (8)

1′′ (τ)Y (8)
1 (τ3) Y

(8)
1 (τ)Y (8)

1′ (τ)Y (8)
1′′ (τ3) Y

(8)
1′′ (τ)Y (8)

1′′ (τ)Y (8)
1′′ (τ3)

−Y (8)
1′ (τ)Y (8)

1′ (τ)Y (8)
1′ (τ3) −Y (8)

1′′ (τ)Y (8)
1 (τ)Y (8)

1 (τ3) Y
(8)

1′ (τ)Y (8)
1′ (τ)Y (8)

1 (τ3)
Y

(8)
1 (τ)Y (8)

1 (τ)Y (8)
1′ (τ3) Y

(8)
1′ (τ)Y (8)

1′′ (τ)Y (8)
1 (τ3) −Y (8)

1 (τ)Y (8)
1 (τ)Y (8)

1 (τ3)

 .
(4.54)

This is a model counted in table 5 and can satisfy hierarchy conditions in eq. (3.17) at
the benchmark point τ = τ3 = ω + 0.051i although CP violation does not occur at this
value of τ . After the basis transformation in eqs. (4.11) and (4.12), these mass matrices are
estimated as

Mu ∼

|ε|
6 |ε|4p−1

3 |ε|6

|ε|2 |ε|3 −|ε|2

1 −|ε| −1

 , Md ∼

|ε|
4p−1

3 |ε|3p−2 |ε|6

−|ε|3 −|ε|2p−1 |ε|2

|ε| |ε|3 −1

 , (4.55)
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mu

mt
×106 mc

mt
×103 md

mb
×104 ms

mb
×102 |V usCKM| |V cbCKM| |V ubCKM| JCP×105

obtained values 16.0 5.63 6.16 2.52 0.214 0.0498 0.00411 2.53
GUT scale values 5.39 2.80 9.21 1.82 0.225 0.0400 0.00353 2.80

1σ errors ±1.68 ±0.12 ±1.02 ±0.10 ±0.0007 ±0.0008 ±0.00013 +0.14
−0.12

Table 13. The mass ratios of the quarks and the absolute values of the CKM matrix elements at
τ = ω + 0.055i and τ3 = ω + 0.055e2πi/5. GUT scale values at 2× 1016 GeV with tan β = 5 [90, 91]
and 1σ errors are shown.

at the first order approximation. In above, p is given by u/|u| for u = (τ − ω)/(τ − ω2) and
p3 is given by u3/|u3| for u3 = (τ3 − ω)/(τ3 − ω2). From these mass matrices, we can find
the following structures of the CKM matrix,

VCKM =

 1 −|ε| (p∗ + 0.5p∗3) |ε|3p∗3
|ε| (p+ 0.5p3) 1 −2|ε|2

2|ε|3p 2|ε|2 1

 , (4.56)

at the first order approximation. This directly leads to Jarlskog invariant,

JCP = |Im(−2|ε|6 (−p∗ − 0.5p∗3) p3)| = 2|ε|6 · |Im(p∗p3)|. (4.57)

Thus, when p 6= p3, hence τ 6= τ3, we can obtain non-vanishing Jarlskog invariant at the
first order approximation. As a numerical example realizing realistic Jarlskog invariant,
we choose

τ = ω + 0.055i, τ3 = ω + 0.055e2πi/5, (4.58)

and show the results in table 13. This result satisfies hierarchy conditions in eq. (3.17).
Consequently, we can simultaneously obtain realistic quark mass ratios, absolute values of
CKM matrix elements and Jarlskog invariant through non-universal moduli.

5 Conclusion

We have discussed the possibilities of explaining quark flavor structures, in particular large
quark mass hierarchies, without fine-tuning. In modular symmetric flavor models, mass
matrices are written in terms of the modular forms. The values of the modular forms
become hierarchical as close to the modular fixed points depending on the residual Zn
charges. In more detail, the modular forms with Zn residual charge r can be estimated
as εr where ε is the deviation of the modulus τ from the modular fixed points. Along
in this way we study large quark mass hierarchies as well as CKM matrix elements in
A4 ×A4 ×A4 modular symmetry. We have focused two fixed points, τ = i∞ and ω where
A4×A4×A4 breaks into Z3×Z3×Z3. Then we can obtain the modular forms whose orders
are 1, ε, . . . , ε6.

The modular forms of level 3 and weight 8 contain three singlets denoted by Y (8)
1 (τ),

Y
(8)

1′ (τ) and Y (8)
1′′ (τ). At τ ∼ i∞, they are estimated as 1, ε and ε2 since their T -charges are

0, 1 and 2. Similarly τ ∼ ω, they are estimated as ε2, ε and 1 since their ST -charges are 2,
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1 and 0. Using these modular forms, we have classified charge assignments (types) leading
to the up quark mass matrix with diag(Mu) = (O(ε6),O(ε3),O(1)) and down quark mass
matrix with diag(Md) = (O(ε4),O(ε2),O(1)) which are plausible to realize quark masses.
In addition, we have fixed coupling constants α and β in Yukawa couplings to ±1 to avoid
fine-tuning of them. We have enumerated the models for each choice of the signs in α and
β for each types, and investigated the models satisfying hierarchy conditions in eq. (3.17).
Consequently, we have obtained 1,584 number of passed models for both two benchmark
points τ = 2.1i (∼ i∞) and ω + 0.051i (∼ ω) as shown in tables 4 and 5. Actually our
numerical examples by the models satisfying eq. (3.17) present realistic quark mass ratios
and absolute values of CKM matrix elements as shown in section 3.3.

We also study CP violation induced by the VEV of the modulus τ . To understand the
origin of CP violation, we have studied the necessary conditions for CP violation. They
suggest that phase factors and hierarchical structures of mass matrices in the vicinity of
the modular fixed points are determined by the residual charge assignments into fields. In
other words, hierarchical quark masses and CP violation are related each other through the
residual charges.

It was found that favorable models in tables 4 and 5 satisfy the necessary conditions
for CP violation. However it was also found from the numerical analysis that they cannot
induce sufficient CP violation in the regions satisfying hierarchy conditions in eq. (3.17).
This weak CP violation may be caused by the size of the deviation of τ , ε. In the region
satisfying eq. (3.17), we find ε ∼ 0.15 while JCP > 10−5 is realized in ε > 0.23. Although we
give numerical examples in ε ∼ 0.23, JCP ∼ 10−5 and mu/mt ∼ 10−4 have been obtained.
To obtain realistic values of quark flavors including the Jarlskog invariant in our models,
we would need tuning by O(10) constants in Yukawa couplings.

We have commented on the further possibilities describing quark flavors. To realize the
up quark mass ratio by the modular forms of ε6 in A4 ×A4 ×A4 modular symmetry, we
need ε ∼ 0.15. When we introduce the residual Zn symmetry with n ≥ 9, we can obtain the
modular forms of ε8 and can relax the size of ε to 0.23. Moreover, this value is nearly equal
to Cabibbo angle and therefore there are the possibilities explaining quark mass hierarchies,
mixing angles and CP violation simultaneously in the Zl × Zm × Zn residual symmetry
with (l − 1) + (m− 1) + (n− 1) ≥ 8. We will study this in near future.

We have focus the case that the moduli values satisfy τ1 = τ2 = τ3 = τ for simplicity.
In general, these moduli values τi can be different from each other. We may have more rich
structure in variation of types and numerical results. Actually, in the end of section 4 we
have studied the model at τi ∼ ω with non-universal moduli τ1 = τ2 = τ 6= τ3, |τ1 − ω| =
|τ2 − ω| = |τ3 − ω|, and obtained realistic quark flavor observations including Jarlskog
invariant. Then Jarlskog invariant originates from the difference between (τ − ω)/|(τ − ω)|
and (τ3−ω)/|(τ3−ω)|. Note that quark mass hierarchies originate from the deviation from
the modular fixed point |τ − ω| = |τ3 − ω| as same as the results in τ1 = τ2 = τ3 = τ . In
this way, the modulus value is important in our models. Thus, the moduli stabilization is
the key issue.6 We leave it for future study.

6See for moduli stabilization in moduli flavor models refs. [96–100].
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Tensor product T -diagonal basis
1′′ ⊗ 1′′ = 1′

a1b11′ ⊗ 1′ = 1′′ (a1b1)
1′′ ⊗ 1′ = 1

1′′ ⊗ 3 = 3 (a1bi)
(
a1b3

a1b1

a1b2

)
1′ ⊗ 3 = 3 (a1bi)

(
a1b2

a1b3

a1b1

)

3⊗ 3 = 1⊕ 1′′ ⊕ 1′ ⊕ 3⊕ 3

(a1b1+a2b3+a3b2)

⊕ (a1b2+a2b1+a3b3)

⊕ (a1b3+a2b2+a3b1)

(aibj) ⊕1
3

( 2a1b1−a2b3−a3b2

−a1b2−a2b1+2a3b3

−a1b3+2a2b2−a3b1

)
⊕1

2

(
a2b3−a3b2

a1b2−a2b1

−a1b3+a3b1

)
Table 14. Multiplication rule in irreducible representations of A4.
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A Group theoretical aspects of A4

Here, we give a review on group theoretical aspects of A4. The generators of A4 are denoted
by S and T , and they satisfy the following algebraic relations:

S2 = (ST )3 = T 3 = 1. (A.1)

In A4 group, there are four irreducible representations, three singlets 1, 1′ and 1′′ and one
triplet 3. Each irreducible representation is given by

1 ρ(S) = 1, ρ(T ) = 1, (A.2)
1′ ρ(S) = 1, ρ(T ) = ω, (A.3)
1′′ ρ(S) = 1, ρ(T ) = ω2, (A.4)

3 ρ(S) = 1
3

−1 2 2
2 −1 2
2 2 −1

 , ρ(T ) =

1 0 0
0 ω 0
0 0 ω2

 , (A.5)

in the T -diagonal basis. Their multiplication rules are shown in table 14.
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B Modular forms of A4

Here we give a review on the modular forms of Γ3 ' A4. The modular forms of even weights
can be constructed from the Dedekind eta function η(τ) and its derivative,

η(τ) = q1/24
∞∏
n=1

(1− qn), q = e2πiτ , (B.1)

η′(τ) ≡ d

dτ
η(τ). (B.2)

Using η and η′, the modular forms of weight 2 belonging to A4 triplet 3 can be written
down as [1]

Y
(2)

3 (τ) =

Y1
Y2
Y3

 , (B.3)

where

Y1(τ) = i

2π

(
η′(τ/3)
η(τ/3) + η′((τ + 1)/3)

η((τ + 1)/3) + η′((τ + 2)/3)
η((τ + 2)/3) −

27η′(3τ)
η(3τ)

)
, (B.4)

Y2(τ) = −i
π

(
η′(τ/3)
η(τ/3) + ω2 η

′((τ + 1)/3)
η((τ + 1)/3) + ω

η′((τ + 2)/3)
η((τ + 2)/3)

)
, (B.5)

Y3(τ) = −i
π

(
η′(τ/3)
η(τ/3) + ω

η′((τ + 1)/3)
η((τ + 1)/3) + ω2 η

′((τ + 2)/3)
η((τ + 2)/3)

)
. (B.6)

They have the following q-expansions:

Y
(2)

3 (τ) =

Y1
Y2
Y3

 =

1 + 12q + 36q2 + 12q3 + · · ·
−6q1/3(1 + 7q + 8q2 + · · · )
−18q2/3(1 + 2q + 5q2 + · · · )

 . (B.7)

Higher modular forms can be obtained by tensor products of Y (2)
3 (τ). Here we show the

modular forms up to weight 8. The linearly independent three modular forms of weight 4
are given by

Y
(4)

1 (τ) = Y 2
1 + 2Y2Y3, Y

(4)
1′ (τ) = Y 2

3 + 2Y1Y2,

Y
(4)

3 (τ) =

Y
2

1 − Y2Y3
Y 2

3 − Y1Y2
Y 2

2 − Y1Y3

 . (B.8)

The linearly independent three modular forms of weight 6 are given by

Y
(6)

1 (τ) = Y 3
1 + Y 3

2 + Y 3
3 − 3Y1Y2Y3,

Y
(6)

3 (τ) = (Y 2
1 + 2Y2Y3)

Y1
Y2
Y3

 , Y
(6)

3′ (τ) = (Y 2
3 + 2Y1Y2)

Y3
Y1
Y2

 . (B.9)
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The linearly independent five modular forms of weight 8 are given by

Y
(8)

1 (τ) = (Y 2
1 +2Y2Y3)2, Y

(8)
1′ (τ) = (Y 2

1 +2Y2Y3)(Y 2
3 +2Y1Y2), Y

(8)
1′′ (τ) = (Y 2

3 +2Y1Y2)2,

Y
(8)

3 (τ) = (Y 2
1 +2Y2Y3)

Y
2

1 −Y2Y3
Y 2

3 −Y1Y2
Y 2

2 −Y1Y3

 , Y
(8)

3′ (τ) = (Y 2
3 +2Y1Y2)

Y
2

2 −Y1Y3
Y 2

1 −Y2Y3
Y 2

3 −Y1Y2

 . (B.10)

C Mass matrix structures in favorable models

Here we show the mass matrix structures in favorable models summarized in tables 4
and 5. We express the structures of up and down quark mass matrices by phase factors
after the basis transformations eqs. (4.11) and (4.12) and powers of ε ∼ 0.15. Then mass
matrix structures satisfying hierarchy conditions in eq. (3.17) at τ = 2.1i and ω + 0.051i
are shown in table 15. Note that we show different structures which are not related by
unitary transformations for fields. In total we find 128 number of different structures. As
we mentioned in section 4.2, we would realize realistic quark flavor observations including
the Jarlskog invariant in these mass matrix structures by using O(10) constants.

– 31 –



J
H
E
P
0
7
(
2
0
2
3
)
1
3
4

Mu =
(
|ε|6 |ε|4p−1 |ε|6
|ε|2 −|ε|3 −|ε|2
1 |ε| −1

)
(
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 |ε|2p−1 |ε|2
|ε| −|ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 |ε|2p−1 |ε|2
|ε| −|ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 |ε|2p−1 |ε|2
−|ε| −|ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 |ε|2p−1 |ε|2
−|ε| −|ε|3 −1

)
(
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 |ε|2p−1 |ε|2
|ε| |ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 |ε|2p−1 |ε|2
|ε| |ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 |ε|2p−1 |ε|2
−|ε| |ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 |ε|2p−1 |ε|2
−|ε| |ε|3 −1

)
(
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 |ε|2p−1 −|ε|2
|ε| −|ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 |ε|2p−1 −|ε|2
|ε| −|ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 |ε|2p−1 −|ε|2
−|ε| −|ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 |ε|2p−1 −|ε|2
−|ε| −|ε|3 1

)
(
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 |ε|2p−1 −|ε|2
|ε| |ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 |ε|2p−1 −|ε|2
|ε| |ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 |ε|2p−1 −|ε|2
−|ε| |ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 |ε|2p−1 −|ε|2
−|ε| |ε|3 1

)
(
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 |ε|2p−2 |ε|2
|ε| |ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 |ε|2p−2 |ε|2
|ε| |ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 |ε|2p−2 |ε|2
−|ε| |ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 |ε|2p−2 |ε|2
−|ε| |ε|6 −1

)
(
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 |ε|2p−2 |ε|2
|ε| −|ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 |ε|2p−2 |ε|2
|ε| −|ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 |ε|2p−2 |ε|2
−|ε| −|ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 |ε|2p−2 |ε|2
−|ε| −|ε|6 −1

)
(
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 |ε|2p−2 −|ε|2
|ε| |ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 |ε|2p−2 −|ε|2
|ε| |ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 |ε|2p−2 −|ε|2
−|ε| |ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 |ε|2p−2 −|ε|2
−|ε| |ε|6 1

)
(
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 |ε|2p−2 −|ε|2
|ε| −|ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 |ε|2p−2 −|ε|2
|ε| −|ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 |ε|2p−2 −|ε|2
−|ε| −|ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 |ε|2p−2 −|ε|2
−|ε| −|ε|6 1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|3p−1 |ε|2p−1 |ε|2
−|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|3p−1 |ε|2p−1 |ε|2
|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|3p−1 |ε|2p−1 |ε|2
−|ε|4 |ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|3p−1 |ε|2p−1 |ε|2
|ε|4 |ε|3 −1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|3p−1 |ε|2p−1 −|ε|2
−|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|3p−1 |ε|2p−1 −|ε|2
|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|3p−1 |ε|2p−1 −|ε|2
−|ε|4 |ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|3p−1 |ε|2p−1 −|ε|2
|ε|4 |ε|3 1

)
(
|ε|4p−2 |ε|3p−3 |ε|6
−|ε|3p−1 |ε|2p−2 |ε|2
−|ε|4 |ε|6 −1

) (
|ε|4p−2 |ε|3p−3 |ε|6
−|ε|3p−1 |ε|2p−2 |ε|2
|ε|4 |ε|6 −1

) (
|ε|4p−2 |ε|3p−3 |ε|6
−|ε|3p−1 |ε|2p−2 |ε|2
−|ε|4 −|ε|6 −1

) (
|ε|4p−2 |ε|3p−3 |ε|6
−|ε|3p−1 |ε|2p−2 |ε|2
|ε|4 −|ε|6 −1

)
(
|ε|4p−2 |ε|3p−3 |ε|6
−|ε|3p−1 |ε|2p−2 −|ε|2
−|ε|4 |ε|6 1

) (
|ε|4p−2 |ε|3p−3 |ε|6
−|ε|3p−1 |ε|2p−2 −|ε|2
|ε|4 |ε|6 1

) (
|ε|4p−2 |ε|3p−3 |ε|6
−|ε|3p−1 |ε|2p−2 −|ε|2
−|ε|4 −|ε|6 1

) (
|ε|4p−2 |ε|3p−3 |ε|6
−|ε|3p−1 |ε|2p−2 −|ε|2
|ε|4 −|ε|6 1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 |ε|2p−1 |ε|2
−|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 |ε|2p−1 |ε|2
−|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 |ε|2p−1 |ε|2
|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 |ε|2p−1 |ε|2
|ε|4 −|ε|3 −1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 |ε|2p−1 |ε|2
−|ε|4 |ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 |ε|2p−1 |ε|2
−|ε|4 |ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 |ε|2p−1 |ε|2
|ε|4 |ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 |ε|2p−1 |ε|2
|ε|4 |ε|3 −1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 |ε|2p−1 −|ε|2
−|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 |ε|2p−1 −|ε|2
−|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 |ε|2p−1 −|ε|2
|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 |ε|2p−1 −|ε|2
|ε|4 −|ε|3 1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 |ε|2p−1 −|ε|2
−|ε|4 |ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 |ε|2p−1 −|ε|2
−|ε|4 |ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 |ε|2p−1 −|ε|2
|ε|4 |ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 |ε|2p−1 −|ε|2
|ε|4 |ε|3 1

)

Table 15. Phase factors and hierarchical structures of up and down quark mass matrices after
the basis transformations eqs. (4.11) and (4.12) in favorable models in tables 4 and 5. First row
denotes the structure of up quark mass matrix and other rows denote ones of down quark, up
to 〈Hu〉 and 〈Hd〉. p is given by u/|u| for τ ∼ ω and (q/|q|)1/3 for τ ∼ i∞. We show different
structures which are not related by unitary transformations for fields. In total we find 128 number
of different structures (continues. . . ).
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Mu =
(
|ε|6 |ε|4p−1 |ε|6
|ε|2 |ε|3 −|ε|2
1 −|ε| −1

)
(
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 −|ε|2p−1 |ε|2
|ε| −|ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 −|ε|2p−1 |ε|2
|ε| −|ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 −|ε|2p−1 |ε|2
−|ε| −|ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 −|ε|2p−1 |ε|2
−|ε| −|ε|3 −1

)
(
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 −|ε|2p−1 |ε|2
|ε| |ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 −|ε|2p−1 |ε|2
|ε| |ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 −|ε|2p−1 |ε|2
−|ε| |ε|3 −1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 −|ε|2p−1 |ε|2
−|ε| |ε|3 −1

)
(
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 −|ε|2p−1 −|ε|2
|ε| −|ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 −|ε|2p−1 −|ε|2
|ε| −|ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 −|ε|2p−1 −|ε|2
−|ε| −|ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 −|ε|2p−1 −|ε|2
−|ε| −|ε|3 1

)
(
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 −|ε|2p−1 −|ε|2
|ε| |ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 −|ε|2p−1 −|ε|2
|ε| |ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
|ε|3 −|ε|2p−1 −|ε|2
−|ε| |ε|3 1

) (
|ε|4p−1 |ε|3p−2 |ε|6
−|ε|3 −|ε|2p−1 −|ε|2
−|ε| |ε|3 1

)
(
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 −|ε|2p−2 |ε|2
|ε| |ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 −|ε|2p−2 |ε|2
|ε| |ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 −|ε|2p−2 |ε|2
−|ε| |ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 −|ε|2p−2 |ε|2
−|ε| |ε|6 −1

)
(
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 −|ε|2p−2 |ε|2
|ε| −|ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 −|ε|2p−2 |ε|2
|ε| −|ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 −|ε|2p−2 |ε|2
−|ε| −|ε|6 −1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 −|ε|2p−2 |ε|2
−|ε| −|ε|6 −1

)
(
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 −|ε|2p−2 −|ε|2
|ε| |ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 −|ε|2p−2 −|ε|2
|ε| |ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 −|ε|2p−2 −|ε|2
−|ε| |ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 −|ε|2p−2 −|ε|2
−|ε| |ε|6 1

)
(
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 −|ε|2p−2 −|ε|2
|ε| −|ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 −|ε|2p−2 −|ε|2
|ε| −|ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
|ε|3 −|ε|2p−2 −|ε|2
−|ε| −|ε|6 1

) (
|ε|4p−1 |ε|3p−3 |ε|6
−|ε|3 −|ε|2p−2 −|ε|2
−|ε| −|ε|6 1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
|ε|3p−1 −|ε|2p−1 |ε|2
−|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|3p−1 −|ε|2p−1 |ε|2
|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|3p−1 −|ε|2p−1 |ε|2
−|ε|4 |ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|3p−1 −|ε|2p−1 |ε|2
|ε|4 |ε|3 −1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
|ε|3p−1 −|ε|2p−1 −|ε|2
−|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|3p−1 −|ε|2p−1 −|ε|2
|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|3p−1 −|ε|2p−1 −|ε|2
−|ε|4 |ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|3p−1 −|ε|2p−1 −|ε|2
|ε|4 |ε|3 1

)
(
|ε|4p−2 |ε|3p−3 |ε|6
|ε|3p−1 −|ε|2p−2 |ε|2
−|ε|4 |ε|6 −1

) (
|ε|4p−2 |ε|3p−3 |ε|6
|ε|3p−1 −|ε|2p−2 |ε|2
|ε|4 |ε|6 −1

) (
|ε|4p−2 |ε|3p−3 |ε|6
|ε|3p−1 −|ε|2p−2 |ε|2
−|ε|4 −|ε|6 −1

) (
|ε|4p−2 |ε|3p−3 |ε|6
|ε|3p−1 −|ε|2p−2 |ε|2
|ε|4 −|ε|6 −1

)
(
|ε|4p−2 |ε|3p−3 |ε|6
|ε|3p−1 −|ε|2p−2 −|ε|2
−|ε|4 |ε|6 1

) (
|ε|4p−2 |ε|3p−3 |ε|6
|ε|3p−1 −|ε|2p−2 −|ε|2
|ε|4 |ε|6 1

) (
|ε|4p−2 |ε|3p−3 |ε|6
|ε|3p−1 −|ε|2p−2 −|ε|2
−|ε|4 −|ε|6 1

) (
|ε|4p−2 |ε|3p−3 |ε|6
|ε|3p−1 −|ε|2p−2 −|ε|2
|ε|4 −|ε|6 1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 −|ε|2p−1 |ε|2
−|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 −|ε|2p−1 |ε|2
−|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 −|ε|2p−1 |ε|2
|ε|4 −|ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 −|ε|2p−1 |ε|2
|ε|4 −|ε|3 −1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 −|ε|2p−1 |ε|2
−|ε|4 |ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 −|ε|2p−1 |ε|2
−|ε|4 |ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 −|ε|2p−1 |ε|2
|ε|4 |ε|3 −1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 −|ε|2p−1 |ε|2
|ε|4 |ε|3 −1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 −|ε|2p−1 −|ε|2
−|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 −|ε|2p−1 −|ε|2
−|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 −|ε|2p−1 −|ε|2
|ε|4 −|ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 −|ε|2p−1 −|ε|2
|ε|4 −|ε|3 1

)
(
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 −|ε|2p−1 −|ε|2
−|ε|4 |ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 −|ε|2p−1 −|ε|2
−|ε|4 |ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
−|ε|6 −|ε|2p−1 −|ε|2
|ε|4 |ε|3 1

) (
|ε|4p−2 |ε|3p−2 |ε|6
|ε|6 −|ε|2p−1 −|ε|2
|ε|4 |ε|3 1

)

Table 15. Phase factors and hierarchical structures of up and down quark mass matrices after the
basis transformations eqs. (4.11) and (4.12) in favorable models in tables 4 and 5. First row denotes
the structure of up quark mass matrix and other rows denote ones of down quark, up to 〈Hu〉 and
〈Hd〉. p is given by u/|u| for τ ∼ ω and (q/|q|)1/3 for τ ∼ i∞. We show different structures which are
not related by unitary transformations for fields. In total we find 128 number of different structures.
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